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Low-temperature expansion and perturbation theory in 2D models with unbroken symmetry:
A new approach
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A new method for constructing weak coupling expansion of two-dimensional models with an unbroken
continuous symmetry is developed. The method is based on an analogy with the Abélimndel, respects
the Mermin-Wagner theorem, and uses a link representation of the partition and correlation functions. An
expansion of the free energy and of the correlation functions at small temperatures is performed and first order
coefficients are calculated explicitly. They are proved to be path independent and infrared finite. We also study
the free energy of the one-dimensional 8l)(model and demonstrate a nonuniformity of the low-temperature
expansion in the volume for this system. Further, we investigate the contribution of holonomy operators to the
low-temperature expansion in two dimensions and show that they do not survive the large volume limit. All
our results agree with the conventional expansion. We discuss the applicability of our method to analysis of the
uniformity of the low-temperature expansion in two dimensions.

PACS numbgs): 11.15.Bt, 11.15.Ha, 75.10.Hk

[. INTRODUCTION results in 2D non-Abelian models depend on the boundary
conditions (BC’s) used to reach the TL. This result could
Since two-dimensiona(2D) models with a continuous potentially imply that the low-temperature limit and the TL
global symmetry were recognized to be asymptotically freedo not commute in non-Abelian models. Actually, the main
[1], they became a famous laboratory for testing many ideagrgumentation of2] regarding the failure of the PT expan-
and methods before applying them to more complicatedion is based on the fact that conventional PT is an expansion
gauge theories. In this paper we follow this common ap.around a broken vacuum, l.e., a state which Slmply does not

proach and present a method, different from conventiong§Xist in the TL of 2D models. According ], the ground
perturbation theory(PT), which allows one to investigate state of these systems can be described through special

these models in the weak coupling region. Conventional pfonfigurations—the so-called gas of superinstant@is—

is one of the main technical tools of modern physics. In spitegg((jj dﬂ;e gi?]rt;eC;tetﬁ%anfézgn?hgglde ti?kig rlgiﬁe?(ijcr?clfggrtziive
of the belief of most of the physics community that this P : P 9

method gives the correct asymptotic expansion of such the(Eqne could construct an expansion in the Sl background. For-

. . h X unately, there exists another, more eligible way to construct
ries as 4D QCD or 2D spin systems with continuous globa he low-temperature expansion which respects the MW theo-

symmetry, recent discussion of this problef®-6] has o anq isa priori not an expansion around the broken
shown that it is rather far from an unambiguous solution.,o-,um. We develop this method in an example of the 2D
Indeed, for PT to be applicable it is necessary that the syste@U(N) X SU(N) principal chiral model whose partition func-
under consideration should possess a well-ordered grounghn (PR is given by

state. In two-dimensional models, such as @EN)-sigma

models, the Mermin-WagndMW) theorem guarantees the .

absence of such a state in the thermodynamic liffilt), Z=f I1 DUXex;{,BE ReTru,U,,,|, (1)
however small the coupling constant[ig. Then, the usual X o
argument in support of PT is that locally the system is or- here U,  SU(N), DU, is the invariant measure, and we
dered and PT is not supposed to be used for the calculatioff x € ! X '

of long-distance observables. On the other hand, it shoulf"Pose periodic BCs. The basic idea is the following. As

reproduce the correct behavior of fixed-distance correlation{/@S rigorously proved, conventional PT gives an asymptotic

as well as all thermodynamical functions which can be ex_expansion which is uniform in the volume for the Abelian

pressed via short-range observables. The example of 15Y model[9]. One of the basic'theorer'ns which.underlies the
models shows that even this is not always 8 so why proof states that the following inequality holds in the ¥

should one believe in the correctness of conventional PT if10del:
2D? In fact, the only way to justify PT is to prove that it
gives the correct asymptotic expansion of nonperturbatively (exd \/EA(¢X)]>$Q 2
defined models in the TL. Now, it was shown[®] that PT
whereC is B independent and(¢+27) = ¢. Here g, is an
angle parametrizing the action of thXY model, S

*Email address: oleg@ap3.bitp.kiev.ua =2, n COS(h— dy4p)- It follows that at largepB the Gibbs
"Email address: kushnir@ap3.bitp.kiev.ua measure is concentrated arou#ig=0, providing the possi-
*Email address: vel@ap3.bitp.kiev.ua bility of constructing an expansion arourfl=0. This in-
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equality is not true in 2D in the TL because of the MW

1
theorem; however, the authors[@f prove the same inequal- == (0g— )+ 2, — o, @)
ity for the link angle, i.e., VB k=2 (B)
(exd VBA(S))<C, & =dy— byin, (3)  whereo{® are to be calculated from the definitibh U, ,

=explw). This is presumably true in a finite volume where
where the expectation value refers to the infinite volumeone can fix appropriate BCs like the Dirichlet ones. Then,
limit. Thus, in 2D the Gibbs measure at largeis concen- making 8 sufficiently large one forces all the spin matrices
trated around$,~0 and the asymptotic series can be con-to fluctuate aroundJ,~1; therefore the substitutiofi7) is
structed by expanding the action in powers ¢f. In the justified. We do not see how this procedure could be justified
Abelian case such an expansion is equivalent to the expatithen the volume increases and fluctuationsJgfspread up
sion aroundp, =0 becaus¢i) the action depends only on the over the whole group space. It is only E&) which remains
difference,— ¢, , and(ii) the integration measure is flat, correct in the large volume limit and takes into account all
DU,=dd,. the fluctuations con_tributing at a given order of the low-
In 2D non-Abelian models, again because of the Mw!emperature expansion.

theorem, one has to expect in the TL something alike to Eq. This paper is organized as follows. In the next section we
(3), namely, introduce a link representation for the 2D SYJ(models. In

this representation link matricd4 play the role of dynami-

- _ + cal variables, thus giving a precise mathematical meaning to
(eql/BargATIV)D=C, Vi=UUin. (&) the expansior6). Section Ill serves as a pedagogical intro-
duction to our method. Here we consider tK& model to
construct the low-temperature expansion and to describe
some features of our procedure. The next two sections are
devoted to explaining the basic formalism of the expansion
for non-Abelian models. In Sec. IV we introduce a certain
representation for the PF and perform a general expansion
for the free energy. We then calculate the generating func-
tional and treat zero modes. In Sec. V we investigate certain
“link” Green functions entering the generating functional
bt and describe some of their most important properties. We

p(£)=<O(e ), B—, (5 also discuss briefly some of basic features of the expansion

as the path independence and infraféd) finiteness. To

if the volume is sufficiently large, anis a constant. Thus, show how the low-temperature expansion in the link formu-
until £<0O((JB) %) is not satisfied, all configurations are lation works in practice we calculate certain expectation val-
exponentially suppressed. This is equivalent to the statemenies in Sec. VI and shortly summarize our results for various
that the Gibbs measure at largkis concentrated around quantities. We also reanalyze the free energy of 1D non-
V,~1; therefore Eq(4) or its analogue holds. In what fol- Abelian models. As is well known, the largg-expansion in
lows it is assumed that E@) is correct; henc&/,=1 isthe 1D non-Abelian models is nonuniform in the volume. To
only saddle point for the invariant integrdidhus, the cor- explain this feature, in Sec. VIl we calculate the contribution
rect asymptotic expansion, if it exists, should be given via arof holonomy operators to the free energy of one- and two-
expansion aroun,=1, similarly to the Abelian model. If dimensional models and show that while this contribution
conventional PT gives the correct asymptotics, it must reprovanishes in the TL for 2D models it survives the large-
duce the series obtained expanding aroWi |. However, volume limit in one dimension. In Sec. VIIl we summarize
neither(i) nor (ii) holds in the non-Abelian models; therefore our results and discuss some open problems.
it is far from obvious that the two expansions indeed coin-
cide. Let us parametriz&/,=explw) and U,=exp(w,).
Consider the following expansion:

Despite there being no rigorous proof of E4), that such an
(or similan inequality holds in 2D non-Abelian models is
intuitively clear and should follow from the chessboaid]
and contour estimate$ll], and from the Dobrushin-
Shlosman proof of the MW theorefiY] which shows that
spin configurations are distributed uniformly in the group
space in the TL. Namely, the probabiliy(¢) that Tr(V,
—1)=<—¢ is bounded by

II. LINK REPRESENTATION FOR THE PARTITION
AND CORRELATION FUNCTIONS

(io)" To construct an expansion of the Gibbs measure and the
. (6) correlation functions using E@6) we use the so-called link

representation for the partition and correlation functions.

First, we make a change of variabl®s=U, U, . in (1).

Yhe PF becomes

v|=e><|u[iw|]~|+n§l =

Standard PT states that to calculate the asymptotic expansi
one has to reexpand this series at lagyas

Z=J IT av, ex;{,BE Re Trv,+InJ(V)|, (8)
4t follows already from Eq(5). What is important in Eq(4) is ! !
the factor/B; otherwise, the very possibility of the expansion in
1/8 becomes problematic. where the Jacobiad(V) is given by[12]

025013-2



LOW-TEMPERATURE EXPANSION AND PERTURBATION . .. PHYSICAL REVIEW [B2 025013

)= [ 1] auT1 {Z doxe (Vi Uy, )

ZXY=J H dw, exr{,BEI COSw,

];[ Jp, (19

where the Jacobian is given by the periodic delta function
:H E err(H VI) - 9 g y P
p r lep »

. . J = E eirwp
I, is a product over all plaquettes of 2D lattices, the sum P~ '
over r is sum over all representations of SWU) and d,
=x,(l) is the dimension of theth representation. The ®p=0n(X) + Op(X+N) = 0y(X+M) = wp(x+n). (15
SU(N) charactery, depends on the product of the link ma-
tricesV, along a closed patiplaquette in our cage The first step is a standard one; i.e., we reseale w/\/B

and expand the Boltzmann factor in powers g8 BHs
[T Vi=Va()Vin(x+n)Vy (x+m)Ve(x). (10
ex;{ B cos

]

1 o
7B :exl{ﬁ_ §(w|)2 1+k21 (B) *Ax(w)|,
The expressioxd, x,(Il; . ,V)) is the SUN) delta function (16)
which reflects the fact that the product@fU,, ,, around the
plaguette equalk(the original model hak? degrees of free- whereA, are known coefficientésee, e.g.[13]). In addition
dom, and_? is the number of sites; since the number of linksto this perturbation one has to extend the integration region
on the 2D periodic lattice is[2?, the Jacobian must generate to infinity. We do not treat this second perturbation, as usu-
L? constraints There are two solutions of the constraint  ally supposing that all the corrections from this perturbation
go down exponentially witlB (in the Abelian case it can be
I v,=I (11) proved r.igoyouslyl[g']). It is more convenien't how to go to a
ip =" dual lattice identifying plaquettes of the original lattice with
its center, i.e.p—Xx. Let I=(x;n) be a link on the dual

the (1) pure gaugé\/|:UXU:+n and (2) constant solution. lattice. Introducing Sourceb| for the link f|e|d, one then
The first solution recovers the equivalence of the link reprefinds
sentation and the standard representation for the partition
function of the SUN) model. To reject the constant, un- Zyy(B>1)=ef2L?-L2npre] |
physical solution one has to constrain in addition two ho- [
lonomy operators as described in Sec. VII. These holono-
mies, however, do not survive the TL in 2D.
Consider the two-point correlation function

lep

2

X
oh?

Myy(hy), (17)

o1
1+ —A
121 g

T(xy)=(Tru,uy). (120 whereMyy(h)) is a generating functional. Using the Poisson

_ _ _ summation formulaV xv(h;) can be represented as
Let C,, be some path connecting pointandy. Inserting the

unity U,U in every siteze Cy One gets

- - - 1
Madh)= 2 | 11 drxJ%H doy exp[—EZ of

—o X

F(X,)/)=<Tr IT (s, >=<Tr|1_C[ W|>, (13
eCyy €Cyy

+i§|: @ (ry—=Tyyp)+2mi \/,[—BEX: r,m,
where W, =V, if along the pathC,, the link | goes in the
positive direction andV,=V,", otherwise. The expectation
value in Eq.(13) refers to the ensemble defined in E§).
Obviously, it does not depend on the p&th, which can be
deformed, for example, to the shortest path between gites Calculating all the integrals in Eq18) we find, up to a

: (18

+2| oih

andy. constant(a sum over all repeating indices is understigod
In this representation the seri@® acquires a well-defined

meaning; therefore the expansion of the action, of the invari- _ oGy rhyr /4

ant measure, etc., can be done. Myv(hy)=e % o 2 My

ll. XY MODEL X @~ T AMGy Myt mBNDI(X)my (1)

To make a simple and clear introduction to our methodThe integral over the zero mode of théeld is not Gaussian
we first consider theXY model where the expansion can be and leads to a delta function in E4.9). Thus, the zero mode
done in a straightforward manner. The link representation fodecouples from the expansion. One also sees that only the
the XY model reads configurationm,=0 for all x contributes to the asymptotic
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expansion, nontrivial vortex configurations are exponentiallydirect consequence of the fact that the Gibbs measure of the
suppressed. We thus finally get XY model is a function of the gradiemt; only.

IV. WEAK COUPLING EXPANSION IN THE SU (N)

+0(e™f), (20 MODEL

1
MXY(hI):eXF{Z 2 h Gy hy
L

, , In this section we derive the low-temperature expansion
where we have introduced the link Green functiép: (see  for non-Abelian models. We describe the general procedure

Sec. V for details for the SU2) group and then give a simple generalization for

The easiest way to construct the corresponding expansiog)| sy(N) models. For some technical details we refer the
for the correlation function is the following. L€l,, be some  a5der to our earlier papef$3,16
. . d ! . . .
path connecting points andy and letCy, be a path dualto As usual, we want to expand the partition and correlation
the pathC,,, i.e., consisting of the dual links,b” which are  fynctions into asymptotic series whose coefficients are cal-

orthogonal to the original link®,b" e Cy, . The correlation  culated over certain Gaussian measure, i.e., up to a constant
function is defined as

Z=1+ i ! (By) (24)
i = - _k k/G -
FXY(X,Y):< Hd exr{\/—_ﬂwbD_ (21 k=1
7O We take the standard form for the &) link matrix
The last formula suggests that to compute the correlation V|=exr[iakwk(|)], (25

function it is sufficient to make the shifthj—h,
+(i/\/E)2b5|,b in the expression for the generating func- wheres®, k=1,2,3 are Pauli matrices. Let us introduce
tional (20). We find

12 12
FXY(x,y)=ex;{—E > , Gow Zyy
bb"eCyy wherew,(p) is a plaguette angle defined as
- & 1
X |1+ El kAk h2 ex ZE h|G||/h|r Vp:|1_‘[ V|=eXF[ia'kwk(p)]. (27)
= | 11" Ep
i It has the following expansion in powers of link angles:
+——=h 2> Gp|. (22
2Vp 5 wdp)= o)+ o)+ o)+ (29

It is straightforward to calculate from here all connectedOn a dual lattice §—x) the first coefficients can be written
pieces contributing to the correlation function at a given or-down as

der of 13. For example, the second order coefficient of the 0

correlation function expressed in terms of link Green func- Q)= (1) + oy(l) o) —oll,), (29
tions reads lf; e C§,)

4
1 2 4 oM(x)=— P wy(l)wg(l)). (30)
(2) — _ = i<
*(xy) 32(%2 Gblb2> 2 blEbz Zl Gp,1Gib,:

(23 Then, the partition functiori8) can be exactly rewritten in
the following form (see Appendix A of13]):

siP W,
" 'l'k[ dey(l)

Using some properties @), described in Sec. V it is easy

to prove thatl'®)(x,y) coincide with that quoted in the lit- 5 _f I

erature for theD(2) model[14]. su— | 4,
Let us add some comments. In the standard expansion to

avoid the zero-mode problem one has to fix appropriate BC,

such as Dirichlet conditions, or to fix a global gauge if one Xex;{ ZBEI: cosW

works on the periodic latticEL5]. In the present scheme the

zero mode decouples automatically due to using B delta ”

function which takes into account the periodicity of the inte- x[[ X [T dayx)

grand in link angles. A more important observation is that x mx)=-= Sk

both the free energy and the correlation function are ex-

pressed only through the link Green function which is IR Xexl{—iz a(X) wi(X) +2mim(x) a(x)

finite by construction. It guarantees the IR finiteness of the :

low-temperature expansion to all orders in31/This is a (32)

Wy
1:[ sinW,
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where a(x) =[ZaZ(x)]Y2 In the derivation of this repre-
sentation we have used the Poisson summation formula. To o= ——=, aX)— =, (33
: . : ahy(1) Isk(X)
perform the weak coupling expansion we make the substitu-
tion
_ we get finally the following weak coupling expansion for the
)= (28) (1), )20 a0, @2 o e Ping &Xp

and then expand the integrand of Eg1) in powers of fluc-
tuations of the link fields. Such a procedure is justified by the

fact that atB sulfficiently large link matrices fluctuate around _ i

unity as has been argued in the Introduction. Introducing 1+k§=:1 B~ Bi(9n.d5) M(h.s), 34
now the external sourcdg(l) coupled to the link fieldo,(I)

ands,(x) coupled to the auxiliary fieldy,(x) and adopting

the definitions where operator8, are defined through

2 Rson Tl 108 s =, g Gl

5 (2 é;”;ifé)H-

HereC, andJ, are B-independent coefficientsee Ref[13]) and

I2(|<+1)

A=V G

(36)
The first set of brackets on the right-hand siB1S) of Eq. (35) comes from the expansion of the action, the second one from
the invariant measure. The last two sets of brackets represent the Jacobian. As usual, one sty g after taking all
the derivatives.
The generating functiona¥ (h,s) is given by

- » 1
M(h,s)zﬁwu dak(x)f 11 dwk(l)ex;{—Ewﬁ(l)—iwk(l)[ak(ern)—ak(x)]

— 0 |’

xm(x)Zz_ exp{Zwi \/2;;; m(x)a(x)+% wk(|)hk(|)+x2k a (X)S(X) . (37)
|
As in the Abelian case only the configuration witty=0 for N
all x contributes to the asymptotic expansion, all others being (o () wn(l ’)>=TGH' ,
exponentially suppressed. In this case zero modes are con-
trolled through integration over radial component of the vec-
tor a(x). Integration over the constant component of this (X) an(x") —%G
vector ensures that only neutral configurations, iXm, {a(x)an(x"))= 2 XX
=0, contribute to the asymptotic expansion. Calculating all
Gaussian integrals in E37) we come to 5
H ! k ’
(@D an(x))=—"Dy(x"). (39)

M(h,s>=exp[%s«x)csx,xrsk(x')+'§sk(x>D.<x)hk<l>

The expansion(34), representatior{38) for the generating
(38 functional, and rule39) are the main formulas of this sec-

tion which allow us to calculate the weak coupling expansion
where link functionss,,, andD,(x) are described in the next of both the free energy and any short-distance observable.
section. From Eq(38) one can deduce the following simple Extension of this expansion for the correlation function is
rules: straightforward and can be done, for example, precisely as in

1
+th(|)GII'hk(II) ,
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the XY model (i.e., through modification of the generating
functiona) or by making a direct expansion in powers of link
angles.

Generalization for an arbitrary SN model can be done

as follows. As we have discussed above the low-temperature

expansion arises only from the “vacuum” sector witi,
=0 for all x. One can see from E31) that in this sector the
SU(N) delta function reduces to the Dirac delta function so
that the partition function becomes

S(wy).

Z(,8>1)=J’ H dv, exp[/sZ ReTrV|Lk
| (40)

PHYSICAL REVIEW D62 025013

20hy—1
G||/: nn2

L
L1 q@mill)ky(x=x"), 260

% F(n,n")+——,
Ko 1K) (T

’ 2w
F(n=n")=2|1-cost—ky|, n#p,

F(n¢nr):(1_e(2‘rri/L)kn)(1_e(*2ﬂ'i/L)an). (44)

Using this representation it is easy to prove the following
“orthogonality” relations for the link functions:

Such a naive replacement is of course plagued by the prob-

lem of (N2—1) zero modes for auxiliary fielda,(x), and
therefore the delta function in EG}0) should be correspond-

zb G|bi|/ - ZG” ’y

ingly regularized. This can be done, for instance, by intro-

ducing the heat kernel instead of the $Uj(delta function

into the expression for the partition function. This procedure

is equivalent to introducing a mass term for auxiliary fields.
As we have shown, however, zero modes decouple from th
large8 expansion in the S(2) model[we could not gener-
alize the consideration of Appendix A ¢13] for arbitrary
SU(N), thougH. In what follows we work with massless
Green functions, omitting zero modes from all lattice sum
similarly to the SU2) case. All general expressions remain

valid if one works with the mass regulator term as mentioned
above. Since all logarithmic divergences cancel, we expect D Gy =2D(x—Y)

that the convergence to the TL is uniform in this vacuum

sector: in all cases the final result can be expressed only in

terms of link Green functions and standald functions.
Then, the expansion itself is done precisely like for(3U

V. LINK GREEN FUNCTIONS

The main building blocks of the low-temperature expan-
sion in the link formulation are the link Green functio@g
andD,(x"). In this section we describe some of their basic
properties. The function§;; andD(x") are defined as

G1=26) ' =Gy x' = Gxtnx +n T Gxxr+n T Gxrnxr s
(41
D|(X,):GX,X/_GX+I’1,X' ) (42)
where link|=(x,n) is defined by a poink and a positive
directionn. Here G, , is a “standard” Green function on
the periodic lattice:

1 L-1 e(27ri/L)kn(x—xr/])

Grx' = k)

F Kp=0
2 2
f(ky=2—>, cos—k, k2#0. (43)

n=1

Normalization is such thas; =1. In momentum spacg;
reads

; Dy(X)Gpyr =0,

e

; Dp(X)Dp(X")=2G, x , (45)

SWhere the sum oveb runs over all links of 2D lattices. Let

Cffy be the path as described after E20). We then have

1 L-1 1 — e(2mi/L)knXy

2 f(k)

Km0

D(x)=—
1" eCs, L?

(46)

Let £ be any closed path. Then

> Gy =0,

I1"eL

(47)

WhereEH,:G”, if both links | and |’ point in either the

positive or negative direction an@;,=—G,, if one (and
only one of the links points in the negative direction. In
particular, Eq.(47) holds for each plaquette of the lattice.
Letl;, i=1,...,4, befour links attached to a given site
X. One sees thdg,, satisfies the following equation:
Gl +GLi =G =G

0 (48

AT
for any link1’. D|(x") satisfies the lattice Laplas equation

Dy, (X)) + D1, (X") =D (X") =Dy (X") =284 x . (49)

The last three equations ensure the path independence of the

correlation function in the link formulation for they allow
one to deform some given path to any other one.
It follows from the definition(41) that
|G, /|<1. (50)
Therefore, with respect to the Gaussian mea<@® the
fluctuations of the link variables are bounded like
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1 Q; describes the contribution of the second order term from
=5 (3D the correlation function and zero order term from the Gibbs
measure:
due to the bound50). One sees from the last formula that
the interaction between links strongly decreases with dis- 1 A
tance. Taking an asymptotic expansion for the Green func- Qi=— 2 Q(lk), (57)
tions in Eq.(41) we find that, ifl=(0,n), | =(R,m), N k=1

1
|<w|w|'>G|: EGII’

(o)6|=O(R™1). (52)  where
This property justifies the low-temperature expansion in " 2N2—-3 5
powers of fluctuations of link variables. Note that itis not the  Q1"’'=—¢ % Ghp» (58)

case for the original degrees of freedom which describe fluc-
tuations of site variables. The latter fluctuations are not

bounded since Q= X [<N2—1)e§1b1+<|\12—2>eﬁ1b2
1 b;>by
(@(x)a(x'))6=5Gro=0(INL). (53) 4
+3(2N*=3)Gy, |, (59)

Probably, the most important property of the link func-
tions is that they are IR finite by construction. And although
the IR dangerous functiofs,, also enters the generating Q= > [(NZ—1)Gb1b2+(N2—2)Gblbsz2bS],
functional for non-Abelian models, the dependence of the by #ba#bg

expectation values 0B, is rather trivial since it appears in (60)

the expansion only through auxiliary fields but not through

dynamical variables. In particular, we are able to exactly M_y N2=1)(G. » Gt » +Gr. . G

rewrite the partition function of non-Abelian models as Q1 by>by>bg>by L€ /(Go;5,Cbs, T Goyp,Gogo,)
—Gp,b,Gb,p,J- (61)

Z:kgo Go(Zi),

Q, describes the contribution ¢~ order from the expan-

whereZ, are some IR finite operators and the finite-volumesion of the correlation function and @ 2 order from the
asymptotic expansion arises only from the tdem0. Details  expansion of the Jacobian. This “self-connected” piece is
of this representation will be reported in a forthcoming pub-given by

lication [18].

4
Q== 2 X 2 [Q(by,by,b3)~Q(by,b3,by)
VI. CORRELATION FUNCTION IN TWO-DIMENSIONAL 170270 X 1=

MODELS +QY(b2,b3,b1) = Q¥ (b, by ,bg)
In order to demonstrate how our method works we com- +Qll(bg,by,by) —Ql (bg,b,,by)1], (62)

pute the first two coefficients of the fixed-distance correla-
tion function for the SUN) model. Throughout this section

where
we work on a dual lattice. Linkb; denote links belonging to
the pathCy, . Expanding Eq(13) we write down Qll(by,by,bs) = Dbl(X)szliGbslj- (63)
1 1
Tsyny(x,y)=1— —F(l)(x,y)+—2F(2)(x,y)+ e Finally, there are contributions of the first order terms from
B B the expansion of the correlation function, the Gibbs measure,

(54 and the JacobiarQ5 describes the corresponding connected

The first coefficient is given by pleces.
N2—1 N2—1 S
1) = = " D(x— - (K
PO0Y= 35" 2 Cow,= 5y DY) (69 Q=2 QY (64)

and coincides with the conventional result. We split the secynere
ond coefficient into three pieces:

N?—1 1
FOxy)=—(Qi+Q+Qy).  (56) Q=2

> > Gb,1Gib,» (65)

bby 1
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14
3D, (X)(Gp,1, = Gy, ) (Ciy, = Gryi) +5 2 G, [D1,(X)+Dy,(X) =Dy (X) =Dy ,(X)]

2
P=-23 3

biby, X

+(Gp,1, 1 Gp,1,)[2D1,(X)Gp,1,— 2D (X)Gp,1,— D1, (X)Gp,1, + D1 (X) Gp,1, ] +[Dy (X) + D1 (X) 1Gp 1, ,Cp,1,

_[D|3(X)+D|4(X)]Gb1|1Gb2|2} (66)

(3)_

-MH

Eb 2 ; 2 (Gyxl1¥12). (67)

i<’
We have denoted
11=Gp, 1,Gb, 1", Gy, i +Gb1IGb2I G, Gbl,Iisz,Ij',Glj,Ii',_Gbl,Iijz,Ii',Gli,Ij’,v (68)
|z:Dbl(X)DbZ(X')(Gh,|J_’,G|j,|i’,_G|i,|i’,G|j ,|j’,)JF2Db1(X)D|i(X')(Gb2,|i',G|j,|]_',—Gb2,|]f,G|j 11)+2Dp, (X)Dy (x")
X(sz,lj',GIi,Ii',_sz,Ii',Gli,Ij’,)+Dli',(X)Gbl,Ij’,[DIi(X,)GbZ,Ij_Dlj(X,)sz,li]

+ D|j’,(X)Gb1,|i’,[D|j(X')sz,|i_ Dy, (x")Gp, 1,1 (69)

In all formulas linkl; (1';,) refers to one of four links ~ which agrees with the expansion of the exact result in the
attached to a given site(x’). As it stays, this expression for TL. On the other hand, it is well known that the low-
the second order coefficient is valid for any path if all links temperature expansion in 1D non-Abelian models is nonuni-
b; eC y boint in positive directions. If one considers a pathform in volume; in particular conventional PT produces a
where "some links point in a negative direction, one has tgesult different from Eq(71). To explain this nonuniformity
change sign in the corresponding Green functions. Despité¢/e recall that on the periodic lattice one has to constrain a
the complexity of this representation, real computations aréolonomy operator if one works in the link formulation.
rather straightforward if one uses the properties of link func-\Working with 2D models we have neglected this additional
tions described in the previous section. In particular, we havéonstraint since it seems to us rather unlikely that such a
proved that(i) our result forT'®(x,y) coincides with the global constraint may influence the TL in 2@Bee below
conventional answef8], and (ii) the representation for This happens, however, in 1D model as we are going to

I'D(x,y) is path independent and IR finite. show below. S
The details of the proof can be found in REE6]. The partition function is given by
VII. CONTRIBUTION FROM HOLONOMY OPERATORS ZZJ l_ll av, eXP[BEI ReTrV,+InJ(V)|, (72

In this section we analyze the contribution of the ho-
|0nomy operators to the |ow-temperature expansion of thé\lhereJ(V) introduces a global constraint on link matrices:
free energy. We start with one-dimensional models. To ana-
lyze the 1D SUN) model we note that the formula for
I'®(x,y) given in the previous section remains valid if we J(V):Z drxr
take for the link Green function the following expression:

Again, at largeB we replace the SUY) delta function by the
G||r:26|‘|/ . (70) DII'aC delta fUnCtIOh, |e,

L
|H1 v|> . (73

NZ-
This equation is a trivial consequence of the fact that in the _ . K
link formulation the 1D model reduces to one link integral. ‘](V)_f kll dewexd —i e (C)], (74)

Then, it is straightforward to calculate, for example, the first

order coefficient of the free energy. We find wherew*(C) is defined as
1 N2—1 -
ol = *— Vi=exd ik (C)]. 75
TCle=—gn (71) 11 vi=exdinfe(c)] (75
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We omit all technical details which are exactly the same as _ 1
in 2D. For the first order coefficient of the free energy we Di(x)=Di(x)=Di(x)—5 Y X Dp(X)Gpy,
find, in the large-volume limit, '(bbY)eH; ®1)

2 2
1, N*—1  N(N*-1)

LCsun=" gy "2 (79

- 1
Grx =G =G5 2 2 Dp(X)Dpi(X').

I (bb')eH;
The second term on the right-hand side of the last formula (82)

comes from the expansion d{V) and modifies the correct | particylar, the corresponding replacements should be
expressior(71). Our result(76) disagrees with the one given 1, qe in formulags4)—(70). Let us take for simplicity such
in [8]. We think it is because the result (8] was obtained athsH; which consist of links pointing only in one direc-

using the mass regulator term, i.e., Fhe p_ropedure which i on. The coordinates of the corresponding links on the dual
known to give a wrong answer even in a finite volupié].

lattice are
To check the correctness of E§6) we have compared it for I
N=2 with theO(n=4) model: b=(x4,0;ny), x;€[0L—1], beH;
1 n-1 (n—1)(n—2 and
1o ol (o) -
L 8 24 .
b:(O,XZ,nl), Xze[o,l_—l], bEHz.

where the second term comes from the Hasenfratz terr®ne then proves that
which survives the TL in 1D. One sees that the results indeed

COinCide.2 EHI:G”I_O(]./LZ), (83)
On a 2D lattice one should restrict the two holonomy
operators. In our previous analysis we have neglected thifﬁ(x):Dmx)—O(l/L), (84)

restriction. Since, however, this global constraint influences

the TL in 1D if the low-temperature expansion is done ina 12

finite volume, we think it is instructive to see what happens G, ,, =Gy, + 2 E 25X o—1) (25x' o—1). (85

with holonomies in two-dimensional models. -
Let H; (i=1,2) be any given path winding around the

whole lattice.H,; andH, are orthogonal to each other. One

has to introduce two global constraints into the partition

function (8):

One sees that the only new term which could potentially
survive the TL is the second term in the last expression. This
term is to be substituted into E467) and it leads to the
computation of sums of the form

NZ—1 2 4 4

)= | 1111 dowhext —igdi e (H)], (79 “"”)—8 2 2 2 2 (48080 40t Dl

b2 xx" 1<l i’<j’ 6

herewX(H,) is defined as . . .
W @ (Hi) 1 ! The first term vanishes lik®©(1/L) because of two extra

deltas while the second and constant terms equal zero due to
IT vi=exdinkoX(H)1. (79 the IR finiteness 0S¥ . Moreover, in general it is clear
leH; from Eqgs.(83)—(85) that the holonomies may only contribute
to the TL through the constant term @ .. This is, how-
ever, equivalent to noncancellation of infrared divergences in

one comes from.the expansion Jiﬂ—Q itself. .It IS too cum-  g4me higher orders. In all other cases the holonomies do not
bersome to be given here in full. This contribution, however,surv've the TL.

can be expressed only through link Green functions and is
proportional to the linear size of the lattice. This is the reason

why it survives the TL in 1D. Correspondingly, in 2D it
vanishes likeO(1/L). The second type is related to modifi-  |n this paper we proposed to use an invariant link formu-
cation of the generating functional. Namely, one shouldiation to investigate some properties of 2D models in the
make the following replacement of the Green functions:  weak coupling region. We have argued that this approach is
more suitable for the calculation of asymptotic expansions of
— 1 invariant functions in cases when the Mermin-Wagner theo-
G”’_’G”’:G”’_E Z bb,z 9y GiGibrs (80 yom forbids spontaneous symmetry breaking in the thermo-

(bET) <y dynamic limit. We have found that both in tix¥ model and

in non-Abelian SUN) models our results for the first order
coefficients of the free energy and correlation function agree
2One needs also to replage—23 in O(4). with the standard PT expansion in the TL. We have demon-

There are two types of contributions frodfH). The first

VIIl. SUMMARY AND DISCUSSION
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strated how the path independence of the correlation functiononstraint on link matriceé73). This global constraint van-
manifests itself in our expansion and have proved such inddshes in the TL if this limit is taken before the low-
pendence for the first two coefficients via direct calculationstemperature expansion. However, if the expansion is done in
We have also shown which properties of the expansion guam finite volume, the expansion of the holonomy operator,
antee its infrared finiteness, at least in lowest orders. Morewhich imposes the global constraint, does survive the TL. It
over, since in our expansion the source of such divergencdsads to the nonuniformity of the low-temperature expansion
is exactly localized, it gives a good opportunity for investi- in one dimension. We also have proved that it is not the case
gation of the IR finiteness of higher order terms. It could leadin 2D: at least in the lowest order the holonomies do not
to a lattice analogue of David’s theordi7] which states the survive the TL and there is good reason to believe that they
IR finiteness of the weak coupling expansion of continuumdo not in higher orders as well. Nevertheless, one cannot
models. We thus find that the low-temperature expansioexclude the possibility of the nonuniformity of the low-
performed in the link representation coincides with conventemperature expansion arising from the remainder of the PT
tional PT in the lowest orders. In fact, it seems that these twseries[6]. This problem is extremely hard to resolve by
expansions have to coincide up to arbitrary order. If convenmeans of standard approaches; see, for instdfteQn the
tional PT produces the correct asymptotic expansion in @&ontrary, in the link formulation we are able to calculate the
finite volume, any other expansion is bound to reproduce thexponential remainder at a given order of the low-
same coefficients when the volume is fixed. Moreover, thisemperature expansion. Therefore, the problem of the IR fi-
also refers to the TL if these coefficients are infrared finite.niteness of the remainder can be addressed expl[difl}

We may thus conclude that our calculations support conven-
tional PT, in particular the reexpansién) made in the stan-
dard approach.

Now we can return to the question raised in the Introduc- We are grateful to J. Polonyi who found time to go
tion, namely, whether conventional PT gives a uniformthrough many details of the expansion presented here and for
asymptotic expansion for non-Abelian models. It has beemmany encouraging discussions. We would like to thank V.
well known for a long time that it is not so in one- Miransky and V. Gusynin for interesting discussions and
dimensional non-Abelian models. We have reanalyzed th&ealthy criticisms of different stages of this work. Our spe-
low-temperature expansion of 1D models in the link repre<cial thanks to B. Rusakov for the explanation of his paper
sentation. In this representation one should impose a glob&l?2] regarding the calculation of the Jacobid{V).
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