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Low-temperature expansion and perturbation theory in 2D models with unbroken symmetry:
A new approach

O. Borisenko,* V. Kushnir,† and A. Velytsky‡
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A new method for constructing weak coupling expansion of two-dimensional models with an unbroken
continuous symmetry is developed. The method is based on an analogy with the AbelianXY model, respects
the Mermin-Wagner theorem, and uses a link representation of the partition and correlation functions. An
expansion of the free energy and of the correlation functions at small temperatures is performed and first order
coefficients are calculated explicitly. They are proved to be path independent and infrared finite. We also study
the free energy of the one-dimensional SU(N) model and demonstrate a nonuniformity of the low-temperature
expansion in the volume for this system. Further, we investigate the contribution of holonomy operators to the
low-temperature expansion in two dimensions and show that they do not survive the large volume limit. All
our results agree with the conventional expansion. We discuss the applicability of our method to analysis of the
uniformity of the low-temperature expansion in two dimensions.

PACS number~s!: 11.15.Bt, 11.15.Ha, 75.10.Hk
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I. INTRODUCTION

Since two-dimensional~2D! models with a continuous
global symmetry were recognized to be asymptotically f
@1#, they became a famous laboratory for testing many id
and methods before applying them to more complica
gauge theories. In this paper we follow this common a
proach and present a method, different from conventio
perturbation theory~PT!, which allows one to investigate
these models in the weak coupling region. Conventional
is one of the main technical tools of modern physics. In sp
of the belief of most of the physics community that th
method gives the correct asymptotic expansion of such th
ries as 4D QCD or 2D spin systems with continuous glo
symmetry, recent discussion of this problem@2–6# has
shown that it is rather far from an unambiguous solutio
Indeed, for PT to be applicable it is necessary that the sys
under consideration should possess a well-ordered gro
state. In two-dimensional models, such as theO(N)-sigma
models, the Mermin-Wagner~MW! theorem guarantees th
absence of such a state in the thermodynamic limit~TL!,
however small the coupling constant is@7#. Then, the usua
argument in support of PT is that locally the system is
dered and PT is not supposed to be used for the calcula
of long-distance observables. On the other hand, it sho
reproduce the correct behavior of fixed-distance correlati
as well as all thermodynamical functions which can be
pressed via short-range observables. The example of
models shows that even this is not always true@8#, so why
should one believe in the correctness of conventional PT
2D? In fact, the only way to justify PT is to prove that
gives the correct asymptotic expansion of nonperturbativ
defined models in the TL. Now, it was shown in@2# that PT
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results in 2D non-Abelian models depend on the bound
conditions ~BC’s! used to reach the TL. This result cou
potentially imply that the low-temperature limit and the T
do not commute in non-Abelian models. Actually, the ma
argumentation of@2# regarding the failure of the PT expan
sion is based on the fact that conventional PT is an expan
around a broken vacuum, i.e., a state which simply does
exist in the TL of 2D models. According to@2#, the ground
state of these systems can be described through sp
configurations—the so-called gas of superinstantons~SIs!—
and the correct expansion should take into account th
saddle points. At the present stage it is rather unclear h
one could construct an expansion in the SI background. F
tunately, there exists another, more eligible way to constr
the low-temperature expansion which respects the MW th
rem and isa priori not an expansion around the broke
vacuum. We develop this method in an example of the
SU(N)3SU(N) principal chiral model whose partition func
tion ~PF! is given by

Z5E )
x

DUx expFb(
x,n

Re TrUxUx1n
1 G , ~1!

whereUxPSU(N), DUx is the invariant measure, and w
impose periodic BCs. The basic idea is the following.
was rigorously proved, conventional PT gives an asympto
expansion which is uniform in the volume for the Abelia
XY model@9#. One of the basic theorems which underlies t
proof states that the following inequality holds in the 3DXY
model:

^exp@AbA~fx!#&<C, ~2!

whereC is b independent andA(f12p)5f. Herefx is an
angle parametrizing the action of theXY model, S
5(x,n cos(fx2fx1n). It follows that at largeb the Gibbs
measure is concentrated aroundfx'0, providing the possi-
bility of constructing an expansion aroundfx50. This in-
©2000 The American Physical Society13-1
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equality is not true in 2D in the TL because of the M
theorem; however, the authors of@9# prove the same inequa
ity for the link angle, i.e.,

^exp@AbA~f l !#&<C, f l5fx2fx1n , ~3!

where the expectation value refers to the infinite volu
limit. Thus, in 2D the Gibbs measure at largeb is concen-
trated aroundf l'0 and the asymptotic series can be co
structed by expanding the action in powers off l . In the
Abelian case such an expansion is equivalent to the ex
sion aroundfx50 because~i! the action depends only on th
differencefx2fx1n and ~ii ! the integration measure is fla
DUx5dfx .

In 2D non-Abelian models, again because of the M
theorem, one has to expect in the TL something alike to
~3!, namely,

^exp@Ab argA~Tr Vl !#&<C, Vl5UxUx1n
1 . ~4!

Despite there being no rigorous proof of Eq.~4!, that such an
~or similar! inequality holds in 2D non-Abelian models
intuitively clear and should follow from the chessboard@10#
and contour estimates@11#, and from the Dobrushin-
Shlosman proof of the MW theorem@7# which shows that
spin configurations are distributed uniformly in the gro
space in the TL. Namely, the probabilityp(j) that Tr(Vl
2I )<2j is bounded by

p~j!<O~e2bbj!, b→`, ~5!

if the volume is sufficiently large, andb is a constant. Thus
until j<O„(Ab)21

… is not satisfied, all configurations ar
exponentially suppressed. This is equivalent to the statem
that the Gibbs measure at largeb is concentrated aroun
Vl'I ; therefore Eq.~4! or its analogue holds. In what fol
lows it is assumed that Eq.~4! is correct; henceVl5I is the
only saddle point for the invariant integrals.1 Thus, the cor-
rect asymptotic expansion, if it exists, should be given via
expansion aroundVl5I , similarly to the Abelian model. If
conventional PT gives the correct asymptotics, it must rep
duce the series obtained expanding aroundVl5I . However,
neither~i! nor ~ii ! holds in the non-Abelian models; therefo
it is far from obvious that the two expansions indeed co
cide. Let us parametrizeVl5exp(ivl) and Ux5exp(ivx).
Consider the following expansion:

Vl5exp@ iv l #;I 1 (
n51

~ iv l !
n

n!
. ~6!

Standard PT states that to calculate the asymptotic expan
one has to reexpand this series at largeb as

1It follows already from Eq.~5!. What is important in Eq.~4! is
the factorAb; otherwise, the very possibility of the expansion
1/b becomes problematic.
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1

Ab
~vx2vx1n!1 (

k52

1

~b!k/2
v l

(k) , ~7!

wherev l
(k) are to be calculated from the definitionUxUx1n

1

5exp(ivl). This is presumably true in a finite volume whe
one can fix appropriate BCs like the Dirichlet ones. The
makingb sufficiently large one forces all the spin matric
to fluctuate aroundUx'I ; therefore the substitution~7! is
justified. We do not see how this procedure could be justifi
when the volume increases and fluctuations ofUx spread up
over the whole group space. It is only Eq.~6! which remains
correct in the large volume limit and takes into account
the fluctuations contributing at a given order of the lo
temperature expansion.

This paper is organized as follows. In the next section
introduce a link representation for the 2D SU(N) models. In
this representation link matricesVl play the role of dynami-
cal variables, thus giving a precise mathematical meanin
the expansion~6!. Section III serves as a pedagogical intr
duction to our method. Here we consider theXY model to
construct the low-temperature expansion and to desc
some features of our procedure. The next two sections
devoted to explaining the basic formalism of the expans
for non-Abelian models. In Sec. IV we introduce a certa
representation for the PF and perform a general expan
for the free energy. We then calculate the generating fu
tional and treat zero modes. In Sec. V we investigate cer
‘‘link’’ Green functions entering the generating function
and describe some of their most important properties.
also discuss briefly some of basic features of the expan
as the path independence and infrared~IR! finiteness. To
show how the low-temperature expansion in the link form
lation works in practice we calculate certain expectation v
ues in Sec. VI and shortly summarize our results for vario
quantities. We also reanalyze the free energy of 1D n
Abelian models. As is well known, the large-b expansion in
1D non-Abelian models is nonuniform in the volume. T
explain this feature, in Sec. VII we calculate the contributi
of holonomy operators to the free energy of one- and tw
dimensional models and show that while this contributi
vanishes in the TL for 2D models it survives the larg
volume limit in one dimension. In Sec. VIII we summariz
our results and discuss some open problems.

II. LINK REPRESENTATION FOR THE PARTITION
AND CORRELATION FUNCTIONS

To construct an expansion of the Gibbs measure and
correlation functions using Eq.~6! we use the so-called link
representation for the partition and correlation functio
First, we make a change of variablesVl5UxUx1n

1 in ~1!.
The PF becomes

Z5E )
l

dVl expFb(
l

Re TrVl1 ln J~V!G , ~8!

where the JacobianJ(V) is given by@12#
3-2
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J~V!5E )
x

dUx)
l

F(
r

drx r~Vl
1UxUx1n

1 !G
5)

p
F(

r
drx r S )

l Pp
Vl D G . ~9!

)p is a product over all plaquettes of 2D lattices, the s
over r is sum over all representations of SU(N), and dr
5x r(I ) is the dimension of ther th representation. The
SU(N) characterx r depends on the product of the link m
tricesVl along a closed path~plaquette in our case!:

)
l Pp

Vl5Vn~x!Vm~x1n!Vn
1~x1m!Vm

1~x!. ~10!

The expression( rdrx r() l PpVl) is the SU(N) delta function
which reflects the fact that the product ofUxUx1n

1 around the
plaquette equalsI ~the original model hasL2 degrees of free-
dom, andL2 is the number of sites; since the number of lin
on the 2D periodic lattice is 2L2, the Jacobian must genera
L2 constraints!. There are two solutions of the constraint

)
l Pp

Vl5I , ~11!

the ~1! pure gaugeVl5UxUx1n
1 and ~2! constant solution.

The first solution recovers the equivalence of the link rep
sentation and the standard representation for the part
function of the SU(N) model. To reject the constant, un
physical solution one has to constrain in addition two h
lonomy operators as described in Sec. VII. These holo
mies, however, do not survive the TL in 2D.

Consider the two-point correlation function

G~x,y!5^Tr UxUy
1&. ~12!

Let Cxy be some path connecting pointsx andy. Inserting the
unity UzUz

1 in every sitezPCxy one gets

G~x,y!5K Tr )
l PCxy

~UxUx1n
1 !L 5K Tr )

l PCxy

Wl L , ~13!

whereWl5Vl if along the pathCxy the link l goes in the
positive direction andWl5Vl

1 , otherwise. The expectatio
value in Eq.~13! refers to the ensemble defined in Eq.~8!.
Obviously, it does not depend on the pathCxy which can be
deformed, for example, to the shortest path between sitx
andy.

In this representation the series~6! acquires a well-defined
meaning; therefore the expansion of the action, of the inv
ant measure, etc., can be done.

III. XY MODEL

To make a simple and clear introduction to our meth
we first consider theXY model where the expansion can b
done in a straightforward manner. The link representation
the XY model reads
02501
-
n

-
-

i-

d

r

ZXY5E )
l

dv l expFb(
l

cosv l G)
p

Jp , ~14!

where the Jacobian is given by the periodic delta functio

Jp5 (
r 52`

`

eir vp,

vp5vn~x!1vm~x1n!2vn~x1m!2vm~x1n!. ~15!

The first step is a standard one; i.e., we rescalev→v/Ab
and expand the Boltzmann factor in powers of 1/b as

expFb cos
v l

Ab
G5expFb2

1

2
~v l !

2GF11 (
k51

`

~b!2kAk~v l
2!G ,

~16!

whereAk are known coefficients~see, e.g.,@13#!. In addition
to this perturbation one has to extend the integration reg
to infinity. We do not treat this second perturbation, as u
ally supposing that all the corrections from this perturbat
go down exponentially withb ~in the Abelian case it can be
proved rigorously@9#!. It is more convenient now to go to
dual lattice identifying plaquettes of the original lattice wi
its center, i.e.,p→x. Let l 5(x;n) be a link on the dual
lattice. Introducing sourceshl for the link field, one then
finds

ZXY~b@1!5eb2L22L2 ln b/2)
l

3F11 (
k51

`
1

bk
AkS ]2

]hl
2D GMXY~hl !, ~17!

whereMXY(hl) is a generating functional. Using the Poiss
summation formulaMXY(hl) can be represented as

MXY~hl !5 (
mx52`

` E
2`

`

)
x

drxE
2`

`

)
l

dv l expF2
1

2 (
l

v l
2

1 i(
l

v l~r x2r x1n!12p iAb(
x

r xmx

1(
l

f lhl G . ~18!

Calculating all the integrals in Eq.~18! we find, up to a
constant~a sum over all repeating indices is understood!,

MXY~hl !5ehlGll 8hl 8 /4(
mx

dS (
x

mxD
3e2p2bmxGx,x8mx81pAbhlDl (x8)mx8. ~19!

The integral over the zero mode of ther field is not Gaussian
and leads to a delta function in Eq.~19!. Thus, the zero mode
decouples from the expansion. One also sees that only
configurationmx50 for all x contributes to the asymptoti
3-3
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expansion, nontrivial vortex configurations are exponentia
suppressed. We thus finally get

MXY~hl !5expF1

4 (
l ,l 8

hlGll 8hl 8G1O~e2b!, ~20!

where we have introduced the link Green functionGll 8 ~see
Sec. V for details!.

The easiest way to construct the corresponding expan
for the correlation function is the following. LetCxy be some
path connecting pointsx andy and letCxy

d be a path dual to
the pathCxy , i.e., consisting of the dual linksb,b8 which are
orthogonal to the original linksb,b8PCxy . The correlation
function is defined as

GXY~x,y!5K )
bPCxy

d
expF i

Ab
vbG L . ~21!

The last formula suggests that to compute the correla
function it is sufficient to make the shifthl→hl

1( i /Ab)(bd l ,b in the expression for the generating fun
tional ~20!. We find

GXY~x,y!5expF2
1

4b (
b,b8PCxy

d
Gbb8GZXY

21)
l

3F11 (
k51

`
1

bk
AkS ]2

]hl
2D GexpF1

4 (
l ,l 8

hlGll 8hl 8

1
i

2Ab
hl(

b
GlbG . ~22!

It is straightforward to calculate from here all connect
pieces contributing to the correlation function at a given
der of 1/b. For example, the second order coefficient of t
correlation function expressed in terms of link Green fun
tions reads (biPCxy

d )

G (2)~x,y!5
1

32S (
b1b2

Gb1b2D 2

2
1

32 (
b1b2

(
l

Gb1lGlb2
.

~23!

Using some properties ofGll 8 described in Sec. V it is eas
to prove thatG (2)(x,y) coincide with that quoted in the lit
erature for theO(2) model@14#.

Let us add some comments. In the standard expansio
avoid the zero-mode problem one has to fix appropriate
such as Dirichlet conditions, or to fix a global gauge if o
works on the periodic lattice@15#. In the present scheme th
zero mode decouples automatically due to using a U~1! delta
function which takes into account the periodicity of the in
grand in link angles. A more important observation is th
both the free energy and the correlation function are
pressed only through the link Green function which is
finite by construction. It guarantees the IR finiteness of
low-temperature expansion to all orders in 1/b. This is a
02501
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direct consequence of the fact that the Gibbs measure o
XY model is a function of the gradientv l only.

IV. WEAK COUPLING EXPANSION IN THE SU „N…

MODEL

In this section we derive the low-temperature expans
for non-Abelian models. We describe the general proced
for the SU~2! group and then give a simple generalization f
all SU(N) models. For some technical details we refer t
reader to our earlier papers@13,16#.

As usual, we want to expand the partition and correlat
functions into asymptotic series whose coefficients are
culated over certain Gaussian measure, i.e., up to a con

Z511 (
k51

`
1

bk
^Bk&G . ~24!

We take the standard form for the SU~2! link matrix

Vl5exp@ iskvk~ l !#, ~25!

wheresk, k51,2,3 are Pauli matrices. Let us introduce

Wl5F(
k

vk
2~ l !G1/2

, Wp5F(
k

vk
2~p!G1/2

, ~26!

wherevk(p) is a plaquette angle defined as

Vp5)
l Pp

Vl5exp@ iskvk~p!#. ~27!

It has the following expansion in powers of link angles:

vk~p!5vk
(0)~p!1vk

(1)~p!1vk
(2)~p!1•••. ~28!

On a dual lattice (p→x) the first coefficients can be writte
down as

vk
(0)~x!5vk~ l 3!1vk~ l 4!2vk~ l 1!2vk~ l 2!, ~29!

vk
(1)~x!52ekpq(

i , j

4

vp~ l i !vq~ l j !. ~30!

Then, the partition function~8! can be exactly rewritten in
the following form ~see Appendix A of@13#!:

ZSU(2)5E )
l

F sin2 Wl

Wl
2 )

k
dvk~ l !G

3expF2b(
l

cosWl G)
x

Wx

sinWx

3)
x

(
m(x)52`

` E )
k

dak~x!

3expF2 i(
k

ak~x!vk~x!12p im~x!a~x!G ,
~31!
3-4
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wherea(x)5@(kak
2(x)#1/2. In the derivation of this repre

sentation we have used the Poisson summation formula
perform the weak coupling expansion we make the subs
tion

vk~ l !→~2b!21/2vk~ l !, ak~x!→~2b!1/2ak~x!, ~32!

and then expand the integrand of Eq.~31! in powers of fluc-
tuations of the link fields. Such a procedure is justified by
fact that atb sufficiently large link matrices fluctuate aroun
unity as has been argued in the Introduction. Introduc
now the external sourceshk( l ) coupled to the link fieldvk( l )
andsk(x) coupled to the auxiliary fieldak(x) and adopting
the definitions
in
co
ec
is

a

t
le

02501
To
u-

e

g

vk~ l !→ ]

]hk~ l !
, ak~x!→ ]

]sk~x!
, ~33!

we get finally the following weak coupling expansion for th
partition function~31!:

Z5F11 (
k51

`
1

bk
Bk~]h ,]s!GM ~h,s!, ~34!

where operatorsBk are defined through
rom
11 (
k51

`
1

bk
Bk~]h ,]s!5)

l
F S 11 (

k51

`
1

~2b!k ( 8
l 1 , . . . ,l k

a1
l 1 . . . ak

l k

l 1! . . . l k!
D S 11 (

k51

`
~21!k

~2b!k
CkWl

2kD G
3)

x
H S 11 (

k51

`
Jk

~2b!k
Wx

2kD F11 (
q51

`
~2 i !q

q! S (
k

ak~x! (
n51

` vk
(n)~x!

~2b!n/2D qG J . ~35!

HereCk andJk areb-independent coefficients~see Ref.@13#! and

ak5~21!k11
Wl

2(k11)

~2k12!!
. ~36!

The first set of brackets on the right-hand side~RHS! of Eq. ~35! comes from the expansion of the action, the second one f
the invariant measure. The last two sets of brackets represent the Jacobian. As usual, one has to puthk5sk50 after taking all
the derivatives.

The generating functionalM (h,s) is given by

M ~h,s!5E
2`

`

)
x,k

dak~x!E
2`

`

)
l ,k

dvk~ l !expF2
1

2
vk

2~ l !2 ivk~ l !@ak~x1n!2ak~x!#G
3 (

m(x)52`

`

expF2p iA2b(
x

m~x!a~x!1(
l ,k

vk~ l !hk~ l !1(
x,k

ak~x!sk~x!G . ~37!
-
ion
ble.
is
s in
As in the Abelian case only the configuration withmx50 for
all x contributes to the asymptotic expansion, all others be
exponentially suppressed. In this case zero modes are
trolled through integration over radial component of the v
tor aW (x). Integration over the constant component of th
vector ensures that only neutral configurations, i.e.,(xmx
50, contribute to the asymptotic expansion. Calculating
Gaussian integrals in Eq.~37! we come to

M ~h,s!5expF1

4
sk~x!Gx,x8sk~x8!1

i

2
sk~x!Dl~x!hk~ l !

1
1

4
hk~ l !Gll 8hk~ l 8!G , ~38!

where link functionsGll 8 andDl(x) are described in the nex
section. From Eq.~38! one can deduce the following simp
rules:
g
n-
-

ll

^vk~ l !vn~ l 8!&5
dkn

2
Gll 8 ,

^ak~x!an~x8!&5
dkn

2
Gxx8 ,

2 i ^vk~ l !an~x8!&5
dkn

2
Dl~x8!. ~39!

The expansion~34!, representation~38! for the generating
functional, and rules~39! are the main formulas of this sec
tion which allow us to calculate the weak coupling expans
of both the free energy and any short-distance observa
Extension of this expansion for the correlation function
straightforward and can be done, for example, precisely a
3-5
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the XY model ~i.e., through modification of the generatin
functional! or by making a direct expansion in powers of lin
angles.

Generalization for an arbitrary SU(N) model can be done
as follows. As we have discussed above the low-tempera
expansion arises only from the ‘‘vacuum’’ sector withmx
50 for all x. One can see from Eq.~31! that in this sector the
SU(N) delta function reduces to the Dirac delta function
that the partition function becomes

Z~b@1!5E )
l

dVl expFb(
l

Re TrVl G)
p,k

d~vp
k!.

~40!

Such a naive replacement is of course plagued by the p
lem of (N221) zero modes for auxiliary fieldsak(x), and
therefore the delta function in Eq.~40! should be correspond
ingly regularized. This can be done, for instance, by int
ducing the heat kernel instead of the SU(N) delta function
into the expression for the partition function. This procedu
is equivalent to introducing a mass term for auxiliary field
As we have shown, however, zero modes decouple from
large-b expansion in the SU~2! model @we could not gener-
alize the consideration of Appendix A of@13# for arbitrary
SU(N), though#. In what follows we work with massles
Green functions, omitting zero modes from all lattice su
similarly to the SU~2! case. All general expressions rema
valid if one works with the mass regulator term as mention
above. Since all logarithmic divergences cancel, we exp
that the convergence to the TL is uniform in this vacuu
sector: in all cases the final result can be expressed on
terms of link Green functions and standardD functions.
Then, the expansion itself is done precisely like for SU~2!.

V. LINK GREEN FUNCTIONS

The main building blocks of the low-temperature expa
sion in the link formulation are the link Green functionsGll 8
and Dl(x8). In this section we describe some of their ba
properties. The functionsGll 8 andDl(x8) are defined as

Gll 852d l ,l 82Gx,x82Gx1n,x81n81Gx,x81n81Gx1n,x8 ,
~41!

Dl~x8!5Gx,x82Gx1n,x8 , ~42!

where link l 5(x,n) is defined by a pointx and a positive
direction n. Here Gx,x8 is a ‘‘standard’’ Green function on
the periodic lattice:

Gx,x85
1

L2 (
kn50

L21
e(2p i /L)kn(x2xn8)

f ~k!
,

f ~k!522 (
n51

2

cos
2p

L
kn , kn

2Þ0. ~43!

Normalization is such thatGll 51. In momentum spaceGll 8
reads
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Gll 85
2dnn821

L2

3 (
kn50

L21
e(2p i /L)kn(x2x8)n

f ~k!
F~n,n8!1

2dnn8

L2
,

F~n5n8!52S 12cos
2p

L
kpD , nÞp,

F~nÞn8!5~12e(2p i /L)kn!~12e(22p i /L)kn8!. ~44!

Using this representation it is easy to prove the followi
‘‘orthogonality’’ relations for the link functions:

(
b

GlbGbl852Gll 8 ,

(
b

Db~x!Gbl850,

(
b

Db~x!Db~x8!52Gx,x8 , ~45!

where the sum overb runs over all links of 2D lattices. Le
Cxy

d be the path as described after Eq.~20!. We then have

(
l ,l 8PCxy

d
Gll 852D~x2y!, D~x!5

1

L2 (
kn50

L21
12e(2p i /L)knxn

f ~k!
.

~46!

Let L be any closed path. Then

(
l ,l 8PL

Ḡll 850, ~47!

where Ḡll 85Gll 8 if both links l and l 8 point in either the
positive or negative direction andḠll 852Gll 8 if one ~and
only one! of the links points in the negative direction. I
particular, Eq.~47! holds for each plaquette of the lattice.

Let l i , i 51, . . . ,4, befour links attached to a given sit
x. One sees thatGll 8 satisfies the following equation:

Gl 1l 81Gl 2l 82Gl 3l 82Gl 4l 850 ~48!

for any link l 8. Dl(x8) satisfies the lattice Laplas equation

Dl 1
~x8!1Dl 2

~x8!2Dl 3
~x8!2Dl 4

~x8!52dx,x8 . ~49!

The last three equations ensure the path independence o
correlation function in the link formulation for they allow
one to deform some given path to any other one.

It follows from the definition~41! that

uGll 8u<1. ~50!

Therefore, with respect to the Gaussian measure~37! the
fluctuations of the link variables are bounded like
3-6
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u^v lv l 8&Gu5U12 Gll 8U< 1

2
, ~51!

due to the bound~50!. One sees from the last formula th
the interaction between links strongly decreases with
tance. Taking an asymptotic expansion for the Green fu
tions in Eq.~41! we find that, if l 5(0,n), l 5(R,m),

u^v lv l 8&Gu5O~R21!. ~52!

This property justifies the low-temperature expansion
powers of fluctuations of link variables. Note that it is not t
case for the original degrees of freedom which describe fl
tuations of site variables. The latter fluctuations are
bounded since

^a~x!a~x8!&G5
1

2
Gxx85O~ ln L !. ~53!

Probably, the most important property of the link fun
tions is that they are IR finite by construction. And althou
the IR dangerous functionGxy also enters the generatin
functional for non-Abelian models, the dependence of
expectation values onGxy is rather trivial since it appears i
the expansion only through auxiliary fields but not throu
dynamical variables. In particular, we are able to exac
rewrite the partition function of non-Abelian models as

Z5 (
k50

G0
k^Zk&,

whereZk are some IR finite operators and the finite-volum
asymptotic expansion arises only from the termk50. Details
of this representation will be reported in a forthcoming pu
lication @18#.

VI. CORRELATION FUNCTION IN TWO-DIMENSIONAL
MODELS

In order to demonstrate how our method works we co
pute the first two coefficients of the fixed-distance corre
tion function for the SU(N) model. Throughout this sectio
we work on a dual lattice. Linksbi denote links belonging to
the pathCxy

d . Expanding Eq.~13! we write down

GSU(N)~x,y!512
1

b
G (1)~x,y!1

1

b2
G (2)~x,y!1••• .

~54!

The first coefficient is given by

G (1)~x,y!5
N221

4N (
b1b2

Gb1b2
5

N221

2N
D~x2y! ~55!

and coincides with the conventional result. We split the s
ond coefficient into three pieces:

G (2)~x,y!5
N221

16
~Q11Q21Q3!. ~56!
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Q1 describes the contribution of the second order term fr
the correlation function and zero order term from the Gib
measure:

Q15
1

N2 (
k51

4

Q1
(k) , ~57!

where

Q1
(1)5

2N223

6 (
b

Gbb
2 , ~58!

Q1
(2)5 (

b1.b2
F ~N221!Gb1b1

2 1~N222!Gb1b2

2

1
4

3
~2N223!Gb1b2G , ~59!

Q1
(3)5 (

b1Þb2Þb3

@~N221!Gb1b2
1~N222!Gb1b2

Gb2b3
#,

~60!

Q1
(4)54 (

b1.b2.b3.b4

@~N221!~Gb1b2
Gb3b4

1Gb1b4
Gb2b3

!

2Gb1b3
Gb2b4

#. ~61!

Q2 describes the contribution ofb23/2 order from the expan-
sion of the correlation function and ofb21/2 order from the
expansion of the Jacobian. This ‘‘self-connected’’ piece
given by

Q252 (
b1.b2.b3

(
x

(
i , j

4

@Qx
i j ~b1 ,b2 ,b3!2Qx

i j ~b1 ,b3 ,b2!

1Qx
i j ~b2 ,b3 ,b1!2Qx

i j ~b2 ,b1 ,b3!

1Qx
i j ~b3 ,b1 ,b2!2Qx

i j ~b3 ,b2 ,b1!#, ~62!

where

Qx
i j ~b1 ,b2 ,b3!5Db1

~x!Gb2l i
Gb3l j

. ~63!

Finally, there are contributions of the first order terms fro
the expansion of the correlation function, the Gibbs meas
and the Jacobian.Q3 describes the corresponding connect
pieces:

Q35 (
k51

3

Q3
(k) , ~64!

where

Q3
(1)5

1

2N2 (
b1b2

(
l

Gb1lGlb2
, ~65!
3-7
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Q3
(2)52

2

3 (
b1b2

(
x

F3Db2
~x!~Gb1l 1

2Gb1l 4
!~Gl 1l 2

2Gl 1l 3
!1

1

2 (
i 51

4

Gb1l i
Gb2l i

@Dl 1
~x!1Dl 2

~x!2Dl 3
~x!2Dl 4

~x!#

1~Gb1l 1
1Gb1l 2

!@2Dl 1
~x!Gb2l 2

22Dl 4
~x!Gb2l 3

2Dl 2
~x!Gb2l 1

1Dl 3
~x!Gb2l 4

#1@Dl 1
~x!1Dl 2

~x!#Gb1l 3
Gb2l 4

2@Dl 3
~x!1Dl 4

~x!#Gb1l 1
Gb2l 2G , ~66!

Q3
(3)5

1

4 (
b1b2

(
x,x8

(
i , j

4

(
i 8, j 8

4

~Gx,x8I 11I 2!. ~67!

We have denoted

I 15Gb1 ,l i
Gb2 ,l

i 8
8 Gl j ,l

j 8
8 1Gb1 ,l j

Gb2 ,l
j 8
8 Gl i ,l

i 8
8 2Gb1 ,l i

Gb2 ,l
j 8
8 Gl j ,l

i 8
8 2Gb1 ,l j

Gb2 ,l
i 8
8 Gl i ,l

j 8
8 , ~68!

I 25Db1
~x!Db2

~x8!~Gl i ,l
j 8
8 Gl j ,l

i 8
8 2Gl i ,l

i 8
8 Gl j ,l

j 8
8 !12Db1

~x!Dl i
~x8!~Gb2 ,l

i 8
8 Gl j ,l

j 8
8 2Gb2 ,l

j 8
8 Gl j ,l

i 8
8 !12Db1

~x!Dl j
~x8!

3~Gb2 ,l
j 8
8 Gl i ,l

i 8
8 2Gb2 ,l

i 8
8 Gl i ,l

j 8
8 !1Dl

i 8
8 ~x!Gb1 ,l

j 8
8 @Dl i

~x8!Gb2 ,l j
2Dl j

~x8!Gb2 ,l i
#

1Dl
j 8
8 ~x!Gb1 ,l

i 8
8 @Dl j

~x8!Gb2 ,l i
2Dl i

~x8!Gb2 ,l j
#. ~69!
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In all formulas link l i ( l 8 j 8) refers to one of four links
attached to a given sitex (x8). As it stays, this expression fo
the second order coefficient is valid for any path if all lin
biPCxy

d point in positive directions. If one considers a pa
where some links point in a negative direction, one has
change sign in the corresponding Green functions. Des
the complexity of this representation, real computations
rather straightforward if one uses the properties of link fu
tions described in the previous section. In particular, we h
proved that~i! our result forG (2)(x,y) coincides with the
conventional answer@8#, and ~ii ! the representation fo
G ( i )(x,y) is path independent and IR finite.

The details of the proof can be found in Ref.@16#.

VII. CONTRIBUTION FROM HOLONOMY OPERATORS

In this section we analyze the contribution of the h
lonomy operators to the low-temperature expansion of
free energy. We start with one-dimensional models. To a
lyze the 1D SU(N) model we note that the formula fo
G (2)(x,y) given in the previous section remains valid if w
take for the link Green function the following expression:

Gll 852d l ,l 8 . ~70!

This equation is a trivial consequence of the fact that in
link formulation the 1D model reduces to one link integr
Then, it is straightforward to calculate, for example, the fi
order coefficient of the free energy. We find

1

L
Cf .e.

1 52
N221

8N
, ~71!
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which agrees with the expansion of the exact result in
TL. On the other hand, it is well known that the low
temperature expansion in 1D non-Abelian models is nonu
form in volume; in particular conventional PT produces
result different from Eq.~71!. To explain this nonuniformity
we recall that on the periodic lattice one has to constrai
holonomy operator if one works in the link formulation
Working with 2D models we have neglected this addition
constraint since it seems to us rather unlikely that suc
global constraint may influence the TL in 2D~see below!.
This happens, however, in 1D model as we are going
show below.

The partition function is given by

Z5E )
l

dVl expFb(
l

Re TrVl1 ln J~V!G , ~72!

whereJ(V) introduces a global constraint on link matrice

J~V!5(
r

drx rS )
l 51

L

Vl D . ~73!

Again, at largeb we replace the SU(N) delta function by the
Dirac delta function, i.e.,

J~V!5E )
k51

N221

dfk exp@2 ifkv
k~C!#, ~74!

wherevk(C) is defined as

)
l 51

L

Vl5exp@ ilkvk~C!#. ~75!
3-8
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We omit all technical details which are exactly the same
in 2D. For the first order coefficient of the free energy w
find, in the large-volume limit,

1

L
CSU(N)

1 52
N221

8N
1

N~N221!

24
. ~76!

The second term on the right-hand side of the last form
comes from the expansion ofJ(V) and modifies the correc
expression~71!. Our result~76! disagrees with the one give
in @8#. We think it is because the result of@8# was obtained
using the mass regulator term, i.e., the procedure whic
known to give a wrong answer even in a finite volume@15#.
To check the correctness of Eq.~76! we have compared it fo
N52 with theO(n54) model:

1

L
CO(n)

1 5
n21

8
2

~n21!~n22!

24
, ~77!

where the second term comes from the Hasenfratz t
which survives the TL in 1D. One sees that the results ind
coincide.2

On a 2D lattice one should restrict the two holonom
operators. In our previous analysis we have neglected
restriction. Since, however, this global constraint influen
the TL in 1D if the low-temperature expansion is done in
finite volume, we think it is instructive to see what happe
with holonomies in two-dimensional models.

Let Hi ( i 51,2) be any given path winding around th
whole lattice.H1 andH2 are orthogonal to each other. On
has to introduce two global constraints into the partiti
function ~8!:

J~H !5E )
k51

N221

)
i 51

2

dfk~ i !exp@2 ifk~ i !vk~Hi !#, ~78!

wherevk(Hi) is defined as

)
l PHi

Vl5exp@ ilkvk~Hi !#. ~79!

There are two types of contributions fromJ(H). The first
one comes from the expansion ofJ(H) itself. It is too cum-
bersome to be given here in full. This contribution, howev
can be expressed only through link Green functions an
proportional to the linear size of the lattice. This is the reas
why it survives the TL in 1D. Correspondingly, in 2D
vanishes likeO(1/L). The second type is related to modifi
cation of the generating functional. Namely, one sho
make the following replacement of the Green functions:

Gll 8→Ḡll 85Gll 82
1

2 (
i

(
(bb8)PHi

GlbGl 8b8 , ~80!

2One needs also to replaceb→2b in O(4).
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Dl~x!→D̄ l~x!5Dl~x!2
1

2 (
i

(
(bb8)PHi

Db~x!Glb8 ,

~81!

Gx,x8→Ḡx,x85Gx,x81
1

2 (
i

(
(bb8)PHi

Db~x!Db8~x8!.

~82!

In particular, the corresponding replacements should
made in formulas~54!–~70!. Let us take for simplicity such
pathsHi which consist of links pointing only in one direc
tion. The coordinates of the corresponding links on the d
lattice are

b5~x1,0;n2!, x1P@0,L21#, bPH1

and

b5~0,x2 ;n1!, x2P@0,L21#, bPH2 .

One then proves that

Ḡll 85Gll 82O~1/L2!, ~83!

D̄ l~x!5Dl~x!2O~1/L !, ~84!

Ḡx,x85Gx,x81
1

2 (
n51

2

~2dxn,021!~2dx
n8,021!. ~85!

One sees that the only new term which could potentia
survive the TL is the second term in the last expression. T
term is to be substituted into Eq.~67! and it leads to the
computation of sums of the form

Q3
(div)5

1

8 (
b1b2

(
x,x8

(
i , j

4

(
i 8, j 8

4

~4dx1,0dx
18,024dx1,011!I 1 .

~86!

The first term vanishes likeO(1/L) because of two extra
deltas while the second and constant terms equal zero du
the IR finiteness ofQ3

(3) . Moreover, in general it is clea
from Eqs.~83!–~85! that the holonomies may only contribut
to the TL through the constant term inḠx,x8 . This is, how-
ever, equivalent to noncancellation of infrared divergence
some higher orders. In all other cases the holonomies do
survive the TL.

VIII. SUMMARY AND DISCUSSION

In this paper we proposed to use an invariant link form
lation to investigate some properties of 2D models in
weak coupling region. We have argued that this approac
more suitable for the calculation of asymptotic expansions
invariant functions in cases when the Mermin-Wagner th
rem forbids spontaneous symmetry breaking in the therm
dynamic limit. We have found that both in theXY model and
in non-Abelian SU(N) models our results for the first orde
coefficients of the free energy and correlation function ag
with the standard PT expansion in the TL. We have dem
3-9
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strated how the path independence of the correlation func
manifests itself in our expansion and have proved such in
pendence for the first two coefficients via direct calculatio
We have also shown which properties of the expansion g
antee its infrared finiteness, at least in lowest orders. Mo
over, since in our expansion the source of such divergen
is exactly localized, it gives a good opportunity for inves
gation of the IR finiteness of higher order terms. It could le
to a lattice analogue of David’s theorem@17# which states the
IR finiteness of the weak coupling expansion of continu
models. We thus find that the low-temperature expans
performed in the link representation coincides with conv
tional PT in the lowest orders. In fact, it seems that these
expansions have to coincide up to arbitrary order. If conv
tional PT produces the correct asymptotic expansion i
finite volume, any other expansion is bound to reproduce
same coefficients when the volume is fixed. Moreover, t
also refers to the TL if these coefficients are infrared fin
We may thus conclude that our calculations support conv
tional PT, in particular the reexpansion~7! made in the stan-
dard approach.

Now we can return to the question raised in the Introd
tion, namely, whether conventional PT gives a unifo
asymptotic expansion for non-Abelian models. It has be
well known for a long time that it is not so in one
dimensional non-Abelian models. We have reanalyzed
low-temperature expansion of 1D models in the link rep
sentation. In this representation one should impose a gl
.

ys
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constraint on link matrices~73!. This global constraint van-
ishes in the TL if this limit is taken before the low
temperature expansion. However, if the expansion is don
a finite volume, the expansion of the holonomy operat
which imposes the global constraint, does survive the TL
leads to the nonuniformity of the low-temperature expans
in one dimension. We also have proved that it is not the c
in 2D: at least in the lowest order the holonomies do n
survive the TL and there is good reason to believe that t
do not in higher orders as well. Nevertheless, one can
exclude the possibility of the nonuniformity of the low
temperature expansion arising from the remainder of the
series @6#. This problem is extremely hard to resolve b
means of standard approaches; see, for instance,@5#. On the
contrary, in the link formulation we are able to calculate t
exponential remainder at a given order of the lo
temperature expansion. Therefore, the problem of the IR
niteness of the remainder can be addressed explicitly@19#.
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