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We present a detailed analytical and numerical study of a novel type of static, superconducting, classically
stable string texture in a renormalizable topologically trivial maskly2) gauge model with one charged and
one neutral scalar. An upper bound on the mass of the charged scalar as well as on the current that the string
can carry are established. A preliminary unsuccessful search for stable solutions corresponding to large super-
conducting loops is also reported.

PACS numbeps): 11.27+d, 11.10.Lm, 14.80.Cp

The term texture is attributed generically to topologicalmodels, and furthermore if no additional spontaneously bro-
configurations trivial at spatial infinity. The winding of the ken discrete global symmetries are introduced, they do not
fields takes place over a finite region which roughly definesarry domain walls either.
the location of the configuration. Such defects have attracted However, it was pointed out recenfl§] that an extended
considerable attention, both in particle physics and cosmolHiggs sector supports generically the existence of a new
ogy. Well known examples are tt&kyrmionwhich offers a class of quasi-topological metastable solutions. Like topo-
useful alternative description of the nucleon, and glebal  logical solitons these objects are characterized by a winding,
textureused recently to implement an appealing mechanisnwhich counts the number of times the relative phase of the
for structure formation in the Universe. In cosmological ap-Higgs multiplets winds around its manifold as we scan the
plications one makes use of the instability of three dimenspace transverse to the defect. Unlike topological solitons on
sional texture in renormalizable purely scalar theories. Alithe other hand, their existence is not decided by the symme-
such configurations are unstable towards shrinking; they coll’Y Structure alone of the theory. In particular, they do not
lapse to a point and eventually decay to scalar radiation. ThigXist for all values of parameters and are at best classically

is a natural decay mechanism, which on the one hand pres_table. They are local minima of the energy functional and

vents the domination of the energy density by texture-likeqecay to the vacuum via quantum tunnelifi. Alterna-

defects, and on the other it leads to highly energetic eventé'vely’ they can be thought of as embedded textures, which,

which can provide the primordial fluctuations necessary fo#h contrast with the_ prewous_ly (.j'S.Cl.Jssed electroyveak or
. Z-strings[2], are trivial at spatial infinity. We occasionally
structure formation.

X . . . refer to these defects generically @isbons reminiscent of
In particle physics one would be more interested in ob-, g y 3

. ; . : the way they look in the simplest (11)-dimensional para-

serving such solitons in accelerator experiments, and thaigm presented ifi1,3].
above instability is an unwanted feature. One approach 10 “the apove ideas have been explicitly demonstrated with
staplllze sugh conflggratllons was the mtroduchoq into the&he construction of membrangs,4—6 and infinite straight
action of higher derivative terms. However, being NON-strings[7,8] in the context of simple toy models or in the
renormalizale, such terms are undesirable in the tree levelqsMm for realistic values of its parameters, including the
action, and furthermore it has not been possible so far tfiSSM as a special case. Finally, even though no stable
produce in a controllable unambiguous way a quartic term oparticle-like solitons have been suggested so far in any of
the right sign to lead to stable solitons. An alternative waythese realistic models, a new tower of sphaleron solutions
has been advocated recently and has succesfully stabilizeghs obtained, characterized by a finite number of modes of
texture in realistic extensions of the standard model withinstability [9]. When they exist, these new solutions have
more than the minimal one Higgs doublet content. The texlower energy than the standard model sphalerons or de-
ture here is stabilized by the gauge interactions. formed sphalerons and furthermore, they are less unstable

An extended Higgs sector in the effective low energyhaving smaller in magnitude eigenfrequencies of instability.
theory of electroweak interactions is favored by supersym- The string texture in particular discussed so far, may also
metry, superstring theory and is necessary if one wishes tbe viewed as semilocal three dimensional, static, classically
arrange for an efficient and potentially realistic electroweakstable generalizations of the Belavin-Polyakov solitph3]
baryogenesis. Examples of simple realistic models with af the O(3) non-linearc model. A massiveJ(1) [7] or the
multiple Higgs field content are the two Higgs-doublet stan-SU(2) X U(1) [8] gauge fields of the 2HSM stabilize these
dard model(2HSM), and the minimal supersymmetric stan- solitons against the shrinking instability induced by the sca-
dard model(MSSM). It is well known that no finite energy lar potential termg11]. The charged fields vanish at the
topological strings or particle-like solitons exist in thesecenter of the string, but are non-zero on a tube of radius and
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thickness both of electroweak scale, surrounding its axisloop opposes the tendency of the loop to contract to zero
This configuration is a novel kind of bosonic superconduct+radius, and the system reaches an equilibrium with radius
ing string. Contrary to the one presented[i®], it is not  given in Eq.(1).
absolutely stable, it has different topological characteristics The argument of the preceding paragraph is based on sev-
and is more “economical” employing the same Higgs field eral simplifying assumptions. The string was treated as a
both for its formation as well as for its superconductivity. perfect superconducting wire, with definite thickness and
Two issues arise naturally. First, to what extent is it possperfect Meissner effect, while the loop was assumed to have
sible to generalize the above stable string solutions and allogs- ,. However, the above discussion shows that it is un-
for a current to flow along them, while retaining their stabil- ||ke|y to form a stable |00p the way we describe it here,
ity? More importantly, could there exist stable particle-like ynless the straight string can support a current strong enough
configurations, current-carrying loops of such superconducty satisfy Eq.(1).
ing strings? Being of the electroweak scale, such a loop The precise evaluation of the maximum current that a
would correspond to a particle with mass of a few TeV andstraight string texture can support and the existence of stable
would be the first example of a stable soliton in a rea”stiqoops are dynamica| questionS, which require detailed nu-
model of particle physics with a chance to be produced in thenerical study. In this paper we take a first step and examine
next generation of accelerator experiments. these issues in the context of a simple mas&iyé) gauge
Clearly, it should not be surprising that one may in prin-model[7], which captures most of the relevant features of
ciple allow for a current to flow along the string. After all, a the 2HSM. In Sec. | we describe the model we shall be
perturbatively small current may reduce slightly the stabilityinterested in. A perturbative semiclassical analysis is pre-
of the string, but it should not make a local minimum of the sented, which leads to the necessary and sufficient conditions
energy dissappear altogether. for the existence of stable texture, carrying the current in-
The existence of stable loops on the other hand, dependfuced by a fixed twist per unit length in the charged scalar.
crucially on the maximum current such a string can sustaingection 1l contains the detailed numerical study of the
Imagine a piece of length 2R of superconducting string model. We confirm the analytical results, we make precise
with thicknessp and windingQ in the transverse directions. the meaning of the conditions for stability obtained in Sec. |,
Introduce a current along it by a twis=N/R of N full turns  and show that Eq(1) cannot be satisfied in the context of
of the phase of the charged scalar over the string lengtthis model. This is in line with the results of a first prelimi-
27R, and glue the ends of the string together to form a loopnary attempt to find stable loops, also reported in Sec. Il. A
Parametrize byp the angle around the loop and py# the  summary and some remarks concerning superconducting
radial coordinate and the polar angle in the plane transversgring texture in the realistic 2HSM are offered in the discus-
to the string. The configuration may then be represented bgion section. Finally, a semiclassical proof that a massless
d=1(p)e'%N¢. The profilef(p) may conveniently be ap- U(1) gauge field does not lead to stable texture is presented

proximated by a constariton a tube surrounding the string in the Appendix.
axis. With'g the gauge coupling, the corresponding current
density components atg,~gf2N/R flowing along the loop,

~3f20/0 i

anq Jg_gf Qlp p.erpendlcu-lar to]?, roughly on a tubg of A simple field theoretical laboratofy’] to study the main
radiusp surrounding the string axis. The total currérntir- o4 res of string texture contains a complex scalar field
culating in thg loop is given b}/ the surface mtegrali%f =®,+i®d, coupled to a massive(W) gauge fieldiZ,, as well
over the_ string cross section and equals-J,mp as to a neutral scalap ;. Their dynamics is described by the
~gf?Nmp?/R. Similarly, the current per unit string length in Lagrangian density
the 6 direction isi ~J,p~gf2Q. | gives rise to a magnetic
field whose flux through the superconducting loop is con- 1 + 1 1

_ ~ =M . L=5(D,®)' DD +59,D30¢P3—V(P,dy)— ~Z,, 71"
stant and given byb,~IR~gNf2mp?. Its energy is, up to 2 2 4
inessential logarithmic correction$13], equal to E, 1
~®2/2R~ (gf?N7p?)?/2R. The string tension may be ap- + EmZZMZ“ 2
proximated by the magnetic energy of the field produced by

Jg. It is given by Er~BZ(Volume)/2~i’2wRmp?/2 whereZ2,,,=4d,Z,~4d,Z, andD,=d,+igZ,. The gauge

~(§f_2Qw;)2R. The minimum of the total energg=E,,  boson should be massive for stable strings to ggisé Ap-
+Eq is atR/p=N/\2Q, or equivalently at the value of the Pendi¥. We choose to call it Z because its role in the context

|. THE MODEL — SEMICLASSICAL ANALYSIS

d twist: of Eq. (2) is analogous to that dt° in realistic electroweak
theorieg[8].
The potential is given by
Q
=12 =. (1) 5 2
p A 2_ 2 K il g
V(D, D)= —| > ®2—p?| + —(Pg—0v)*+ = u? D%
4\ &4 8 2
The pressure due to the squeezed magnetic field through the (©)]
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The classical vacuum of the model is It is well known that£, has topologically stable static
string solutiond10]. To simplify their description, one may
replace the unit fieleh® by a complex scalaf) through the

stereographic projection

®=0, Pz=v 4)
and the masses & ® and®; arem, » andmy=+2\v,
respectively. We have not considered the most general po-
tential consistent with the @) invariance of the model, nor
have we tried to generate the gauge boson mass more natu-
rally via Higgs mechanism with an extra complex scalar. For
convenience we keep the number of fields and the couplingom the unit spher&? onto the complex plane. The strings

to a minimum. As mentioned in the Introduction, string tex- of model (11) stretching along thex; axis, are given by
ture of the type studied below has already been predicted tholomorphic functions()(z), where z=x,+ix,. They are
exist also in a large class of realistic modg$ Of course, a  classified by the number of tim&3the transverse two-space
U(1) gauge field with an explicit mass term does not spoilwraps around the target space. Convenient expressions for
renormalizability, provided it couples to a conserved currentthis integer winding numbe® are

2Q)
1+|Q)%°

1-]0J?

n,+in,= =
v 1+]Q)2

N3 (13

The field equations of the model are

MZ,,+m?Z,=J, (5
D“D ,®= N “o Da= N 6
wP== o ", 3T Dy (6)
The gauge current
J, = g d*D,d— (D, ) D 7
4= 5 (©*D, >~ (D,®)"®) @)

is automatically conserved by th& equations of motion.
Combined with Eq(5) it implies the transversality
I*Z,=0 (8)

of the gauge field.
Finally, the energy density of modé?) is

1
£=5[(Do®)'Do® + (D; @) D@ + (9 ®3)*+ 9 @ 30 P

2

1 1 m
+V((I),(I)3)+ EZOIZOI+ ZZ”Z” +7(Zozo+ ZIZI)

9

wherei,j=1,2,3.
Having a unique classical vacuuf@) and a trivial target

space the model does not support the existence of any ki
of absolutely stable topological solitons. However, notice

that in the naive limit

AN—o and ¢,x,u—0 (10

the magnitudeF=®,®, of the triplet ®, freezes at its

vacuum valuev, and £ reduces to a decoupled massive

gauge field plus the ungauged3Pnon-lineare model

'CO:K E&Mn a*n (11
for the unit-vector field
b
nd= ?a (12

Q_lf 9000 — 000
m) T (14022

1
— b
= J XmdX2€aﬁ€abcna(9an C’}Bnc

- (14

with 9=/ dz, and lowercase Greek indices taking the values
1, 2 in the transverse directions. The simplest soldtion

ia

pe

(15

with arbitrary constanE a and z,, the only one that will
interest us explicitly in this paper, describes an infinite string

of “thickness” p stretched parallel to the third axis through
Zo; it hasQ=1 and energy per unit IengﬂEO:Zme,/)\.

It is natural to expect, that even if we should relax
“slightly” the above limits on the parameters, solutions
close to Eq.(15) will continue to exist and be stable. Any
statement about existence and classical stability of solutions
should of course depend only upon the classically relevant
parameters of the model. Of the six parametersCjnwe
choosem to set the scale and defim=1. By appropriate
rescallings a second one may be pulled outside of the action
to play the role of the semiclassical paraméteand we are
nIgft with four classically relevant ones. We rescdfe
—F/\2\ andZ,—Z,,/2\, to bring £ to the form

1|1

1 o~ .
L= 5| 5(3,F) 2+ SF2(3,+19Z,) (g +in,)|?

1 1 K2
+ 50,02 g (F2=m{)?= = (Fny—my)’*

2
1,1
B rrn2ind) - 222 127,70

2 4w cm (18

1A constaniw, cannot be added tA,. Its energy per unit length
would diverge quadratically for non-vanishirg in which we shall
be interested shortly.
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with the four classically relevant dimensionless parametersvith constantv. This is not the most general ansatz for such
explicitly shown to be a string, sincev could in general depend also upon the trans-
verse coordinates; nevertheless it is expected to capture its
~ g ~ K main featureg14].
By My=y2\v, 0=——=, Kk=—_ (17) For string configurations of the forif24), with thickness
V2A V2\ —. e
p in the transversex(,x,) plane, conditiong23) translate

Following [7], to find static minima of the energy we into
proceed in two steps. First, we keep the unit vector field
fixed and time independent, and minimize the energy with r~ Mun. amu min(o. 1)<1
respect to the Higgs magnitude and the gauge field,, . myp  Mu My’ KMyp, My Min(p,1)<1.
Assuming they stay close to their vacuum values one finds (25

The thicknessp will be determined dynamically in the se-
quel, and one should a posteriori verify that the above con-
straints can indeed be satisfied. Notice that contrary to what
_ the naive limit(10) seems to suggest, does not have to be
Zy=0 and ZK:ZQmﬁf d*yGu(x=y)ji(y) (19  very large for the validity of our conclusions. It may be
arbitrarily small, consistent with our semiclassical treatment,
where and still satisfy the conditions of existence and stability of

solutions, which are expressed in termgyofic, © andm,,.

To leading order in our approximation the model at hand
has the Belavin-Polyakov topological string solutions, the
simplest of which is configuratiof24) with »=0 andn,
a_dek,(x—y) is the three-dimensional massive Green func—+iﬁz given by Egs.(13), (15) with arbitrary thicknes§
tion According to[7], turning on the interactions and, by the

P 54 same reasoning, introducing a fixed twist per un_it length as
le(x):f P omipx KT PP (21)  inEq.(24), affect to leading order only the thickngs®f the
(2m)° p2+1 string. To determine the position of possible equilibrium val-
ues ofp one should insert into Eq22) the “twisted Q=1
Belavin-Polyakov” configuration(24) with n;+in, given
by Egs.(13) and(15), and minimize the resulting expression
of the energy per unit length with respectE(?

F=m, (18

1
1— — ((an)%+ p?(nZ+n3))
my

1
Ji(x)= g(nzaml—nlamz) (20

Using Egs.(18) and (19) one next eliminate$ andZ,
from the energy and is left with the effective energy func-
tional for the angular fielah:

2 2 Consistency of our approximation requires the additional
E=oH f d3x£(a~n)2+f x| 2-(n2+n2) condition
2\ 2+ 212
=5 po=p ¥+ ul<1 (26)
——z(ainain)2+—mﬁ(n3—1)4) _
2my, 8 and the energy per unit length takes the form
~ . . — 2mm; — (R 1.
—292mﬁf d3><f Ay ji)Gik(x=y)j(y) |- (22 Ep)= M1+ 6%p2In| =] + g,<2mﬁp2— =
P 3myp
The first integral is the non-linear sigma model leading con- I x3K§(x)
tribution. The terms in the second integral are the corrections —g'mip J dx——=|. (27)
due to the potential, while the last term is due to the gauge 0 X“tp
interaction. Our semiclassical perturbation scheme is consis- . —
tent provided R is an infrared cutoff assumed to be much larger than
A few comments are in order: First, the logarithmic diver-
|F—my|<m, and 9Z;n<an (23 gence in Eq(27) appears only in the ca$g=1 studied here.
' ' It is due to the slow falloff at infinity of th&)=1 Belavin-
are satisfied everywhere. Polyakov configuration, and disappears for all hig@eBut

The configurationsn(x) of interest in this article are €ven forQ=1 its presence in Eq27) is an artifact of our
current-carrying infinite strings, which may also be thought@Pproximation. With non-vanishing and/or . all fields ap-
of as almost straight pieces of a large closed loop. They will
be taken of the form

o ~ 2Translational and rotational invariance imply that the energy of
Ny +in,=e""*3(ny(X1,X5) +iNy(Xq,X5)) (29 configuration(24) does not depend oa or z,.
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0.30

is guaranteed by Eq298) to differ only slightly from E,
=27m2/\. The precise meaning of inequaliti€2d), as well
as the computation of the lower bound omy and of the
upper bound o for a stable solution to exist corresponding
to a given point &,b) in the stability region are dynamical
questions dealt with numerically in the following sections.

0.25

0.20
1 Il. NUMERICAL RESULTS

A. String texture

0157 In this subsection we shall perform a detailed numerical

study of the string texture solutions of mod@) in order to
verify and extend the analytical semiclassical results re-
viewed briefly above. We find it convenient to start with
=0 and leave the more general case for a later section.

0.10

0.05_: The ansatz

We use the most general static d/t=0),
xz—independent {/dx3;=0), axially symmetric ansatz for
an infinite straight string with windin@ stretched along the
X3 axis

0.00

P=f(p)e'?, D3=G(p)
FIG. 1. The semiclassical boundary of the stability region for

stable strings in theg,b) plane. The squarg2 of the thickess of
some solutions is also shown. Z=e,K(p)
AN

(30

proach the|r' vacuum asymptot!c.values ”.‘”Ch fast('ar. and aUvith p and 6 the usual polar coordinates in the transverse
dangerous integrals become finite. As will be verified nu-

merically, no infrared divergence is actually present in theplane. For static configurations tig dependent part of the

_ energy density is the sumdZo)?+m?Z3+e?|d|%23 of
energy and for all practical purposés=In(R/p) should be 00 "hositive terms minimized foZo(p)=0. Similarly,

interpreted as a constant of _order one. Second, notice that 203(p)=0 andz,(p)=0. Note that constrair®) and current
the order of our approximation the current and thanass

el conservation are automatically satisfied by the ansatz.

enter in&(p) only in the combination®+ 42, and conse- The energy density and the current of the ansatz in terms
quently they have the same effect on the zeroth order solwf the rescaled quantities, for which we keep the same sym-
tion. Finally, conditiong25) and(26), necessary for the con- pols, are

sistency of our semiclassical approach, may be combined
into K\2 1, 1/Q - |2
K’ + p + 2f + ( p oK

o 2

1 - =~ _ _ 2\
—=, KkMyp, gmymin(p,1), po<l. (28
myp

11
2

1
2. T2
f+2K

-2
+ Ec;’2+1(f2+ G2—m?)%+ K—(G—mH)“} (31)
According to Eq.(27), the twist, thed-mass, and the 2 4 8

potential, all tend to reduce the string thickness. The gauge

interaction tends to blow it up. Is it possible to obtain a stableand

equilibrium? Following[7], where the cas&=0 was ana-

lyzed, we defineA®=6A5%/m?, and conclude that for val- _ ~(Q - )
ues of the parameters Jo=—9 p gKip) |T (32)
_ K2+ A2 d b= 2 29 respectively, while the magnetic fieB=V X Z points in the
a=—= an T =24 (29 3-direction and is equal to
g g my
below the solid line of Fig. 1 and for small enoughmi/ and K(p)

S to satisfy conditiong28), a stable solution exists. For a Ba=K"+ p (33
given v it is a small deformation of the twiste@=1
Belavin-Polyakov configuration with size as shown on the Extremizing the energy functional one is led to the fol-

corresponding tangent to the curve. Its energy per unit lengtlowing field equations for the unknown functiof$z andK:
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thick curve that passes through,b) corresponds to a size
value p(a,b). According to the semiclassical analysis a
stable solution should exist, which is a small deformation of
f+(f2+GZ—mﬁ)f=0, (34) Eq. (15 with size p(a,b), prolided all condition€28) are
satisfied. Figure 1 shows that lies typically between one
and five, whilea andb are smaller than one. Thus, to satisfy
the third constraint in Eq(28),

f2+K=0,

K\" -[Q -
K'+—| -9 =-9K
p) g(p J

2

1 Q -
- f” —
p(p )+(p gK

1 Y 2 2 2 7(2 3
=S (pG)) + (14 G2~ ) G+ 5 (G—my)°=0.

~ 21
It may be checked that they coincide with ES) and (6) gmy= \[Bm—<1. (39
evaluated for the ansatz. H

The boundary conditions one should take

are used to determine the boundary conditions. It is straight-
forward to check that in the present case of vanishing
d-mass and twist, the solution at infinity behaves like

As usual, finiteness of the energy and the field equations >
my > \[5 (40)

All remaining conditions are then automatically satisfied. A

f(p)~Cq/p2, G(p)~my—C32mp*° general remark which follows from the semiclassical analy-
sis is that models with parameters in the upper left corner of
K(p)~gQC?/p2Q+1 (35  Fig. 1 favor the existence of thick strings, with the con-

straints satisfied for relatively low Higgs boson masses. On
while specifically forQ=1, the case of interest below, its the other hand, to find thin strings, one has to search in

behavior at the origin is models with large Higgs boson mass, and parameters in the
lower right corner of Fig. 1.
f(p)~Cap,  G(p)~Cat+Cyp? K(p)~gCip (36) To summarize, the theory with a given set of values of
(a,b) in the stability region, andn, satisfying Eq.(40),
with constantC;, i=1,2,3 andC, related toC; by 8C, should have a stable solution close to Ef#§5) with size

+(my—C3)[2C5(Ca+my) + k3(Cs—my)2]=0. Conse- p(a,b). The values of the couplings andx follow from a,
quently, the energy density of@=1 string behaves asd¥ b andmy. Accordingly, a good guess for the initial configu-
at large distances. ration necessary for our numerical procedure is configuration
(15) for the scalars and vanishing gauge fields.
Numerics - Solution search

To search for string texture solutions of E84) we used Results
a relaxation methoffL5] with locally variable mesh size and ~ We start with the verification that stable solutions exist.
the convenient set of boundary conditions We restrict ourselves throughout to the most interesting case
, Q=1.
f(0)=0, K(0)=0, (pf")(0)=0 37 Applying the recipe of the previous paragraph, choose

a=0.001,b=0.2 andmy=4. They correspond tg=0.2,
'«=0.006. The profile of the stable texture obtained with an

following from Egs.(35) and(36). One starts with an initial initial configuration withp=6.7 is shown in Fig. 2. We have
trial configuration, which is iteratively improved until it be- been able to go deeper inside the upper left corner of Fig. 1
comes a solution of the field equations within satisfactoryand find stable string texture fon, as low as two.
accuracy. As an extra check of the accuracy of the solutions Similarly, Fig. 3 presents the profile of the solution for
obtained, we used three virial conditions, whose generah=0.25,b=0.01 andmy=20. It corresponds to the model
form we shall describe in the next section. Typically theywith g=0.04 andx=0.02.
were satisfied within one part in 16 10*. Finally, to make
sure that the solutions correspond to local minima of the_
energy and are stable, we perturbed slightly each one of
them, using a large number of smooth random perturbation . ? . : .
and verified that the perturbed configurations were always | all string solut|0n§ d!scussed here have energngs per unit
higher energy. length smaller and_w[thm 20% f_rom the valueﬂthH cor-

As explained in the previous section, stable solutions ar&€SPonding to the limiting Belavin-Polyakov solution.
not expected to exist in an arbitrary modg), but only in
those with parameters within the stability region. Using the
semiclassical results to guide the search, one starts with &Energies in our numerics are defined up to the overall factor 1/2
choice of @,b) in the stability region. The tangent to the in Eq. (31).

G(e)=my, (pG')(»)=0, By(*)=0 (39

For both solutions presented above the valuegof,
0.8. Thus, the constrair{89) should in practice be inter-

reted roughly agm,<1. Notice that like in the wall case
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Field Function

P

FIG. 2. The profile of the string in the model with=0.2, k

=0.006 andny=4. Its energy i€=13.6X 4.

In Fig. 4 we plot the Higgs magnitudé(p)z\/?zrgz,
the magnetic field; and the currend, for the second so-

lution.
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20+

15 .

104 .

-10 Je .
STE -

204/ i

A e e L B E L T

FIG. 4. The profiles of the Higgs magnitudsolid line), the
magnetic fielddashegland the currentdotted of the string texture
of Fig. 3.

Note that the Higgs magnitude differs, in accordance with = _ . .
the theoretical analysis, only slightly from its vacuum valueWinding number(14) unambiguous. Finally, it should be
my . Furthermore, it is everywhere non-zero, so that the unipointed out that the magnetic field takes both positive and
vector fieldn,=®, /F is well defined and the corresponding hegative values. One may verify that the total magnetic flux

DT T T T T T T
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is zero, as expected from the asymptotic behavior of the
gauge field in Eq(35).

For fixed values 06=0.02 andb=0.05 we find solutions
for a variety of my=10,20,30,50. Their sizelglefined ap-
proximatelly for the purposes of this plot by the zero of
G(p)] are plotted in Fig. 5 againstny and shown to be
roughly constant in accordance with the semiclassical
analysis.

For very largem, though one expects deviations from
this result. According to the Appendix the thickness of the
solutions should eventually increase with, and for very
large Higgs mass be pushed to infinite size. No stable string
exists for zero gauge boson mass.

Our next task is to perform a numerical study of the ex-
tent of the stability region in thea(b) plane and compare it
against the semiclassical result. We were unable to find
stable texture for parametera,p) lying above the dashed
curve in Fig. 6. Notice the remarkable agreement with the
leading order semiclassical curve also depicted for conve-
nience by the solid line.

Finally, it is interesting to test the semiclassical prediction
that an infinite set of theories, characterized by parameters on

a line of fixed; all lead to string solutions of the same
thickness. The sizes of the solutions obtained for the theories

FIG. 3. For parameters in the lower right corner of Fig. 1 stablecOrresponding to the point&,; to As on the line of Fig. 6

solutions require largemy and are thinner.

corresponding tq;:\/g are plotted in Fig. 7. The Higgs
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FIG. 7. The sizes of the string solutions for parameter values

FIG. 5. For fixeda andb the thickness of the string is rather corresponding to the point, to As of Fig. 6, plotted againsa.

insensitive to the value ahy .

mass was chosen in such a way that the quamfity; is
constant and equal to 0.5.

B. Twisted strings — Wire quality

Next, we shall extend the previous results and search nu-
merically for current-carrying string texture. We take the

0.25 R
0.20—:
0.15—:
0.10—:

0.05+

0.00 4+~
0.00

FIG. 6. The stability region as determined numericétigshed
line) plotted together with the semiclassical reqgblid curve.

string, preferably thought of as a long straight piece of a
large loop, stretching along they-axis and generalize the
axially symmetric ansatz used in the previous section, to in-
clude a twist in the complex scalar aloxg

d=f(p)eQ’e e, Dy=G(p)

(41)
Z=¢yK(p)+eW(p).

The gauge current flowing along the string is given by
J3=—g(du/dx;—gW(p))f2. Its conservation translates into
d2u(x3)/dx§=O that is, to a linear dependence of the phase
u(x3) uponxs. We shall take the scalar phase to méktull
turns over the length 2R of the string, and set the constant
term to zero. This fixes

N
U(Xg)= §X3E VX3. (42

In terms of the rescaled dimensionless fields and coordi-
nates defined in the previous section and conveniently de-
noted by the same symbols, the energy density of the ansatz
is

1 21,1, 1/Q . \?

= —| — ! —_— J— 2 — 2 J— —_— 2
SZKLKJFP +5W +2f+2p gK)f

1 - 1 1

Z(q,— 2¢2, "2, T2 2 23\2

+ 5 (r=gW)* 245G 2+ Z(12+G*—my)

K2 1

+§(G—mH)4+§(K2+W2). (43)
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Correspondingly, the; component of the gauge current be- discussed in the previous section. Consider such a stable

comes

J3=—9(r—gW(p))f2. (44)

Extremizing the energy43) one obtains the field equa-

tions

f2+K=0 (45)

K\" -[Q -
~(Kk'+=| -9 =-K
] <55

1 - -
—;(pW’)’—g(v—gW)ferW:o (46)

2

string corresponding to parameters inside the stability region
and to a value ofn, not exceeding say 20, to stay near the
phenomenologically interesting regime. Start increasing
while keepingk, g andmy fixed. During this procesb in

Eq. (29 stays fixed, whilea increases. Eventually, at some
critical valuev¢, one will cross the solid curve of Fig. 1 and
the string solution will disappear altogetier depends on
the values of the other parameters. To maximize the current
one should arrange for the maximum relevant valyg, of

a within the stability region of Fig. 1. This corresponds to the
lowest value ob, which as a consequence of E40) cannot

for my<20 exceed the value,,;,=0.01. Figure 1 then leads

to ana,,;,=0.3, which according to Eq29) translates into

A2 .Jg?=0.3. Combined with the constrair{89) on the
value ofgmy we obtain

f+(v—gW)%f

1 -
—Z(pt) +| ="K
p(p ) P

2 2 2\f
+(f*+G*—my)f=0 (47) 5 ~0.2. (52)
_ 1(pG’)’+(f2+Gz—mﬁ,)G+ K—Z(G—mH)3:0 Thus, the maximum current one may hope to drive through
P 2 such a string corresponds to a twigt,,,=0.2. Similarly,

(48)  according to Eq(52) the value 0.2 is also an estimate of the
upper bound on the charged Higgs boson mass, consistent
with the existence of stable strings. String texture corre-
sponding tamy =20 may of course support stronger currents
and allow for largerw. In any case, given that according to
our analysis, the effects of non-zewoand v are identical to

Finiteness of the energy forces the configuration to tend tq, high degree of accuracy, we get0 throughout the nu-
the vacuum at spatial infinitjy. A convenient set of condi- merical study that follows.

tions there is given by EJ36) together with

which we shall solve numerically for fixed non-zewo fol-
lowing the same approach as in the previous section.

The boundary conditions

Virial relations

W(0)=0. (49

Three virial conditions were used to check the accuracy of
the solutions discussed in this paper. They express the sta-
tionarity of the energy functional under particular deforma-
tions of the solution. By the standard argument, imagine a
solution of the field equations was found. It is an extremum
for W(P,)' ) ) i , of the energy. Any small change of the configuration should

Configuration(41), viewed as a circular loop and with the 56 {6 linear order the same energy as the original one. The
above boundary conditions which effectw;aly compactify gerjyative of the energy functional with respect to the param-
space intoS®, defines a map fron§ onto S°, the target  gters parametrizing the deformation should vanish when
space of the unit-vector field 2), which as explained before g\ 5yated at the solution. The virial conditions we used are
is well defined for all solutions of interest in this paper. As

such it is characterized by the Hopf topological index

At the center on the other hand we keep Ep) and add

(pW")(0)=0 (50

1
" ar szabc@ad@bdcbczq- N. (51) E1—2E;=0 (54
Notice that forQ=1 one may interprev/27 as the Hopf and
charge per unit string length.
gep g leng 2E,—E5=0 (55)
An upper bound on the twist magnitude relating

It is instructive to view the twisted string as a small de-
formation of the untwisted one. Far=0 the W-equation

ives W= nd the problem r he untwi . .
gives 0 and the problem reduces to the untwisted case Note the difference from the phenomenoncofrent quenching
observed previously in the context of superconducting stritg
with topological stability. Contrary to the latter case, not only the

“4For a large circular loop the center of the loop is also a point atcurrent but the string itself disappears to radiation once we exceed
infinity. the critical value of the twist.
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E~"("dp Qg 2 K (56)
1)\0P g

T (L - 1
E2=—f dp p| KA(1+0%1?)+ 5 (f2+G*—mj)?
2N Jo 2

~2
+%(G—mH)4+w2+(y—§ W)Zfz} (57
™ (* K\? ~2e2\ 102
Eg—ﬁjo dp p{ K +;) +(1+g f ) K} (58)
T (L 4
E4:Kfo dp pf (59
and
E —1de P2y 9—~K)2f2+( —Gw)2f2
5=y |, 9P P 5, 9 v—g
20 F T T T T T T T T T T T
+(GZ_ma)f2}_ (60) 0 5 10 15 20 25 30

p
They arise by demanding stationarity of the energy with re- - -
spect to solution size rescaling— ap, K-rescalingK(p) FIG. 8. The twisted string fog:0.035,K:0.005,mH:20 and .
— BK(p) andf-rescallingf(p)— vf(p), respectively. Such v=0.05. On the same plot we also shqw the profile qf the _functlon
field rescallings are consistent, as they ought to, with th&o(p) of the untwisted solution. The twist reduces string thickness.
boundary conditions on the field§é andf.

All solutions obtained numerically satisfied the above
virial conditions to a very good approximation. Specifically,
in all cases the appropriately normalized virial quantities
=|(E1—2E2)/(E1+2E,)|, vo=|(Ey—2E3)/(Ey+2Es)|
andvz=|(2E,— Es)/(2E,+Es)| were of O(10 *—10"3).

total current, roughly equal tb~ wpzévmﬁ, is less sensi-
tive. It was evaluated numerically and shown to take values
between 30 and 52 for the above solutions. The most prom-
ising region of parameters for the existence of stable closed
loops is aroundX;, but still » cannot easily become large
enough to satisfy Eq.l).
Results C. Large string loops
To find twisted solutions we start with an untwisted one
as initial trial configuration, and iteratively improve it until it
becomes a solution of Eqgl5)—(48) with the given value of

An interesting question, that needs to be addressed in the
context of our toy model, is the question of spring formation
) [12,16. The analysis so far does not allow much hope that

Figure 8 shows the profile of the solution arising by the;Lanblég)trg]rgésgﬁsv\fgrg:);ﬁé (ﬁtggﬁc‘:ﬁ;}Igﬁg?:ﬁﬁ:e%e:gxi_
above method from the untwisted string corresponding G, yajye of the twist are much smaller than the vallie
pointX; with a=0.02 anb=0.01 in Fig. 6. For the remain- o4 ireq for spring formation. In fact the last semiclassical
ing parameters we chose, =20 and»=0.05. As for t@ constraint in Eq.(28), even when interpreted as a simple
initial ansatz we took the Belavin-Polyakov soliton wigh  inequality as suggested by all numerical results obtained
=3.5 and vanishing gauge fields. above, leaves little room if at all for stable loops. Further-

To observe the destabilization of the string solutionmore, one should note that Ed) is rather optimistic for our
caused by a large current and to determine the vajug of  toy model, because it was obtained for massless gauge field
the twist, we continued increasingfor fixed values of the which maximizes the magnetic pressure due to the trapped
remaining parameters. For the solution correspondingto  magnetic flux.
presented in Fig. 8 we foung;=0.1. In a similar fashion, In any case, proper numerical search for string loops in
we computed the maximum currents supported by the unthis model would then mean to look for rather small loops
twisted string textures plotted in Figs. 2 and 3, whose correwith inner radius of the order of the gauge field inverse mass
sponding &,b) are shown in Fig. 6 by the poinis,, X3  or less, in order to maximize the effect of the gauge field
and X;. The maximum values of the twist found arg,  against loop contraction. This requires essentially full three
=0.01, vc3=0.04 andvc4=0.04, respectively. The agree- dimensional analysis and was left for a future publication.
ment of these results with the semiclassical absolute bound However, within the numerical approximation used in this
(52) obtained above is rather satisfactory. The correspondingaper, we did verify the above conclusions for large loops of
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radiusR>; We approximated the |00p by a straight String be interpreted as Simple inequalities. Thus, the 2HSM sup-

of length 2R and looked for minima of the energy ports stable strings. They may be generalized and allow for a
current to flow along them. The current due to the twist of

the electrically chargedd™ is a bona-fide electric current
and the string texture in this case is a superconducting wire
in the standard sense. It is characterized by the twist param-
eterv, the Hopf charge per unit string length. Being of elec-
troweak scale these “wires” should have a thickness of a
few my,* and mass density of the order of T0g/cm. Ex-

Clearly, keepingN constant, spring formation could occur trapo_latlng naively to.the 2HSM the bounds obtained above,
one is led to a maximum current they can carry of about

only for R large enough so that the solution exists, i.e., . .
y g -~ L XSS 1€y 1010 corresponding ta= v, ..~ 0.2. Equivalently,

N/R=v<v:=N/R corresponding to the chosen values of : .
the parameters. If this minimum of the energy could bethese bounds would imply the absence of stable string tex-

+
achieved at SOM&ping™>Rc then at theRe(my), E(R) gj're forH™ massy larger thangma,~0.2m;~18 Gev/c.
would have a negative derivative with respeciRoi.e., the Ince th'f value IS lower tha_n the expenmenta_l lower bou_nd
total energyE would tend to decrease towards its minimum on theH ™ mass, I't.tle. space IS Ieft for stable string texture in
asR increased fronR¢ towardsRgping. We have checked theBZHSM for realistic \{alues of its parameter;.
all points atRcs for a wide range of parameters <(4n,, ut, this last conclusion may Well_be too naive. The pres-
~ ~ _ . _ ence in general of a separate coupling for electromagnetism

:xilsOtO(\)/\’/eO?o%jsoe.g’oﬁrg;gﬁg)véﬂdrgIggjldwtr::rr?lii?r#gggs and of a richer variety of charged and neutral fields, will

: e e change the maximum current allowed along the string, as
(largem,,) thus maximizing the twist induced pressure of the,ye|| a5 condition(1), derived for the case of the single gauge
R-dependent termN/R—gW)?f2. It is this term that could field of the toy model studied in the present paper. What
potentially stabilize the closed loop. We found thatactually happens in more complicated models like the 2HSM
(dE/dR)[r=r >0 at all points with practically no signs of is a matter of detailed analysis and deserves further study.
change even at the smalldé&t’s. Therefore, in line with the
previous discussion, we conclude that for the parameter sec-
tors we investigated no spring solutions exist.

27R R
E(R)zfo dzJ’O dp p &(F,G,K,W) (62)

to check whether th&®-dependent termN/R—gW)?f? in
the integrand43), which for fixedN acts against loop con-
traction, might actually stabilize it at sone=Rgping-
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Indeed, it has generically a trivial vacuum manifold, while its
target space should effectively be thought of aSawith an
S gauged by théJ(1) gauge field. In this model we have APPENDIX

mapped the parameter sectors where stable solutions exist, i
while no stabilized spring solutions were found in the param- A Massless U(1) gauge field does not lead to stable tex-

eter sectors discussed. The parameter region correspondifif® A massless gauge field is either too efficient in halting
to stable untwisted string textuf&] has also been examined 1€ shrinking caused by the potential terms and blows up the

and we confirmed numerically the approximate semi-texture to infinite thickness, or it is not efficient and the

analytical results of that analysis. An alternative way to staStfing contracts to vanishing cross section. ,
bilize vortex loops is the introduction of angular momentum Here we sketch a semiclassical proof valid for thick
whose conservation can stabilize loops against collapse mof'ings. More generally, the statement has been verified nu-

effectively than twist pressure. Loops stabilized by angulafmerically. It was shown in the main text that the introduction
momentum are known agortons[17] in order to be distin- of either mass or twist to the charged scalar works against
guished from springs. the stability of the string texture. It suffices to prove the

It is instructive at this point to examine what the aboveStatement for massless charged scalar and vanishing twist.

results, obtained in the context of the toy mo@®| suggest Start from(2) with m=..=0. Define the Higgs boson mass
about the two Higgs-doublet standard model. As mentioned/2\v =1 to set the mass scale and rescale fields and dis-
before, the gauge field in E() corresponds to thg® gauge ~ tances according to

boson, while the role ofp is here played by the charged

Higgs bosonH™. Clearly, the nu_merical results o_f the_ FouF, A,—vA,, XFoxH\2\v (A1)
present paper strengthen our confidence to the semiclassical " "

conclusions reported if8], which should be valid with high

accuracy. In addition, the constraints are weaker and shoulafter which the action is written as

025012-11



L. PERIVOLAROPOULOS AND T. N. TOMARAS PHYSICAL REVIEW D62 025012

v 1 1 The current isJ;=3(n,d;n;—n,d;n,) and the Green func-
Lm—o= o 5(0MF)2+§F2|(%+igA,L)(n1+in2)|2 tion of the massless gauge field is

1 1 K2

+§F2(a,u.n3)2_ §(F2_l)2_§(|:n3_1)4 _ d2p —i ~X5k|+ PkP
Gux)=| ;e PX———. (A7)
4 p2

1

_ZFZ'V (A2)

Following the same steps as in the main text, we evaluate
with fields and parameters defined as in the main text. Herg for the solution(15), minimum of the leading terri,. The
we have only changed 4, the name of the gauge field.  result is

In the limit
9,k—0 (A3) = 8 1 (R TR
Em=o(p)=—=47 |1- = +-%=(2k°—30°)p°|.
the model has absolutely stable topological strifigs with m=0 NEN 3p? 12
F=1. What will happen to such a soliton of arbitrary size (A8)

if we move slightly away from the limit? Switching-on the
potential term will tend to shrink it, while a non-vanishing
gauge coupling will tend to blow it up.

Following the steps df7] it is straightforward to solve for
the magnitudd- and the gauge field, and derive an effective
action for the unit-vector fielah,. Under the constraints

The constant is the leading Belavin-Polyakov value for the
Q=1 soliton. The remaining terms represent the leading cor-
rection to its energy due to the potential and the gauge inter-
action.

This function does not have a local minimum. Q.E.D.
_ — ~ We should like to point out that this result is quite general
p>1, kp<l, g<l1 (A4)  in our approximation. Dimensional analysis alone fixes the
gauge contribution to the energy to beconstx p°. It is
“Lenz” that fixes the coefficient of the quartic term in Eq.
(AB6) to be negative. Relaxing the constraint®neduces the
EOZLJ dle((gina)z (A5)  energy of the configuration. Thus, for any value @fthe

V2N 2 energy takes the forndE~1—C,/p?+ C,p? with C,>0.

Independently of the value @, this function has no local

the energy per unit length is written &= Ey+ 6€ with

minimum.
. ~, For A=3g%—2x2<0 the gauge repulsion is not strong
se— L{ B _f de(ﬁinaﬁina)erK—f x(ng—1)* enough to halt s.hrlnklng_to zero size. Fbr-0 the energy
N A 8 has a local maximum ato=(4/2/(3g%—2x?))Y* Strings
of thickness smaller thap, shrink to zero, while those of
_BZJ dZXf dzy\]i(x)Gij(x,y)\]j(y)} (AB) initial thickness larger thapy blow up to infinity.
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