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We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it. The renormalization pro-
cedure is designed to produce a Hamiltonian that will yield physical states that rapidly converge in an expan-
sion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum
effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly
decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical
principles of light-front pure-glue QCD, including Lorentz covariance and gauge covariance. This means that
the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring
the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated
physical principles of pure-glue QCD, we are able to derive recursion relations that define the Hamiltonian to
all orders in perturbation theory in terms of the running coupling. We approximate all physical states as
two-gluon stateqthus they are relatively simple single-glueball statesyd use our recursion relations to
calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize
the Hamiltonian using basis-function expansions for the gluons’ color, spin, and momentum degrees of free-
dom. We examine the sensitivity of our results to the cutoff and use them to analyze the nonperturbative scale
dependence of the coupling. We investigate the effect of the dynamical rotational symmetry of light-front field
theory on the rotational degeneracies of the spectrum and compare the spectrum to recent results from other
approaches. Finally, we examine our wave functions and analyze the various sources of error in our
calculation.

PACS numbgs): 11.10.Gh, 12.38-t

I. INTRODUCTION by the free part of the IMO. Second, the off-diagonal matrix
. , . elements of the IMO must quickly decrease as the difference
hA .SO||u.t'0n. .to a quantL_Jl;T f'.?ld theorydthatl IS clise tollourof the free masses of the states increases. If the IMO satisfies
physical intuition'is possible it we can develop a formalism ese first two conditions, then each of its eigenstates will be
in which the physical states of the theory rapidly converge ingominated by free-state components with free masses that
an expansion in free-particle Fock-space sectiiee sec- are close to the mass of the eigenstate. The third condition on
tors). Such an expansion is unlikely to be possible in anthe IMO is that the free mass of a free state must quickly
equal-time approach to many of the more interesting theolncrease as the number of particles in the state increases. If
ries, such as QCD. This is because in equal-time approach&e ,”\I/'O .satls;ﬂes all three condltlon;, tgen the number of
to these theories, the physical states must be built on top of articles in a free-state component that dominates an eigen-

licated I th | f : S{ate will be limited from above. This means that the IMO’s
gomp Icate vgcuum uniess the VQ ume o spage IS severe igenstates will rapidly converge in an expansion in free
limited. For this reason, we work in light-front field theory

(LFFT). In LFFT’. it'is possible to force the yacuum to be 3There are three subtleties here. The first subtlety is that the first
empty by. removmg from the theory 5.‘" particles that haveand third conditions on the IMO will not be satisfied for those free
zero longitudinal momenturhAny physical effects of these  giates in which many of the particles have negligible center-of-mass
particles must be incorporated into the operators of theransverse momentum and little or no mass. However, the contribu-
theory in order to obtain correct physical quantities. tions of these free states to the physical states in which we are
In LFFT, the Hamiltonian is trivially related to the interested are typically suppressed. For example, in QCD these free
invariant-mass operatorIMO), and it is more natural to States have very large widths in transverse position space and are
work with the IMO because it is manifestly boost invariant. thus highly suppressed by confinement. In QED, the particles with
If the IMO satisfies three conditions in the basis of free_negllglble center-of-mass transverse momentum and no mass are
particle Fock-space statéfree statel then its eigenstates 'ﬁng'gan.sv?rse'wa.veler?.gthh photons. .Theuse. phOtondeeCOUpLe from
will rapidly converge in an expansion in free sectors. First,t e physical states In which we are typically interested, e.g., charge-

- . . inglet states such as hydrogen and positronium. Thus the contribu-
the diagonal matrix elements of the IMO must be dommatecﬁons to these physical states from the free states containing these

photons are suppressed. The second subtlety is that exactly how
. ) ) quickly the IMO’s off-diagonal matrix elements must decrease and
TEm§'| address: allen@mps.ohio-state.edu the free mass of a free state must increase are not known. We
lEmal! address: perry@mps.ohio-state.edu assume that the rates that we are able to achieve are sufficient. This
This is because there are no negative longitudinal momenta anghn be verified by diagonalizing the IMO and examining the rate of
momentum conservation requires the three-momenta of the cortonvergence of the free-sector expansion of its eigenstates. The
stituents of the vacuum to sum to zero. third subtlety is that the coefficients of the expansion for highly
2The invariant-mass operator is given by the square of the moexcited eigenstates may grow for a number of free sectors and then
mentum operatorP“P/ﬁMz. See Appendix A for more details. peak before diminishing and becoming rapidly convergent.
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To satisfy the first condition on the IMO, we assume thatby diagonalizing the IMOsee Sec. V)l However, there are
we can derive the IMO in perturbation theory. If this is true, drawbacks to computing operators perturbatively. It is pos-
then the couplings are small and the diagonal matrix elesible that there are intrinsically nonperturbative effects in the
ments of the IMO are dominated by the free part of the IMO.theory that require nonperturbative renormalization. Any
To satisfy the second condition, we place a smooth cutoff orsuch effects are neglected in this approach. Another problem
the IMO to force its matrix elements to quickly decrease ads that perturbative renormalization makes nonperturbative
the difference of the free masses of the states increases. Ongkysical quantities somewhat cutoff dependent.
we have removed the particles with zero longitudinal mo- In general, field theories have an infinite number of de-
mentum from the theory, it is reasonable to expect that thgrees of freedom. However, since our IMO will cause the
third and final condition on the IMO will be satisfied auto- physical states of the theory to rapidly converge in an expan-
matically. This is because the free-particle dispersion relatiogjon in free sectors, we can truncate this expansion. This

of LFFT should force the free mass of a free state to quicklymeans that approximate computations of physical quantities
increase as the number of particles in the state incréases || require only a finite number of finite-body matrix ele-

Appendix A of Ref.[1]). ments of operators. In addition, since we assume that we can
By suppressing the matrix elements of the IMO that have. 5 te these matrix elements perturbatively, in these com-

large changes in free mass, the cutoff regulates the UItraV'ogutations we only need to consider intermediate states that

ga’rirg:rng?s k?fsti?:zl thﬁﬁz' Ig:fgfrttrléit'?lyi,nglfé?r? Vg?éi‘:’z an be connected perturbatively to the states in the matrix
pny P b ' 9 elements. This allows perturbation theory to naturally limit

covariance and gauge covariance. This means that the opera- . . .
tors in the IMO are not required to respect these physicaﬁ.e number of intermediate-state particles that we must con-
principles, and renormalization st simply a matter of ad- S|de_r. . .
justing a few canonical parameters. The simplest way to sys- Since we do not truncate the space of intermediate §tates
tematically determine the IMO in this case is in perturbationt"@t can appear when we perturbatively calculate matrix el-
theory. In order for a perturbative computation of the IMO to €Ments of operators, our approach does not use a Tamm-
be strictly valid, the theory must be asymptotically ffes. Dancoff truncatiofi[2—4]. (A Tamm-Dancoff truncation ar-
this is the case, then by requiring the IMO to produce cutoff-bitrarily limits the number of particles that can appear in any
independent physical quantities and by requiring it to respe(ﬁtate in the theory. Such a truncation drastically complicates
the unviolated physical principles of the theérw,e can de- renormalization, i.e., the calculation of the matrix elements
rive recursion relations that define the IMO to all orders inof operators. We also do not completely eliminate any in-
perturbation theory in terms of the fundamental parameterteractions, such as those that change particle number. These
of the field theory. If our cutoff is large enough, then the strengths of our approach allow us to better describe physical
couplings will be small and the perturbative approximationtheories. However, the truncation of the free-sector expan-
to the IMO may work well. sion of physical states has drawbacks that are similar to those
The physical principles that we use to determine the IMOof perturbative renormalization. It neglects any physical ef-
form a subset of the full set of physical principles of light- fects that require an infinite number of particles and contrib-
front field theory. This raises the question of how the remain-utes to the cutoff dependence of nonperturbative physical
ing principles, which are violated by our cutoff, are restoredquantities.
in physical quantities. Since the IMO is uniquely determined The accuracy of our results and the strength of the cutoff
by the principles that we use, the remaining principles mustlependence of our nonperturbative physical quantities are
be automatically respected by physical quantities derivedietermined by the order in perturbation theory to which we
from our IMO, at least perturbatively. If they are not, then calculate the operators of the theory and the number of free
they contradict the principles that we use and no consistergectors that we keep in the expansion of physical states. If we
theory can be built upon the complete set of principles. Theuse a cutoff that is too small, then the couplings of the theory
reason that this process is possible is that there are redundamil be large, and it will be necessary for us to keep many
cies among the various physical principles. terms in the expansion of the operators. If we use a cutoff
It is possible to compute operators other than the IMO inthat is too large, then the free-sector expansion of the physi-
our approach. Although we compute operators perturbacal states will converge slowly, and it will be necessary for
tively, we can use these operators to compute nonperturbas to keep many sectors in the states. We assume that if the
tive quantities. For example, the spectrum can be computearder of perturbation theory and the number of free sectors
are manageable, then there is a range of cutoff values for

4Our method may work even if the theory is not asymptotically
free. For example, it works in QED because the scale at which the ®The only degrees of freedom that we remove from the full theory
electron charge is large is astronomical. are the particles with zero longitudinal momentum. We should be

5Some of the physical principles, such as cluster decompositionable to replace the physical effects of these particles with interac-
are violated in a very specific manner and can still be used tdions without compromising the validity of the theory. This is be-
restrict the form of the IMO. However, the restriction in this situa- cause these particles are vacuum effects or have infinite kinetic
tion is always weaker than it would have been had there been nenergiegor both, and thus are not observable in the laboratory as
violation of the principle. particles.

025005-2



GLUEBALLS IN A HAMILTONIAN LIGHT-FRON T . .. PHYSICAL REVIEW D 62 025005

which the approximations work well and physical quantitiesarea. The interested reader should consult the recent reviews
are relatively accurate and cutoff independent. and introductions for these purpodd$].

As we mentioned, we remove from the theory all particles
with zero longitudinal momentum. We should replace their

physical effects with interactions. However, due to the limi- Il. THE METHOD FOR COMPUTING

tations of our method, we can reproduce only those effects of FREE-STATE MATRIX ELEMENTS

these particles that can be derived with perturbative renor- OF THE INVARIANT-MASS OPERATOR

malization and require only a small number of particles. This section summarizes the extension of the results of

There are a number of approaches that are similar to oursecs. 11—V and Appendix D of Ref1] to the case of pure-
[5-12, and some of these methods have been used to calcgtue QCD. We begin by defining our cutoff, which regulates
late the physical states of QC[12,13. These calculations the free-state matrix elements of the IMO by exponentially
are based on nonrelativistic approximations and use shamuppressing large changes in free mass. We then proceed to
step-function cutoffs. Nonrelativistic approximations drasti-place a number of restrictions on the IMO. First we force the
cally simplify the diagonalization of the IMO, but are insuf- IMO at a given cutoff to be unitarily equivalent to itself at a
ficient for states containing light quarks or gluons. Sharphigher cutoff. This implies that the IMO is unitarily equiva-
cutoffs prevent the complete cancellation of the infrared dilent to itself at an infinite cutoff, and will therefore yield
vergences that appear in light-front gauge thedfries. cutoff-independent physical quantities. From the statement

Our approach is completely relativistic and uses smoottpf unitary equivalence, we develop a perturbative series that
cutoffs to ensure the complete cancellation of the light-front€lates the interactions at two different cutoffs. We then pro-
infrared divergences. It is largely based on the renormaliza¢€€d to use physical principles to restrict the form of the
tion methods of Perry14], Perry and Wilsor{15], Wilson IMO. We require it to conserve momentum and tq be invari-
[16], and Glazek and Wilsof5], as well as the Hamiltonian- ant under bqosts and rotations about the t_hree-aX|s. Although
diagonalization methods of Wegnig7]. In Ref.[1], we de- Y cutoff violates exact transverse locality, we are able to
veloped and tested our method in masskésgheory in six require the. IMO.tO respect an approx[mate transverse local-
dimensions. In Ref[18], Kylin, Allen, and Perry extended ity. In practice this means that the IMO’s matrix elements are

our method to include particle masses. In this paper, we ex@nalytlc functions of transverse momenta. The cutoff also

tend our method to pure-glue QCD. This theory is Simplerviolates cluster decomposition, but we show that the impli-

than full QCD due to the reduced number of vertices and thgatiorr\]s of this \I/iolation are sri]m?le en?ugh that we can stil
- o . se this principle to restrict the form of the IMO.
absence of quark masses. For this application, we derive the In order to represent pure-glue QCD, the IMO must be-

recursion relations that determine the IMO to all orders in me the free IMO in the noninteracting limit. and it must b
perturbation theory in the running coupling. We approximateCO € the free € noninteracting & ust be

all physical states as two-gluon states and use the recursié’hfunCtlon only of the cutoff and the coupling. The final

relations to compute to second order the part of the IMO thants'f;;treztgzg?tgrgﬁ tr:T: Nll? ('jz;h;tc I rrrlg_stlreeprogté)ce_mgs
is required to compute the spectrum. We diagonalize thé tu' " v i lchgf Pl lfjth f tpud g_ut Q . ' Id
IMO in a basis-state expansion and analyze the results. restriction specines the form of the Tirst-order interaction an

This paper is organized as follows. Appendix A containspacvzf Ltjr;?e ?ﬁgorgi-tﬁgiecz)rng\tf%ﬁuol’r\].sical rinciples and the
our conventions for light-front pure-glue QCD; so the reader ; : phy princip .
may wish to examine it first. In Sec. Il we present Ourperturbatwe series that relates the interactions at two differ-
method for computing the freé-state rﬁatrix elements of th&Nt cutoffs to derive the recursion relations that determine

IMO. Some of the details of the method are given in Appen- he ”YIO'fA Crlf[ﬁ'al stetp lt? :[[.h's propess_rlrls_ thi removatl of the
dix B. In Section Il we define a basis for the expansion of€0UPIINg from the perturbalive series. 1his allows us 1o sepa-
rate the cutoff dependences of the operators in the interaction

physical states. In Sec. IV we use the recursion relations fo : ;
the IMO to compute its two-gluon to two-gluon matrix ele- rom the CUt.Oﬁ de_per_ndences of their couplings. MOSt of the
details of this derivation are relegated to Appendix B.

ment to second order in the running coupling. This is the
only free-state matrix element that we need to solve the ei-

genvalue equatior). In Sec._ V we compute thg ma.trix ele- A. The cutoff

ments of the IMO in the basis that we have defined, in terms ] ] . . )

of integrals that must be evaluated numerically. Some of the ©Our goal is to derive recursion relations that uniquely de-
details of these evaluations and other technical issues appd&fmine the IMO to all orders in perturbation theory in the
in Appendix C. In Sec. VI we derive our results and analyze"unning coupling. The IMO is a function of the cutoff, and

the sources of error in the calculation. Finally, in Sec. VIl wecan be split into the canonical free IMO and an interaction
conclude with a summary and a discussion of the direction ofS€€ Appendix A for our light-front pure-glue QCD conven-

future work. We do not give an introduction to light-front tions):

field theory or review the various research efforts in this
y M3(A)= M2+ M2(A). 1

"These appear due to the exchange of massless gauge particleBe cutoff is implemented on the matrix elements of the
with arbitrarily small longitudinal momentum. IMO:
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<F|M2(A)|I>:<F|Mf2reel |>+<F|Mﬁu(/\)||> The unitary transformation that we use is designed to alter
the cutoff implemented in Eq2), and is a simplified version
- M§<|:||)+e*A§|/A4<|:|V(A)||>, 2) of a transformation introduced by Wegréi7], modified for
implementation with the IMO. It is uniquely defined by a
where|F) and|l) are eigenstates of the free IMO with eigen- linear first-order differential equation:
valuesM2 andM?, andAg, is the difference of these eigen-

values:
dUAAY) ,
W—T(A)U(A,A ) (6)

Ap=ME-Mf. (3)
V(A) is the interaction with the Gaussian cutoff factor re- With one boundary condition:
moved, and we refer to it as the “reduced interaction.” To
determine the IMO, we must determine the reduced interac-
tion.

We will see that F|V(A)|l) does not grow exponentially
as AZ, gets large; so the exponential in E@) forces the U(A,A’) is unitary as long ag(A) is anti-Hermitian and
off-diagonal matrix elements of the IMO to rapidly diminish linear[1]. We define
asAZ, grows. This satisfies the second of our three condi-
tions on the IMO and regulates it.

U(A,A)=1. (7)

T(A)=[Mfee M3(A)], (8)

B. The restriction to produce cutoff-independent physical
quantities which is anti-Hermitian and linear.

To solve for M?(A) perturbatively, we need to turn Eq.
(4) into a perturbative restriction on the reduced interaction
X(A). We outlined how to do this in Refl1], and here we
§imply state the results that we need. The perturbative ver-
sion of Eq.(4) in terms of the reduced interaction is

Our cutoff violates a number of physical principles of
LFFT, including Lorentz covariance and gauge covaridhce.
This means that the operators in the IMO are not required t
respect these physical principles. In addition, since there i
no locality in the longitudinal direction in Hamiltonian
LFFT? these operators can contain arbitrary functions of
longitudinal momenta. To uniquely determine the IMO in
this case, we have to place some restrictions on it. The first
restriction is that it must produce cutoff-independent physi-
cal quantities. To enforce this, we requitd?(A) to satisfy ~ where 6V is the change to the reduced interaction and is a

function of bothA andA’:

V(A)—=V(A")=6V, C)

M?(A)=U(A,A")YM?>(A"HUT(A,A"), (4

whereU is a unitary transformation that changes the IMO’s (FlsV|1)y=
cutoff and

N| =

> (FIVA) KWK V(A DTN AD(F LK,
K

1
A<A’<2A. 5) a2 (FIVADIKKIVAIIL)
We have placed an upper limit o’ because Eq(4) is X(LIV(AD)DTMAD(F KL,
perturbatively valid only ifA" is not too much larger than s
[20]. Note that we are consideringyt?(A) to be a function +O([V(A)]Y). (10

of its argument; i.e M?(A’) has the same functional depen-
dence onA’ that M?(A) has onA. In Ref.[1], we proved |n this equation, the sums are over complete sets of free

that Eq. (4) forces M?(A) to produce cutoff-independent states and the cutoff functions are defined by
physical quantities.

TMAY(F K,

80ur regulator breaks these symmetries because the mass of a free
state is neither gauge-invariant nor rotationally invarigxcept for :<i_ i) eZA”“AFKAKu_GZA“‘AFKA}«)
rotations about the three-axis Arp Ay

That there is no longitudinal locality in Hamiltonian LFFT is
evident from the fact that the longitudinal momentum of a free
particle appears in the denominator of its dispersion relatiﬁf\, (
+m?)/p™. and

(11)
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, 1 1 1 -4 -4 -4
TOAYE KL= _)(__ @2\ T AKLAL (@20 *ArKkAki — @2A T ARKAK
3 ( A A/ \Ak Ak ( )

1 1 Apg+A ,— _
+ 1 A_)A AFK—i-A IKA e2A' T ARk T AKLAL) — g2A A(AFKAKI"'AKLALI))
KL Aur/ AkLAL T ArkAki
1 1 1 1 - - .
| ) o | @A T ARk (@20 T AR @20 TR A
A Bil\Bu Bm ( :
1 1 A +A .- -
T FL It 20 T HARKAKLHARLAL) — @2A T ApkAkL FARLAL) 12
Apk AL/ ApkAkLTArLA ¢ ¢ . 12

The above definitions for the cutoff functions assume thatmomenta with an infinite radius of convergence. In other
none of theA’s that appear in the denominators is zero. Inwords, we assume that the matrix elements of the IMO are
the event one of them is zero, the appropriate cutoff functioranalytic functions of transverse momenta.

is defined by

3. Cluster decomposition

(AADA=0)= lim TAAD
Ti (A=0) A“TOT' (4). (13 Since the matrix elements of the IMO conserve momen-

tum, they can be written as a sum of terms, with each term
o _ o containing a unique product of momentum-conserving delta
C. Restrictions from physical principles functions[21]. We require the IMO to satisfy approximate

Equation (9) is the first restriction on the IMO. To cluster decompositiofil]; i.e. when any of its matrix ele-
uniquely determine the IMO, we need to place additionalments is written as an expansion in the possible products of
restrictions on it, and we do this using the physical principlegomentum-conserving delta functions, the coefficient of any

of the theory that are not violated by the cutdBee footnote term in the expansion is restricted as followH. there is
5. more than one possible set of spectators for a given product

of momentum-conserving delta functions, then the coeffi-
1. Symmetry principles cient has to be broken into a distinct part for each possible
set, and these restrictions hold for each part separptely.

. . . ) can depend on the cutoff, the quantum numbers of the inter-
tion, boost covariance, and covariance under rotations abom&@

: : .~ acting particles, and the total longitudinal momentum. It
the three-axis. Our cutoff does not violate any of these PrinL. st be proportional to a quantum-number-conserving Kro-

cipl_es; SO we restrict the IMO 1o conserve momentum and t.%ecker delta for each discrete quantum number for each
be invariant under boosts and rotations about the three'ax'gpectator It can have no other dependence on the quantum

numbers of spectators, and it cannot contain delta functions
that fix momenta.

Ideally, the IMO should be local in the transverse direc- The reason that the IMO does not respect exact cluster
tions, and thus each of its matrix elements should be expresgecomposition and that the coefficients in the delta-function
ible as a finite series of powers of transverse momenta witkxpansion can depend on the momenta of spectétomugh
expansion coefficients that are functions of longitudinal mo-a dependence on the total longitudinal momentisnthat
menta. In our case, the cutoff suppresses interactions thaur cutoff on free-mass differences violates cluster decom-
have large transverse-momentum transfers and replaces theysition. To see this, note that the change in free mass for

with interactions that have smaller transverse-momenturgome process is given @*(Ejpj’_—zipi_), where thep;’s

transfers. This is equivalent to suppressing interactions thajre the momenta of the particles in the initial state, ghis
occur over s_maII transverse separations and replacing thegte the momenta of the particles in the final state, Rfids
tions; so we do not expect our interactions to be perfectlynomenta of any spectators cancel in this difference, but their

transverse-local. Nonetheless, we expect that interactions igngitudinal momenta still contribute to the overall factor of
M?3(A) should appear local relative to transverse separationp+

larger thanA ~* or, equivalently, to transverse momenta less
than A. This means that for transverse momenta less than
we should be able to approximate each matrix element of
M?(A) as a finite power series i, /A. We enforce this by The preceding restrictions am?(A) are valid for any
assuming that transverse locality is violated in the weakedstFFT in more than two dimensions. In order to represent a
manner possible, i.e., that any matrix element of the IMOparticular theory, we must place additional restrictions on
can be expressed as mnfinite series of powers of transverse M?(A).

Any LFFT should exhibit manifest momentum conserva-

2. Transverse locality

4. Representation of the theory of interest
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We assume that we can computé?(A) perturbatively, Each term in this expansion is either cutoff dependent or
which means that we can expaM{A) in powers of the cutoff independent. We definb’(cr,)D(A) to be the cutoff-
coupling at the scald. Our cutoff has no effect in the non- dependent part o¥/((A), i.e., the part that produces the
interacting limit; so our IMO must reproduce free pure-gluecutoff-dependent terms in transverse-momentum expansions
QCD in this limit. According to Eq.(2), this means that of matrix elements ofvV()(A). We defineV{) to be the
V(A) vanishes in the noninteracting limit. _cutoff-independent part of()(A), i.e., the part that pro-

In pure-glue QCD, the only fundamental parameter is thejyces the cutoff-independent terms in transverse-momentum

coupling; so we require the IMO to depend only on it and theexpansions of matrix elements ¥ (A). Then
scale.(For an example of the application of our method to a

theory with more than one parameter, see RE3).) In this VO(A)=VILA) +VE). (17)

case, the expansion df(A) takes the form

This separation is necessary because the procedures for com-
puting VEA(A) andVY) differ.

We believe that itM?(A) is to reproduce the perturbative
scattering amplitudes of pure-glue QCD, then it is necessary
where g, is the coupling at the scald. We refer to and sufficient for the reduced interaction to satisfy the fol-
V(A) as theO(g',) reduced interaction, although for con- lowing conditions’® We prohibit V((A) from having a
venience the coupling is factored out. three-point interaction unless is odd, and we prohibit

g, is the correct fundamental parameter for pure-gluev("(A) from having a four-point interaction unlesss even.

QCD if and only if its definition is consistent with the ca- We require
nonical definition of the coupling. The canonical definition is

[

V<A>=§1 gy VI(A), (14)

3

+ v—p 2[5 b, .alata 5 (p1—po—ps3)
9=[16mp; 6 (p1— P2~ P3)€gaGslv|ga*]1 " 21 1220382858107 P17 P27 Ps
X (9293l M?|g1), (15 X €g,03|v[g:*
wherev is the canonical interaction andj|v|i*+ denotes a , 167° + 3)
modified matrix element ob. (See Appendix A for our +P 7 | DiDaD3azaa,8 " (pa+ P2~ Pa)
light-front pure-glue QCD conventiolsThe denominator
removes all dependence on momentum, spin, and color in the X €03lv[9192% (18
canonical matrix element for gluon emission, and thus iso-
lates the coupling. We define the coupligg by and
_ 1673
9r={[167°p; 6®(p1—po—P3) € 9oGslv|gs*+]7" vg>:7>+T;f D,D,D3D alala;a,
sp=1;c,=n
X(Qa0s MA(A)|g)} 0 L L 4
Po ngrpz p3 ;e=0 3 Q)
3 4«3 _ x 83 (py+ pz_ps_p4)2 04 .3 ;£9304|0|9192%F
={[167°p; 8 (p1— P2~ P3) € 9203/v[g1 ] =1
sp=1;cp=n 16773
*(gslV(lgnly S (19 +p' =21 [ 0.0,0,0,alalala,
wheren=1, 2, 3, ande is a longitudinal-momentum cutoff S
that we define below. Momentum conservation and boost ><5(3)(p1—p2—p3—p4)2 0(1';>2’3V4<gzggg4|v|gl:t>i
invariance imply that the matrix element that defines the cou- =1
pling can depend only on the transverse momentum of par- 163
ticle 2 in the center-of-mass frame and the rgjop, . The +p* 30 f D1D2D3D4aZala2a3
restrictionsp,, =5, andp, =p; fix these quantities to be ’
0 and3, respectively. 4
Our definition of the coupling is consistent with the ca- X 83 (py+p,y+ ps‘DA)Z 9(1',>2,3;4<g4|v|9192933'>i '
nonical definition because the conditions on the matrix ele- =1
ments in Eqg.(16) have no effect on the right-hand side (29

(RHS) of Eq. (15) and do not forcég,gs| M?|g,) to vanish.

According to Eq.(14), the IMO is coupling coherent Where

[14,15,22 because the couplings of its noncanonical opera-

tors are functions only of the fundamental parameters of the

theory and they vanish in the noninteracting limit. %ny longitudinal regulator that is consistent with the physical
We have assumed that the IMO obeys approximate trangrinciples that we use to restrict the IMO is sufficient. It is not

verse locality, which means that we can expand any matrixecessary to use owrcutoff in order to reproduce the perturbative
element(F|V((A)|I) in powers of transverse momenta. scattering amplitudes of pure-glue QCD.
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0.5~ 1, We refer tosV®" as theO(g',,) change to the reduced inter-
action, although for convenience the coupling is factored out.
0135~ 0(|p; —pi|—€eP™), Note thatsV( is a function ofA andA’.

Now Eg.(23) can be expanded in powers@f andg, :
61354 0(pf —ps|—€P?),

t\/(t) _ tv ATy = t (t)
V(A VYA = VA 245)
o 1, (20 2 9V (M) -2 g VA= 2 gy (25
and This equation is a bit tricky to use because it involves the
1 couplings at two different scales. To see how they are re-
012341, lated, consider the matrix element of E@3) for g,

—0203:

‘9(12;)2,3,4: ‘9(|pf - p2+| —€P"),
(9293 V(A)|91) — (9293 V(A )] 91) =(9203| 6V|91).
0% 3= 0(lp; —ps|—€P"), (26)

According to the definition of the coupling, this equation

0 5.7 0(|py —pai|—€P), @D implies that

and gr—9a ={[167°p; 6 (p1—p2—p3) € 9203lv|gs 171

X (0293 5V|91>};n (27)

G nt_pte.—_p"
21 =P3; 1Py =Pg i€=0

=1c,=n

03 3.4~ 0(|p1 —pi|—€P"),
1234~ 0(IP1 ~ P4 ) SinceV(®) changes particle number by 1, inspection of Eq.

03 .= 0(|ps —pl|—eP"), (10) reveals thatg,gs|8V|g,) is O(gi,); o)
- 3
01 5. 0(1p3 — Py | — €P¥). (22 9r=0a+ OG- 9
The presence of in these step-function cutoffs ensures thatThiS implies that
we will avoid divergences from exchanged gluofesther w
instantaneous or realvith infinitesimal longitudinal momen- gy =0r+ 2 95,.Co(AA), (29)
tum. In Sec. V we show how we can takéo zero before we =

diagonalizeM?(A). _ _

We have not yet proved that the above conditions on th&vhere theCy's are functions ofA and A’. For an integet
reduced interaction are necessary and sufficient to reproducel, Eq.(29) implies that
the perturbative scattering amplitudes of pure-glue QCD. We
can, however, show i@® theory[1] that analogous condi-
tions are necessary and sufficient to reproduce all second-
order scattering amplitudes.

gh=9gy + 322 9" "Brs(A,A"), (30)

where theB, ¢'s are functions ofA andA’, and can be cal-
D. The recursion relations for the invariant-mass operator culated in terms of th€€'s by raising Eq.(29) to the tth
' _The restri_ctions that we ha\_/e placed on the IMO are Suf'pov\y\;aer.substitute Eq(30) into Eqg. (25) and demand that it
ficient to uniquely determine it order-by-order in perturba-h Id order-bv-order i At O(d" ~ 1) this impli
tion theory. In this subsection, we present the recursion relg 0'd Order-by-order g, . (9,) (r=1), this implies
tions that defineVi?(A) in terms ofvV™) andV), which we hat
have defined above. To begin, we consider the restriction r—1
that forces the IMO to produce cutoff-independent physical  v/(N(A)—V(A7)= sV =D B, VI 9(A),
guantities: s=2 ‘

(31
V(A)=V(A")=6V. (23
where sV(Y=0, and we define any sum to be zero if its
This restriction is in terms of the reduced interaction and theupper limit is less than its lower limit. The cutoff-
change to the reduced interaction. independent parts 8f("(A) andV("'(A ") cancel on the left-
oV is defined in Eq(10), which makes it clear that since hand sidg(LHS), leaving

V(A'") can be expanded in powers @f., so canéV: .
VESA) —VENA) = V1= 3] By o VITEI(A).

SV = t v, 24
EZQA (24) 32
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This equation can be used to derive the desired recursion 1
relations. (FIVE Yy = ———{(F|sV3)1)

In the remainder of this section, we summarize the results Bri12
of Appendix B, which contains a derivation of the recursion r42 4-point
relations that define the IMO. Appendix B is an extension of _ E B <F|V(r+37s)(A)||>
Appendix D of Ref[1] to the case of pure-glue QCD. &y rrdss

-0
. . . 1
Recall that momentum conservation implies that any ma- P ferm

trix element(F|V(A)|l) can be written as an expansion in (35)
unique products of momentum-conserving delta functions. _ . _
This means that an arbitrary matrix element of B) can  To use these equations, the right-hand sides have to be ex-
be expanded in products of delta functions and thus ipanded in powers of transverse momenta. Only three-point
equivalent to a set of equations, one for each possible prodateractions that are linear in transverse momenta contribute
uct of delta functions. Given approximate transverse localityto Vgl) , and only four-point interactions that are independent
each of the resulting equations can be expanded in powers gf all transverse momenta contribute\td," % .
transverse momenta. Matching the coefficients of the powers These equations are coupled integral equations because
of transverse momenta on either side _of these equations glyin Vgl) and V(Crl+1) appear on the RHS of E¢34) inside
lows us to ngoroysly derive the following resultsee Ap- integrals inoV(+2), andvg,“) appears on the RHS of Eq.
pendix B for details L oo (F+3) (r+2)
. . . (35) inside integrals insV . It would seem thaw/,

First, the cutoff-dependent part of tli&(g’,) reduced in- | he RHS of E inside i Is i

teraction is given in terms of lower-order reduced interac—a S0 appears on 2t © S of E(Y) inside integrals in
VU3 put V™2 cannot couple tov® to produce a

tions by transverse-momentum-independent four-point contribution
to V(3. This is because the cutoff functigi** " van-

(Fl 5V(r)“>_322 Br-ss ishes when the intermediate state is massless and all external
transverse momenta are zero. This means that since we
specifiedv® and V&) in Sec. I1IC4 we can use Eqé34)

and (35) to solve forv&) andVv{) simultaneously, any&)

and V&) simultaneously, and so on. Note that before
where “A terms” means that the RHS is to be expanded inwe can use these equations to solve ¥§f and V(™Y
powers of transverse momenta and only the terms in theimultaneously, we must first use E&3) both to compute
expansion that are proportional to powers or inverse powerg{)(A) in terms of lower-order interactions and to
of A contribute. Recall thasV(") is defined by Eqs(10) and  expressv( Y)(A) in terms of lower-order interactions and

r-1
(FIVEA( )1y =

X(FIVISA)1) . (33

A terms

D
(24). VO(A).

Second, the cutoff-independent part \6f)(A) has two
contributions: a four-point interaction with no transverse- Ill. THE BASIS FOR THE EXPANSION
momentum dependence, and a three-point interaction that is OF PHYSICAL STATES

linear in transverse momenta. If there are no such contribu-
tions to V('(A), then it is completely determined by Eq.

(33). Third, the coupling runs at odd orders; i.€, is zero if In the remainder of this paper, we use the results of our

s is even[see Eq.(29)]. Fourth, there is no wave-function renormalization procedure to compute the physical states of
o : : ; ) ) pure-glue QCD and their masses. In this section we define a
renormalization at any order in perturbation theory in our - <is for the expansion of physical states. We begin by writ-
approach because this would violate the restrictions that Wﬁ]g the states in terms of a Fock-space.expansion that we
have pla_ced on th_e IMO. . . truncate at two gluongThis means that we are approximat-
The fith and final result from Appendix B is that the ing all physical states as relatively simple single-glueball

. r r+1
cutoff-independent parts of th@(g,) andO(g, *) reduced states). Using momentum conservation and assuming that the
states must be color singlets, we write each glueball state in

interactions for odd =3 are determined by the coupled in-

tegral equation's terms of an undetermined momentum-spin wave function.
1 r+1 We then show that boost covariance implies that this wave
(F|V(C‘,)|I)=—{(F|5V(”2)|I>—2 Brio ss function can depend only on internal degrees of freedom,
B2 s=3 i.e., not on the total momentum of the glueball.

3-point We expand the momentum-spin wave function in a com-

% <F|V(r+2—s)(A)||>} , (34) pletg orthonormal basis for each dr—;gree of fre_edom. The. spin

basis functions are the standard triplet and singlet functions.

We divide the relative transverse momentum of the two glu-
ons into magnitude and angular degrees of freedom. We rep-
resent the transverse-magnitude degree of freedom using or-

it is very difficult to prove that integral equations of this type thogonal polynomials weighted by a Gaussian. The width of
have a unique solution; so we simply assume that it is true in thighe Gaussian is a parameter that we can adjust to optimize
case. this basis. For the transverse-angular degree of freedom we

ﬁi term
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use complex exponentials. For the degree of freedom repreonserving delta function. Since it represents a color singlet
senting the fraction of the total longitudinal momentum car-state, it must be proportional to a color-conserving Kro-
ried by one of the gluons, we use a type of Jacobi polynonecker deltgd23]. This means that it has the form
mial. The width of the weighting factor for this polynomial is
a parameter that we can adjust to optimize this basis.

We then use the fact that we want our states to be eigen- (919, PIN(P))=21(1673)%?
states of the operator that generates rotations about the three-
axis to place restrictions on the basis functions that can con-
tribute to our physical states. We conclude this section by X 83 (P—py—py)

FINE=T) v
deriving the eigenvalue equation for the IMO in our basis. (Ne—1)

X \py Pz ®L (P1.,P2), 37
A. Preliminaries
The physical states of pure-glue QCD will be eigenstates

of M?(A). Since our cutoff preserves translational covari-where qniszsz(pl,pz) is the momentum-spin wave function

ance and covariance under rotations about the three-axis, th the momentum-conserving delta function removed, and

would like the states to also be 5|_multaneou_s eigenstates Qi yhe exira factors is this equation are present to simplify
the generators of these symmetries, but this is |mp033|blﬁ1e normalization of ®i" ( ). We must solve for
because translations do not commute with rotations. How- " 5;5,\P1:P2)-

ever, a rotation about the three-axis separates into a part th&s,(P1.P2), and this equation indicates that it is symmet-
rotates the centers of mass of states and a part that rotatds under exchange of particles 1 and 2.
states’ internal degrees of freedom, and translations do com-
mute with these internal rotations.
To be precise, we defing; to be the generator of rota- B. Jacobi variables
tions about the three-aX|s,.a|:E§ to be the part of/s gov- Using Eq.(37), the Fock-state expansion for a glueball
erning gluons’ momenta in the center-of-mass frame andiaie in Eq.(36) becomes
spin polarizations M?(A), P, P, , and J% are a set of
commuting observables; so an eigenstate\¢f(A) can be : 1 1
labeled by their eigenvalues. We choose to write a physical |¥'"(P))= 1673 V2(Ne—1)
state agW¥!"(P)), whereP is the three-momentum of the ¢

state, is the eigenvalue QV§ for the state, and labels the dzplldpf
mass eigenvalue of the stata1 has the smallest mass, X E ¢, ¢, ﬁa(pf—ew)
n=2 has the second-smallest mass,)efdote that because S152€1C2 @

|win(P)) will be determined byM?(A), it will implicitly
depend oM\ andg, .

An examination of the matrix elements 8f(?(A) leads
us to believe that the light-front infrared divergenc¢sse the o _
discussion beloywill not cancel unless the physical states Where momentum conservation implies that=P—p, . Itis
are color singlets, although we do not have a rigorous proo#seful to separate the motion of the center of mass of the
of this. Therefore, we assume that the physical states afate from the internal motions of the gluons. To do this, we
color singlets. Using the Fock-space expansion for the idenchange variables from, to the Jacobi variables andk; :
tity operator(see Appendix A for our light-front pure-glue
QCD conventiong we can expand a physical state in terms
of the number of gluons: p.=(XP* ,xP, +K,),

X 0(ps — PO, (p1,p2)]0102), (38

$152

) ) 1 )
|\pln(p)>=1|\pl“(p)>25f D1D (919, ¥I"(P))|9192). o
(36) P=([1-x]P*,[1-x]P, —k,). (39

where there is no one-gluon component because there is no ) ) o

color-singlet gluon. We neglect contributions to the statedere x is the fraction of the total longitudinal momentum
with more than two gluons, which is a severe approximationthat is carried by particle 1, arld is the transverse momen-
This means that we are approximating all physical states asim of particle 1 in the center-of-mass frame. We only dis-
relatively simple single-glueball states, ajnid then the pro- play the longitudinal and transverse components of the mo-
jection of the glueball’'s spin onto the three-axis. From nowmenta.(Since the glueball state is a superposition of free-
on, we refer to the approximate physical states simply agarticle states, and since the momentum of a free gluon

glueball states. satisfiesp?=0, the minus components of the momentaypf
Since the IMO conserves momentum, the wave functiorandg, are constrained to be given lpy = ﬁﬁ/pi* J)
(9102|¥!"(P)) must be proportional to a momentum-  In terms of the Jacobi variables, the glueball state is
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|\Ifjn(P)>:L ! 2 deLdX O(Xx—€)B(1l—x—€)
V1672 \/2(N§—1) $152€1C2 C VX(1—X)
X ®L (XK ,P)GOCK, ,P;s1,61)9(1-X,—K, ,P;s;,C0)), (40)

where we explicitly show the dependence of the RHS ket orwhere v is a boost parametd24,25. Under a transverse
the Jacobi variables and the total momentum. We can udeoost, each particle’s transverse momentum transforms ac-

boost covariance to show th@t@’isz(x,lzL ,P) is independent ~ cording to

of P. To do this, we note that under a longitudinal boost, the
longitudinal momentum of each particle in pure-glue QCD p,—p, +po,, (42)
(whether the particle is point-like or compogsiteansforms

according to L ) _
wherev | is a boost parameter. This means that if we apply a

pt—e’p”, (41 boost operator to both sides of E40), we find that
|
2
|win(P"))= = 12 > O ak,dx 6(x—€)6(1—x—¢€)
V1673 V2(NZ—1) si$eic, X(1-x)

X DL (K, ,P)|g(x,K, ,P"351,61)9(1—X,~K, ,P’;5,,C5)), 43

where the boost takes the glueball’s momentum fito P’. Note that the boost does not affect the wave function, only the
kets. Since Eq(40) holds for allP, it holds in particular forP’:

1 1 » d%k, dx
\/167T3 \/2(N§_1) S$1S2C1Co C VX

X ®L (x,k PG K, ,P':sl.cog(l—x,—la P’52,C2)). (44)

|winP'))= 0(X—6)0(1—X—s)

Equations(43) and (44) contradict each other unless the wave functria)'g’isz(x,lzl ,P) is independent oP:
DL (XK, ,P)=DL (XK, ). (45

Thus we can writd¥/"(P)) as

. 1 1 1
vinp))= s, szk dX—= k 46
| ( )> \/16’773 \/Z(Ng—l) 5152201C2 €1.,Cy L Xm slsz(x J_ |gng> ( )
|
wheref = 6(x—¢€) (1—x—¢€). A 4 _ )
DL (K )= 2 xR K,), (48)
q=1

C. The momentum and spin wave-function bases

To solve for ®1'; (x,k;), we expand it in a complete
orthonormal baS|s for each degree of freedom. Since

SlSz(x,kl) is symmetric under exchange of particles 1 and

2, X?_lsz 551,1552,11

where the spin wave functions are

DL (x,k) =@l (1-x,—kK,). (47
S182
To use this, we define Xz 2= 05,1051,
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1 Adjusting d allows us to adjust the width of the Gaussian
Xa 2= 7[631'1&2'1+ 85,10s,1], weight function in Eq.(54). d cannot be allowed to pass
2 through zero, because whehis zero, T (k) is zero. We
choosed to be positive without loss of generality. When
doing numerical computations, we work with a dimension-

X32= 5L 951.195,17 85,19, 1], (49 less form of these basis functions:
wheres= —s, and the momentum wave functions satisfy ﬁ(kd)= %Tid)(k). (56)

Ny kK V=011 —-yw —Kk
Qr(xk)=07(1=x~k,), Under exchange of the two particlels,is unaffected; so

T (k) is unaffected.

P (xk)=001-x,—k,), We define the longitudinal basis functiohf(x) by
Ok )=00(1-x,~K,), '
LIZ00=[x(1=x)]° X AGx™, (57)
m=0 '
QPK )= -0 (1%, —K)). 60
Note that
() —_qyl-m__—
M= D =)t
S1S:
2 XSlSZX = 5q,q’ - (51

SCAANY (1+4e+1+m) [lI(1+4e+2l) o
, i _ “Tatzerm N Ttaern  ©9
We definek= |k, |, and we define the angig by
These definitions imply that

>

k, =kcos¢pXt+ksingy. (52 L
(e) ©® )= 8 .
We expand the momentum wave function in complete Jo XL OIL (=41 (59
orthonormal bases:
as long ae>—1/2. (If e<—1/2, then the state is not nor-
_ R < malizable) We can adjust the width of the weighting func-
QN(x,k )= X ;x R LT OOTIV(K)Aa( ), tion in Eq.(57) by adjustinge. It is often more convenient to

1=0t=0 a=- work with
(53

© o

where L(®(x), T{¥(k), andA,(¢) are basis functions for L9(x) = ;L(e)(x). (60)
the longitudinal, transverse-magnitude, and transverse- VX(1—X)
angular degrees of freedomandd are parameters that gov-

ern the widths of the longitudinal and transverse-magnitud&nder exchange of the two particles;>1—X, which means
basis functions, respectively. We can adjust these widths tthatL{®(x)—(—1)'L{?(x).

optimize the bases. Note that if we do not truncate the sumg/e define the transverse-angular basis functiglsp) by

in Eq. (53), then theR{j,,’s depend ore and d such that

Qg”_(x,lzl) _is independent ok gr)d d, although we do not Ay(d)= Leiaqs, (61)
indicate this dependence explicitly. V2
We define the transverse-magnitude basis functions
ng)(k) by and then
2
t *
dopAZ,(P)A =0qa - 62
ng)(k):deszdZE O't,sksdsy (54) jO ¢ a (¢) a(¢) a,a ( )
s=0

h h , h h d These basis functions are useful because they are eigenfunc-
where theo ;s are constants that we have computed Nujong of L?, the part of the generator of rotations about the

merically using the Gram-Schmidt orthogonalization Proce+ ee-axis that governs gluons' momenta in the center-of-
dure and are such that mass frame. Under exchange of the two particlés; ¢
B + ar, which means thaf\,(¢)—(—1)*A,(¢).
j dkkﬁd)(k)TEﬁj)(k): P (55) Wrigzinng the above definitions of the basgk!"(P)) can be
0
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1

win(p))=
P V167 \/Z(Ng—l)slsz‘%zqna

ey o RiitaXg f o’k dxO LTI (0 A $)l0102). (63

Since the glueball state is symmetric under exchange of the two gluons, the behaviors of the spin and momentum wave
functions under exchange of the two gluons imply thaj#f4, thenl +a must be odd, and ifj# 4, thenl +a must be even
(so that the spin and momentum wave functions have the same symmetry under exchange

D. Rotations about the three-axis

We want to ensure tha®i"(P)) is an eigenstate qff; with eigenvalug. The action of7; on the state is given by

Sy
V167 2(N2—1) s;s,615alta

.

Using the definitions of the Jacobi variables, we can separate the center-of-mass and internal degrees of freedom:

T VIN(P))= —=

5(:1 CZR] ItaXlezf dszdXHE

Jd Jd Jd J e) (@
'puﬁpl 'pn&pi +|p2Lap2 'puapz +51+ 5, |LIT() TV (KAL) 1 9192)- (64)
1 1 1

To|VINP)) = — ! > 5. .RM X5152f d?k, dx6
3 \/16773 \/2(N2 1) siS,00,alta C1.Cy' gltadyq L €
J J e (d)
IPLaPl IPLaPZ £7(1)4'51"‘52 Li®) TV (KAL) 119192)- (65
This implies that the action Q17§ on the glueball state is given by
jn 1 1 Rin | S1%2 2 . 4 1 (e (d)
T win(p))= 163 BT o 2 o deneRanax” | dPkidx| | <1 5515 LITOTI (K ALS) [19102)
¢ 152€1C2

1 1 E B
\/16773 \/Z(Ng— 1) syspcicpqlta ‘1

o, Ritaxg? f d’k, dxba+s;+SIL{T 0T (K AL()|g102).  (66)
Since|wI"(P)) is an eigenstate QVSR with eigenvalug, it must be the case thatt s, +s,=] for all values ofa, s;, ands,
that contribute to the sums in this equation. This implies that for some set of coeffia'ﬁp,ts

quta_ Riﬂt[ 5q,15a|j 72+ 5q,25a,j +2+ 5q,35a,j + 5q,45a,j]- (67)

This means tha¥/"(P)) can be written
[(P))=2; Ryl ), (68)

where
1 1 s
V167 2(N2—1) si$e1c,

|q1|!t1j>:

| dPk dxt00, ) ETOTIMA, o, (#0102 (69)

We are going to calculate the matrix elements of the IMOthe glueball state will have a plane-wave normalization:
in the |g,1,t,j) basis and diagonalize it. Sincet?(A) com-
. R . - St :
mutes with .73, we can do this for each value ¢fsepa- (WP WIN(P))y=167°PF 8D (P—P") 8,/ Spn -
rately. The diagonalization procedure will yield mass eigen- (71)
values and th&lj; coefficients. As long as the coefficients

satisfy Because of the symmetry of the glueball state under the
exchange of particles 1 and 2, the basis dtatd,j) is zero if
Y 2 qut RN= 6] Snn (700 1+j is odd andq#4, or if | +] is even andqg=4. To take
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advantage of this, we consider only the subspace in Whick‘gig§|M2(A)|glgz), which is specified by our renormaliza-

I+ is even ifg#4, andl +] is odd if q=4. tion procedure. We are going to calculate this matrix element
to second order in perturbation theory.
E. The eigenvalue equation Before continuing, we would like to point out three sim-
The IMO's eigenvalue equation is pIificatiqns t'hat we repeatedly use in this section. To make
these simplifications clear, we note that the matrix elements
MZ(A)WI'"(p)):M§|win(p)>, (72) (q",1",t",jIM?(A)|qg,l,t,j) can be written as integrals of

wave functions times the free-state matrix element
where the lower-case subscript Mﬁ indicates that it is an  (g;g5| M?(A)|g19,). To make the first simplification, we
eigenvalue ofM?(A) rather than an eigenvalue df/lfzree. observe thatg;gs| M?(A)|g19,) has step functions on the

(An example of an eigenvalue @12, is M%.) particles’ longitudinal momenta, and these step functions are
In the basis that we have defined, the eigenvalue equatioiedundant because they also appear in the integrals that de-
takes the form fine (q',1I",t",j| M?(A)|q,l,t,j). We drop these step func-

tions in the formulas that we present for
2 in a2 in . (9195 M?(A)|g19,). To make the second simplification,
M (A)% Ranl @1, t.1) M“%‘{ Ranlal. by (79 (g point out that the matrix  elements
(q',1",t",j]M?(A)|q,l,t,j) are symmetric under exchange
If we project(q’,I’,t’,j| onto the left of this equation and of the two initial-state gluons and also under exchange of the

use the identity two final-state gluons. Because of this, when we are comput-
) ) ing (9795 M?(A)|g10,), we combine terms that are related
I NAY _ 3 3 ’
(a'.1".t"jla.lt,j)=16°P " 6/ (P—P") 8 q: 6y 11 S by exchange of the two initial-state or two final-state gluons.

(74 Finally, due to the color-singlet nature of the glueball states,
certain parts of{g;g5|M?(A)|g19,) do not contribute to
(q',1",t",j]M?(A)|q,1,t,j), and we drop these terms.
Q1 M3 |aL ) in r2min We begin py defining Jacobi variables for the final state of
< 167°P 69 (P—P") Ryit= Man'w . the free matrix element:

(79

then we find that the eigenvalue equation in our basis is

pi=(x’P+,x’I3L+I21),

IV. CALCULATION OF THE FREE-STATE MATRIX ps=([1—x"TP* [1-x"1P, —K]). (76)
ELEMENT OF THE INVARIANT-MASS OPERATOR
Then using the definition of the IMO in terms of the reduced

In this section we use the recursion relations for the IMOiNteraction in Egs(1), (2), and(14),

to compute its two-gluon to two-gluon matrix element to "L ME(A
second order in the running coupling. This is the only free- (9102l M5 (M)l 9102)
state matrix element that we need to solve the eigenvalue =(0105| M2zod9192) + (9195 M2(A)]9195)
equation.

There are three contributions to this matrix element: the =Mlz(gig§|glgz)+gie‘A%A%(giggvg)|glgz>
free contribution, the contribution from the cutoff- Ca
independent part of the reduced interaction, and the contri- +g3e N "AR(gigs VR (A)]919,), (77)

bution from the cutoff-dependent part of the reduced inter- i o )
action. The free contribution is just the free mass of thewhere the free masses of the final and initial states are given

states. The contribution from the cutoff-independent part oY

the reduced interaction consists of a contact interaction and K'2

an instantaneous-exchange interaction, and is trivially deter- M§=ﬁ,

mined by the conditions on the IMO given in Sec. [IC 4. The x'(1=-x')

contribution from the cutoff-dependent part of the reduced K2

interaction must be calculated using the recursion relations M2 (79

for the IMO. It has two parts: a self-energy part and an L x(1-x)
exchange part. At the end of this section, we combine the ) ) )
various contributions to the matrix element in a way that B- The cutoff-independent part of the reduced interaction
simplifies our effort to cancel the light-front infrared diver-  Based on the definition 6/ in Eq. (19), we find that
gences in the next section.
(9195VE19:0) = 167°P* 5°(P—P")
A. Preliminaries

4

To solve the eigenvalue equation, we must calculate the XZ 9(1")2;1,,2,<gig§|v|9192>i :
matrix elementgq’,1",t",j| M2(A)|q,1,t,j). These can be =1
written in terms of the free-state matrix element (79

025005-13
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FIG. 1. A diagrammatic representation(af; gs|V2|9192) con.
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2 TYTVTVTITITY 2

the two-gluon contact interaction. The numbers label the particles.

We can divide this matrix element into contdotomentum-
independentand instantaneous-exchange interactions:

<919§|V§:2|)|9192> :<919§|V§:2|)|9192>CON

+(9195VE'19192)in (80)
where

<gigé|V8)|glgz>CON
=16m°P " 6(P—P") 6.1 »€0195/0]9195% 1
—323p+ 5(3)( pP— Pr)fclcicfcéczc

551 ,%551 ?2)1

X(5sz,si‘$sl,s (81)

—
2
and

<919§|V(c2|)|9192>|N
3
—167%P " 83 (P— P’)g2 0. %1 »€9195lv]9105%
=3273P 6B (P—P")O(|x—x'|—¢€)

’ ’
C1C/C§CICoC
X fC1616fC2C2 531’%552'5&

xﬁ(wx’)(l—xﬂ—x’). (82

[The remaining term in Eq(79) vanishes because theglt,j)

3. A diagrammatic representation of
(9195 V(A)|9192)se, the self-energy interaction. The numbers
label the particles.

(9195 VE(A)]9192) = (91951 V[ 9192) |4 terms: .
83

Using the definition of thed(g),) change to the reduced
interaction in Eqs(10) and(24), we find that

1
(91051 VEp(A)|9102) = 5 22 (9195 VY IK)(K|V ] g10)

XT(ZA’A’)(F:KJ”Aterms- (84)

The intermediate state can be either a one-particle or three-
particle state. The contribution to the eigenvalue equation
from the one-particle-intermediate-state part is zero because
the|q,l,t,j) states are color singlets. This means that

(9195 VE(A)|919,)

=15 | DaDaDs(91951V'”|03049s)

X (939495|V(l)|9192>T(2A’A’)(F,K, DA terms:
(85

WhereMﬁ is the mass of the statgs;g.gs). Substituting the
definition of V(1) in Eq. (18) into this equation, and simpli-

states are color singletsThe contact interaction is displayed fying, we find that
in Fig. 1 and the instantaneous-exchange interaction is dis-

played in Fig. 2.

C. The cutoff-dependent part of the reduced interaction

1. Preliminaries

According to our recursion relation for the cutoff-

dependent part of the reduced interaction, HG3),
(9195 VEX(A)]9195) s given by

1 1

2 2

FIG. 2. A diagrammatic representation @f;g5/V&)|g:192)i »

(9195 VE(A)|9192) = (9195 VE(A) |9192) se

+ <919§|V(023(A)|9192>Ex,
(86)

where the self-energy interaction is given by

3

1 1
4

2 2
5

FIG. 4. A diagrammatic representation of

the two-gluon instantaneous-exchange interaction. The numbers Iégig§|v(czg(A)|glgz)EX, the exchange interaction. The numbers la-

bel the particles.

bel the particles.
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(9195 VE(A)]9192) se and we have defined
: Bijk="0(p;") 0(p;" ) 6(py ) 8% (pi— pj— Pi) £ 9; 9l v] gi
:P+2(16773)2f D4D,DsTE A (F K 1) e TR T AT BB L '(89)
X 875021 5813487 34l A terms: g7) and
= 30t 53 (p —
the exchange interaction is given by 9i,k=16mp;" 8 (Pi = Pi) I, 5,9, ¢, (90)
(g} 92|V(2)(A)|9192>EX The self—epergy mter_actpn is dlsplay_e-d in Fig. 3 and the
exchange interaction is displayed in Fig. 4.
=2P*2(167r3)2f D3D4D5T(2A’A’)(F,K,I) 2. The self-energy interaction
. After some simplification, the self-energy interaction
X 83,5017 3B134875 45 A terms: (83 takes the form

d?ps, dp; 1
(9195 V(M) 9192) se=P 26,2 8¥(p1—p)) > f %H(pé—fp*)ptﬁ(pi—fpﬂ

S354C3Cyq 3 4
XT (A1 )(F K I){g3g4| |gl}{gll |9394}|Aterm51 (91)
|
wherep,=p;— ps. At this point, it is useful to change vari- N
ables fromps to Jacobi variabley and | : 1gz|V(2)(A)|glgz>SE A 811852 O(X—2€)
P3=(ypy ,yPr +7.). (92)
. ) ) X|logx—loge— — (95
Then the free mass of the intermediate state is 12
2 r2
—(n - - +_ . . .
=(p3 +Ps tPs)P L x(1— x) xy(1-y)’ This result shows that our cutoff violates cluster decomposi-

(93) tion. The evidence is that the self-energy dependsxon
=p;/(p; +p,), even thoughp, is the momentum of a
and after a lot of additional simplification, spectator(see Fig. 3.

(2)
(9192|Ven(A)]9192) se 3. The exchange interaction

Nc \/; 2 v 42 For the exchange interaction, the free mass of the inter-
=22 NgA A 1010 822 0(x=2€) mediate state is
X1 I 1 (99
ogx—loge— , c o
g ge 12 A terms M2_( T4p+ 7)P+—|32—k—2+(ki_kl)2+ k2
k= (P3 TP4 T Ps5 L= X—x' 1—x'

Recalling that “A terms” means that we are to expand the

RHS of this equation in powers of transverse momenta and (96)
keep only the terms that are proportional to powers or in-
verse powers of\, we find that Then the changes in free mass are
|
A k'2[1—x]?+ K [1—x"]?>—2kk'(1—x")(1—Xx)cosy
PR (1-x")(x=x")(1—x) '
k?x'2+k'?x?—2kk’xx" cosy
A= , (97)

xX' (Xx—=x")
wherey=¢—¢'.
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Using the identity
e K = Tksds (98)
€ . =—KS s
1s ™ \/i

the exchange interaction becomes

O(x—x"—¢€
(9195 VE(A)]9192)ex=647°P* 53 (P~ P’ )fclcclfcczcz%

1 1 20" TAA LA 2A AN kA :
—+—|(e” FKAIK — @™ FKAIK) E le)

, 99
AFK A|K im=1 ( )

A terms

where

X" < o o
QY= v slsQESZ,Sé{;ke'Sl‘/’—k’e'sl‘f’ ]{k’e'sl‘/’ [1-x]—ke S19[1—-x"]},

!

X L 1_X Y
QM9=5;5,5,, o [ ke/s19— K’ gls1e’ ”ke"sz"s— T k'e is2¢ ]

!

X kels2¢
—X !

X' o o
Q(l,3)= _51525§1 ,Sé[ykeISl(ﬁ_ krelsl¢ ] [krelszaﬁ _

Q?Y=24 lx ———— {X(L=X)k"?+x' (1= x")k?—KkK'[ X" (1—x)+Xx(1—x")]cosy},

1S 1552 2(x

1 . L 1_X Y]
(2,2 — ’ |s ¢’ 'y @iSo¢p —iS,p__ I a—iSy¢p
Q s, s 13252x -{xk'e'%2? —x"ke'%2 }[ke A~ k'e 52

!

1 o S B ’ 1_X .
Q(2,3) 828253 s ,{Xk’ —isy¢ _X!kelsz¢}(k!elsz¢ _ T« ke'SZ‘f’],

X Y s . ’ .
Q(3'1)_5131552 zn(yk'e—lsﬁ _ke—lsl¢]{k/eusl¢ [1—X]—ke'sl¢[1—x’]},

X Y PN s 1_X Y]
3,2 _ rt o — _ _ _
Q( )——5152551,52[7k’e is;6’ _ ke 'Sl(b][ke '52"’—ﬁk’e is,¢ },

-, o 1-x"
Q(3,3) 525155 s/ { k'e™ 'Sl‘/’ ke'sl‘ﬁHk’e'qu’ _ﬁkelszqﬁ]. (100)

In Eq. (99), if we expand everything multiplying the delta function in powers of transverse momenta, the lowest-order terms
from the two exponentials cancel and leave two types of terms: those proportional to inverse poswensdothose propor-

tional to inverse powers oA’. We can isolate the terms that are proportional to inverse powefswithout altering the
cancellation of the lowest term by replacing the first exponential with a 1:

1
(9195 VE(A)]9192)ex=647°P* 53 (P~ P’ )fclcclfcczcz( —x') O(x—x"—¢€)
X )(1 972/\ A,:KA”() E le) (101)
AFK Ak i,m=1

D. Combining the interactions

In order to get the infrarede(—0) divergences to cancel, it is useful to combine the interactions in a particular manner.
From Egs.(77), (80), and(86),
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(9195l M3(A)]9192) = (9195 MZ(A)|9192) ke + (9195 M (A)|9192) cont (9195 MA(A)]9192) i
+(9195| M3(A)[9192) st (9195 MA(A)]9192)ex (102

where

(9195 MA(A)|9192)ke=M{(9195|9192).

—442
A4a2

<g:’Lgé|M2(A)|gng>CON: 9/2\97 I<g£g§|V(CZ|)| 9192) cons

—4,42
A4a2

<9195|M2(A)|9192>|N2912\e_ '<9195|VE:2|)|9192>|N )

A4A2

(9195l M3 (A)[9192)se=g3e ™ 2F(9105 VE(A)]9102) sk

4,2
(9195 M2(M)]g192)ex=03e ™ 279105 VEZ(A)|g102)ex (103

We break the instantaneous interaction into two parts: a part that is “above” the cutoff, i.e., a part that would vanish if we
took A—, and a part that is “below” the cutoff, i.e., a part that would survive if we tdoks:

(9195 M2(A)|9192)in= (9195 MZ(A)|9192) N+ (9195 MP(A)] 91020 » (104

where
(9195l M2(A)|g102) A= (1—e 22 “Brctin)(gigh| M2(A)| 0102 »

(9105 M2(N)]g102) B =€ 2\ "2rkd k(g g5l MP(A)| G192 - (109

Next, we break the self-energy and exchange interactions into finite and divergent parts:
(9195l M?(A)[9192) se= (9195 MP(A)]9192) S+ (9195 MP(A)|9192) S

(9195l M?(A)|91092) ex= (9195 M2(A)]9192) Ex+ (9195 M3(A)|9192) Ex (106)

where the divergent part of the self-energy interaction consists solely of the term containing ¢harldghe divergent part
of the exchange interaction consists solely of the term contai@iRd). Finally, we define an interaction that is a combination
of the instantaneous interaction “above” the cutoff and the divergent part of the exchange interaction:

(9195 MP(A)|9192) N+ ex= (9195l MP(A)]9102) I+ (9195 MP(A)|9192) By - (107)
Then
(9195 MP(A)|9192) = (9195l M?(A)|9192) ke + (9195 MP(A)[9192) S+ (9195l M?(A)|9192) cont (9195 MP(A)]9192) Ex
+(9195l MP(A)]9192) i+ ex (9195 M?(A)[91G2) R+ (9195 MP(A)9192) 8- (108

Perry showed that with a suitable definition of long-rangetion, which is contained ifg;g5|M?(A)|g192)n+ex and
interactions, a renormalization method that is similar to ourg g gs| M2(A)|g19,)8, , is similar to what Perry found in the
yields a logarithmically confining potential for quark- guark-antiquark case. However, to determine whether or not
antiquark bound states @(g3) [7]. His calculation uses our interaction is truly confining, we would have to do a
sharp step-function cutoffs and is based on an analysis of theareful analysis of the complete two-body potential, not just
part of the two-body interaction that is most singular in thethe most singular part. This analysis would be complicated
limit in which the exchanged gluon has infinitesimal longi- by the smooth cutoff that we employ, and we leave it for
tudinal momentum. The corresponding part of our interacfuture consideration.
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V. CALCULATION OF THE MATRIX ELEMENTS infrared divergence that appears in the self-energy. The re-
OF THE INVARIANT-MASS OPERATOR IN THE BASIS mainder of the five-dimensional integral is finite. However, it
FOR PHYSICAL STATES converges poorly when it is calculated numerically using the

In this section we compute the matrix elements of thenatural Jacobi variables. This is because it peaks very
. . ; . ; strongly in the region where the divergence lay, even after
IMO in the basis that we have defined, in terms of integral gy g N y

h b | q cally. T id doff Yhe divergence is removed. To improve the convergence, we
that must be eva.uate numericatly. 10 avoid roundolt €rrory,se 5 change of variables and subtract from the integrand a
we evaluate the integrals for the kinetic energy and the tWogq«ripytion that appears to be divergent but that integrates

point interactionthe self-energyby writing them as sums of 4 ;615 We present some of these convergence details and
gamma functions. The remaining integrals are five-gther technical issues in Appendix C.

dimensional, and we wish to compute them with Monte

Carlo methods. However, before we can do this, it is neces-

sary for us to make manifest the cancellation of the infrared A. Preliminaries

divergences from exchanged gluons with infinitesimal longi-

tudinal momentum. To do this, we first integrate one of the The matrix element¢q’,l’,t’,j| M?(A)|q,l,t,j), which
longitudinal momentum integrals by parts to extract the di-appear in the eigenvalue equation, can be divided into con-
vergence. We show that this divergence exactly cancels thigibutions corresponding to the different terms in E208):

|
(@1 JIMAA) Lty =(a’ 1t JIME(A) gLt et (a7 1t JIMP(A) g, ) Ee
(A1 M)t eont (a7t ME(A)a,t ) Ex
(a1 FIMAA) Lt iex (At IMPA) gLt iR
Q' ME(A) 9,1t e (109

In this section we express these different contributions in  (q’,I",t",j| M?(A)|a,|,t,j ke
terms of integrals that can be computed numerically. These
integrals fall into two classes: two-dimensional and five-
dimensional. We treat each class of integral separately.
Each of the terms in Eq(109 is proportional to the
plane-wave normalization factor 48P 5®)(P—P’). To
make the remaining equations that we present simpler, we
suppress this factor. We also take-0 in any contribution  Note that the kinetic energy is infinite unless 0, whereas

Lt g 1© eI T T
=5qu,d7 fo dxL, (x)L (x)fO drroTe(r)Te(r).

(110

to(q’,1",t",j|M?(A)|q,l,t,j) that is finite in this limit. normalizability requires onlg>—1/2.
These integrals can be computed with standard numerical
B. The two-dimensional integrals integration routines, but the results can have large errors for

large values of the function indicésl’, t, andt’, due to the

oscillating nature of the basis functions. It is better to rewrite
Using the definition of our basis in E¢69) and the ex- the integrals as sums that can be computed numerically with

pression for the free-state matrix element of the kinetic enMATHEMATICA [26] to any desired precision. Using the defi-

1. The kinetic energy

ergy in Eq.(103), we find that nitions of the basis functions
|
| I’
) ] I'(2e) I'2e+m+m’)
T 2 _ , (e) (e)
(@' 1.t JIMHA) gt e= . —gz— LE—O )‘"’“mrzzo N T ldet mrm’)

s+s’
X

. (111

t t’
Z (Tt,SE Utr’5723(3+5,)/2r<2+
s=0 s'=0

2. The Finite Part of the Self-Energy Interaction

The self-energy interaction conserves each particle’s momentuml\/tﬁad\/l,zz for this contribution. This means that the
Gaussian cutoff factor in Eq103) has no effect on the self-energy. For the finite part of the self-energy, we use the same
method for evaluating integrals that we use for the kinetic energy. This yields
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¢ ] 11
(@' 1M A ) 5= Sy g7 NG \[Azf XL} ()L (x)x(1-x)| logx— 12} (112

gA
5Qq’5tt' 4c 2 \/7A2

| 1’
11
S5 T(1+26) 2 MG 2 A Moy

m=0 m =0
ri+2e+m+m’) 142 ) 0ia ) 113
XF(2+4e+m+m’)[¢( +2e+m+m’)—y(2+4e+m+m’)] |, (113
|
where the digamma functiof(z) is given by 1=0(x—x")+ O(x' —X), (117
dl'(z) we break the longitudinal integral in EGL15) into two parts:
dz
V=T (114 J dxdx 6(x)8(1—x)6(x’) B(1—x" )L (x")

1 (e) —A 42 ! r_
C. The five-dimensional integrals XLim(xe ALO(x=Xx") + 6(x"—x)]. (118

1. The contact interaction In the second term, we lat—1—x andx’—1—x’, and then

. _ . the longitudinal integral becomes
Using the definition of our basis in E¢69) and the ex-

pression for the free-state matrix element of the contact in- NACIY

teraction in Egs(81) and (103, we find that f dxdx 6(x) 6(1—x)6(x") (1 —x")L;,"(x")

(@', 1"t jIMP(A)]a,l L o xLIP(x)e A 2Fg(x—x")[1+(—1)"!"].
N.gi (119

- 8a? [9),-20q' 282" 9 20 193 Recall that we are restricting ourselves to the subspace of the
statedq,l,t,j) in which| +j is even ifq# 4, andl +j is odd if
_ 5j’05q,‘35q'3]J dkdK kK’ a(k) g(k/)-ri?)(k') q=4. Then sinceg=q’ for the contact interactiorl,andl’
must both be even or both be odd for this interaction. This
means that the two terms in Ed.19 are equal. Thus we can
XTﬁd)(k)j dxdx 6(x) (1 —x)6(x") 6(1—x") write the contact interaction contribution as follows:

AN 2 H
XH?)(X,)E(e)(X)eiAiélA'Z:'. (115) <q 1| ,t 1J|M A)|q1|1t11>CON
ch

The reader may have noticed that this integral is not five =~ 3,3 L9.-20q 2002% 9 20471841~ 9j 094’ 39,3
dimensional as we have implied, but rather four dimensional.
However, when we numerically compute the integrals that _A4p2
have more than two dimensions, it is most efficient if we Dée Fl (120
combine them into one integral; so we want their integration
variables and their ranges of integration to be identical. Thug/here
we increase the number of dimensions of this integral by one _ , _ ,
by introducing an extra integral over=¢— ¢’ using the D =dxdx dkdk dykk’(x) (1 =x) 6(x")
identity X O(x—x")0(k) 6(k")6(y)6(2m—7), (121

1 and

1= —f dyO(y)0(27—y). (116
2m E=LP0OLPTOR) TR, (122

This will help us to combine this integral with others that
contain integrals ovey that cannot be done analytically.

Since the integration domain of the exchange interaction In  order to simplify the contribution to
is restricted so that>x’ whene— 0 [note the step function (q’,l’,t’,j|M2(A)|q,I,t,j) from the finite part of the ex-
in Eq. (101)], we would like to enforce this restriction in the change interaction, we wish to change variables figro
other contributions. Using the identity y=¢—¢":

2. The finite part of the exchange interaction
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d2k, d2k, =dkdK depd e’ Kk’ (k) 8(K') 6( )
XO(2m—)0(d")0(2m— ")
—dkdK dyde'kk 0(k)0(k'") 0(y+ ¢')
XO02m—y—¢")0(¢")0(2m—").
(123

All the contributions to{q’,l",t",j| M?(A)|q,l,t,j) depend
on vy only through dependence on cpsand siny. This
means that we can use the identity

JZW_ dvyf(cosy,siny)= j dvyf(cosy,siny)
-¢'
(124

to write
dzkldzki=dkdk'dyd¢’kk' (k) 8(k")6(y)
X02m—y)0(¢")0(2m— ). (129

Inspection of Eq.(99) implies that the integrals in
(q"1",t",j| M?(A)|a,1,t,j)E, depend on complex exponen-
tials of ¢’ and y. However, using the identity

2
J dyf(cosy)sinay=0, (126
0

wherea is an integer, it is possible to trivially do the’
integral in(q’,1",t",j| M?(A)|q,l,t,j)E, and write the re-
mainder as a real quantity with integrals that dependyon
only through cog and siny. The result is

@ 1"t i MAA) gLt Ex

_ Ncgzz\ 2 1 1 N 1
x=x"|Apc A

— 8 Dfe—A74AF|

A= 2ATAAkA 2a(1) 2(2)
X(l—e FK2IK) M,Sq’q,+MFSq’q/

Kk’
s“%}, (127

+x(1—x)x (1—x") aa
where some of thsg%()],’s and Sff()ls are given by
S{=cos[j—2]y),

SP=—cod[j—1]y)[x(1—x")+x'(1-x)],

-1
S&%=Ecos{jy)[x'2+<1—x'>2],

1
S&f”é?cosn—1]y><x[1—x']+x'[1—x]>

X(x'2+[1=-x"T?),

PHYSICAL REVIEW 52 025005

S‘fz=icos(jy><1—2x'>,
Y]

1
S&Z=Ecos([j—1]y><1—2x'><x[1—x']+x'[1—x]>,

(1)=?21cos([1 =2])[¥*+(1-x)7],

SH=cogjy)[ X2+ (1—-x)%=2x'(1-x")],

S} =—cogjy)cosy(x[1—x']+x'[1—X])
X(1—=2X[1—x]—2X'[1-X"]),

sti-o

SP)=sinysin(jy)(2x3—=2x7[1+x']+x'[1—-2x']

+x[1—2x"+4x"?]),

1
Si 1= cos[j~21y(1-2x),

Si=0,

Sia=cogjy)(1—2x—2x"+4xx'),

Si)=—cosy cogj y)(1—2x)(1—2x")(x+Xx'—2xx"),

(128
and

S =S glxex - (129

The rest of theS(l) 's and Sffé,'s are given by
S{=$1=0,
SE=Si g,
Si=SiL g,
Sih= =S
S(sl)zzs(si,ﬂje—j )
S

ST (130

wherei=1,3. Thesffé,’s are given hy
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(2) _ (D) where

Sq’q, q,’q|XHX,. (131
3. The instantaneous and exchange interactions combination F(x,x')= f dszdzki = Wq,q’
Using similar methods for the contribution to X=X

(q',1 ’,t’,jl/\/lz(A)lq,I,t,j> from the combination of the in-

. ; : ><e*A_4A12=Ie’2A_4AFKAIK(x+x’)(l—x+ 1-x")
stantaneous interaction above the cutoff and the divergent '

part of the exchange interaction, we find that (135
ANV 2 H
(@1 JIMAA) |9t inex To extract the divergence, we integrate E&34) by parts
Ncg/Z\ with respect tox':

= 53 | Dewyget
877 q‘q’ - 2 -\ B
(@17t JIMA(A) .t i

1 -
X—(X—X’)z(l_e_ZA 4AFKA|K) Ncg/Z\ J,l_

== 15,7 |, 9N ~1ogOX=X)FOCX )| —xe

2e
X

N1 1 , 2 1 1
(X+X )( X+ X)+m A_|:K+A_|K

X (X(L=x)k"2+x"(1—x")k2—KkKk'[x'(1—X)

X—€
+Iog(x—x’)F(x,x’)|X,=e+J dx’

€

X log( ')dF(X'X,) B;+B,+Bs. (136
0g(X—X') ———|= .
+x(1—x')]cosy) |, (132 9 dax’ 17 B2+ B3
where The first contribution tdq’,l”,t",j| M?(A)|q,l,t,j)B, is
Wq,q’zﬁq,lﬁq',lcoiv’[l.—2])+5q,25q’,200-5(7[1+2]) : NG IOgEfl_ dXJ, o
+ 5q'35q/’3 COS( ’y] ) + 5q'45q,’4005( 'y] ) (133) 1= 1677-4 € 2¢ L L q,9’

Note that the divergences from the two interactions that com-
prise (q',1",t",j| M?(A)|q,l,t,j)in+ex cancel, allowing us
to takee—0 in this contribution. X(L=X+1=X") |y og—ec- (137

CA—4r2  _oa—4
X e A AFIe 2A AFKA”((X'FX’)

4. The instantaneous interaction below the cutoff

The contribution to(q’,1",t’,j| M?(A)|q,l,t,j) from the
instantaneous interaction below the cutoff is divergent. In x=y(1—3e€)+2e, (138
this subsection, we extract the divergence, show that it can-
cels the divergent part of the self-energy, and compute the

To simplify this, we change variables frorto y:

remainder ofq’,1",t",j| M?(A)|q,1,t,j)B, . and fromk, andk| to Q, andN,:
After simplification, the complete contribution to
(q’,I",t",jIM?(A)]|q,l,t,j) from the instantaneous interac- . Q,+/eN,
tion below the cutoff is ki:T’
(@17t JIMA(A) [t )i -
R —VeN
_ N flffd fxfed L oy g2 et — (139
et ), Y. Pew X7,
(139 Then
|
N} ! 24 A2 ~AT4AZ L -2A T MApA
Blzw(l—Se)loge 0dy d°Q,d°N, W, o€ Fle FKAIK(2y[1—3€]+ 3e)
X (2—2y[1—3€]-3€) |y —x_e. (140

As e—0, the only contribution that survives is
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N.g3

1
B]_ZW 5q,q’ IOQ EJO dyy(l_y)tl(?)(y)ﬁe)(y)

X f d?Q, T'(Q/2)T\(Qr2) J d2N e 2 N

by B 4c92A \[Azf XL (0L ()

XXx(1—x)loge.

(141

Since (9195l M*(A)|g1g2)se s the  part  of
(9195| M?(A)]9192) se With the log € [see Eq.(95)], from
Eq. (112 we see tha{q’,l’,t’,j| M?(A)|q,l,t,j)2 is just
(q',1",t",j|M3(A)|q,l,t,} )& with the[logx—11/12] factor
replaced with—log e. This means that

Bi=—(q', I t",j| M3 (A)|q,,t,))%. (142

Thus the divergence iiq’,l",t',j|M?(A)|q,l,t,j)q, can-
cels(q’,I" .t ,j]M2(A)a,1,t,])Se.
The second contribution tq’,1",t’,j| M?(A)|q,l,t,j)&

is

N.g3

1-€
B,=— g Le dxlog(x—x")

XJ dkdK dykk’ 8(k)0(k")6(y)6(27— y)

Xi,Wq q,e*A_4 Fle— 20 ArkAKK
X—X ’

X(X+X ) L=X+1=X")|y—¢- (143

To evaluate this, we change variables framto s=k'/ /e.
Then the leading term as—0 is

Negi L
B,=—¢€*"Y2_—rdoy Ohfeo)f dx(2—x)logx
87 0RO

X f dkdsdykso(k) 6(s) 8(y) (2 — y)LI®(x)

> ng)(k)Wq,q,e’A%[Sh k4/x2(1-x)?]

=0, (1449

sincee>—1/2.
To simplify

(q',1",t

F(x,x") and takee—0. Then

the third contribution to

LjIM2(A)|a.lLti)E,, we take the derivative of
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N9}
By=— 8—2; D log(x—Xx")Wq q Te (K )L{P(x) T{V (k)
5 5
2 2
X e A 4(AFK+AIK)2 EI! H Em, (145)
i=1 m=1;m#i
where
£ 1
T x—x"
E2:1,
__(e)(x )
E;=X+X
Es=1—-x+1—x (146
and
E’——:L
l_(x_xl)21
E;=—2A Y(ApkAfc+AAly),
Es=L,/"(x"),
E,=1
Ei=—1 (147

(E{ =dE; /dx’, except fori=2), and

_ dLiP(x")
7(e)
I-|/ (X) dX,
1
— e_§>[xr(1_xl)]e—l/2—1
II
X[1=2x'] 2 N7 X ™ X (1= x)]e 1
m’'=0
l!
X 2 mA X ™ (148
m' =1
and
N _dAp k'2 _(EL—EL)Z
FK dx’ (l—X,)Z (X—X’)Z ,
CodA K? (k —kD)?
K= dx’ :X_rz (149)

C(x=x)%"
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This means that we can write the contribution to(q’,i" t',j|M3(A)|q.l,t,j)BF
(q',1",t",j|M3(A)|q,l,t,j) from the instantaneous interac- X
tion below the cutoff as a divergent part and a finite part: NcOi , ,
=— 8—°ﬂ§ D log(x—Xx")Wq ¢ Te (k" )L{(x) T{V (k)
(@', 1"t M)At i s
5
:_<q,,|,,t,,j|M2(A)|q,|,t,j>gE Xe_A74(A§K+AI2K)i21 Ei/ H Em. (151)
N m=1;m#i

A ME)[a LG DRT (250
Using the results of this section, the expression in Eq.
where (109 for the matrix elements of the IMO becomes

|
<q,,|,,t,,j|M2(A)|q,| ,t,j>:<q,,|,,t,,j |M2(A)|qv|!t!j>KE+<qI!|I!tI!j|M2(A)|qalit!j>gE
+(q", 17t IMEA) AL D eont (At T IMP(A) a1t ) Ex
("1 IMEA) AL D ineex+ (a7t T IMEA) g LG DR (152

Each of these terms is finite and we have taken0 every-  state notation. We use an asterisk in the state notation next to
where. We have written the first two terms as sums that cathe value ofC to denote an excited state with the given
be computed numerically, and the four remaining terms aguantum numbers. We will base our guesseslfandP on
five-dimensional integrals that can be grouped into one intethe numerical degeneracies of the states that have identical
gral suitable for numerical calculatiofSee Appendix C for J's and P’'s and differentj’s, and on the ordering of the

a discussion of some of the technical issues involved in thgtates according to lattice da(aee the discussion bel@W
numerical calculation of these matrix element®nce we e consider only the five lightest glueballsot counting as
have computed these matrix elements, we can diagonalizgsinct those states that differ only in their valuejpfThe

the matrix to obtain glueball states and masses. five lightest glueballs have spink<2. This means that we
need to consider onljj|<2. For a givenlj|, the states with
VI. RESULTS AND ERROR ANALYSIS j=l|j| andj=—|j| are degenerate and simply relateste

In this section we diagonalize the IMO matrix, obtaining Appgndlx O.; so we explicitly consider 'onlyzo,%,z. We
08p5|der nine values of the couplingw,=gi/(4)

glueball states and masses, and then discuss the sources i

error in the calculation. We begin by discussing how we—0-1,0.2,0.3,..,0.9. To calculate our results, we implement
assign quantum numbers to our numerical results for gluebail® following four-step procedure. .

states and proceed with a discussion of the procedure that we W€ execute the first step for "’}” pair (YA)Z- In this step,

use to compute these results. We derive the nonperturbatiée defineA=1 and diagonalizeq’,1",t",] | M*(A)]a.l.t,))
cutoff dependence of the coupling and discuss the cutoff delith all four spin basis functionsy=1,2,3,4), but with only
pendence of our glueball masses. We use this analysis {§€ lowest transverse-magnitude basis function Q) and
choose the value of the cutoff that minimizes our errors. wéhe two lowest longitudinal basis function<0,1). (It is

then present the spectrum that we find with this optimal cut€cessary to use an even number of longitudinal basis func-
off and compare it to recent results from other approachedions so that symmetry and antisymmetry of the wave func-
The last results that we present are the probability densitiedon underx—1—x are equally representgdWe perform

for our five lightest glueballs. We conclude this section bythis diagonalization as a function of the basis-function pa-
discussing the sources of error in our calculation and estimat@metersd ande that determine the widths of the transverse-

ing the sizes of these errors. magnitude and longitudinal wave functions, respectively,
and we find the values af ande that minimize the ground-
state mass. This yields what we consider to be the optimal
wave-function widths for each paifj (,).

We represent a state using the notatﬂfﬁ, wherelJ is We also execute the second step of the procedure for all
our best guess for the spin of the staéds our best guess for pairs (,a,). In this step, we fixd ande to be their com-
the parity of the stateC represents the charge-conjugation puted optimal values and again defifie= 1. We diagonalize
eigenvalue of the statgt is always+ because we have two the matrix with all four spin basis functionsl; transverse-
gluong, andj is the projection of the state’s spin onto the magnitude basis functions, arith =2N, longitudinal basis
three-axis. We need to distinguish states with identital  functions, for a total of 812 basis functions, withN,
and P’s and differentj’s because we do not have manifest =1,2,3,...,10. We use twice as many longitudinal functions
rotational symmetry. 1f1=0, we omit the subscrigtin the  as transverse-magnitude functions becdqggd.,j) is zero if

A. The procedure for calculating results
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. . FIG. 6. The masses of the five lightest glueballs with0, as
FIG. 5. The coupling as a function of the cutoff. We show thefunctions of the cutoff. The masses and the cutoff are displayed in

cutgﬁ in un_lts of the mass of the 0" state, _and we use L4 !ongl- upits of the mass of the 0" state. The seven values of the cutoff at
tudinal basis functions, 7 transverse-magnitude basis functions, ar} . . .
e points that we display correspond, from right to left,d@

4 spin ba§|s fungtlons, .for a tota] of 392 basis funptlons. Using the=0.1,0.2,0.3,...,0.7. We use 14 longitudinal basis functions, 7
recent anisotropic Euclidean lattice result of Morningstar and Pear:

don for the mass of the 0" state[27], we estimate that the cutoff transverse-magnlt.ude ba§|s functions, and 4 spin basis functions, for
. ) . - a total of 392 basis functions.
is roughly varying from about 3.1-6.0 GeV in this figure.

|+] is even andj=4, or if |+ is odd andj#4. We wantto & consider onlyr, <0.7 in the remainder of our procedure.
use as many basis functions as possible, but we find for alf/hen @,=<0.7, the coupling decreases as the cutoff in-
pairs (,a,) that whenN,> 7, the statistical errors from the C'€ases, as expected. However, depends onA more
Monte Carlo integrations of the matrix elements becomeStrongly than one may expect. We expect that perturbative
overwhelming and the spectrum and wave functions becomBure-glue QCD would indicate thai,~1/n A, but the re-
unreliable. The evidence of the breakdown is sudden corgUlt that we getis much closer to, ~exp(-aA), wherea is
tamination of the low-lying wave functions with high-order & constant. The reason for this is that the truncation of the
components(See Appendix C for a more complete discus- perturbative se_ries fab12(A) and_ the truncation_of the free-
sion of this topic. Thus in the remainder of our procedure, S€Ctor expansion of the states introduce spurious cutoff de-
we analyze the results that we find in this step whgs 7, Pendence in our results for physical quantitié,-+ is one
which corresponds to 392 basis functions. such physical quantity. The spurious cutoff dependence of
In the third step of the procedure, we use the mass of th#o-+ is manifested through incorrect dependencé(af,)
0~ * state(our most numerically reliable stateo determine ON @ - This means thad has to compensate by depending
the value ofA for eacha, . To do this, we note that isthe 9N aa mcqrrectly m_order to keeM -+ a constant function
only mass scale in the problem. This means that the mass 8f @ - This results in the strong dependencegfon A that

the 0 * state,My-+, can be written is shown in Fig. 5. _ _ _ _
Using the recent anisotropic Euclidean lattice results of
Mo-+=b(ay)A, (153 Morningstar and Peardof27], we can make a rough esti-

mate of the range over which our cutoff is varying in Fig. 5.
whereb is a dimensionless function of, . Since we defined They found that the mass of the 0 state isMy-+=2.590
A=1 in the second step of our procedure, the diagonaliza+0.040+0.130 GeV. This means that our cutoff is varying
tion of the IMO as a function ok, yieldedb(a,). In this  from about 3.1-6.0 GeV in Fig. 5.
third step, we considek to be a parameter and defivg, -+ The fourth step of our procedure is to determine the opti-
to be a constant. Then for a given coupling, we can use thmal value of the cutoff, or equivalently, the optimal value of
results of the second step of our procedure to write the cutoffhe coupling. We use two criteria to determine this. First we
in units of M-+ determine the value of the cutoff for which the computed

masses are most independent of the cutoff. Figures 6, 7, and
(154 8 show the masses of our states wjith0,1,2, respectively,
b(ay)” as functions of the cutoff. The masses and the cutoff are
displayed in units oMg-+. (Recall thatM -+ was defined
Figure 5 shows the result for the third step of our proce-+to be independent of the cutoff in the process of defining the
dure: a plot of the coupling as a function of the cutoff. Whencutoff as a function of the couplingThe seven values of the
a,>0.7 it is not a single-valued function of the cutoff. This cutoff at the points that we display correspond, from right to
is an indication that the coupling is too large. For this reasonleft, to «, =0.1,0.2,0.3,...,0.7. It is difficult to tell from these

A/M07+:
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M/My-+ 1.3 I I T T TABLE I. The glueball masses from our calculation compared
to those from a few other approaches: an average of lattice calcu-
122+ e o - lations[28], an effective-Hamiltonian approa¢g9], and a method

oo © that analyzes the asymptotic behavior of Wilson lo¢pg]. We

- display the masses in units of the mass of the Gtate. The un-
certainties for our results are only the statistical uncertainties asso-
10k i ciated with the Monte Carlo evaluation of the matrix elements of
M?(A). The three values of the masses for the*2and 2" **

ool _ states for our calculation correspondjte 0,1,2. We use the opti-
mal coupling @, =0.5, with 14 longitudinal basis functions, 7
transverse-magnitude basis functions, and 4 spin basis functions, for

[ ]
[ ]
[ ]
ce
oe

11

08 | -
a total of 392 basis functions.
07| - . .

Effective Wilson
o6 | | | | State  M/Mg++ Lattice[28] Hamiltonian[29] loops[30]

e 0~ 1.38:0.02 1.34-0.18 1.36 1.62

A/Mo-s
_ B 1.58+0.01
FIG. 7. The masses of the two lightest glueballs withl, as 2+t 158-0.02 1.42-0.06 1.32 1.64

functions of the cutoff. The masses and the cutoff are displayed in

. 1.11+0.01
units of the mass of the 0" state. The seven values of the cutoff at
the points that we display correspond, from right to left,dg@ 1.70+0.01
=0.1,0.2,0.3,...,0.7. We use 14 longitudinal basis functions, 72++* 1 68+0.02 1.85-0.20 1.88 2.36
transverse-magnitude basis functions, and 4 spin basis functions, for
: ) 1.62+0.02
a total of 392 basis functions.
ot** 1.77+0.02 1.780.12 1.88 1.72

plots where the cutoff dependence is weakesbre points

are neede! but we see that the dependence is relativelyang the fact that Figs. 6-8 indicate that the cutoff depen-

weak from a,=0.5 to a,=0.7, which corresponds t0 dence of the masses is weak when=0.5 to a,=0.7, we

AIMg-+=1.33 t0A/My-+=1.20. determine thatr, =0.5 is the optimal coupling, and thus the
The second criterion that we use to determine the optimabptimal cutoff isA/M,-+=1.33. Using the result of Morn-

cutoff is the degree to which the states with a giveandP  ingstar and Peardon for the mass of the'Ostate, we esti-

and differentj’s are degenerate. This determines the cutoffmate that this cutoff is about 3.4 GeV.

that minimizes the violation of rotational symmetry. We find

that these degeneracies are best whgr=0.5. Given this B. Results
Now we present our main results. Our glueball masses for
M/My-+ 13 T T T T a,=0.5 are summarized in Table I, in units of the mass of
the ground statéhe 0" * statg. For the sake of comparison,
12(-27" 0o . Table | also shows results for the masses from a few other
*°* . approaches: an average of lattice calculatid@s], an
11} ° . effective-Hamiltonian approadt29], and a method that ana-
* lyzes the asymptotic behavior of Wilson loo390]. The un-
10} 4 certainties in our results that we report in Table | are only the
statistical uncertainties associated with the Monte Carlo
09| o 4 evaluation of the matrix elements 8#>(A). The full errors
o are much largefsee the discussion of sources of error be-
osk ,, o0 © © i low). We list three values of the masses for the*2and
AR 2*** states for our calculation, correspondingjte0,1,2.
o7k | In each case the three masses would be degenerate if our
calculation were exact. Our results agree with the lattice re-
06 I I I 1 sults quite well, reasonably well with the effective-
1.00 127 1.54 181 2.08 2.35 Hamiltonian results, and less well with the results from the
AfMy-+ Wilson-loop approach.

We display our spectrum graphically in Fig. 9. The
masses are plotted in units of the mass of tié Gtate and
"he vertical widths of the levels represent the statistical un-
. ; . certainties in the masses. The black lines connect the states
the points that we display correspond, from right to left,d@ h beli hould be d te. W th tJH >
=0.1,0.2,0.3,...,0.7. We use 14 longitudinal basis functions, 7t at we believe shou € degenerate. VVe see thatgne

* . .
transverse-magnitude basis functions, and 4 spin basis functions, fénd 25 * glueballs are relatively degenerate with thejr2
a total of 392 basis functions. and 2 ** counterparts, and the;2 * is not too bad, but the

FIG. 8. The masses of the two lightest glueballs with2, as
functions of the cutoff. The masses and the cutoff are displayed i
units of the mass of the 0" state. The seven values of the cutoff at
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FIG. 10. The probability density of the*d" glueball. We use

111 k i the optimal couplingr, = 0.5, with 14 longitudinal basis functions,

7 transverse-magnitude basis functions, and 4 spin basis functions,
for a total of 392 basis functions.

gion x~3 and more towards the edges. This is what we
expect based on the form of the kinetic energy of a free state.
Notice that the probability density for the;2 glueball is
FIG. 9. Our glueball spectrum. The masses are plotted in Unit@eaked around the regi(xﬂv% and looks similar to the prob-

of the mass of the 0" state and the vertical widths of the levels ability density for the 0 * glueball. This is consistent with
represent the statistical uncertainties in the masses. The black lin§g small mass.

connect the states that we believe should be degenerate. We use the
optimal couplinga, =0.5, with 14 longitudinal basis functions, 7

transverse-magnitude basis functions, and 4 spin basis functions, for C. Error analysis
a total of 392 basis functions.

We now turn to a discussion of the sources of error in our

24+ glueball i h 100 light. Our labeli f the stat OIcalculation. The sources of error are truncation of the renor-
2 giueballis much too ight. Lur labeling ol the States and,, ;o4 o atO(gf\), truncation of the free-sector expan-

subsequent aSS|gn_ment of the 'expected degeneracies &i6n of physical states at two gluons, truncation of the basis-
based on the ordering of the lattice stafsse Table )j and function expansion of wave functions, and numerical

the apparent de+generacies of thg"2and 2 ** states with approximation of the matrix elements ##2(A).
A .
the 27" and 2 "* states, respectively. We do not know how to estimate the size of any physical
We want to show some of the features of the glueballsfects that require nonperturbative renormalization. How-
wave functions. Rather than presenting the spin-dependegier, we can naively estimate the size of the effects of
wave functions themselves, we present more illuminatingyigher-order perturbative renormalization. We have calcu-
spin-independent probability densities. A glueball state hagyiad the matrix elements 0812(A) throughO(a,): so the

the plane-wave normalization shown in Bg1) as long as  corrections to these matrix elements shouldte:?). This
the wave functionb g’ (x,k, ) satisfies

f d?k, dx0(x) B(1—x) >, |2 (x.k)|*=1. (159

S1S52

AT
T
X

ittt
;Z/’Z"'/ 0
T,
THININ
Yyl I’I )

This implies that

w [ K\ (1
jo d(X) fo dxII(x,k/A)=1, (156)

where we define the dimensionless probability density
I1(x,k/A) by

II(x,k/A)=27AKY, DL (k)2 (157)
$182
3 - FIG. 11. The probability density of the 0" glueball. We use
We show the probability densities for some of our glue-the optimal couplingr, =0.5, with 14 longitudinal basis functions,
balls in Figs. 10-14. The masses of the states tend to ir? transverse-magnitude basis functions, and 4 spin basis functions,
crease as the probability densities move away from the refor a total of 392 basis functions.
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FIG. 12. The probability density of theg2 glueball. We use FIG. 14. The probability density of the;2 glueball. We use
the optimal couplingr, = 0.5, with 14 longitudinal basis functions, the optimal couplingr, =0.5, with 14 longitudinal basis functions,
7 transverse-magnitude basis functions, and 4 spin basis functiong,transverse-magnitude basis functions, and 4 spin basis functions,
for a total of 392 basis functions. for a total of 392 basis functions.

translates to corrections to the mass spectrunﬁ)@ii/Z). Monte Carlo evaluations of the matrix elements are over-
Since we have used,=0.5, we estimate that the uncer- whelming and cause our results to become completely unre-
tainty in the mass spectrum from the effects of higher-ordetiable (see Appendix € For this reason, we have to truncate
perturbative renormalization is about 13%. our basis-function expansion for the wave functionsNat

We do not know how to estimate the size of any physical=7 transverse-magnitude functionsN;(=2N;=14, and
effects that require an infinite number of particles. In factthere are 4 spin basis functions, for a total of 392 basis func-
until we include at least two free sectors, it is impossible totions) This truncation results in additional errors in our re-
directly estimate the size of corrections from higher free secsults. In Figs. 15, 16, and 17, we show the convergence of
tors. However, we can use the lack of degeneracy of jhe 2 the masses of the states witk0,1,2 respectively, as func-
state with the g © and 2/ * states to estimate these correc-tions of N;. The masses do not decrease as rapidly as func-
tions. According to Table I, the discrepancy in the varioustions of the number of states as one might expect. This is
2** states is about 33%, if we believe the quoted latticeprimarily because we have already optimized the states quite
result. Since the uncertainty in the mass spectrum from efa bit by determining the widths of the transverse-magnitude
fects of higher-order perturbative renormalization is arouncand longitudinal basis functions that minimize the mass of
13%, an uncertainty of 30% due to the truncation of thethe 0" " state(usingN;=1). Our best guess for the uncer-
free-sector expansion is necessary to explain the lack of rdainty that we introduce into the spectrum when we truncate
tational symmetry in the spectrurtneglecting the other the basis-function expansion, based on Figs. 15-17, is a few
sources of error, which we expect to be small percenﬁz

As we mentioned, when we increase the number of basis We can estimate the uncertainty in our results associated
functions that we use to represent the wave functions, wavith the Monte Carlo evaluation of our matrix elements. To
find that we reach a point where the statistical errors from thelo this, we compute our results witl, =0.5 four times,
obtaining statistically independent results, and we compute
the standard deviations of the masses that we obtain. This
leads us to estimate that the uncertainty in the spectrum from
the Monte Carlo routine is 1-2%. This is the uncertainty
that we report in Table | and Fig. 9. Combining this uncer-
tainty with the others leads us to estimate that the total un-
certainty in our results is about 33%.
lll"";;"""'
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VIl. CONCLUSION

I I{m i

I
i We have presented a formalism for pure-glue QCD that
allows the physical states of the theory to rapidly converge in

a free-sector expansion. In this approach, we force the free-

FIG. 13. The probability density of the;2 glueball. We use 2Technically, this is not an uncertainty because improving the
the optimal couplingr, = 0.5, with 14 longitudinal basis functions, states can only reduce their masses, according to the variational
7 transverse-magnitude basis functions, and 4 spin basis functiongrinciple. However, our discussion of errors is not meant to be
for a total of 392 basis functions. rigorous.
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FIG. 15. The masses of the five lightest glueballs with0, in FIG. 17. The masses of the two lightest glueballs with2, in

units of the cutoff, as functions of the number of transverse-units of the cutoff, as functions of the number of transverse-
magnitude basis function$y,. We use the optimal coupling, magnitude basis functiongy;. We use the optimal coupling,
=0.5, with four spin basis functions am= 2N, longitudinal basis  =0.5, with four spin basis functions am= 2N, longitudinal basis
functions, for a total of Nf basis functions. functions, for a total of &It2 basis functions.

state matrix elements of the IMO to satisfy three conditions-FFT SO that the effects of the vacuum are isolated in par-
to make the desired expansion possible. First, the diagondf!€s with zero longitudinal momentum, and we remove
matrix elements of the IMO must be dominated by the fredhese particles from the theory with the intent of replacing
part of the IMO. Second, the off-diagonal matrix elements oftN€ir physical effects with interactions. This makes it reason-
the IMO must quickly decrease as the difference of the fre@ble to expect that the third condition on the IMO s satisfied
masses of the states increases. Third, the free mass of a fréétomatically due to the free-particle dispersion relation of

state must quickly increase as the number of particles in theFFT. ] ) )
state increases. The cutoff that we use violates a number of physical prin-

We assume that we can use perturbation theory to derivélPles of light-front pure-glue QCD. However, by requiring
the operators of the theory, and if this is valid, then the firsth® IMO to produce cutoff-independent physical quantities

condition is automatically satisfied. To satisfy the second®Nd by requiring it to respect the unviolated physical prin-
condition, we place a smooth cutoff on the IMO. We useciples of the theory, we are able to derive recursion relations
that uniquely determine the IMO to all orders in perturbation

M 13 T T T T T T T theory.
A We have applied our method to the calculation of physical
12} a, =05 . states and masses. For this calculation, we approximated all
physical states as two-gluon states. We calculated the color
L1 . parts of the states analytically, and we expanded the states’
° momentum and spin degrees of freedom in terms of basis
1o * . T functions. We designed the states to be simultaneous eigen-
0o L ° o o ® e o 2+ states of the IMO, the three-momentum operator, and the
| © © o gt projection of the internal rotation generator onto the three-
0s i axis.
Using our recursion relations for the IMO, we calculated
otk _ to second order in perturbation theory the two-gluon to two-
gluon matrix element of the IMO, which is required for the
06 [ . calculation of physical states. We then used it to calculate the
IMO matrix in terms of the basis functions. We showed that
05 s . s the infrared divergences in the matrix from exchanged glu-

ons with infinitesimal longitudinal momentum cancel when
treated properly.

FIG. 16. The masses of the two lightest glueballs jithl, in In order to diagonalize the IMO matrix, we computed the
units of the cutoff, as functions of the number of transverse-five-dimensional integrals in the matrix elements using
magnitude basis function®y;. We use the optimal coupling, =~ Monte Carlo methods. We calculated the glueball spectrum
=0.5, with four spin basis functions amj= 2N, longitudinal basis  for a range of couplings and found that we could not use
functions, for a total of 812 basis functions. more than about 400 basis functions without the statistical

N,

025005-28



GLUEBALLS IN A HAMILTONIAN LIGHT-FRON T . .. PHYSICAL REVIEW D 62 025005

errors becoming overwhelming. We used the mass of ouand numerical complexity from the vertices involving
0~ " glueball to compute the nonperturbative cutoff depen-quarks. Second, quark masses complicate the method for de-
dence of the coupling, and we analyzed the cutoff depentermining the IMO because they increase the number of re-
dence of the spectrum. We found that the cutoff that mini-duced interactions that can be cutoff-independdi®. In
mizes our errors isA/My_,=1.33. The corresponding addition, if large and small quark masses are considered si-
coupling isa, =0.5. We presented the probability densities multaneously, then efficient numerical representation of the
for some of our glueballs and found that our results for thestates and accurate calculation of the IMO’s matrix elements
spectrum compare favorably with some recent results fronbecome more difficult. Masses also quickly enlarge the pa-
other approaches. The largest discrepancy seems to be ttameter space that must be explored to compare to experi-
2, " state, which is much too light. Finally, we analyzed themental data.
errors in our calculation from the various possible sources, We can also extend our method by applying it to the
and estimated the total uncertainty in our spectrum to b&omputation of operators other than the IMO, such as the
33%. rotation generators, the parity operator, and currents. The

There are two main paths that we can take for future workotation generators and the parity operator are of particular
with our approach. The first path is to further test our methodnterest because they may aid in the classification of the
with the theories that we have considered so far. Since thehysical states of a theory.
scalar theory that we considered in REf] is relatively In summary, there are many avenues of research that must
simple, it would be interesting to use it compute the IMO tobe explored, and some of them are quite complex. However,
higher orders in perturbation theory. This would require us tcall the improvements that we have discussed are necessary if
solve the integral equation for the cutoff-independent rewe are to accurately represent the physical states of quantum
duced interaction and could be used to further check oufield theories as rapidly convergent expansions in free sec-
conjecture that our IMO leads to correct scattering ampli+ors.
tudes order-by-order in perturbation theory.

In pure-glue QCD, we can further test our approach for APPENDIX A: CONVENTIONS FOR LIGHT-FRONT
calculating physical states by computing the IMO to higher PURE-GLUE QCD
orders in perturbation theory and by keeping more free sec-
tors in the expansion of the states. However, to keep more
free sectors in the expansion of the states, we have to be ab
to calculate IMO matrices that have more degrees of free!®™
dom, while controlling the statistical errors in the spectrum. a=(a*,a",d,), (A1)
This means that we need a better algorithm for determining
how accurately individual matrix elements of the IMO havewhere in terms of equa|_time vector components
to be computed in order to get a desired uncertainty in the
spectrum. We could also use a better basis that requires a*=a’+a® (A2)
fewer momentum functions to represent a wave function.
Overcoming these problems will be challenging, but it isand

The purpose of this appendix is to state our conventions.
ith these conventions, any four-vectaris written in the

important to test our method by studying the rate of conver- 5 2
gence of the free-sector expansion of states as a function of s _ A ia
both the cutoff and the masses of the states. a =l as Z’l ase, (A3)

Another test of our method that we can do with pure-glue
QCD is to analyze the interaction that we have derived invhere & is the unit vector pointing along thieaxis. The
this paper to test the conjecture that it is logarithmically con4inner product is
fining. It would also be interesting to analyze the long-range . 1

arts of higher-order interactions to see if the perturbative _ T oy s e
I[s)eries for t?]e interaction is building towards a Iilrw)early con- a:b=za’b +zab'—a, b, (A4)
fining potential. Analyzing the long-range parts of higher-
order interactions may be much easier than computing thes¥d
interactions in their entirety.

The second main path that we can take in the future is to
extend our method to other theories and operators. In order
to compute quantities that can be compared with experimen]E
we wish to extend our method to full QCB.This is com- q
plicated for two reasons. First, there is additional algebraic x=(x*x",%). (AB)

a’=4,-4, . (A5)

A spacetime coordinate is a four-vector, and according to
. (A1), it is written

The time component is chosen to ¥e. x~ is referred to as

13We are not thinking of including QCD effects that require non- the longitudinal component, and contains the transverse
perturbative renormalization or an infinite number of particles be-COMponents.
cause these would require a new method rather than an extension of The gradient operator is treated just like any other four-
our current approach. vector. Its components are
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d -1
(9::2&)(_1 (A7) §ls=ﬁ(s,i). (A13)
and p*™ andp, are the momenta conjugatexo andx, ; so they
are referred to as the longitudinal and transverse momenta,
Pl :;’3_ (A8) respectively. The purpose efis to regulate divergent effects
Loox| from exchanged gluongeither instantaneous or re¢alith

) ) . ] infinitesimal longitudinal momentum. We take-0 before
The canonical Lagrangian density for pure-glue QCD is e calculate physical quantitiésee Sec. .
In the process of deriving the canonical Hamiltonian, we

L=— l,: AV (A9) need to take the inverse longitudinal derivative of the gluon
4" crrco field. We do this by moving the derivative inside the expan-
sion:
where
1. 1 .
Fé“’:&“Ag_ﬁVAg—gAglAngclczc_ (AlO) &—JrALC(Xi,)_(l)Z f Dlﬁc,cl[_ m—+a1§mle*|p1~x
1
Greek indices are Lorentz indicess are color indices, re- 1 .
peated indices are summed over, andfteeare the SUK,) + ﬁals*jsle'pl'x (A14)
structure constants. 'P1 xt=0
We derive the canonical Hamiltonian frofh by the fol- . . + ) .
lowing procedure. _ The expansion coeff!m_enps anda; are identified as par-
(1) We choose the light-cone gaugfé0+=0. ticle creation and annihilation operators. They follow the

(2) We derive the Euler-Lagrange equation that deterconvention

minesA; in terms ofAlc. a=a(p;,s,c), (A15)
(3) Using the canonical procedure and treating the field
classically(i.e., letting it and its derivatives commufeve  and have the commutation relations

derive the Hamiltonian in terms <§ch, dropping terms that N 3+ 3)
are zero if the gluon field is zero at spacetime infinity. [ai,a]]=6;;=16m"p;" 6"(Pi—Pj) b, 5,0c,.c; (AL6)

(4) We quantize the gluon field by expanding it in terms
of free-particle creation and annihilation operatd/e de- and
fine the field expansion and its inverse longitudinal deriva- -
tive below) [ai,a;]=[a; ,a;]=0, (A17)

(5) In each term in the Hamiltonian, we treat the creation
and annihilation operators as if they commute and move aif'"€"®
the creation operators to the left of all the annihilation op-
erators.(This “normal ordering” drops the so-called “self-
inertias,” as well as some constants.

(6) We drop the terms in the Hamiltonian that have no
effect if there are no particles with™ =0.

We work in the Schrdinger representation, where opera-
tors are time-independent and states are time-dependent. P2— M2 (A19)
Thus we quantize the field by defining it to be a superposi-
tion of solutions to the Klein-Gordon equatigsince gluons  that
are bosons with the quantization surface’ =0:

83 (pi—p)=48(p —p; )8 (Bi, — P ). (A18)

Let M? be the invariant-mass operator. The momentum
conjugate tox* is p~; so the Hamiltonian is identified &3
and it follows from

P‘——ﬁi+M2 A20
ALC(X_’)_()L):J Dlacvcl[alélsle_lpl.x - 7)+ . ( )
+alg*  ePrX]| o, (A11) The canonical Hamiltonian that results from the above
! procedure can be written as the sum of a free part and an
where interacting part:
i d%p;. dp;’ P~ =Prectv (A21)
p dp free '
D=3 3 ——50(p —€P). (A1)

¢=1 55711 167°p; where

Heres; is the spin polarization of particlg P is the four- b2
momentum operatore is a positive infinitesimal, and the Pﬁee:J Dl—lfalral- (A22)
gluon polarization vector is defined by P1
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We give the interaction in terms of its “modified” matrix elements:

3 16’7T3
UngJ D1D2D3a;agal5(3)(p1_Pz_p3)<9293|v|91>+97J D1D,D3ala;a,6 ) (py+pa—pa)

2167T3 ot 3)
X{93|U|9192>+9ﬁ D,D,D3D4a}a;8,8,8%(py+pa—Ps—Pa)

4 3
167
le €0304/v]9192% +0? 31 fD1D2D3D4a;a;a1a15<3)(pl—p2—p3—p4)

4 3

167
Xgl <11929394|U|913‘>i*‘QZTf D1D,D3D4a}a,8,856 ¥ (py+ po+ ps—Pa)
4

X Z,l €04|v|919295F1, (A23)

where a modified matrix element is defined by

(ilvlj)
1675 (pi—py) |,

Lilolj»= (A24)

The modified matrix elements are

. I . L P2
€0293lv[gyF =if 1% (P2r —Pa)— +(p2 )+5sl,sssfsz-|(pu+p3ﬂ—p—£(pf+p§)

Py

— 8. =&, -
S5,53% L8

+5sl,szgjsa'{ (p1L+p2L)+ p+ (pl +p2)

_>

. 1
€93lv[919:%+ = —If°1°2°3{ SRS {(psﬁpa) pi (P3+P2)
1

- - _ P3
_531,328153'[(pn_p2ﬂ p;;( 1 2)]

(A25)

+5sl,s3gisz'[ (plj_+p3j_)+ +(p1 3)
and

<‘:g3g4|v | 010>% 1= [ feaCacfac’( 552,53551,54_ 553 A sl 52) + ferCaCf CaC2e( 552 Sy 51 Sg 553 54551 ?2)
+ fC1C2C£C3CaC( 5 0. — 551 1) )],

S5,847S1,S3 1S47S9,S3

T

P1 tP3 Ps TP
<9394|v|g1g2}2:fc1c3Cfc4c2c551’53552’s4p+_p+ b —pl’

1~ P3 Pg =P

Py +Ps P3+Ps
<’59394|U|91§1231>3:fclc“cf%cz)cgsl:54532'53p+—pJr Pz —P,
1 4 3 2

Py —Ps Ps—P3
2%%pitp; pstps

409304|v|9195% 4= f126F4%C5 o (A26)

and

025005-31



BRENT H. ALLEN AND ROBERT J. PERRY PHYSICAL REVIEW 52 025005

{gzgsg4|v|g1}1:[f01c3Cfc4c20(_ 552,53551,54_’_ 553,34551,52)"' fe1CaCfCatoc(— s, 5,0 + 55354551,52)

215475153

4 fC1€2Cf C3CaC( — Js, 5,05, s 9, '345§2'S3)]’

T
P1+P2 Ps—P3

€0209304|v]91F 2=~ fclcchc4c3c551,525§3,54p+—p+ ps+ps’
1~ P2 Py t+P3

+ + o+ +
P1+P3 Ps—P2

<t:(‘:]29394|U|gl:'>3: _fclcSCfCAC26551,53 52154p+_p+ p++p+,
1 3 4 2

Py +Ps P2 —P3

— __ fCqCyCfCoC3C
€02939alv|g1 b 4= — Fr04cf 203 551,54553,52p1r_p;{ i tpl’ (A27)
and
€04|v|919293% 1 =[ ferafCac2c(— 652 ,33651,544' 553,54551 ?2) + feacacfescat(— 552,54551 ST 553,54551 ?2)
+ fC]_CZCfC3C4C( - 552 ,54551,s3+ 551,54552 ?a)]-
+ + Nt +
P1 +Ps Pz —P2
__ __ §CqC4C£C3CHC _
<94|U|9192933>2— feaCatfesta 531,54532,33p1+_p2r p;_'_p;,
+ + ot +
P2 +Ps P3—P1
__ __ §C,C4C§C3C4C _
<94|U|9192933>3— fo2Catfeste 552,54531,53p2+_p2r p;"’pf,
+ + ot +
P3 +Ps P1 —P2
__ __ §CaC4C£C1CHC _
<Kg4|l}|glgzgsj>4_ fe3Catferta 553,34 sz,slpg_pz pir+p2+y (A28)
|
wheres,=—s,. where
We work in the free basis, the basis of eigenstates of
Pree- They are given b ! -
free y g y M2=P+E pi,_PE' (A34)
i=1

|9102° - gy =ajab---al|0), (A29)

andP is the total momentum of the state. Finally, in terms of

for any integem=0. The associated eigenvalue equation ISihe free states, the completeness relation is

n
- R - 1
Pred10200) =2, P 1010200 (A0 1 joy(0/ [ Dylgo) s+ 57 | DaDAg:GN a0+

where (A35)
B f)lzL APPENDIX B: THE DERIVATION OF THE RECURSION
T or (A31) RELATIONS FOR THE REDUCED INTERACTION
I
_ 5 . _ This appendix is an extension of Appendix D of Ref]
(sincepi’=0) and the sum is zero ii=0. to the case of pure-glue QCD. In Sec. IID, we derived a
The noninteracting limit of Eq(A20) is constraint on thed(g',) reduced interaction for=1:
P Mie -
Prree= 7 (A32) VIL(A) = VEYA) = 5v<r>—s;2 B, s VITI(A).
2 o (B1)
where Mg, is the free invariant-mass operator. It has the
eigenvalue equation Since we already know the first-order reduced interaction
) 5 [see Eq(18)] and the cutoff-independent part of the second-
Mired9192° **9n) = M?|9102 - Gn), (A33)  order reduced interactidisee Eq(19)], we wish to use this
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equation to comput®y’{)(A) for r=2 andV{) for r=3, in  order for the IMO to have the dimensiofreass$?, Fi) must

terms of lower-order reduced interactions. have the dimensiongnass*~Nin.. Note that we are suppress-
ing the dependence of the RHS of this equatiorr.on
1. The recursion relation for the cutoff-dependent part We have assumed that any matrix element of the IMO can

We begin by computing the recursion relation for the D€ expanded in powers of transverse momenta, not including

cutoff-dependent part of the reduced interaction. Recall thaf’® momentum-conserving delta functions; so
momentum conservation implies that any matrix element of (i)

: o ey F Asat{cnt A
V(A) can be written as an expansion in unique products of co{Pn} {snh{Cnt A)
momentum-conserving delta functions. This means that an AN o+
arbitrary matrix element of Eq(B1) can be expanded in =A% Nm > z; " ({pn }.{sn}.{cn})
products of delta functions: (Mo}

Npart 2 pt | Mt
n
i ’ i X y B5
S (FIVEAINT=S FIVEAIINT (% "9
r—1 (i) wheret denotes a component of transverse momentum and
:z (F|5V(”|I)—2 B, _o(FIVI™S(M)[1)| m,; iS a non-negative integer inde_x associated _With
i s=2 transverse-momentum componémf particlen. The sum is

(B2) over all values of each of thm,,;'s, subject to the constraint

that
where the(i) superscripts denote that we are considering the
ith p.roduct of dfelta functions that can oceur in'a dglta— 4_Ni(ri]z_2 My #0, (B6)
function expansion of(F|V{)(A)|I). This equation is it

equivalent to a set of equations, one for each possible prod- =~ i i
uct of delta functions: which is necessary to avoid terms in the momentum expan-

sion that are cutoff-independent. lelié”"t}’s are the coeffi-

(FIVE(M D —(FIVELA D cients for the momentum expansion. They depend and
them,’s and are functions of the particles’ longitudinal mo-
= (F|sVO|1) menta, spin polarizations, and colors.
Since the RHS of EqB3) has the same product of delta

1 0 functions as the LHS, we can write
_2 Br—s,s<F|V(r_s)(A)||>} . (B3) r-1 (i)
s=2

(FIoVO1) = 2 Brs FIVI(AI)
s=2

Cluster decomposition implies that we can write 0

N

1 &
=1

(i)
Nﬁ

[T &
=1

GU({pntdsat{cat ALAY),  (BY)

(FIVERM)IN = Fep({Pab Asahdenl A),
(B4)  whereG® has dimensionémass* ™M, and by inspection of

i . ) .. the LHS of Eq.(B3) and Eq.(B4), is a function of the quan-

whered{" is thejth momentum-conserving delta function in y,m numbers of the particled, andA’. Substitution of Egs.

the ith product of delta functions &includes a (B7) and(B4) into Eq.(B3) yields

longitudinal-momentum factarNY is the number of delta , .

functions in theith product, andF{), is a function of the Feo({Pat {sah{cat A) = FEp({pat {sat et A)

cutoff and the quantum numbers of the particles in the matrix _ A /

element, but ((jqoes not contain delta fLE)nctions that fix mo- =G ({Pab{sa} Aea A A, (B8)

menta. We defin®l,to be the number of particles in state where the momenta in this equation are constrained by the

[I) plus the number of particles in statF), and n delta-function conditions.

=1,2,3,.. Npar- The momentum, spin polarization, and color  Since the LHS of Eq(B8) is the difference of a function

of particlen are given byp,, s,, andc,. We defineN{) to  of A and the same function with —A’,G® must be as

be the number of particles in the matrix element that particiwell. Since the LHS of Eq(B8) can be expanded in powers

pate in an interaction for thigh product of delta functions. In  of transverse moment&() must have the form

) o\ Mpy ) t o\ Mpg
GV {pu} fsu) (enh A A= 3 2™ {7 sk eoh| AT (pT) — AN (pA—) } (B9)
[ it nt

where the sum is restricted by E@B6).
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Substituting Eqs(B9) and (B5) into Eq. (B8), we find that

t
an

A

A 5 2™ (s feab I (

Mnt

2} Z™d({p 1 dsakdenh)

{mnt

2-ND Pry | ™ r4-N{)
A mIH _A —A mIH
nit

PHYSICAL REVIEW 52 025005

Mt i )™
) — AN S M (o (s e T (%)
. y n,t

Mnt

p:u Mt
A—) } . (B10)

n,t

Matching powers of transverse momenta on both sides of 2. The recursion relation for the cutoff-independent part

this equation gives
200 (i} {Sab (G AN Mot A 14N S
(i) _
:Zi{mm}({p;}a{sn}),{Cn})[A4_Nint Erl,tmnt
—A’A'Ni(rz%_zn,tmnt]‘

(B11)

The factor in brackets cannot be zero becadseA’ and
Eq. (B6) holds. Thus Eq(B11) implies that

2™t = Z{Mnd (B12)
Then Egs(B5), (B9), and(B12) imply that
FEb({Pa} {sn} {Ca}.A)
= GO({po} {Suh b AN )3 tems (13

where “A terms” means thaG(") is to be expanded in pow-

Since we have specified® andV{%), we need to deter-
mine VY for r=3. It is useful to first consider which con-
tributions to V((A) can be cutoff independent. A matrix
element of the cutoff-independent part @f)(A) can be
expanded in products of delta functions and in powers of
transverse momenta just as was done for the cutoff-
dependent part. Thus we can write

(FIVEI =2 (FIVEIN®, (B16)
where
N
(FIVE = ,Hl SV IFL{patdsahicah) (B1D)
and

(i) — A 4N {Mnghfy+
ers of transverse momenta and only the terms in the expan-FC'({p“}’{sn}'{cn}) A [{mEm} Wi ({Pn o {Sn} {Cn})

sion that are proportional to powers or inverse powera of
contribute. From Eq9B4), (B7), and(B13),

(FIVEYA) D
r—1 (i)
= (F[oV) = 2 B s FIVI9(A)]1) ,
§=2 A terms

(B14)

Npart 2
( (B18)

ptLJ_ Mnt
A .

The sum is over all values of each of timg,’s, subject to the
constraint that

4-N{)— ; My=0, (B19)

where it is understood that the momentum-conserving delta

functions are ignored for the purposes of transversewhich ensures that all the terms in the expansiofr §f are
momentum expansions. Since a matrix element is the sum Qftoff-independent.

the contributions to it from different products of delta func-
tions, both sides of this equation can be summed over
obtain

(FIVENM)[1)=| (Flav 1)

r—1
—322 Br—ss(FIVI™S(A)[1)

A terms

(B15)

Eq. (B19 places constraints on the possible cutoff-
independent contributions to the reduced interaction. Any
contribution to a matrix element &77(A) has anN{)=2,
but Eq.(B19) can only hold ifN{)<4.

Suppose thaN{)=2. In this case, Eq(B19) implies that
F(C',) is quadratic in transverse momenta. Due to approximate
cluster decomposition, only interacting particles’ transverse
momenta can appear F{) . So any contribution t&{) can
depend on the transverse momenta of two interacting par-
ticles. ThusF{) can be written as a sum of terms, where each
term corresponds to a distinct pair of interacting particles.

This equation tells us how to calculate the cutoff-dependenThe momentum dependence of each tera{ is limited to

part of theO(g',) reduced interaction in terms of lower-order
contributions.

dependence on the momenta of the interacting particles and
the total longitudinal momentum:
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where we have used the fact th&| V{7 2(A)[1)? has no

i) i m) ’ +
F&({pn}{sn}{cn}) = 2 F&™ (Km K, P {Sn},{cn}) linear part wherN{)=3 [see Eq.B6)]. We move the first
term in the sum on the RHS to the LHS:
—E F&™ (km,P™ {sab{Ca}),  (B20) B, A FIVE D
wherek,, andk/, are the momenta for the initial and final | (Flsvr2)) _rél B
particles in themth interacting pair, and where we have used = ) &y Trr2mss

the fact that forN{)=2, momentum conservation implies

thatky,=k’,. F&™ must be quadratic ik, or it must be X (FIVI#2-9(A)1)
zero. The matrix elements of the IMO are boost invariant, as

is the delta-function product in EqB17). This means that

FE must be boost-invariant, but it cannot beRti™ is  Now we can sum over all values btorresponding to three-

quadratic inky, ; so F&™ must be zero. Thus the reduced point interactions:

interaction does not contain any cutoff-independent two-

point interactions. .
Note that two-point interactions are self-energies, and <F|ch||>—

they change the particle dispersion relation. If they change

the dispersion relation such that the coefficients of the free

relation become modified by interactions, then this can be X(FIVI+27SI (A1)

viewed as renormalization of the field operators, i.e., wave-

function renormalization. This effect is absent unless either

FQ or FU) can be quadratic in transverse momenta for To use this equation, we also need to use @21) to

N{)=2. We have just shown that boost invariance prevent§olve forV{,"*). Sincer is odd,r +1 is even. Thus/¢"

this for F{) , and according to EqB6), F{), cannot be qua- Will contain only transverse-momentum- mdependent four-

Cl» . . . .
dratic in transverse momenta m(u)_z so there is no Pointinteractions. Using steps analogous to those that led to
nt - Eq. (B24), we find that

wave-function renormalization at any ordergn in our ap-
proach.

According to Eq.(B19), if N{)=3, thenF{} has to be  (F|v{*Y H=5—
linear in transverse momenta, and\if) =4, thenF(') has to
be independent of all transverse momenta. Accordlng to as- r+2 4-point
sumptions that we made in Sec. Il C 4 ifs odd thenv{) — D Brig s (FIVIT39(A)|1)
has noN{)=4 part, and ifr is even therv{) has noN{) =3 P term
=3 part. This means that if is odd, thenv{) can contain (825
only three-point interactions that are linear in transverse mo-
menta, and if is even, therv/{!) can contain only four-point  To use these equations, the right-hand sides have to be ex-
interactions that are mdependent of all transverse momentaanded in powers of transverse momenta. Only three-point

)
(B23)

ﬁi term

r+1

<F|5V”2||> 2 Briz-ss

3-point
(B24)

51 term

<F|5v<f+3>||

To calculateVl!) , we consider Eq(B3) with r—r +2: interactions that are linear in transverse momenta contribute
i " D) to V), and only four-point interactions that are independent
(FIVE 2(MNV=(FIVER 2 (AN of all transverse momenta contribute\td,**).
r+1 (i) These equations are coupled integral equatibimscause-
_ (r) (r+1) inai
= (F|5V<”2)|I>—522 Brio ss(FIVIF2Z9(A) )| . both V¢! andVe," ~ appear on the RHS of E¢B24) inside

mtegrals |n5V(”2), andV{"Y) appears on the RHS of Eq.
(B21)  (B29) inside integrals iV *3). It would seem thav{,*?
also appears on the RHS of E@25) inside integrals in
In the remainder of this appendix, we assume thstodd. 6V ™%, but V{*? cannot couple tov®®) to produce a
Then we need to consider onl{)=3 initially. We expand transverse-momentum-independent four-point contribution
Eq. (B21) in powers of transverse momenta and keep onlyto 5V('+3). This is because the cutoff functiais** " van-

the linear term: ishes when the intermediate state is massless and all external
transverse momenta are zero. This means that since we
1 ifiedv(® (2)
specifiedv®) andV{) in Sec. I C 4, we can use Eqd324)
= (F|sV"*2|1)= >, B, o
[( | |> SZZ r+2-s,s

1t is very difficult to prove that integral equations of this type
have a unique solution; so we simply assume that it is true in this
case.

X(FIVIF279(A)]I) , (B22)

} (l
51 term
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and(B25) to solve for\/(3) andv(“) simultaneously, anv(s) divergence from the integrand, the integrand peaks around

andV(G) simultaneously, and so on. Note that before we carX' =X, and in this region there are large cancellations in
use these equations to solve Mtf and V(r+l) simulta-  Some of the quantities that we have defined. To prevent these

neously, we must first use EqB15) both to compute cance_ll_atlons from causing roun_doff error, we r_ewrlte these
V) quantities so that the cancellations are explicit, before we
b(A) in terms of lower-order interactions and to express

V(”l)(A) in terms of lower-order interactions and o nUMenes.

V(r)(A)- a. Subtraction of the false divergence
Before concluding this appendix, we would like to deduce

a bit more about the relationship of to g, . According to

Eq. (27) and the surrounding discussion, this relationship is

determined by the matrix eleme(d,gs| 5V|g,), which can

be expanded in powers df;: :

We begin by defining a set of variables that is natural for
dealmg with the false divergence. We define

n=Xx—Xx". (Cy

- We change variables frorﬁl and IZi to the dimensionless
<9293|5V|gl>=t23 gtA/ (9,95 VV]g,).  (B26) transverse variableS andw, :

d »” Wi
Recall thatsV® is built from products oV((A')’s. This =g ktk),
implies thatsV(®" can change particle number by 1 onlyt if
is odd, and thus EqB26) implies that the coupling runs at dk -k
odd orders; i.e.Cy is zero ifsis even[see Eq.(29)]. W, =5 7n (C2
APPENDIX C: TECHNICAL ISSUES IN THE NUMERICAL We define the angle betwea?rg andvT/L to beg:
CALCULATION OF MATRIX ELEMENTS
r,-W, =rw cosp. (C3

In this appendix, we discuss some of the technical issues
involved in the numerical calculation of the matrix elementswe also define
(q',1",t",j]M3(A)|qg,l,t,j). In Appendix C1 we discuss
how we put the matrix elements into a form that is amenable .= \/r2+ W2 2rW\/;cos,8, (C4)
to numerical calculation. In Appendix C 2 we briefly cover -
three topics: we show how the glueball state wit§ eigen-  and then we can derive a host of useful relations:

value —j can be written in terms of the glueball state with LW
j:? eigenvalug, we list a few tricks that allow us to reduce kiz;
the number of matrix elements that we must compute, and
we present our method for estimating how numerical uncer- L =W,
tainties in the matrix elements translate into uncertainties in Kl =—"7—
the spectrum.
ry
k=—,
1. Preparation of integrals for the Monte Carlo calculation d
There are two types of contributions to K’ = r_,'
(q',I",t",jIM?(A)|q,l,t,j): finite sums and five- d
dimensional integrals. We UséATHEMATICA [26] to evalu- I
ate the finite sums to as many digits as we wish. To evaluate ky-k{ :@(rz_ W),
the integrals, we combine them into one integral and use the
VEGAS Monte Carlo routing31]. It takes a bit of work to put cosy= rm—nw ,
the integral into a form that will converge. Fer-
There are two main difficulties with getting the inte- —2rw\/;
gral to converge. The first difficulty is thatq’,l’, siny= Tsinﬂ, (CH
LI

t',j|IM?(A)|q,0,t,j B looks divergent: ax’ —x, the sum
in Eq. (151) diverges. This divergence is misleading becausegyq
it actually contributes nothing to the integri@ssuming that
we calculate the integral carefully; see the discussion below dkdK dykk’ 6(k) (k") 6(y) 0(2mw— )
Left unchecked, this false divergence prevents the integral
from converging withveGAS. To rectify the problem, we
want to subtract the false divergence from the integrand.
Since it integrates to zero, this is allowed.

The second main difficulty with getting the integral to In terms of these variablegq’,l”,t’,j| M?(A)|q,l,t,j) "
converge is roundoff error. Even after we subtract the fals¢akes the form

- %drdwdﬂrw o(r)6(w) 6(B) (27— B). (C6)
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("1t )| M2(A)]a,lLt,j) B D’ =dxdx drdwdBrw 76(x) 8(1—x) 6(x")
Ngi [, - = X B(x—x")6(r) B(w) (B) 62— B)L¥ (x).
== 534 D’ log nWq,q Ter(r ) T(r 1) 8
o o 5 5
—(Ad)"4AZ +4%) /
xe e ,21 E mzll_;[m#i Em, €7 15 avoid roundoff error, we have defined simplified dimen-
sionless versions of the differences of the free masses and the
where derivatives of these differences:
|
i P p(1=x—x)+ W pP(1-x—x')— 2wryp(x[1—x]+x'[1—x ])cos,B
R X(1—x)x"(1—x")
i r2p+w(1—x+1—x")2+2rwn(1—x+1—x')coss
P (1=x)(1-x") ’
_ r2p+w2(x+x’)2—2rwn(x+x’)coss
Ag=— X' )
_ r2 w2
AFK (1_X/)2 71
_ 2 w2
AI’K:F_"'?' (Cg)

Equation(C7) is now dimensionless, except for the factor in front of the integral, which is proportionatifo 1/
As x’—x (7—0), the contributions to the integrand from the first and second terms in the sum diverge. In the limit
—X, the contribution to the integral from these terms can be wiitten

ch

== e _ —a 4 1 _ W4
27342 S’ f D" log 7Ty (r)Te(r)e S2Ad v el OC) 4—

;- LX) (x+x )X (1=x+1-x').  (C10
An examination of this integral reveals a problem: the transverse integrals are zero and the longitudinal integrals are infinite.
To solve this problem, we consider what would have happened if we had not yetdéakénIn this case, the transverse

integrals would be zero and the longitudinal integrals would be finite. Thus-th@ limit of this integral would be zero. This
means that this integral is actually zero, and we can subtract it from the full integral {CBxq.

2 5 5

N
Q"1 M2 a, 0Lt )Y T=— Z—QW D' log 7| Wq ¢ T (r ) Ty(r . )e~ A9 g K+AIK)2 E' [l En
1= m=1;m#i
_ sl 1 W
— Sqq Te (1) Ty(r)e 3240 4W4(7—64(Ad)‘47 LIOx) (x+x)(1—x+1-x") .

(C1D)

Once we have performed this subtraction, there is no ambiguity about the value of the full integral, and it converges when
computed numerically.

e do not replace all the occurrencesxdfwith x because doing so hampers the convergence of the integral.
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b. Combination of the integrals
We now combine all the five-dimensional integrals into one integral:
AT 2 H Ncgi ’ F B
(q',1I"t",jIM (A)|q,|,t,j>5,D=—W D'[lcont Tex+ Inrex+ i s (C12
where

2% T - —452
lcon=L16),-20qr 20,2 j,20q7 10,1~ 5],05q’,35q,3]r|(re)(x )T (r ) Ty(ry e A9 e

11 1 N
1= LX) To (r )Ty(r e~ (A 4% <—+—)(1 o240 *Arcdix)
AFK AIK
2 2
o L C I S O Mel- (3)
X(1=x) 9 x(1-x) M x(1-x)x'(1-x") 4]

2 (1 e~ 2(Ad)” AFKAIK) 1 1

X(1=x)x"(1—=x") nAFKKIK

4
lin+ex= W, q’L|r (X T (ro)To(ry)e A4

X[ = W= 2% W2(r2+2w?[1—2x])— 53(r*+4r2w?[1—2x]+ 6w 1—2x]%) -4 COS,B\/;I'W([—].-F 7?]r?
+ W 1—x—x"]2)(1—x—x")+8r2w?x(1—x) — 4 cog Br2w?(p*+273[1—2x]+4x[1—x]—4n*x[1—X]
—29[1-2x])— 47w (W [1—2x]3+r1—2x(1—Xx)]) +27(r*—2r2w?[1—2x]

—A4w*x[ — 1+ 3x—4x2+2x%])],

5 5
— J— -~ —4 2 2 , — J—
=log 7| Wq q Te (r ) Ty(r ) e AD AR S Bl [ Ep— 8q.q Te (1) Ti(r)
i=1 m=1;m#i
_ 1 W
Xe—32(Ad) 4W4<?_64(Ad)_47 _(e)(x )(X+X/)(1_X+1_Xl) ) (C13)
T
We have rewritten the integrand of x'=x(1—e P). (C1H

(q’,1",t",jIM?(A)]a,1,t,] ) in+ex to eliminate large roundoff
errors, at the expense of making it more complicated. T

. . i cf\low the integral is
further avoid roundoff errors, we rewrite a few of tﬁgq,’s g

Y=cogjy)[272+27(1—2x)+(1—2x)?], @ 1"t jIMAA)a,) b )s—p
. T N 2 1 o o0 ]
S&) = —sinysin(j y)(272[1— 2x]+ [ 1— 6x+ 6x?] :_%f dxf dpf drf dw
2m2d® Jo " Jo 0 0
—2x[1—3x+2x?]),
2
2 (e) F B,F
1)—COS(j’y)(l 2%)(1+ 27— 2X). (C14 on dBrw L") [1cont lex+Iinrext IR 1-
Note that to compute some of the trigonometric functions (C16

that appear in this integrabuch as cos$f)] in terms of the
integration variables, it is necessary to use recursion relations As a final step, we note thaEGAS requires the region of
that define these functions in terms of cpand siny so that  integration to be finite. Thus we change variables fiom,

we can use Eq.C5). andwtoyy, y,, andy,:
The integral in Eq.(C12 converges slowly. This is be-

cause it is strongly peaked whedi=x, even though we
have subtracted the false divergence. To spread out this re-
gion, we change variables frori to p where

2 1
1+y, ™

p:
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=y b [W(P) =3 [RI21, 1)+ RE[LLLD) + RAI314))
r
2 —Ri[4),t,))]
W= 1+yW_ 1, (C17) in ’ ’ H
=2 Rilf(@.a)la’l.L). (C22
and then the final expression for the contribution to the ma- a‘qlt
trix elements from the five-dimensional integral is Thus by diagonalizindq’,l’,t",j|M?(A)|qg,l,t,}), we also
I ) obtain the eigenvalues and eigenstates {@f’,l’,t’,
(@' 1"t jIMA(A)[a,] L )s-p —j|M3(A)|q.1,t, =)
2
_ 4N} fldxfl dy fl dy fl dy fZ#d,Brw b. Reducing the number of matrix elements to compute
- 342 p r w
md” Jo -1 -1 -1 0 There are a few facts that allow us to reduce the number
1 1 of matrix elements that we have to compute. First, because
e i i | i
X 5 5 5 7°L{®(X) of gluon-exchange symmetry, the basis statkt,j) is zero if
(1+yp)* (1 +y)7 (1+yw) |+ is even andq=4, or if | +]j is odd andq#4. Second,
2 . gy . . . . .
ST emnF 1B+ 1 +BF C18 M?(A) is Hermitian, and its matrix elements in this basis
HeontlextIneex+ ] (€18 are real; so it is symmetric in this basis. Third, by inspection,
The integral converges nicely in this form. we see that
(1)t jIM2(A)]2),t,j)=0. (C23

2. Miscellaneous issues
Finally, there are some redundancies and additional zeros in
the matrix whenj=0:

To compute the glueball spectrum, we compute the matrix o 5 o 2
(q',1",t",j]M3(A)|qg,l,t,j) and diagonalize it for each 211U, 0MAA)[2],8,0)= (L], ", MH(A)[1),1,0),
value ofj separately. For a givel)|, the matrices withj - 2 — /o 4! 2
=|j| andj=—|j| are simply related, and we can use this (L1710 MAA) 31,100 =217t OLMH(A)]3).1,0),
fact to avoid computing and diagonalizing both of them. By (1)t 0 M2(A)|4),t,00=—(2]" t" 0| M3(A)|4],t,0),
inspection, we determine that

a. Equivalent bases: 4 —|

L . (31"t 0 M?(A)]4),t,0)=0. (C24
<q,1|’1t’7_J|M (A)|q1|1t1_]>
C. Estimating uncertainties in the spectrum
X (Q") I MA(M) [ Ly Ea,a Fa’a”), When we use th&eGAs Monte Carlo routine to compute

a’.a"” the matrix elements, the results for the matrix elements have
(C19 statistical uncertainties. In order to control the resulting un-

certainties in the spectrum, we would like to have a method

where that allows us to estimate how accurately we must calculate
any given matrix element in order for the spectrum to have a
(0,9")= 84164’ 21 84,20’ 11 84,307 3~ 8q,40q’ 4- desired uncertainty.
(C20 Suppose a diagonal matrix element

(q,1,t,j| M?(A)|q,1,t,}) is given by
This simply means that the basig|,t,—j) is related to the ) )
basis|q,l,t,j) by swapping the stated |,t,j) and|2],t,j), (AL MP(A)]a, 1 t,j)=Z+6, (C2H
and changing the sign ¢4,t,j). Renaming basis states and
changing their phases has no effect on the eigenvalues of t
matrix; so| ¥ (")"(P)) has the same mass pE!"(P)). It
also means that since

whereZ is the Monte Carlo estimate of the matrix element
%%d 6 is the associated absolute uncertainty. Using
MATHEMATICA with test matrices, it is straightforward to
convince oneself that ifis small, then it will yield a relative
uncertaintyeM§~ 5/Z in the eigenvalues of the matrif.

|\IfJ”(P)>=§|; RiﬂJQ,I,t,j) This translates to a relative uncertainty & ~ 8/(22) in
a the masses.

=3 [REL.L))+RG20.8))

in _ in _ 18n the development of this method, we are guided by the prin-
+R3It|31l1t1j>+R4lt|4il't1]>]1 (C2y ciples of quantum-mechanical perturbation theory, although we
cannot legitimately use perturbation theory to analyze the uncertain-

we have ties.
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Estimating the uncertainty in the spectrum due to uncer- (@', 1"t jIMP(M)]a, 1Lt j) =24, (C26
tainties in off-diagonal matrix elements is more difficult. Us-
ing MATHEMATICA with test matrices, the simplest method
that we have found that is reasonably reliable is to use a type
of degenerate perturbation theory. When we have an off-

diagonal matrix element given by we diagonalize the two matrices
|
a.l,tj|M3(A)|g,l,t, Z+6
(< > A A 2 YA ' (C27)
Z+4 (@ 1"t MEA) a1t )
and
a,0,t,j | M3(A)|g,l Lt zZ-6
(< | | > A A YA 2 YA ’ (C28)
Z-6 Q' 1"t j I M2(A)|g’ 1))
and we compare their eigenvalues to the eigenvalues of the matrix
(CARSIPYECVI AR F) z
A 2 YA . (C29)
z (@', 1t jIME(M)]g" 1t )

We then definey;2 to be the largest relative deviation that error in our estimate of the uncertainty eventually becomes
n

we have found in the eigenvalues, and we estimate the ré&itical. At this point, the spectrum that we get when we
sulting relative uncertainty in the mass spectrum toehe ~ diagonalize the matrix becomes completely unreliablée
n evidence of the breakdown is sudden contamination of the

~ey2/2. This estimate tends to work well unless there A w-lying wave functions with high-order componentst
too many diagonal matrix elements that are nearly degeneshould be possible to develop more sophisticated methods of
ate  with  either (q,l,t,j[M?(A)[q,l,t,j)  or  estimating uncertainties to suppress this problem.
Q"1 G MEA) [ 1 ).

To achieve a relative uncertainty 6f(¢) in the glueball
masses, we requireMn<s for each matrix element. This

method tends to work reasonably well. The main difficulty is  We would like to thank Roger D. Kylin, Richard J. Furn-
that we have neglected to consider the highly nonlinear coustahl, and John Hiller for useful discussions. This work has
plings between the uncertainties in different matrix elementsbeen partially supported by National Science Foundation
For this reason, as we increase the size of the matrix, th&rant No. PHY-9800964.
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