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Superconducting string texture
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We present a detailed analytical and numerical study of a novel type of static, superconducting, classically
stable string texture in a renormalizable topologically trivial massiveU(1) gauge model with one charged and
one neutral scalar. An upper bound on the mass of the charged scalar as well as on the current that the string
can carry are established. A preliminary unsuccessful search for stable solutions corresponding to large super-
conducting loops is also reported.

PACS number~s!: 11.27.1d, 11.10.Lm, 14.80.Cp
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The term texture is attributed generically to topologic
configurations trivial at spatial infinity. The winding of th
fields takes place over a finite region which roughly defin
the location of the configuration. Such defects have attrac
considerable attention, both in particle physics and cosm
ogy. Well known examples are theSkyrmionwhich offers a
useful alternative description of the nucleon, and theglobal
textureused recently to implement an appealing mechan
for structure formation in the Universe. In cosmological a
plications one makes use of the instability of three dim
sional texture in renormalizable purely scalar theories.
such configurations are unstable towards shrinking; they
lapse to a point and eventually decay to scalar radiation. T
is a natural decay mechanism, which on the one hand
vents the domination of the energy density by texture-l
defects, and on the other it leads to highly energetic eve
which can provide the primordial fluctuations necessary
structure formation.

In particle physics one would be more interested in o
serving such solitons in accelerator experiments, and
above instability is an unwanted feature. One approach
stabilize such configurations was the introduction into
action of higher derivative terms. However, being no
renormalizale, such terms are undesirable in the tree l
action, and furthermore it has not been possible so fa
produce in a controllable unambiguous way a quartic term
the right sign to lead to stable solitons. An alternative w
has been advocated recently and has succesfully stabi
texture in realistic extensions of the standard model w
more than the minimal one Higgs doublet content. The t
ture here is stabilized by the gauge interactions.

An extended Higgs sector in the effective low ener
theory of electroweak interactions is favored by supersy
metry, superstring theory and is necessary if one wishe
arrange for an efficient and potentially realistic electrowe
baryogenesis. Examples of simple realistic models wit
multiple Higgs field content are the two Higgs-doublet sta
dard model~2HSM!, and the minimal supersymmetric sta
dard model~MSSM!. It is well known that no finite energy
topological strings or particle-like solitons exist in the
0556-2821/2000/62~2!/025012~13!/$15.00 62 0250
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models, and furthermore if no additional spontaneously b
ken discrete global symmetries are introduced, they do
carry domain walls either.

However, it was pointed out recently@1# that an extended
Higgs sector supports generically the existence of a n
class of quasi-topological metastable solutions. Like to
logical solitons these objects are characterized by a wind
which counts the number of times the relative phase of
Higgs multiplets winds around its manifold as we scan
space transverse to the defect. Unlike topological solitons
the other hand, their existence is not decided by the sym
try structure alone of the theory. In particular, they do n
exist for all values of parameters and are at best classic
stable. They are local minima of the energy functional a
decay to the vacuum via quantum tunneling@1#. Alterna-
tively, they can be thought of as embedded textures, wh
in contrast with the previously discussed electroweak
Z-strings @2#, are trivial at spatial infinity. We occasionall
refer to these defects generically asribbons, reminiscent of
the way they look in the simplest (111)-dimensional para-
digm presented in@1,3#.

The above ideas have been explicitly demonstrated w
the construction of membranes@1,4–6# and infinite straight
strings @7,8# in the context of simple toy models or in th
2HSM for realistic values of its parameters, including t
MSSM as a special case. Finally, even though no sta
particle-like solitons have been suggested so far in any
these realistic models, a new tower of sphaleron soluti
was obtained, characterized by a finite number of mode
instability @9#. When they exist, these new solutions ha
lower energy than the standard model sphalerons or
formed sphalerons and furthermore, they are less unst
having smaller in magnitude eigenfrequencies of instabil

The string texture in particular discussed so far, may a
be viewed as semilocal three dimensional, static, classic
stable generalizations of the Belavin-Polyakov solitons@10#
of the O(3) non-linears model. A massiveU(1) @7# or the
SU(2)3U(1) @8# gauge fields of the 2HSM stabilize thes
solitons against the shrinking instability induced by the s
lar potential terms@11#. The charged fields vanish at th
center of the string, but are non-zero on a tube of radius
©2000 The American Physical Society12-1
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thickness both of electroweak scale, surrounding its a
This configuration is a novel kind of bosonic supercondu
ing string. Contrary to the one presented in@12#, it is not
absolutely stable, it has different topological characteris
and is more ‘‘economical’’ employing the same Higgs fie
both for its formation as well as for its superconductivity.

Two issues arise naturally. First, to what extent is it p
sible to generalize the above stable string solutions and a
for a current to flow along them, while retaining their stab
ity? More importantly, could there exist stable particle-li
configurations, current-carrying loops of such supercond
ing strings? Being of the electroweak scale, such a lo
would correspond to a particle with mass of a few TeV a
would be the first example of a stable soliton in a realis
model of particle physics with a chance to be produced in
next generation of accelerator experiments.

Clearly, it should not be surprising that one may in pr
ciple allow for a current to flow along the string. After all,
perturbatively small current may reduce slightly the stabi
of the string, but it should not make a local minimum of t
energy dissappear altogether.

The existence of stable loops on the other hand, depe
crucially on the maximum current such a string can sust
Imagine a piece of length 2pR of superconducting string
with thicknessr̄ and windingQ in the transverse directions
Introduce a current along it by a twistn[N/R of N full turns
of the phase of the charged scalar over the string len
2pR, and glue the ends of the string together to form a lo
Parametrize byw the angle around the loop and byr,u the
radial coordinate and the polar angle in the plane transv
to the string. The configuration may then be represented
F5 f (r)eiQueiNw. The profilef (r) may conveniently be ap
proximated by a constantf̄ on a tube surrounding the strin
axis. With g̃ the gauge coupling, the corresponding curre
density components areJw;g̃ f̄ 2N/R flowing along the loop,
and Ju;g̃ f̄ 2Q/ r̄ perpendicular toJw roughly on a tube of
radiusr̄ surrounding the string axis. The total currentI cir-
culating in the loop is given by the surface integral ofJw

over the string cross section and equalsI;Jwpr̄2

;g̃ f̄ 2Npr̄2/R. Similarly, the current per unit string length i
the u direction is i;Jur̄;g̃ f̄ 2Q. I gives rise to a magnetic
field whose flux through the superconducting loop is co
stant and given byF0;IR;g̃N f̄2pr̄2. Its energy is, up to
inessential logarithmic corrections@13#, equal to Em

;F0
2/2R;(g̃ f̄ 2Npr̄2)2/2R. The string tension may be ap

proximated by the magnetic energy of the field produced
Ju . It is given by ET;Bw

2(Volume)/2; i 22pRpr̄2/2

;(g̃ f̄ 2Qpr̄)2R. The minimum of the total energyE5Em

1ET is at R/ r̄.N/A2Q, or equivalently at the value of th
F twist:

n.A2
Q

r̄
. ~1!

The pressure due to the squeezed magnetic field through
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loop opposes the tendency of the loop to contract to z
radius, and the system reaches an equilibrium with rad
given in Eq.~1!.

The argument of the preceding paragraph is based on
eral simplifying assumptions. The string was treated a
perfect superconducting wire, with definite thickness a
perfect Meissner effect, while the loop was assumed to h
R@ r̄. However, the above discussion shows that it is u
likely to form a stable loop the way we describe it her
unless the straight string can support a current strong eno
to satisfy Eq.~1!.

The precise evaluation of the maximum current tha
straight string texture can support and the existence of st
loops are dynamical questions, which require detailed
merical study. In this paper we take a first step and exam
these issues in the context of a simple massiveU(1) gauge
model @7#, which captures most of the relevant features
the 2HSM. In Sec. I we describe the model we shall
interested in. A perturbative semiclassical analysis is p
sented, which leads to the necessary and sufficient condit
for the existence of stable texture, carrying the current
duced by a fixed twist per unit length in the charged sca
Section II contains the detailed numerical study of t
model. We confirm the analytical results, we make prec
the meaning of the conditions for stability obtained in Sec
and show that Eq.~1! cannot be satisfied in the context o
this model. This is in line with the results of a first prelim
nary attempt to find stable loops, also reported in Sec. II
summary and some remarks concerning superconduc
string texture in the realistic 2HSM are offered in the discu
sion section. Finally, a semiclassical proof that a mass
U(1) gauge field does not lead to stable texture is prese
in the Appendix.

I. THE MODEL – SEMICLASSICAL ANALYSIS

A simple field theoretical laboratory@7# to study the main
features of string texture contains a complex scalar fieldF
5F11 iF2 coupled to a massive U~1! gauge fieldZm as well
as to a neutral scalarF3. Their dynamics is described by th
Lagrangian density

L5
1

2
~DmF!†DmF1

1

2
]mF3]mF32V~F,F3!2

1

4
ZmnZmn

1
1

2
m2ZmZm ~2!

where Zmn5]mZn2]nZm and Dm5]m1 igZm . The gauge
boson should be massive for stable strings to exist~see Ap-
pendix!. We choose to call it Z because its role in the conte
of Eq. ~2! is analogous to that ofZ0 in realistic electroweak
theories@8#.

The potential is given by

V~F,F3!5
l

4 S (
a51

3

Fa
22v2D 2

1
k2

8
~F32v !41

1

2
m2uFu2.

~3!
2-2
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SUPERCONDUCTING STRING TEXTURE PHYSICAL REVIEW D62 025012
The classical vacuum of the model is

F50, F35v ~4!

and the masses ofZ, F and F3 are m, m and mH[A2lv,
respectively. We have not considered the most general
tential consistent with the O~2! invariance of the model, no
have we tried to generate the gauge boson mass more
rally via Higgs mechanism with an extra complex scalar. F
convenience we keep the number of fields and the coupl
to a minimum. As mentioned in the Introduction, string te
ture of the type studied below has already been predicte
exist also in a large class of realistic models@8#. Of course, a
U(1) gauge field with an explicit mass term does not sp
renormalizability, provided it couples to a conserved curre

The field equations of the model are

]mZmn1m2Zn5Jn ~5!

DmDmF52
]V

]F! , ]m]mF352
]V

]F3
. ~6!

The gauge current

Jm[
g

2i
„F!DmF2~DmF!!F… ~7!

is automatically conserved by theF equations of motion.
Combined with Eq.~5! it implies the transversality

]mZm50 ~8!

of the gauge field.
Finally, the energy density of model~2! is

E5
1

2
@~D0F!†D0F1~DiF!†DiF1~]0F3!21] iF3] iF3#

1V~F,F3!1
1

2
Z0iZ0i1

1

4
Zi j Zi j 1

m2

2
~Z0Z01ZiZi !

~9!

wherei , j 51,2,3.
Having a unique classical vacuum~4! and a trivial target

space the model does not support the existence of any
of absolutely stable topological solitons. However, not
that in the naive limit

l→` and g,k,m→0 ~10!

the magnitudeF[AFaFa of the triplet Fa freezes at its
vacuum valuev, and L reduces to a decoupled massi
gauge field plus the ungauged O~3! non-linears model

L05
mH

2

2l

1

2
]mna]mna ~11!

for the unit-vector field

na[
Fa

F
. ~12!
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It is well known thatL0 has topologically stable stati
string solutions@10#. To simplify their description, one may
replace the unit fieldna by a complex scalarV through the
stereographic projection

n11 in25
2V

11uVu2
, n35

12uVu2

11uVu2
~13!

from the unit sphereS2 onto the complex plane. The string
of model ~11! stretching along thex3 axis, are given by
holomorphic functionsV(z), where z5x11 ix2. They are
classified by the number of timesQ the transverse two-spac
wraps around the target space. Convenient expression
this integer winding numberQ are

Q5
1

pE dx1dx2

]̄V̄]V2 ]̄V]V̄

~11uVu2!2

5
1

8pE dx1dx2eabeabcn
a]anb]bnc ~14!

with ][]/]z, and lowercase Greek indices taking the valu
1, 2 in the transverse directions. The simplest solution1

V05
r̄eia

z2z0
~15!

with arbitrary constantr̄, a and z0, the only one that will
interest us explicitly in this paper, describes an infinite str
of ‘‘thickness’’ r̄ stretched parallel to the third axis throug
z0; it hasQ51 and energy per unit lengthE052pmH

2 /l.
It is natural to expect, that even if we should rela

‘‘slightly’’ the above limits on the parameters, solution
close to Eq.~15! will continue to exist and be stable. An
statement about existence and classical stability of solut
should of course depend only upon the classically relev
parameters of the model. Of the six parameters inL, we
choosem to set the scale and definem51. By appropriate
rescallings a second one may be pulled outside of the ac
to play the role of the semiclassical parameter\, and we are
left with four classically relevant ones. We rescaleF
→F/A2l andZm→Zm /A2l, to bringL to the form

L5
1

2l
F1

2
~]mF !21

1

2
F2u~]m1 i g̃Zm!~n11 in2!u2

1
1

2
F2~]mn3!22

1

8
~F22mH

2 !22
k̃2

8
~Fn32mH!4

2
m2

2
F2~n1

21n2
2!2

1

4
Zmn

2 1
1

2
ZmZmG ~16!

1A constantw0 cannot be added toV0. Its energy per unit length
would diverge quadratically for non-vanishingk, in which we shall
be interested shortly.
2-3
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with the four classically relevant dimensionless parame
explicitly shown to be

m, mH[A2lv, g̃[
g

A2l
, k̃[

k

A2l
. ~17!

Following @7#, to find static minima of the energy w
proceed in two steps. First, we keep the unit vector fieldn
fixed and time independent, and minimize the energy w
respect to the Higgs magnitudeF and the gauge fieldZm .
Assuming they stay close to their vacuum values one fin

F.mHF12
1

mH
2 „~] in!21m2~n1

21n2
2!…G ~18!

Z050 and Zk.2g̃mH
2 E d3yGkl~x2y! j l~y! ~19!

where

j l~x!5
1

2
~n2] ln12n1] ln2! ~20!

andGkl(x2y) is the three-dimensional massive Green fun
tion

Gkl~x!5E d3p

~2p!3
e2 ip•x

dkl1pkpl

p211
. ~21!

Using Eqs.~18! and ~19! one next eliminatesF and Zm
from the energy and is left with the effective energy fun
tional for the angular fieldn:

E5
mH

2

2l F E d3x
1

2
~] in!21E d3xS m2

2
~n1

21n2
2!

2
1

2mH
2 ~] in] in!21

k̃2

8
mH

2 ~n321!4D
22g̃2mH

2 E d3xE d3y j i~x!Gik~x2y! j k~y!G . ~22!

The first integral is the non-linear sigma model leading c
tribution. The terms in the second integral are the correcti
due to the potential, while the last term is due to the ga
interaction. Our semiclassical perturbation scheme is con
tent provided

uF2mHu!mH and g̃Zin!] in ~23!

are satisfied everywhere.
The configurationsn(x) of interest in this article are

current-carrying infinite strings, which may also be thoug
of as almost straight pieces of a large closed loop. They
be taken of the form

n11 in25einx3
„ñ1~x1 ,x2!1 i ñ2~x1 ,x2!… ~24!
02501
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with constantn. This is not the most general ansatz for su
a string, sincen could in general depend also upon the tran
verse coordinates; nevertheless it is expected to captur
main features@14#.

For string configurations of the form~24!, with thickness
r̄ in the transverse (x1 ,x2) plane, conditions~23! translate
into

1

mHr̄
,

n

mH
,

m

mH
, k̃mHr̄, g̃mH min ~ r̄,1!!1.

~25!

The thicknessr̄ will be determined dynamically in the se
quel, and one should a posteriori verify that the above c
straints can indeed be satisfied. Notice that contrary to w
the naive limit~10! seems to suggest,l does not have to be
very large for the validity of our conclusions. It may b
arbitrarily small, consistent with our semiclassical treatme
and still satisfy the conditions of existence and stability
solutions, which are expressed in terms ofg̃, k̃, m andmH .

To leading order in our approximation the model at ha
has the Belavin-Polyakov topological string solutions, t
simplest of which is configuration~24! with n50 and ñ1

1 i ñ2 given by Eqs.~13!, ~15! with arbitrary thicknessr̄.
According to @7#, turning on the interactions and, by th
same reasoning, introducing a fixed twist per unit length
in Eq. ~24!, affect to leading order only the thicknessr̄ of the
string. To determine the position of possible equilibrium v
ues ofr̄ one should insert into Eq.~22! the ‘‘twisted Q51
Belavin-Polyakov’’ configuration~24! with ñ11 i ñ2 given
by Eqs.~13! and~15!, and minimize the resulting expressio
of the energy per unit length with respect tor̄.2

Consistency of our approximation requires the additio
condition

r̄d[r̄An21m2!1 ~26!

and the energy per unit length takes the form

E~ r̄ !.
2pmH

2

l F11d2r̄2 lnS R

r̄
D 1

1

6
k̃2mH

2 r̄22
8

3mH
2 r̄2

2g̃2mH
2 r̄2E

0

`

dx
x3K0

2~x!

x21 r̄2 G . ~27!

R is an infrared cutoff assumed to be much larger thanr̄.
A few comments are in order: First, the logarithmic dive

gence in Eq.~27! appears only in the caseQ51 studied here.
It is due to the slow falloff at infinity of theQ51 Belavin-
Polyakov configuration, and disappears for all higherQ. But
even forQ51 its presence in Eq.~27! is an artifact of our
approximation. With non-vanishingn and/orm all fields ap-

2Translational and rotational invariance imply that the energy
configuration~24! does not depend ona or z0.
2-4
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SUPERCONDUCTING STRING TEXTURE PHYSICAL REVIEW D62 025012
proach their vacuum asymptotic values much faster and
dangerous integrals become finite. As will be verified n
merically, no infrared divergence is actually present in
energy and for all practical purposesA[ ln(R/r̄) should be
interpreted as a constant of order one. Second, notice th
the order of our approximation the current and theF mass
enter inE( r̄) only in the combinationn21m2, and conse-
quently they have the same effect on the zeroth order s
tion. Finally, conditions~25! and~26!, necessary for the con
sistency of our semiclassical approach, may be combi
into

1

mHr̄
, k̃mHr̄, g̃mH min~ r̄,1!, r̄d!1. ~28!

According to Eq.~27!, the twist, theF-mass, and the
potential, all tend to reduce the string thickness. The ga
interaction tends to blow it up. Is it possible to obtain a sta
equilibrium? Following@7#, where the cased50 was ana-
lyzed, we defineD2[6Ad2/mH

2 , and conclude that for val
ues of the parameters

a[
k̃21D2

g̃2
and b[

2

g̃2mH
4

~29!

below the solid line of Fig. 1 and for small enough 1/mH and
d to satisfy conditions~28!, a stable solution exists. For
given n it is a small deformation of the twistedQ51
Belavin-Polyakov configuration with sizer̄ as shown on the
corresponding tangent to the curve. Its energy per unit len

FIG. 1. The semiclassical boundary of the stability region

stable strings in the (a,b) plane. The squarer̄2 of the thickess of
some solutions is also shown.
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is guaranteed by Eq.~28! to differ only slightly from E0

52pmH
2 /l. The precise meaning of inequalities~28!, as well

as the computation of the lower bound onmH and of the
upper bound ond for a stable solution to exist correspondin
to a given point (a,b) in the stability region are dynamica
questions dealt with numerically in the following sections

II. NUMERICAL RESULTS

A. String texture

In this subsection we shall perform a detailed numeri
study of the string texture solutions of model~2! in order to
verify and extend the analytical semiclassical results
viewed briefly above. We find it convenient to start withd
50 and leave the more general case for a later section.

The ansatz

We use the most general static (]/]t50),
x32 independent (]/]x350), axially symmetric ansatz fo
an infinite straight string with windingQ stretched along the
x3 axis

F5 f ~r!eiQu, F35G~r!

~30!

Z5euK~r!

with r and u the usual polar coordinates in the transve
plane. For static configurations theZ0 dependent part of the
energy density is the sum (] iZ0)21m2Z0

21e2uFu2Z0
2 of

three positive terms minimized forZ0(r)50. Similarly,
Z3(r)50 andZr(r)50. Note that constraint~8! and current
conservation are automatically satisfied by the ansatz.

The energy density and the current of the ansatz in te
of the rescaled quantities, for which we keep the same s
bols, are

E5
1

2l
F1

2 S K81
K

r D 2

1
1

2
f 821

1

2 S Q

r
2g̃K D 2

f 21
1

2
K2

1
1

2
G821

1

4
~ f 21G22mH

2 !21
k̃2

8
~G2mH!4G ~31!

and

Ju52g̃S Q

r
2g̃K~r! D f 2 ~32!

respectively, while the magnetic fieldB[¹3Z points in the
3-direction and is equal to

B35K81
K~r!

r
. ~33!

Extremizing the energy functional one is led to the fo
lowing field equations for the unknown functionsf, G andK:

r

2-5



on
gh
in

s

d

-
or
on
er
ey

th

io
s

a

h
th
e

a
of

fy

A
ly-
r of
n-
On

in
the

of

-
tion

st.
ase

se

an

. 1

or
l

-

unit

/2

L. PERIVOLAROPOULOS AND T. N. TOMARAS PHYSICAL REVIEW D62 025012
2S K81
K

r D 8
2g̃S Q

r
2g̃K D f 21K50,

2
1

r
~r f 8!81S Q

r
2g̃K D 2

f 1~ f 21G22mH
2 ! f 50, ~34!

2
1

r
~rG8!81~ f 21G22mH

2 !G1
k̃2

2
~G2mH!350.

It may be checked that they coincide with Eqs.~5! and ~6!
evaluated for the ansatz.

The boundary conditions

As usual, finiteness of the energy and the field equati
are used to determine the boundary conditions. It is strai
forward to check that in the present case of vanish
F-mass and twist, the solution at infinity behaves like

f ~r!;C1 /rQ, G~r!;mH2C1
2/2mHr2Q

K~r!;g̃QC1
2/r2Q11 ~35!

while specifically forQ51, the case of interest below, it
behavior at the origin is

f ~r!;C2r, G~r!;C31C4r2, K~r!;g̃C2
2r ~36!

with constantCi , i 51,2,3 andC4 related toC3 by 8C4

1(mH2C3)@2C3(C31mH)1k̃2(C32mH)2#50. Conse-
quently, the energy density of aQ51 string behaves as 1/r4

at large distances.

Numerics - Solution search

To search for string texture solutions of Eq.~34! we used
a relaxation method@15# with locally variable mesh size an
the convenient set of boundary conditions

f ~0!50, K~0!50, ~r f 8!~0!50 ~37!

G~`!5mH , ~rG8!~`!50, B3~`!50 ~38!

following from Eqs.~35! and~36!. One starts with an initial
trial configuration, which is iteratively improved until it be
comes a solution of the field equations within satisfact
accuracy. As an extra check of the accuracy of the soluti
obtained, we used three virial conditions, whose gen
form we shall describe in the next section. Typically th
were satisfied within one part in 1032104. Finally, to make
sure that the solutions correspond to local minima of
energy and are stable, we perturbed slightly each one
them, using a large number of smooth random perturbat
and verified that the perturbed configurations were alway
higher energy.

As explained in the previous section, stable solutions
not expected to exist in an arbitrary model~2!, but only in
those with parameters within the stability region. Using t
semiclassical results to guide the search, one starts wi
choice of (a,b) in the stability region. The tangent to th
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thick curve that passes through (a,b) corresponds to a size
value r̄(a,b). According to the semiclassical analysis
stable solution should exist, which is a small deformation
Eq. ~15! with size r̄(a,b), provided all conditions~28! are
satisfied. Figure 1 shows thatr̄ lies typically between one
and five, whilea andb are smaller than one. Thus, to satis
the third constraint in Eq.~28!,

g̃mH5A2

b

1

mH
!1, ~39!

one should take

mH@A2

b
. ~40!

All remaining conditions are then automatically satisfied.
general remark which follows from the semiclassical ana
sis is that models with parameters in the upper left corne
Fig. 1 favor the existence of thick strings, with the co
straints satisfied for relatively low Higgs boson masses.
the other hand, to find thin strings, one has to search
models with large Higgs boson mass, and parameters in
lower right corner of Fig. 1.

To summarize, the theory with a given set of values
(a,b) in the stability region, andmH satisfying Eq.~40!,
should have a stable solution close to Eq.~15! with size
r̄(a,b). The values of the couplingsg̃ and k̃ follow from a,
b andmH . Accordingly, a good guess for the initial configu
ration necessary for our numerical procedure is configura
~15! for the scalars and vanishing gauge fields.

Results

We start with the verification that stable solutions exi
We restrict ourselves throughout to the most interesting c
Q51.

Applying the recipe of the previous paragraph, choo
a50.001, b50.2 andmH54. They correspond tog̃.0.2,
k̃.0.006. The profile of the stable texture obtained with
initial configuration withr̄56.7 is shown in Fig. 2. We have
been able to go deeper inside the upper left corner of Fig
and find stable string texture formH as low as two.

Similarly, Fig. 3 presents the profile of the solution f
a50.25, b50.01 andmH520. It corresponds to the mode
with g̃50.04 andk̃50.02.

For both solutions presented above the value ofg̃mH
.0.8. Thus, the constraint~39! should in practice be inter
preted roughly asg̃mH,1. Notice that like in the wall case
@4# all string solutions discussed here have energies per
length smaller and within 20% from the value 4pmH

2 3 cor-
responding to the limiting Belavin-Polyakov solution.

3Energies in our numerics are defined up to the overall factor 1l
in Eq. ~31!.
2-6
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SUPERCONDUCTING STRING TEXTURE PHYSICAL REVIEW D62 025012
In Fig. 4 we plot the Higgs magnitudeF(r)[Af 21g2,
the magnetic fieldB3 and the currentJu for the second so-
lution.

Note that the Higgs magnitude differs, in accordance w
the theoretical analysis, only slightly from its vacuum val
mH . Furthermore, it is everywhere non-zero, so that the u
vector fieldna[Fa /F is well defined and the correspondin

FIG. 2. The profile of the string in the model withg̃50.2, k̃
50.006 andmH54. Its energy isE513.634p.

FIG. 3. For parameters in the lower right corner of Fig. 1 sta
solutions require largermH and are thinner.
02501
h

it

winding number~14! unambiguous. Finally, it should b
pointed out that the magnetic field takes both positive a
negative values. One may verify that the total magnetic fl
is zero, as expected from the asymptotic behavior of
gauge field in Eq.~35!.

For fixed values ofa50.02 andb50.05 we find solutions
for a variety of mH510,20,30,50. Their sizes@defined ap-
proximatelly for the purposes of this plot by the zero
G(r)] are plotted in Fig. 5 againstmH and shown to be
roughly constant in accordance with the semiclass
analysis.

For very largemH though one expects deviations fro
this result. According to the Appendix the thickness of t
solutions should eventually increase withmH and for very
large Higgs mass be pushed to infinite size. No stable st
exists for zero gauge boson mass.

Our next task is to perform a numerical study of the e
tent of the stability region in the (a,b) plane and compare i
against the semiclassical result. We were unable to
stable texture for parameters (a,b) lying above the dashed
curve in Fig. 6. Notice the remarkable agreement with
leading order semiclassical curve also depicted for con
nience by the solid line.

Finally, it is interesting to test the semiclassical predicti
that an infinite set of theories, characterized by parameter
a line of fixed r̄, all lead to string solutions of the sam
thickness. The sizes of the solutions obtained for the theo
corresponding to the pointsA1 to A5 on the line of Fig. 6
corresponding tor̄.A6 are plotted in Fig. 7. The Higgs

e

FIG. 4. The profiles of the Higgs magnitude~solid line!, the
magnetic field~dashed! and the current~dotted! of the string texture
of Fig. 3.
2-7
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mass was chosen in such a way that the quantityg̃mH is
constant and equal to 0.5.

B. Twisted strings – Wire quality

Next, we shall extend the previous results and search
merically for current-carrying string texture. We take t

FIG. 5. For fixeda and b the thickness of the string is rathe
insensitive to the value ofmH .

FIG. 6. The stability region as determined numerically~dashed
line! plotted together with the semiclassical result~solid curve!.
02501
u-

string, preferably thought of as a long straight piece o
large loop, stretching along thex3-axis and generalize the
axially symmetric ansatz used in the previous section, to
clude a twist in the complex scalar alongx3

F5 f ~r!eiQueiu(x3), F35G~r!

~41!

Z5euK~r!1e3W~r!.

The gauge current flowing along the string is given
J352g„du/dx32gW(r)…f 2. Its conservation translates int
d2u(x3)/dx3

250 that is, to a linear dependence of the pha
u(x3) uponx3. We shall take the scalar phase to makeN full
turns over the length 2pR of the string, and set the consta
term to zero. This fixes

u~x3!5
N

R
x3[nx3 . ~42!

In terms of the rescaled dimensionless fields and coo
nates defined in the previous section and conveniently
noted by the same symbols, the energy density of the an
is

E5
1

2l
F1

2 S K81
K

r D 2

1
1

2
W821

1

2
f 821

1

2 S Q

r
2g̃K D 2

f 2

1
1

2
~n2g̃W!2f 21

1

2
G821

1

4
~ f 21G22mH

2 !2

1
k̃2

8
~G2mH!41

1

2
~K21W2!G . ~43!

FIG. 7. The sizes of the string solutions for parameter val
corresponding to the pointsA1 to A5 of Fig. 6, plotted againsta.
2-8
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SUPERCONDUCTING STRING TEXTURE PHYSICAL REVIEW D62 025012
Correspondingly, thex3 component of the gauge current b
comes

J352g̃„n2g̃W~r!…f 2. ~44!

Extremizing the energy~43! one obtains the field equa
tions

2S K81
K

r D 8
2g̃S Q

r
2g̃K D f 21K50 ~45!

2
1

r
~rW8!82g̃~n2g̃W! f 21W50 ~46!

2
1

r
~r f 8!81S Q

r
2ẽK D 2

f 1~n2g̃W!2f

1~ f 21G22mH
2 ! f 50 ~47!

2
1

r
~rG8!81~ f 21G22mH

2 !G1
k̃2

2
~G2mH!350

~48!

which we shall solve numerically for fixed non-zeron, fol-
lowing the same approach as in the previous section.

The boundary conditions

Finiteness of the energy forces the configuration to ten
the vacuum at spatial infinity.4 A convenient set of condi-
tions there is given by Eq.~36! together with

W~`!50. ~49!

At the center on the other hand we keep Eq.~35! and add

~rW8!~0!50 ~50!

for W(r).
Configuration~41!, viewed as a circular loop and with th

above boundary conditions which effectively compact
space intoS3, defines a map fromS3 onto S2, the target
space of the unit-vector field~12!, which as explained before
is well defined for all solutions of interest in this paper. A
such it is characterized by the Hopf topological index

H5
1

8pES2
eabcFadFbdFc5Q•N. ~51!

Notice that forQ51 one may interpretn/2p as the Hopf
charge per unit string length.

An upper bound on the twist magnitude

It is instructive to view the twisted string as a small d
formation of the untwisted one. Forn50 the W-equation
gives W50 and the problem reduces to the untwisted c

4For a large circular loop the center of the loop is also a poin
infinity.
02501
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discussed in the previous section. Consider such a st
string corresponding to parameters inside the stability reg
and to a value ofmH not exceeding say 20, to stay near t
phenomenologically interesting regime. Start increasingn,
while keepingk̃, g̃ and mH fixed. During this processb in
Eq. ~29! stays fixed, whilea increases. Eventually, at som
critical valuenC , one will cross the solid curve of Fig. 1 an
the string solution will disappear altogether.5 nC depends on
the values of the other parameters. To maximize the cur
one should arrange for the maximum relevant valueamax of
a within the stability region of Fig. 1. This corresponds to t
lowest value ofb, which as a consequence of Eq.~40! cannot
for mH,20 exceed the valuebmin.0.01. Figure 1 then lead
to anamax.0.3, which according to Eq.~29! translates into
Dmax

2 /g̃2.0.3. Combined with the constraint~39! on the

value of g̃mH we obtain

dmax.0.2. ~52!

Thus, the maximum current one may hope to drive throu
such a string corresponds to a twistnmax50.2. Similarly,
according to Eq.~52! the value 0.2 is also an estimate of th
upper bound on the charged Higgs boson mass, consis
with the existence of stable strings. String texture cor
sponding tomH>20 may of course support stronger curren
and allow for largerm. In any case, given that according
our analysis, the effects of non-zerom andn are identical to
a high degree of accuracy, we setm50 throughout the nu-
merical study that follows.

Virial relations

Three virial conditions were used to check the accuracy
the solutions discussed in this paper. They express the
tionarity of the energy functional under particular deform
tions of the solution. By the standard argument, imagin
solution of the field equations was found. It is an extremu
of the energy. Any small change of the configuration sho
have to linear order the same energy as the original one.
derivative of the energy functional with respect to the para
eters parametrizing the deformation should vanish wh
evaluated at the solution. The virial conditions we used a

E122E250 ~53!

E122E350 ~54!

and

2E42E550 ~55!

relating

t

5Note the difference from the phenomenon ofcurrent quenching
observed previously in the context of superconducting strings@12#
with topological stability. Contrary to the latter case, not only t
current but the string itself disappears to radiation once we exc
the critical value of the twist.
2-9
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E15
p

l E0

L

dr Q g̃ f 2 K ~56!

E25
p

2lE0

L

dr rFK2~11g̃2f 2!1
1

2
~ f 21G22mH

2 !2

1
k̃2

4
~G2mH!41W21~n2g̃ W!2f 2G ~57!

E35
p

2lE0

L

dr rF S K81
K

r D 2

1~11g̃2f 2! K2G ~58!

E45
p

4lE0

L

dr r f 4 ~59!

and

E55
p

2lE0

L

dr rF f 821S Q

r
2g̃K D 2

f 21~n2g̃W!2f 2

1~G22mH
2 ! f 2G . ~60!

They arise by demanding stationarity of the energy with
spect to solution size rescalingr→ar, K-rescalingK(r)
→bK(r) and f-rescalling f (r)→g f (r), respectively. Such
field rescallings are consistent, as they ought to, with
boundary conditions on the fieldsK and f.

All solutions obtained numerically satisfied the abo
virial conditions to a very good approximation. Specifical
in all cases the appropriately normalized virial quantitiesv1
5u(E122E2)/(E112E2)u, v25u(E122E3)/(E112E3)u
andv35u(2E42E5)/(2E41E5)u were ofO(102421023).

Results

To find twisted solutions we start with an untwisted o
as initial trial configuration, and iteratively improve it until
becomes a solution of Eqs.~45!–~48! with the given value of
n.

Figure 8 shows the profile of the solution arising by t
above method from the untwisted string corresponding
point X1 with a50.02 andb50.01 in Fig. 6. For the remain
ing parameters we chosemH520 andn50.05. As for the
initial ansatz we took the Belavin-Polyakov soliton withr̄
53.5 and vanishing gauge fields.

To observe the destabilization of the string soluti
caused by a large current and to determine the valuenmax of
the twist, we continued increasingn for fixed values of the
remaining parameters. For the solution corresponding toX1
presented in Fig. 8 we foundnC1.0.1. In a similar fashion,
we computed the maximum currents supported by the
twisted string textures plotted in Figs. 2 and 3, whose co
sponding (a,b) are shown in Fig. 6 by the pointsX2 , X3
and X4. The maximum values of the twist found arenC2
.0.01, nC3.0.04 andnC4.0.04, respectively. The agree
ment of these results with the semiclassical absolute bo
~52! obtained above is rather satisfactory. The correspond
02501
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total current, roughly equal toI;pr̄2g̃nmH
2 , is less sensi-

tive. It was evaluated numerically and shown to take valu
between 30 and 52 for the above solutions. The most pr
ising region of parameters for the existence of stable clo
loops is aroundX1, but still n cannot easily become larg
enough to satisfy Eq.~1!.

C. Large string loops

An interesting question, that needs to be addressed in
context of our toy model, is the question of spring formati
@12,16#. The analysis so far does not allow much hope t
stable string loops can exist in~2!. The semiclassical predic
tion ~52! or even worse the numerically determined ma
mum value of the twist are much smaller than the value~1!
required for spring formation. In fact the last semiclassi
constraint in Eq.~28!, even when interpreted as a simp
inequality as suggested by all numerical results obtai
above, leaves little room if at all for stable loops. Furthe
more, one should note that Eq.~1! is rather optimistic for our
toy model, because it was obtained for massless gauge
which maximizes the magnetic pressure due to the trap
magnetic flux.

In any case, proper numerical search for string loops
this model would then mean to look for rather small loo
with inner radius of the order of the gauge field inverse m
or less, in order to maximize the effect of the gauge fie
against loop contraction. This requires essentially full th
dimensional analysis and was left for a future publication

However, within the numerical approximation used in th
paper, we did verify the above conclusions for large loops

FIG. 8. The twisted string forg̃50.035,k̃50.005,mH520 and
n50.05. On the same plot we also show the profile of the funct
G0(r) of the untwisted solution. The twist reduces string thickne
2-10
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SUPERCONDUCTING STRING TEXTURE PHYSICAL REVIEW D62 025012
radiusR@ r̄. We approximated the loop by a straight strin
of length 2pR and looked for minima of the energy

E~R!5E
0

2pR

dzE
0

R

dr r E~ f ,G,K,W! ~61!

to check whether theR-dependent term (N/R2g̃W)2f 2 in
the integrand~43!, which for fixedN acts against loop con
traction, might actually stabilize it at someR5Rspring .

Clearly, keepingN constant, spring formation could occu
only for R large enough so that the solution exists, i.
N/R5n,nC[N/RC corresponding to the chosen values
the parameters. If this minimum of the energy could
achieved at someRspring.RC then at theRC(mH), E(R)
would have a negative derivative with respect toR, i.e., the
total energyE would tend to decrease towards its minimu
asR increased fromRC towardsRspring . We have checked
all points atRCs for a wide range of parameters (4,mH

,1000, 0,g̃,0.5, 0,k̃,0.5) in regions where solution
exist. We focused on regions whereRC could be minimized
~largemH) thus maximizing the twist induced pressure of t
R-dependent term (N/R2g̃W)2f 2. It is this term that could
potentially stabilize the closed loop. We found th
(dE/dR)uR5RC

.0 at all points with practically no signs o

change even at the smallestRC’s. Therefore, in line with the
previous discussion, we conclude that for the parameter
tors we investigated no spring solutions exist.

III. DISCUSSION

To summarize, we have found stable current-carrying v
tex solutions in gauged generalizations of theO(3) non-
linears-model, with a singleU(1) gauge field and the usua
scalar triplet. The model considered is an extension of
studied in @7#, and may also be viewed as semilocal@2#.
Indeed, it has generically a trivial vacuum manifold, while
target space should effectively be thought of as anS2 with an
S1 gauged by theU(1) gauge field. In this model we hav
mapped the parameter sectors where stable solutions e
while no stabilized spring solutions were found in the para
eter sectors discussed. The parameter region correspon
to stable untwisted string texture@7# has also been examine
and we confirmed numerically the approximate sem
analytical results of that analysis. An alternative way to s
bilize vortex loops is the introduction of angular momentu
whose conservation can stabilize loops against collapse m
effectively than twist pressure. Loops stabilized by angu
momentum are known asvortons@17# in order to be distin-
guished from springs.

It is instructive at this point to examine what the abo
results, obtained in the context of the toy model~2!, suggest
about the two Higgs-doublet standard model. As mentio
before, the gauge field in Eq.~2! corresponds to theZ0 gauge
boson, while the role ofF is here played by the charge
Higgs bosonH1. Clearly, the numerical results of th
present paper strengthen our confidence to the semiclas
conclusions reported in@8#, which should be valid with high
accuracy. In addition, the constraints are weaker and sh
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be interpreted as simple inequalities. Thus, the 2HSM s
ports stable strings. They may be generalized and allow f
current to flow along them. The current due to the twist
the electrically chargedH1 is a bona-fide electric curren
and the string texture in this case is a superconducting w
in the standard sense. It is characterized by the twist par
etern, the Hopf charge per unit string length. Being of ele
troweak scale these ‘‘wires’’ should have a thickness o
few mW

21 and mass density of the order of 1024 g/cm. Ex-
trapolating naively to the 2HSM the bounds obtained abo
one is led to a maximum current they can carry of ab
10821010 A, corresponding ton5nmax;0.2. Equivalently,
these bounds would imply the absence of stable string
ture for H1 massm larger thanmmax;0.2mZ;18 GeV/c2.
Since this value is lower than the experimental lower bou
on theH1 mass, little space is left for stable string texture
the 2HSM for realistic values of its parameters.

But, this last conclusion may well be too naive. The pre
ence in general of a separate coupling for electromagne
and of a richer variety of charged and neutral fields, w
change the maximum current allowed along the string,
well as condition~1!, derived for the case of the single gaug
field of the toy model studied in the present paper. W
actually happens in more complicated models like the 2H
is a matter of detailed analysis and deserves further stud
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APPENDIX

A massless U(1) gauge field does not lead to stable
ture. A massless gauge field is either too efficient in halti
the shrinking caused by the potential terms and blows up
texture to infinite thickness, or it is not efficient and th
string contracts to vanishing cross section.

Here we sketch a semiclassical proof valid for thi
strings. More generally, the statement has been verified
merically. It was shown in the main text that the introducti
of either mass or twist to the charged scalar works aga
the stability of the string texture. It suffices to prove th
statement for massless charged scalar and vanishing t
Start from~2! with m5m50. Define the Higgs boson mas
A2lv51 to set the mass scale and rescale fields and
tances according to

F→vF, Am→vAm , xm→xm/A2lv ~A1!

after which the action is written as
2-11
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Lm505
v

A2l
F1

2
~]mF !21

1

2
F2u~]m1 i g̃Am!~n11 in2!u2

1
1

2
F2~]mn3!22

1

8
~F221!22

k̃2

8
~Fn321!4

2
1

4
Fmn

2 G ~A2!

with fields and parameters defined as in the main text. H
we have only changed toAm the name of the gauge field.

In the limit

g̃,k̃→0 ~A3!

the model has absolutely stable topological strings~15! with
F51. What will happen to such a soliton of arbitrary sizer̄
if we move slightly away from the limit? Switching-on th
potential term will tend to shrink it, while a non-vanishin
gauge coupling will tend to blow it up.

Following the steps of@7# it is straightforward to solve for
the magnitudeF and the gauge field, and derive an effecti
action for the unit-vector fieldna . Under the constraints

r̄@1, k̃ r̄!1, g̃!1 ~A4!

the energy per unit length is written asE5E01dE with

E05
v

A2l
E d2x

1

2
~] ina!2 ~A5!

and

dE5
v

A2l
F2

1

2E d2x~] ina] ina!21
k̃2

8 E d2x~n321!4

2g̃2E d2xE d2yJi~x!Gi j ~x,y!Jj~y!G . ~A6!
-

ity

B

02501
re

The current isJi[
1
2 (n2] in12n1] in2) and the Green func-

tion of the massless gauge field is

Gkl~x!5E d2p

4p2 e2 ip•x
dkl1pkpl

p2
. ~A7!

Following the same steps as in the main text, we evalu
E for the solution~15!, minimum of the leading termE0. The
result is

Em50~ r̄ !5
v

A2l
4p F12

8

3r̄2
1

1

12
~2k̃223g̃2!r̄2G .

~A8!

The constant is the leading Belavin-Polyakov value for
Q51 soliton. The remaining terms represent the leading c
rection to its energy due to the potential and the gauge in
action.

This function does not have a local minimum. Q.E.D.
We should like to point out that this result is quite gene

in our approximation. Dimensional analysis alone fixes
gauge contribution to the energy to be;const3 r̄2. It is
‘‘Lenz’’ that fixes the coefficient of the quartic term in Eq
~A6! to be negative. Relaxing the constraint onF reduces the
energy of the configuration. Thus, for any value ofQ the
energy takes the formdE;12C1 / r̄21C2r̄2 with C1.0.
Independently of the value ofC2 this function has no loca
minimum.

For D[3g̃222k̃2,0 the gauge repulsion is not stron
enough to halt shrinking to zero size. ForD.0 the energy
has a local maximum atr̄0[„4A2/(3g̃222k̃2)…1/4. Strings
of thickness smaller thanr̄0 shrink to zero, while those o
initial thickness larger thanr̄0 blow up to infinity.
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