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Glueballs in a Hamiltonian light-front approach to pure-glue QCD

Brent H. Allen* and Robert J. Perry†
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~Received 24 August 1999; published 21 June 2000!

We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it. The renormalization pro-
cedure is designed to produce a Hamiltonian that will yield physical states that rapidly converge in an expan-
sion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum
effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly
decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical
principles of light-front pure-glue QCD, including Lorentz covariance and gauge covariance. This means that
the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring
the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated
physical principles of pure-glue QCD, we are able to derive recursion relations that define the Hamiltonian to
all orders in perturbation theory in terms of the running coupling. We approximate all physical states as
two-gluon states~thus they are relatively simple single-glueball states!, and use our recursion relations to
calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize
the Hamiltonian using basis-function expansions for the gluons’ color, spin, and momentum degrees of free-
dom. We examine the sensitivity of our results to the cutoff and use them to analyze the nonperturbative scale
dependence of the coupling. We investigate the effect of the dynamical rotational symmetry of light-front field
theory on the rotational degeneracies of the spectrum and compare the spectrum to recent results from other
approaches. Finally, we examine our wave functions and analyze the various sources of error in our
calculation.

PACS number~s!: 11.10.Gh, 12.38.2t
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I. INTRODUCTION

A solution to a quantum field theory that is close to o
physical intuition is possible if we can develop a formalis
in which the physical states of the theory rapidly converge
an expansion in free-particle Fock-space sectors~free sec-
tors!. Such an expansion is unlikely to be possible in
equal-time approach to many of the more interesting th
ries, such as QCD. This is because in equal-time approa
to these theories, the physical states must be built on top
complicated vacuum unless the volume of space is seve
limited. For this reason, we work in light-front field theor
~LFFT!. In LFFT, it is possible to force the vacuum to b
empty by removing from the theory all particles that ha
zero longitudinal momentum.1 Any physical effects of these
particles must be incorporated into the operators of
theory in order to obtain correct physical quantities.

In LFFT, the Hamiltonian is trivially related to the
invariant-mass operator2 ~IMO!, and it is more natural to
work with the IMO because it is manifestly boost invarian
If the IMO satisfies three conditions in the basis of fre
particle Fock-space states~free states!, then its eigenstate
will rapidly converge in an expansion in free sectors. Fir
the diagonal matrix elements of the IMO must be domina

*Email address: allen@mps.ohio-state.edu
†Email address: perry@mps.ohio-state.edu
1This is because there are no negative longitudinal momenta

momentum conservation requires the three-momenta of the
stituents of the vacuum to sum to zero.

2The invariant-mass operator is given by the square of the
mentum operator:PmPm5M2. See Appendix A for more details.
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by the free part of the IMO. Second, the off-diagonal mat
elements of the IMO must quickly decrease as the differe
of the free masses of the states increases. If the IMO sati
these first two conditions, then each of its eigenstates wil
dominated by free-state components with free masses
are close to the mass of the eigenstate. The third conditio
the IMO is that the free mass of a free state must quic
increase as the number of particles in the state increase
the IMO satisfies all three conditions, then the number
particles in a free-state component that dominates an ei
state will be limited from above. This means that the IMO
eigenstates will rapidly converge in an expansion in fr
sectors.3

nd
n-

o-

3There are three subtleties here. The first subtlety is that the
and third conditions on the IMO will not be satisfied for those fr
states in which many of the particles have negligible center-of-m
transverse momentum and little or no mass. However, the contr
tions of these free states to the physical states in which we
interested are typically suppressed. For example, in QCD these
states have very large widths in transverse position space and
thus highly suppressed by confinement. In QED, the particles w
negligible center-of-mass transverse momentum and no mass
long-transverse-wavelength photons. These photons decouple
the physical states in which we are typically interested, e.g., cha
singlet states such as hydrogen and positronium. Thus the cont
tions to these physical states from the free states containing t
photons are suppressed. The second subtlety is that exactly
quickly the IMO’s off-diagonal matrix elements must decrease a
the free mass of a free state must increase are not known.
assume that the rates that we are able to achieve are sufficient.
can be verified by diagonalizing the IMO and examining the rate
convergence of the free-sector expansion of its eigenstates.
third subtlety is that the coefficients of the expansion for high
excited eigenstates may grow for a number of free sectors and
peak before diminishing and becoming rapidly convergent.
©2000 The American Physical Society05-1
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To satisfy the first condition on the IMO, we assume th
we can derive the IMO in perturbation theory. If this is tru
then the couplings are small and the diagonal matrix e
ments of the IMO are dominated by the free part of the IM
To satisfy the second condition, we place a smooth cutoff
the IMO to force its matrix elements to quickly decrease
the difference of the free masses of the states increases.
we have removed the particles with zero longitudinal m
mentum from the theory, it is reasonable to expect that
third and final condition on the IMO will be satisfied aut
matically. This is because the free-particle dispersion rela
of LFFT should force the free mass of a free state to quic
increase as the number of particles in the state increases~see
Appendix A of Ref.@1#!.

By suppressing the matrix elements of the IMO that ha
large changes in free mass, the cutoff regulates the ultrav
divergences of the theory. Unfortunately, it also violates
number of physical principles of LFFT, including Loren
covariance and gauge covariance. This means that the o
tors in the IMO are not required to respect these phys
principles, and renormalization isnot simply a matter of ad-
justing a few canonical parameters. The simplest way to s
tematically determine the IMO in this case is in perturbat
theory. In order for a perturbative computation of the IMO
be strictly valid, the theory must be asymptotically free.4 If
this is the case, then by requiring the IMO to produce cuto
independent physical quantities and by requiring it to resp
the unviolated physical principles of the theory,5 we can de-
rive recursion relations that define the IMO to all orders
perturbation theory in terms of the fundamental parame
of the field theory. If our cutoff is large enough, then t
couplings will be small and the perturbative approximati
to the IMO may work well.

The physical principles that we use to determine the IM
form a subset of the full set of physical principles of ligh
front field theory. This raises the question of how the rema
ing principles, which are violated by our cutoff, are restor
in physical quantities. Since the IMO is uniquely determin
by the principles that we use, the remaining principles m
be automatically respected by physical quantities deri
from our IMO, at least perturbatively. If they are not, the
they contradict the principles that we use and no consis
theory can be built upon the complete set of principles. T
reason that this process is possible is that there are redun
cies among the various physical principles.

It is possible to compute operators other than the IMO
our approach. Although we compute operators pertur
tively, we can use these operators to compute nonpertu
tive quantities. For example, the spectrum can be comp

4Our method may work even if the theory is not asymptotica
free. For example, it works in QED because the scale at which
electron charge is large is astronomical.

5Some of the physical principles, such as cluster decomposi
are violated in a very specific manner and can still be used
restrict the form of the IMO. However, the restriction in this situ
tion is always weaker than it would have been had there been
violation of the principle.
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by diagonalizing the IMO~see Sec. VI!. However, there are
drawbacks to computing operators perturbatively. It is p
sible that there are intrinsically nonperturbative effects in
theory that require nonperturbative renormalization. A
such effects are neglected in this approach. Another prob
is that perturbative renormalization makes nonperturba
physical quantities somewhat cutoff dependent.

In general, field theories have an infinite number of d
grees of freedom. However, since our IMO will cause t
physical states of the theory to rapidly converge in an exp
sion in free sectors, we can truncate this expansion. T
means that approximate computations of physical quant
will require only a finite number of finite-body matrix ele
ments of operators. In addition, since we assume that we
compute these matrix elements perturbatively, in these c
putations we only need to consider intermediate states
can be connected perturbatively to the states in the ma
elements. This allows perturbation theory to naturally lim
the number of intermediate-state particles that we must c
sider.

Since we do not truncate the space of intermediate st
that can appear when we perturbatively calculate matrix
ements of operators, our approach does not use a Ta
Dancoff truncation6 @2–4#. ~A Tamm-Dancoff truncation ar-
bitrarily limits the number of particles that can appear in a
state in the theory. Such a truncation drastically complica
renormalization, i.e., the calculation of the matrix eleme
of operators.! We also do not completely eliminate any in
teractions, such as those that change particle number. T
strengths of our approach allow us to better describe phys
theories. However, the truncation of the free-sector exp
sion of physical states has drawbacks that are similar to th
of perturbative renormalization. It neglects any physical
fects that require an infinite number of particles and contr
utes to the cutoff dependence of nonperturbative phys
quantities.

The accuracy of our results and the strength of the cu
dependence of our nonperturbative physical quantities
determined by the order in perturbation theory to which
calculate the operators of the theory and the number of
sectors that we keep in the expansion of physical states. I
use a cutoff that is too small, then the couplings of the the
will be large, and it will be necessary for us to keep ma
terms in the expansion of the operators. If we use a cu
that is too large, then the free-sector expansion of the ph
cal states will converge slowly, and it will be necessary
us to keep many sectors in the states. We assume that i
order of perturbation theory and the number of free sec
are manageable, then there is a range of cutoff values

e

n,
to

no

6The only degrees of freedom that we remove from the full the
are the particles with zero longitudinal momentum. We should
able to replace the physical effects of these particles with inte
tions without compromising the validity of the theory. This is b
cause these particles are vacuum effects or have infinite kin
energies~or both!, and thus are not observable in the laboratory
particles.
5-2
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which the approximations work well and physical quantit
are relatively accurate and cutoff independent.

As we mentioned, we remove from the theory all partic
with zero longitudinal momentum. We should replace th
physical effects with interactions. However, due to the lim
tations of our method, we can reproduce only those effect
these particles that can be derived with perturbative ren
malization and require only a small number of particles.

There are a number of approaches that are similar to
@5–12#, and some of these methods have been used to ca
late the physical states of QCD@12,13#. These calculations
are based on nonrelativistic approximations and use s
step-function cutoffs. Nonrelativistic approximations dras
cally simplify the diagonalization of the IMO, but are insu
ficient for states containing light quarks or gluons. Sha
cutoffs prevent the complete cancellation of the infrared
vergences that appear in light-front gauge theories.7

Our approach is completely relativistic and uses smo
cutoffs to ensure the complete cancellation of the light-fr
infrared divergences. It is largely based on the renormal
tion methods of Perry@14#, Perry and Wilson@15#, Wilson
@16#, and Glazek and Wilson@5#, as well as the Hamiltonian
diagonalization methods of Wegner@17#. In Ref. @1#, we de-
veloped and tested our method in masslessf3 theory in six
dimensions. In Ref.@18#, Kylin, Allen, and Perry extended
our method to include particle masses. In this paper, we
tend our method to pure-glue QCD. This theory is simp
than full QCD due to the reduced number of vertices and
absence of quark masses. For this application, we derive
recursion relations that determine the IMO to all orders
perturbation theory in the running coupling. We approxim
all physical states as two-gluon states and use the recu
relations to compute to second order the part of the IMO t
is required to compute the spectrum. We diagonalize
IMO in a basis-state expansion and analyze the results.

This paper is organized as follows. Appendix A conta
our conventions for light-front pure-glue QCD; so the read
may wish to examine it first. In Sec. II we present o
method for computing the free-state matrix elements of
IMO. Some of the details of the method are given in Appe
dix B. In Section III we define a basis for the expansion
physical states. In Sec. IV we use the recursion relations
the IMO to compute its two-gluon to two-gluon matrix el
ment to second order in the running coupling. This is
only free-state matrix element that we need to solve the
genvalue equation. In Sec. V we compute the matrix e
ments of the IMO in the basis that we have defined, in ter
of integrals that must be evaluated numerically. Some of
details of these evaluations and other technical issues ap
in Appendix C. In Sec. VI we derive our results and analy
the sources of error in the calculation. Finally, in Sec. VII w
conclude with a summary and a discussion of the direction
future work. We do not give an introduction to light-fron
field theory or review the various research efforts in this

7These appear due to the exchange of massless gauge pa
with arbitrarily small longitudinal momentum.
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area. The interested reader should consult the recent rev
and introductions for these purposes@19#.

II. THE METHOD FOR COMPUTING
FREE-STATE MATRIX ELEMENTS

OF THE INVARIANT-MASS OPERATOR

This section summarizes the extension of the results
Secs. II–IV and Appendix D of Ref.@1# to the case of pure-
glue QCD. We begin by defining our cutoff, which regulat
the free-state matrix elements of the IMO by exponentia
suppressing large changes in free mass. We then proce
place a number of restrictions on the IMO. First we force t
IMO at a given cutoff to be unitarily equivalent to itself at
higher cutoff. This implies that the IMO is unitarily equiva
lent to itself at an infinite cutoff, and will therefore yiel
cutoff-independent physical quantities. From the statem
of unitary equivalence, we develop a perturbative series
relates the interactions at two different cutoffs. We then p
ceed to use physical principles to restrict the form of t
IMO. We require it to conserve momentum and to be inva
ant under boosts and rotations about the three-axis. Altho
our cutoff violates exact transverse locality, we are able
require the IMO to respect an approximate transverse lo
ity. In practice this means that the IMO’s matrix elements a
analytic functions of transverse momenta. The cutoff a
violates cluster decomposition, but we show that the imp
cations of this violation are simple enough that we can s
use this principle to restrict the form of the IMO.

In order to represent pure-glue QCD, the IMO must b
come the free IMO in the noninteracting limit, and it must
a function only of the cutoff and the coupling. The fin
physical restriction on the IMO is that it must reproduce t
perturbative scattering amplitudes of pure-glue QCD. T
restriction specifies the form of the first-order interaction a
part of the second-order interaction.

We use the restrictions from physical principles and
perturbative series that relates the interactions at two dif
ent cutoffs to derive the recursion relations that determ
the IMO. A crucial step in this process is the removal of t
coupling from the perturbative series. This allows us to se
rate the cutoff dependences of the operators in the interac
from the cutoff dependences of their couplings. Most of t
details of this derivation are relegated to Appendix B.

A. The cutoff

Our goal is to derive recursion relations that uniquely d
termine the IMO to all orders in perturbation theory in th
running coupling. The IMO is a function of the cutoff, an
can be split into the canonical free IMO and an interact
~see Appendix A for our light-front pure-glue QCD conve
tions!:

M2~L!5Mfree
2 1Mint

2 ~L!. ~1!

The cutoff is implemented on the matrix elements of t
IMO:

cles
5-3
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BRENT H. ALLEN AND ROBERT J. PERRY PHYSICAL REVIEW D62 025005
^FuM2~L!uI &5^FuMfree
2 uI &1^FuMint

2 ~L!uI &

5MF
2^FuI &1e2DFI

2 /L4
^FuV~L!uI &, ~2!

whereuF& and uI& are eigenstates of the free IMO with eige
valuesMF

2 andMI
2, andDFI is the difference of these eigen

values:

DFI5MF
22MI

2. ~3!

V(L! is the interaction with the Gaussian cutoff factor r
moved, and we refer to it as the ‘‘reduced interaction.’’ T
determine the IMO, we must determine the reduced inte
tion.

We will see that̂ FuV(L)uI & does not grow exponentially
as DFI

2 gets large; so the exponential in Eq.~2! forces the
off-diagonal matrix elements of the IMO to rapidly diminis
as DFI

2 grows. This satisfies the second of our three con
tions on the IMO and regulates it.

B. The restriction to produce cutoff-independent physical
quantities

Our cutoff violates a number of physical principles
LFFT, including Lorentz covariance and gauge covarianc8

This means that the operators in the IMO are not require
respect these physical principles. In addition, since ther
no locality in the longitudinal direction in Hamiltonia
LFFT,9 these operators can contain arbitrary functions
longitudinal momenta. To uniquely determine the IMO
this case, we have to place some restrictions on it. The
restriction is that it must produce cutoff-independent phy
cal quantities. To enforce this, we requireM2(L! to satisfy

M2~L!5U~L,L8!M2~L8!U†~L,L8!, ~4!

whereU is a unitary transformation that changes the IMO
cutoff and

L,L8,2L. ~5!

We have placed an upper limit onL8 because Eq.~4! is
perturbatively valid only ifL8 is not too much larger thanL
@20#. Note that we are consideringM2(L! to be a function
of its argument; i.e.,M2(L8! has the same functional depe
dence onL8 that M2(L! has onL. In Ref. @1#, we proved
that Eq. ~4! forces M2(L! to produce cutoff-independen
physical quantities.

8Our regulator breaks these symmetries because the mass of
state is neither gauge-invariant nor rotationally invariant~except for
rotations about the three-axis!.

9That there is no longitudinal locality in Hamiltonian LFFT
evident from the fact that the longitudinal momentum of a fr
particle appears in the denominator of its dispersion relation,pW'

2

1m2)/p1.
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The unitary transformation that we use is designed to a
the cutoff implemented in Eq.~2!, and is a simplified version
of a transformation introduced by Wegner@17#, modified for
implementation with the IMO. It is uniquely defined by
linear first-order differential equation:

dU~L,L8!

d~L24!
5T~L!U~L,L8!, ~6!

with one boundary condition:

U~L,L!51. ~7!

U(L,L8! is unitary as long asT(L! is anti-Hermitian and
linear @1#. We define

T~L!5@Mfree
2 ,M2~L!#, ~8!

which is anti-Hermitian and linear.
To solve forM2(L! perturbatively, we need to turn Eq

~4! into a perturbative restriction on the reduced interact
V(L). We outlined how to do this in Ref.@1#, and here we
simply state the results that we need. The perturbative
sion of Eq.~4! in terms of the reduced interaction is

V~L!2V~L8!5dV, ~9!

wheredV is the change to the reduced interaction and i
function of bothL andL8:

^FudVuI &5
1

2 (
K

^FuV~L8!uK&^KuV~L8!uI &T2
~L,L8!~F,K,I !

1
1

4 (
K,L

^FuV~L8!uK&^KuV~L8!uL&

3^LuV~L8!uI &T3
~L,L8!~F,K,L,I !

1O~@V~L8!#4!. ~10!

In this equation, the sums are over complete sets of
states and the cutoff functions are defined by

T2
~L,L8!~F,K,I !

5S 1

DFK
2

1

DKI
D ~e2L824DFKDKI2e2L24DFKDKI !

~11!

and

free
5-4
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T3
~L,L8!~F,K,L,I !5S 1

DKL
2

1

DLI
D S 1

DKI
2

1

DFK
De2L824DKLDLI~e2L24DFKDKI2e2L824DFKDKI !

1S 1

DKL
2

1

DLI
D DFK1D IK

DKLDLI1DFKDKI
~e2L824~DFKDKI1DKLDLI !2e2L24~DFKDKI1DKLDLI !!

1S 1

DFK
2

1

DKL
D S 1

DLI
2

1

DFL
De2L824DFKDKL~e2L24DFLDLI2e2L824DFLDLI !

1S 1

DFK
2

1

DKL
D DFL1D IL

DFKDKL1DFLDLI
~e2L824~DFKDKL1DFLDLI !2e2L24~DFKDKL1DFLDLI !!. ~12!
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The above definitions for the cutoff functions assume t
none of theD’s that appear in the denominators is zero.
the event one of them is zero, the appropriate cutoff funct
is defined by

Ti
~L,L8!~D50!5 lim

D→0
Ti

~L,L8!~D!. ~13!

C. Restrictions from physical principles

Equation ~9! is the first restriction on the IMO. To
uniquely determine the IMO, we need to place additio
restrictions on it, and we do this using the physical princip
of the theory that are not violated by the cutoff.~See footnote
5.!

1. Symmetry principles

Any LFFT should exhibit manifest momentum conserv
tion, boost covariance, and covariance under rotations a
the three-axis. Our cutoff does not violate any of these p
ciples; so we restrict the IMO to conserve momentum and
be invariant under boosts and rotations about the three-a

2. Transverse locality

Ideally, the IMO should be local in the transverse dire
tions, and thus each of its matrix elements should be expr
ible as a finite series of powers of transverse momenta w
expansion coefficients that are functions of longitudinal m
menta. In our case, the cutoff suppresses interactions
have large transverse-momentum transfers and replaces
with interactions that have smaller transverse-momen
transfers. This is equivalent to suppressing interactions
occur over small transverse separations and replacing t
with interactions that occur over larger transverse sep
tions; so we do not expect our interactions to be perfe
transverse-local. Nonetheless, we expect that interaction
M2(L! should appear local relative to transverse separat
larger thanL21 or, equivalently, to transverse momenta le
thanL. This means that for transverse momenta less thaL
we should be able to approximate each matrix elemen
M2(L! as a finite power series inpW' /L. We enforce this by
assuming that transverse locality is violated in the weak
manner possible, i.e., that any matrix element of the IM
can be expressed as aninfinite series of powers of transvers
02500
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momenta with an infinite radius of convergence. In oth
words, we assume that the matrix elements of the IMO
analytic functions of transverse momenta.

3. Cluster decomposition

Since the matrix elements of the IMO conserve mom
tum, they can be written as a sum of terms, with each te
containing a unique product of momentum-conserving de
functions @21#. We require the IMO to satisfy approximat
cluster decomposition@1#; i.e. when any of its matrix ele-
ments is written as an expansion in the possible product
momentum-conserving delta functions, the coefficient of a
term in the expansion is restricted as follows.~If there is
more than one possible set of spectators for a given pro
of momentum-conserving delta functions, then the coe
cient has to be broken into a distinct part for each poss
set, and these restrictions hold for each part separately! It
can depend on the cutoff, the quantum numbers of the in
acting particles, and the total longitudinal momentum.
must be proportional to a quantum-number-conserving K
necker delta for each discrete quantum number for e
spectator. It can have no other dependence on the quan
numbers of spectators, and it cannot contain delta functi
that fix momenta.

The reason that the IMO does not respect exact clu
decomposition and that the coefficients in the delta-funct
expansion can depend on the momenta of spectators~through
a dependence on the total longitudinal momentum! is that
our cutoff on free-mass differences violates cluster deco
position. To see this, note that the change in free mass
some process is given byP1(S j pj8

22S i pi
2), where thepi ’s

are the momenta of the particles in the initial state, thepj8’s
are the momenta of the particles in the final state, andP1 is
the total longitudinal momentum of each state. The min
momenta of any spectators cancel in this difference, but t
longitudinal momenta still contribute to the overall factor
P1.

4. Representation of the theory of interest

The preceding restrictions onM2(L! are valid for any
LFFT in more than two dimensions. In order to represen
particular theory, we must place additional restrictions
M2(L).
5-5
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We assume that we can computeM2(L! perturbatively,
which means that we can expandV(L! in powers of the
coupling at the scaleL. Our cutoff has no effect in the non
interacting limit; so our IMO must reproduce free pure-gl
QCD in this limit. According to Eq.~2!, this means that
V(L! vanishes in the noninteracting limit.

In pure-glue QCD, the only fundamental parameter is
coupling; so we require the IMO to depend only on it and
scale.~For an example of the application of our method to
theory with more than one parameter, see Ref.@18#.! In this
case, the expansion ofV(L! takes the form

V~L!5(
r 51

`

gL
r V~r !~L!, ~14!

where gL is the coupling at the scaleL. We refer to
V(r )(L! as theO(gL

r ! reduced interaction, although for con
venience the coupling is factored out.

gL is the correct fundamental parameter for pure-g
QCD if and only if its definition is consistent with the ca
nonical definition of the coupling. The canonical definition

g5@16p3p1
1d~3!~p12p22p3!²g2g3uvug1³#21

3^g2g3uM2ug1&, ~15!

wherev is the canonical interaction and² j uvu i³ denotes a
modified matrix element ofv. ~See Appendix A for our
light-front pure-glue QCD conventions.! The denominator
removes all dependence on momentum, spin, and color in
canonical matrix element for gluon emission, and thus i
lates the coupling. We define the couplinggL by

gL5$@16p3p1
1d~3!~p12p22p3!²g2g3uvug1³#21

3^g2g3uM2~L!ug1&%pW 2'5pW 3' ;p
2
15p

3
1 ;e50

sn51;cn5n

5$@16p3p1
1d~3!~p12p22p3!²g2g3uvug1³#21

3^g2g3uV~L!ug1&%pW 2'5pW 3' ;p
2
15p

3
1 ;e50

sn51;cn5n
, ~16!

wheren51, 2, 3, ande is a longitudinal-momentum cutof
that we define below. Momentum conservation and bo
invariance imply that the matrix element that defines the c
pling can depend only on the transverse momentum of
ticle 2 in the center-of-mass frame and the ratiop2

1/p1
1 . The

restrictionspW 2'5pW 3' andp2
15p3

1 fix these quantities to be
0 and 1

2, respectively.
Our definition of the coupling is consistent with the c

nonical definition because the conditions on the matrix e
ments in Eq.~16! have no effect on the right-hand sid
~RHS! of Eq. ~15! and do not forcêg2g3uM2ug1& to vanish.
According to Eq. ~14!, the IMO is coupling coherent
@14,15,22# because the couplings of its noncanonical ope
tors are functions only of the fundamental parameters of
theory and they vanish in the noninteracting limit.

We have assumed that the IMO obeys approximate tra
verse locality, which means that we can expand any ma
element ^FuV(r )(L)uI & in powers of transverse moment
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Each term in this expansion is either cutoff dependent
cutoff independent. We defineVCD

(r ) (L! to be the cutoff-
dependent part ofV(r )(L), i.e., the part that produces th
cutoff-dependent terms in transverse-momentum expans
of matrix elements ofV(r )(L). We defineVCI

(r ) to be the
cutoff-independent part ofV(r )(L), i.e., the part that pro-
duces the cutoff-independent terms in transverse-momen
expansions of matrix elements ofV(r )(L). Then

V~r !~L!5VCD
~r ! ~L!1VCI

~r ! . ~17!

This separation is necessary because the procedures for
puting VCD

(r ) (L! andVCI
(r ) differ.

We believe that ifM2(L! is to reproduce the perturbativ
scattering amplitudes of pure-glue QCD, then it is necess
and sufficient for the reduced interaction to satisfy the f
lowing conditions.10 We prohibit V(r )(L! from having a
three-point interaction unlessr is odd, and we prohibit
V(r )(L! from having a four-point interaction unlessr is even.
We require

V~1!5P1
16p3

2! E D1D2D3a2
†a3

†a1d~3!~p12p22p3!

3²g2g3uvug1³

1P1
16p3

2! E D1D2D3a3
†a1a2d~3!~p11p22p3!

3²g3uvug1g2³ ~18!

and

VCI
~2!5P1

16p3

2!2! E D1D2D3D4a3
†a4

†a1a2

3d~3!~p11p22p32p4!(
i 51

4

u1,2,;3,4
~ i ! ²g3g4uvug1g2³ i

1P1
16p3

3! E D1D2D3D4a2
†a3

†a4
†a1

3d~3!~p12p22p32p4!(
i 51

4

u1;2,3,4
~ i ! ²g2g3g4uvug1³ i

1P1
16p3

3! E D1D2D3D4a4
†a1a2a3

3d~3!(p11p21p32p4)(
i 51

4

u1,2,3;4
~ i ! ²g4uvug1g2g3³ i ,

~19!

where

10Any longitudinal regulator that is consistent with the physic
principles that we use to restrict the IMO is sufficient. It is n
necessary to use oure cutoff in order to reproduce the perturbativ
scattering amplitudes of pure-glue QCD.
5-6
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u1,2;3,4
~1! 51,

u1,2;3,4
~2! 5u~ up1

12p3
1u2eP1!,

u1,2;3,4
~3! 5u~ up1

12p4
1u2eP1!,

u1,2;3,4
~4! 51, ~20!

and

u1;2,3,4
~1! 51,

u1;2,3,4
~2! 5u~ up1

12p2
1u2eP1!,

u1;2,3,4
~3! 5u~ up1

12p3
1u2eP1!,

u1;2,3,4
~4! 5u~ up1

12p4
1u2eP1!, ~21!

and

u1,2,3;4
~1! 51,

u1,2,3;4
~2! 5u~ up1

12p4
1u2eP1!,

u1,2,3;4
~3! 5u~ up2

12p4
1u2eP1!,

u1,2,3;4
~4! 5u~ up3

12p4
1u2eP1!. ~22!

The presence ofe in these step-function cutoffs ensures th
we will avoid divergences from exchanged gluons~either
instantaneous or real! with infinitesimal longitudinal momen-
tum. In Sec. V we show how we can takee to zero before we
diagonalizeM2(L).

We have not yet proved that the above conditions on
reduced interaction are necessary and sufficient to repro
the perturbative scattering amplitudes of pure-glue QCD.
can, however, show inf3 theory @1# that analogous condi
tions are necessary and sufficient to reproduce all sec
order scattering amplitudes.

D. The recursion relations for the invariant-mass operator

The restrictions that we have placed on the IMO are s
ficient to uniquely determine it order-by-order in perturb
tion theory. In this subsection, we present the recursion r
tions that defineM2(L! in terms ofV(1) andVCI

(2) , which we
have defined above. To begin, we consider the restric
that forces the IMO to produce cutoff-independent physi
quantities:

V~L!2V~L8!5dV. ~23!

This restriction is in terms of the reduced interaction and
change to the reduced interaction.

dV is defined in Eq.~10!, which makes it clear that sinc
V(L8! can be expanded in powers ofgL8 , so candV:

dV5(
t52

`

gL8
t dV~ t !. ~24!
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We refer todV(t) as theO(gL8
t ! change to the reduced inte

action, although for convenience the coupling is factored o
Note thatdV(t) is a function ofL andL8.

Now Eq.~23! can be expanded in powers ofgL andgL8 :

(
t51

`

gL
t V~ t !~L!2(

t51

`

gL8
t V~ t !~L8!5(

t52

`

gL8
t dV~ t !. ~25!

This equation is a bit tricky to use because it involves
couplings at two different scales. To see how they are
lated, consider the matrix element of Eq.~23! for g1
→g2g3 :

^g2g3uV~L!ug1&2^g2g3uV~L8!ug1&5^g2g3udVug1&.
~26!

According to the definition of the coupling, this equatio
implies that

gL2gL85$@16p3p1
1d~3!~p12p22p3!²g2g3uvug1³#21

3^g2g3udVug1&%pW 2'5pW 3' ;p
2
15p

3
1 ;e50

sn51;cn5n
. ~27!

SinceV(1) changes particle number by 1, inspection of E
~10! reveals that̂ g2g3udVug1& is O(gL8

3 ); so

gL5gL81O~gL8
3

!. ~28!

This implies that

gL5gL81(
s53

`

gL8
s Cs~L,L8!, ~29!

where theCs’s are functions ofL and L8. For an integert
>1, Eq. ~29! implies that

gL
t 5gL8

t
1(

s52

`

gL8
t1sBt,s~L,L8!, ~30!

where theBt,s’s are functions ofL andL8, and can be cal-
culated in terms of theCs’s by raising Eq.~29! to the tth
power.

We substitute Eq.~30! into Eq. ~25! and demand that it
hold order-by-order ingL8 . At O(gL8

r ! (r>1), this implies
that

V~r !~L!2V~r !~L8!5dV~r !2(
s52

r 21

Br 2s,sV
~r 2s!~L!,

~31!

where dV(1)50, and we define any sum to be zero if i
upper limit is less than its lower limit. The cutoff
independent parts ofV(r )(L! andV(r )(L8! cancel on the left-
hand side~LHS!, leaving

VCD
~r ! ~L!2VCD

~r ! ~L8!5dV~r !2(
s52

r 21

Br 2s,sV
~r 2s!~L!.

~32!
5-7
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This equation can be used to derive the desired recur
relations.

In the remainder of this section, we summarize the res
of Appendix B, which contains a derivation of the recursi
relations that define the IMO. Appendix B is an extension
Appendix D of Ref.@1# to the case of pure-glue QCD.

Recall that momentum conservation implies that any m
trix element^FuV(L)uI & can be written as an expansion
unique products of momentum-conserving delta functio
This means that an arbitrary matrix element of Eq.~32! can
be expanded in products of delta functions and thus
equivalent to a set of equations, one for each possible p
uct of delta functions. Given approximate transverse loca
each of the resulting equations can be expanded in powe
transverse momenta. Matching the coefficients of the pow
of transverse momenta on either side of these equation
lows us to rigorously derive the following results~see Ap-
pendix B for details!.

First, the cutoff-dependent part of theO(gL
r ! reduced in-

teraction is given in terms of lower-order reduced inter
tions by

^FuVCD
~r ! ~L!uI &5F ^FudV~r !uI &2(

s52

r 21

Br 2s,s

3^FuV~r 2s!~L!uI &G
L terms

, ~33!

where ‘‘L terms’’ means that the RHS is to be expanded
powers of transverse momenta and only the terms in
expansion that are proportional to powers or inverse pow
of L contribute. Recall thatdV(r ) is defined by Eqs.~10! and
~24!.

Second, the cutoff-independent part ofV(r )(L! has two
contributions: a four-point interaction with no transvers
momentum dependence, and a three-point interaction th
linear in transverse momenta. If there are no such contr
tions to V(r )(L), then it is completely determined by Eq
~33!. Third, the coupling runs at odd orders; i.e.,Cs is zero if
s is even@see Eq.~29!#. Fourth, there is no wave-functio
renormalization at any order in perturbation theory in o
approach because this would violate the restrictions that
have placed on the IMO.

The fifth and final result from Appendix B is that th
cutoff-independent parts of theO(gL

r ! andO(gL
r 11! reduced

interactions for oddr>3 are determined by the coupled in
tegral equations11

^FuVCI
~r !uI &5

1

Br ,2
F ^FudV~r 12!uI &2(

s53

r 11

Br 122s,s

3^FuV~r 122s!~L!uI &G
pW

'
1 term

3-point

, ~34!

11It is very difficult to prove that integral equations of this typ
have a unique solution; so we simply assume that it is true in
case.
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^FuVCI
~r 11!uI &5

1

Br 11,2
F ^FudV~r 13!uI &

2(
s53

r 12

Br 132s,s^FuV~r 132s!~L!uI &G
pW

'
0 term

4-point

.

~35!

To use these equations, the right-hand sides have to be
panded in powers of transverse momenta. Only three-p
interactions that are linear in transverse momenta contrib
to VCI

(r ) , and only four-point interactions that are independe
of all transverse momenta contribute toVCI

(r 11) .
These equations are coupled integral equations bec

both VCI
(r ) and VCI

(r 11) appear on the RHS of Eq.~34! inside
integrals indV(r 12), andVCI

(r 11) appears on the RHS of Eq
~35! inside integrals indV(r 13). It would seem thatVCI

(r 12)

also appears on the RHS of Eq.~35! inside integrals in
dV(r 13), but VCI

(r 12) cannot couple toV(1) to produce a
transverse-momentum-independent four-point contribut

to dV(r 13). This is because the cutoff functionT2
(L,L8) van-

ishes when the intermediate state is massless and all ext
transverse momenta are zero. This means that since
specifiedV(1) and VCI

(2) in Sec. II C 4 we can use Eqs.~34!
and~35! to solve forVCI

(3) andVCI
(4) simultaneously, andVCI

(5)

and VCI
(6) simultaneously, and so on. Note that befo

we can use these equations to solve forVCI
(r ) and VCI

(r 11)

simultaneously, we must first use Eq.~33! both to compute
VCD

(r ) (L! in terms of lower-order interactions and t
expressVCD

(r 11)(L! in terms of lower-order interactions an
V(r )(L).

III. THE BASIS FOR THE EXPANSION
OF PHYSICAL STATES

In the remainder of this paper, we use the results of
renormalization procedure to compute the physical state
pure-glue QCD and their masses. In this section we defin
basis for the expansion of physical states. We begin by w
ing the states in terms of a Fock-space expansion that
truncate at two gluons.~This means that we are approxima
ing all physical states as relatively simple single-glueb
states.! Using momentum conservation and assuming that
states must be color singlets, we write each glueball stat
terms of an undetermined momentum-spin wave functi
We then show that boost covariance implies that this w
function can depend only on internal degrees of freedo
i.e., not on the total momentum of the glueball.

We expand the momentum-spin wave function in a co
plete orthonormal basis for each degree of freedom. The
basis functions are the standard triplet and singlet functio
We divide the relative transverse momentum of the two g
ons into magnitude and angular degrees of freedom. We
resent the transverse-magnitude degree of freedom usin
thogonal polynomials weighted by a Gaussian. The width
the Gaussian is a parameter that we can adjust to optim
this basis. For the transverse-angular degree of freedom

is
5-8
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use complex exponentials. For the degree of freedom re
senting the fraction of the total longitudinal momentum c
ried by one of the gluons, we use a type of Jacobi poly
mial. The width of the weighting factor for this polynomial
a parameter that we can adjust to optimize this basis.

We then use the fact that we want our states to be eig
states of the operator that generates rotations about the t
axis to place restrictions on the basis functions that can c
tribute to our physical states. We conclude this section
deriving the eigenvalue equation for the IMO in our basis

A. Preliminaries

The physical states of pure-glue QCD will be eigensta
of M2(L). Since our cutoff preserves translational cova
ance and covariance under rotations about the three-axis
would like the states to also be simultaneous eigenstate
the generators of these symmetries, but this is imposs
because translations do not commute with rotations. H
ever, a rotation about the three-axis separates into a part
rotates the centers of mass of states and a part that ro
states’ internal degrees of freedom, and translations do c
mute with these internal rotations.

To be precise, we defineJ3 to be the generator of rota
tions about the three-axis, andJ 3

R to be the part ofJ3 gov-
erning gluons’ momenta in the center-of-mass frame
spin polarizations.M2(L), P1, PW' , and J 3

R are a set of
commuting observables; so an eigenstate ofM2(L! can be
labeled by their eigenvalues. We choose to write a phys
state asuC jn(P)&, whereP is the three-momentum of th
state,j is the eigenvalue ofJ 3

R for the state, andn labels the
mass eigenvalue of the state (n51 has the smallest mas
n52 has the second-smallest mass, etc.!. Note that because
uC jn(P)& will be determined byM2(L), it will implicitly
depend onL andgL .

An examination of the matrix elements ofM2(L! leads
us to believe that the light-front infrared divergences~see the
discussion below! will not cancel unless the physical stat
are color singlets, although we do not have a rigorous pr
of this. Therefore, we assume that the physical states
color singlets. Using the Fock-space expansion for the id
tity operator~see Appendix A for our light-front pure-glu
QCD conventions!, we can expand a physical state in term
of the number of gluons:

uC jn~P!&51uC jn~P!&.
1

2! E D1D2^g1g2uC jn~P!&ug1g2&,

~36!

where there is no one-gluon component because there
color-singlet gluon. We neglect contributions to the sta
with more than two gluons, which is a severe approximati
This means that we are approximating all physical state
relatively simple single-glueball states, andj is then the pro-
jection of the glueball’s spin onto the three-axis. From n
on, we refer to the approximate physical states simply
glueball states.

Since the IMO conserves momentum, the wave funct
^g1g2uC jn(P)& must be proportional to a momentum
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conserving delta function. Since it represents a color sin
state, it must be proportional to a color-conserving Kr
necker delta@23#. This means that it has the form

^g1g2uC jn~P!&52!~16p3!3/2

3d~3!~P2p12p2!
1

A2~Nc
221!

dc1 ,c2

3Ap1
1p2

1Fs1s2

jn ~p1 ,p2!, ~37!

where Fs1s2

jn (p1 ,p2! is the momentum-spin wave functio

with the momentum-conserving delta function removed, a
all the extra factors is this equation are present to simp
the normalization ofFs1s2

jn (p1 ,p2). We must solve for

Fs1s2

jn (p1 ,p2), and this equation indicates that it is symme

ric under exchange of particles 1 and 2.

B. Jacobi variables

Using Eq. ~37!, the Fock-state expansion for a glueba
state in Eq.~36! becomes

uC jn~P!&5
1

A16p3

1

A2~Nc
221!

3 (
s1s2c1c2

dc1 ,c2
E d2p1'dp1

1

Ap1
1p2

1
u~p1

12eP1!

3u~p2
12eP1!Fs1s2

jn ~p1 ,p2!ug1g2&, ~38!

where momentum conservation implies thatp25P2p1 . It is
useful to separate the motion of the center of mass of
state from the internal motions of the gluons. To do this,
change variables fromp1 to the Jacobi variablesx andkW' :

p15~xP1,xPW'1kW'!,

p25~@12x#P1,@12x#PW'2kW'!. ~39!

Here x is the fraction of the total longitudinal momentum
that is carried by particle 1, andkW' is the transverse momen
tum of particle 1 in the center-of-mass frame. We only d
play the longitudinal and transverse components of the m
menta.~Since the glueball state is a superposition of fre
particle states, and since the momentum of a free gl
satisfiesp250, the minus components of the momenta ofg1

andg2 are constrained to be given bypi
25pW i'

2 /pi
1 .!

In terms of the Jacobi variables, the glueball state is
5-9
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uC jn~P!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2

dc1 ,c2
E d2k'dx

Ax~12x!
u~x2e!u~12x2e!

3Fs1s2

jn ~x,kW' ,P!ug~x,kW' ,P;s1 ,c1!g~12x,2kW' ,P;s2 ,c2!&, ~40!
o
u

th
D

ac-

y a
where we explicitly show the dependence of the RHS ket
the Jacobi variables and the total momentum. We can
boost covariance to show thatFs1s2

jn (x,kW' ,P! is independent

of P. To do this, we note that under a longitudinal boost,
longitudinal momentum of each particle in pure-glue QC
~whether the particle is point-like or composite! transforms
according to

p1→enp1, ~41!
nc
nd

02500
n
se

e

where n is a boost parameter@24,25#. Under a transverse
boost, each particle’s transverse momentum transforms
cording to

pW'→pW'1p1vW' , ~42!

wherevW' is a boost parameter. This means that if we appl
boost operator to both sides of Eq.~40!, we find that
the
uC jn~P8!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2

dc1 ,c2
E d2k'dx

Ax~12x!
u~x2e!u~12x2e!

3Fs1s2

jn ~x,kW' ,P!ug~x,kW' ,P8;s1 ,c1!g~12x,2kW' ,P8;s2 ,c2!&, ~43!

where the boost takes the glueball’s momentum fromP to P8. Note that the boost does not affect the wave function, only
kets. Since Eq.~40! holds for allP, it holds in particular forP8:

uC jn~P8!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2

dc1 ,c2
E d2k'dx

Ax~12x!
u~x2e!u~12x2e!

3Fs1s2

jn ~x,kW' ,P8!ug~x,kW' ,P8;s1 ,c1!g~12x,2kW' ,P8;s2 ,c2!&. ~44!

Equations~43! and ~44! contradict each other unless the wave functionFs1s2

jn (x,kW' ,P! is independent ofP:

Fs1s2

jn ~x,kW' ,P!5Fs1s2

jn ~x,kW'!. ~45!

Thus we can writeuC jn(P)& as

uC jn~P!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2

dc1 ,c2
E d2k'dx

1

Ax~12x!
ueFs1s2

jn ~x,kW'!ug1g2&, ~46!
whereue5u(x2e)u(12x2e).

C. The momentum and spin wave-function bases

To solve for Fs1s2

jn (x,kW'), we expand it in a complete

orthonormal basis for each degree of freedom. Si
Fs1s2

jn (x,kW'! is symmetric under exchange of particles 1 a

2,

Fs1s2

jn ~x,kW'!5Fs2s1

jn ~12x,2kW'!. ~47!

To use this, we define
e

Fs1s2

jn ~x,kW'!5 (
q51

4

xq
s1s2Vq

jn~x,kW'!, ~48!

where the spin wave functions are

x1
s1s25ds1,1ds2,1 ,

x2
s1s25d s̄1,1d s̄2,1 ,
5-10
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x3
s1s25

1

&
@ds1,1d s̄2,11d s̄1,1ds2,1#,

x4
s1s25

1

&
@ds1,1d s̄2,12d s̄1,1ds2,1#, ~49!

wheres̄52s, and the momentum wave functions satisfy

V1
jn~x,kW'!5V1

jn~12x,2kW'!,

V2
jn~x,kW'!5V2

jn~12x,2kW'!,

V3
jn~x,kW'!5V3

jn~12x,2kW'!,

V4
jn~x,kW'!52V4

jn~12x,2kW'!. ~50!

Note that

(
s1s2

xq
s1s2x

q8

s1s25dq,q8 . ~51!

We definek5ukW'u, and we define the anglef by

kW'5k cosf x̂1k sinf ŷ. ~52!

We expand the momentum wave function in compl
orthonormal bases:

Vq
jn~x,kW'!5(

l 50

`

(
t50

`

(
a52`

`

R̄qlta
jn Ll

~e!~x!Tt
~d!~k!Aa~f!,

~53!

where Ll
(e)(x), Tt

(d)(k), and Aa(f! are basis functions fo
the longitudinal, transverse-magnitude, and transve
angular degrees of freedom.e andd are parameters that gov
ern the widths of the longitudinal and transverse-magnit
basis functions, respectively. We can adjust these width
optimize the bases. Note that if we do not truncate the su
in Eq. ~53!, then theR̄qlta

jn ’s depend one and d such that

Vq
jn(x,kW'! is independent ofe and d, although we do not

indicate this dependence explicitly.
We define the transverse-magnitude basis functi

Tt
(d)(k! by

Tt
~d!~k!5de2k2d2

(
s50

t

s t,sk
sds, ~54!

where thes t,s’s are constants that we have computed n
merically using the Gram-Schmidt orthogonalization pro
dure and are such that

E
0

`

dkkTt
~d!~k!Tt8

~d!
~k!5d t,t8 . ~55!
02500
e

e-

e
to
s

s

-
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Adjusting d allows us to adjust the width of the Gaussia
weight function in Eq.~54!. d cannot be allowed to pas
through zero, because whend is zero,Tt

(d)(k! is zero. We
choosed to be positive without loss of generality. Whe
doing numerical computations, we work with a dimensio
less form of these basis functions:

T̄t~kd!5
1

d
Tt

~d!~k!. ~56!

Under exchange of the two particles,k is unaffected; so
Tt

(d)(k! is unaffected.
We define the longitudinal basis functionsLl

(e)(x! by

Ll
~e!~x!5@x~12x!#e (

m50

l

l l ,m
~e! xm, ~57!

where

l l ,m
~e! 5~21! l 2m

1

m! ~ l 2m!!

3
G~114e1 l 1m!

G~112e1m!
Al ! ~114e12l !

G~114e1 l !
. ~58!

These definitions imply that

E
0

1

dxLl
~e!~x!Ll 8

~e!
~x!5d l ,l 8 , ~59!

as long ase.21/2. ~If e<21/2, then the state is not nor
malizable.! We can adjust the width of the weighting func
tion in Eq.~57! by adjustinge. It is often more convenient to
work with

L̄ l
~e!~x!5

1

Ax~12x!
Ll

~e!~x!. ~60!

Under exchange of the two particles,x→12x, which means
that Ll

(e)(x)→(21)lL l
(e)(x).

We define the transverse-angular basis functionsAa(f! by

Aa~f!5
1

A2p
eiaf, ~61!

and then

E
0

2p

dfAa8
* ~f!Aa~f!5da,a8 . ~62!

These basis functions are useful because they are eigen
tions of L3

R , the part of the generator of rotations about t
three-axis that governs gluons’ momenta in the center
mass frame. Under exchange of the two particles,f→f
1p, which means thatAa(f)→(21)aAa(f).

Using the above definitions of the bases,uC jn(P)& can be
written
5-11
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uC jn~P!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2qlta

dc1 ,c2
R̄qlta

jn xq
s1s2E d2k'dxueL̄ l

~e!~x!Tt
~d!~k!Aa~f!ug1g2&. ~63!

Since the glueball state is symmetric under exchange of the two gluons, the behaviors of the spin and momentu
functions under exchange of the two gluons imply that ifq54, thenl 1a must be odd, and ifqÞ4, thenl 1a must be even
~so that the spin and momentum wave functions have the same symmetry under exchange!.

D. Rotations about the three-axis

We want to ensure thatuC jn(P)& is an eigenstate ofJ 3
R with eigenvaluej. The action ofJ3 on the state is given by

J3uC jn~P!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2qlta

dc1 ,c2
R̄qlta

jn xq
s1s2E d2k'dxue

3H F ip1'
2 ]

]p1'
1 2 ip1'

1 ]

]p1'
2 1 ip2'

2 ]

]p2'
1 2 ip2'

1 ]

]p2'
2 1s11s2G L̄ l

~e!~x!Tt
~d!~k!Aa~f!J ug1g2&. ~64!

Using the definitions of the Jacobi variables, we can separate the center-of-mass and internal degrees of freedom:

J3uC jn~P!&5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2qlta

dc1 ,c2
R̄qlta

jn xq
s1s2E d2k'dxue

3H F iP'
2 ]

]P'
1 2 iP'

1 ]

]P'
2 2 i

]

]f
1s11s2G L̄ l

~e!~x!Tt
~d!~k!Aa~f!J ug1g2&. ~65!

This implies that the action ofJ 3
R on the glueball state is given by

J3
RuC jn~P!&5

1

A16p3

1

A2~Nc
221!

(
s1s2c1c2qlta

dc1 ,c2
R̄qlta

jn xq
s1s2E d2k'dxueH F2 i

]

]f
1s11s2G L̄ l

~e!~x!Tt
~d!~k!Aa~f!J ug1g2&

5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2qlta

dc1 ,c2
R̄qlta

jn xq
s1s2E d2k'dxue@a1s11s2#L̄ l

~e!~x!Tt
~d!~k!Aa~f!ug1g2&. ~66!

SinceuC jn(P)& is an eigenstate ofJ 3
R with eigenvaluej, it must be the case thata1s11s25 j for all values ofa, s1 , ands2

that contribute to the sums in this equation. This implies that for some set of coefficientsRqlt
jn ,

R̄qlta
jn 5Rqlt

jn @dq,1da, j 221dq,2da, j 121dq,3da, j1dq,4da, j #. ~67!

This means thatuC jn(P)& can be written

uC jn~P!&5(
qlt

Rqlt
jn uq,l ,t, j &, ~68!

where

uq,l ,t, j &5
1

A16p3

1

A2~Nc
221!

(
s1s2c1c2

E d2k'dxuedc1 ,c2
xq

s1s2L̄ l
~e!~x!Tt

~d!~k!Aj 2s12s2
~f!ug1g2&. ~69!
O

n
ts

the
We are going to calculate the matrix elements of the IM
in the uq,l,t,j& basis and diagonalize it. SinceM2(L! com-
mutes withJ_3

R , we can do this for each value ofj sepa-
rately. The diagonalization procedure will yield mass eige
values and theRqlt

jn coefficients. As long as the coefficien
satisfy

d j , j 8(
qlt

Rqlt
j 8n8* Rqlt

jn 5d j , j 8dn,n8 , ~70!
02500
-

the glueball state will have a plane-wave normalization:

^C j 8n8~P8!uC jn~P!&516p3P1d~3!~P2P8!d j , j 8dn,n8 .
~71!

Because of the symmetry of the glueball state under
exchange of particles 1 and 2, the basis stateuq,l,t,j& is zero if
l 1 j is odd andqÞ4, or if l 1 j is even andq54. To take
5-12
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advantage of this, we consider only the subspace in wh
l 1 j is even ifqÞ4, andl 1 j is odd if q54.

E. The eigenvalue equation

The IMO’s eigenvalue equation is

M2~L!uC jn~P!&5Mn
2uC jn~P!&, ~72!

where the lower-case subscript onMn
2 indicates that it is an

eigenvalue ofM2(L! rather than an eigenvalue ofMfree
2 .

~An example of an eigenvalue ofMfree
2 is MK

2 .!
In the basis that we have defined, the eigenvalue equa

takes the form

M2~L!(
qlt

Rqlt
jn uq,l ,t, j &5Mn

2(
qlt

Rqlt
jn uq,l ,t, j &. ~73!

If we project ^q8,l 8,t8, j u onto the left of this equation an
use the identity

^q8,l 8,t8, j uq,l ,t, j &516p3P1d~3!~P2P8!dq,q8d l ,l 8d t,t8 ,

~74!

then we find that the eigenvalue equation in our basis is

(
qlt

^q8,l 8,t8, j uM2~L!uq,l ,t, j &
16p3P1d~3!~P2P8!

Rqlt
jn 5Mn

2Rq8 l 8t8
jn .

~75!

IV. CALCULATION OF THE FREE-STATE MATRIX
ELEMENT OF THE INVARIANT-MASS OPERATOR

In this section we use the recursion relations for the IM
to compute its two-gluon to two-gluon matrix element
second order in the running coupling. This is the only fre
state matrix element that we need to solve the eigenv
equation.

There are three contributions to this matrix element:
free contribution, the contribution from the cutof
independent part of the reduced interaction, and the co
bution from the cutoff-dependent part of the reduced int
action. The free contribution is just the free mass of
states. The contribution from the cutoff-independent par
the reduced interaction consists of a contact interaction
an instantaneous-exchange interaction, and is trivially de
mined by the conditions on the IMO given in Sec. II C 4. T
contribution from the cutoff-dependent part of the reduc
interaction must be calculated using the recursion relati
for the IMO. It has two parts: a self-energy part and
exchange part. At the end of this section, we combine
various contributions to the matrix element in a way th
simplifies our effort to cancel the light-front infrared dive
gences in the next section.

A. Preliminaries

To solve the eigenvalue equation, we must calculate
matrix elementŝ q8,l 8,t8, j uM2(L)uq,l ,t, j &. These can be
written in terms of the free-state matrix eleme
02500
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^g18g28uM2(L)ug1g2&, which is specified by our renormaliza
tion procedure. We are going to calculate this matrix elem
to second order in perturbation theory.

Before continuing, we would like to point out three sim
plifications that we repeatedly use in this section. To ma
these simplifications clear, we note that the matrix eleme
^q8,l 8,t8, j uM2(L)uq,l ,t, j & can be written as integrals o
wave functions times the free-state matrix eleme
^g18g28uM2(L)ug1g2&. To make the first simplification, we
observe that̂ g18g28uM2(L)ug1g2& has step functions on th
particles’ longitudinal momenta, and these step functions
redundant because they also appear in the integrals tha
fine ^q8,l 8,t8, j uM2(L)uq,l ,t, j &. We drop these step func
tions in the formulas that we present fo
^g18g28uM2(L)ug1g2&. To make the second simplification
we point out that the matrix element
^q8,l 8,t8, j uM2(L)uq,l ,t, j & are symmetric under exchang
of the two initial-state gluons and also under exchange of
two final-state gluons. Because of this, when we are com
ing ^g18g28uM2(L)ug1g2&, we combine terms that are relate
by exchange of the two initial-state or two final-state gluo
Finally, due to the color-singlet nature of the glueball stat
certain parts of̂ g18g28uM2(L)ug1g2& do not contribute to
^q8,l 8,t8, j uM2(L)uq,l ,t, j &, and we drop these terms.

We begin by defining Jacobi variables for the final state
the free matrix element:

p185~x8P1,x8PW'1kW'8 !,

p285~@12x8#P1,@12x8#PW'2kW'8 !. ~76!

Then using the definition of the IMO in terms of the reduc
interaction in Eqs.~1!, ~2!, and~14!,

^g18g28uM2~L!ug1g2&

5^g18g28uMfree
2 ug1g2&1^g18g28uMint

2 ~L!ug1g2&

5MI
2^g18g28ug1g2&1gL

2 e2L24DFI
2

^g18g28uVCI
~2!ug1g2&

1gL
2 e2L24DFI

2
^g18g28uVCI

~2!~L!ug1g2&, ~77!

where the free masses of the final and initial states are g
by

MF
25

k82

x8~12x8!
,

MI
25

k2

x~12x!
. ~78!

B. The cutoff-independent part of the reduced interaction

Based on the definition ofVCI
(2) in Eq. ~19!, we find that

^g18g28uVCI
~2!ug1g2&516p3P1d~3!~P2P8!

3(
i 51

4

u1,2;18,28
~ i ! ²g18g28uvug1g2³ i .

~79!
5-13
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We can divide this matrix element into contact~momentum-
independent! and instantaneous-exchange interactions:

^g18g28uVCI
~2!ug1g2&5^g18g28uVCI

~2!ug1g2&CON

1^g18g28uVCI
~2!ug1g2& IN , ~80!

where

^g18g28uVCI
~2!ug1g2&CON

516p3P1d~3!~P2P8!u1,2;18,28
~1! ²g18g28uvug1g2³1

532p3P1d~3!~P2P8! f c1c18cf c28c2c

3~ds2 ,s
18
ds1 ,s

28
2ds

18 ,s̄
28
ds1 ,s̄2

!, ~81!

and

^g18g28uVCI
~2!ug1g2& IN

516p3P1d~3!~P2P8!(
i 52

3

u1,2;18,28
~ i ! ²g18g28uvug1g2³ i

532p3P1d~3!~P2P8!u~ ux2x8u2e!

3 f c1c18cf c28c2cds1 ,s
18
ds2 ,s

28

3
1

~x2x8!2 ~x1x8!~12x112x8!. ~82!

@The remaining term in Eq.~79! vanishes because theuq,l,t,j&
states are color singlets.# The contact interaction is displaye
in Fig. 1 and the instantaneous-exchange interaction is
played in Fig. 2.

C. The cutoff-dependent part of the reduced interaction

1. Preliminaries

According to our recursion relation for the cutof
dependent part of the reduced interaction, Eq.~33!,
^g18g28uVCD

(2)(L)ug1g2& is given by

FIG. 1. A diagrammatic representation of^g18g28uVCI
(2)ug1g2&CON,

the two-gluon contact interaction. The numbers label the partic

FIG. 2. A diagrammatic representation of^g18g28uVCI
(2)ug1g2& IN ,

the two-gluon instantaneous-exchange interaction. The number
bel the particles.
02500
is-

^g18g28uVCD
~2!~L!ug1g2&5^g18g28udV~2!ug1g2&uL terms.

~83!

Using the definition of theO(gL8
r ! change to the reduce

interaction in Eqs.~10! and ~24!, we find that

^g18g28uVCD
~2!~L!ug1g2&5

1

2 (
K

^g18g28uV
~1!uK&^KuV~1!ug1g2&

3T2
~L,L8!~F,K,I !uL terms. ~84!

The intermediate state can be either a one-particle or th
particle state. The contribution to the eigenvalue equat
from the one-particle-intermediate-state part is zero beca
the uq,l,t,j& states are color singlets. This means that

^g18g28uVCD
~2!~L!ug1g2&

5
1

12E D3D4D5^g18g28uV
~1!ug3g4g5&

3^g3g4g5uV~1!ug1g2&T2
~L,L8!~F,K,I !uL terms,

~85!

whereMK
2 is the mass of the stateug3g4g5&. Substituting the

definition of V(1) in Eq. ~18! into this equation, and simpli-
fying, we find that

^g18g28uVCD
~2!~L!ug1g2&5^g18g28uVCD

~2!~L!ug1g2&SE

1^g18g28uVCD
~2!~L!ug1g2&EX ,

~86!

where the self-energy interaction is given by

s.

la-

FIG. 3. A diagrammatic representation o
^g18g28uVCD

(2)(L)ug1g2&SE, the self-energy interaction. The numbe
label the particles.

FIG. 4. A diagrammatic representation o
^g18g28uVCD

(2)(L)ug1g2&EX , the exchange interaction. The numbers
bel the particles.
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^g18g28uVCD
~2!~L!ug1g2&SE

5P12~16p3!2E D3D4D5T2
~L,L8!~F,K,I !

3d2,5d28,5b134b1834
* uL terms, ~87!

the exchange interaction is given by

^g18g28uVCD
~2!~L!ug1g2&EX

52P12~16p3!2E D3D4D5T2
~L,L8!~F,K,I !

3d2,5d18,3b134b2845
* uL terms, ~88!
-

he
an
in

02500
and we have defined

b i jk5u~pi
1!u~pj

1!u~pk
1!d~3!~pi2pj2pk!²gjgkuvugi³

~89!

and

d i ,k516p3pi
1d~3!~pi2pk!dsi ,sk

dci ,ck
. ~90!

The self-energy interaction is displayed in Fig. 3 and t
exchange interaction is displayed in Fig. 4.

2. The self-energy interaction

After some simplification, the self-energy interactio
takes the form
^g18g28uVCD
~2!~L!ug1g2&SE5P12d2,28d

~3!~p12p18! (
s3s4c3c4

E d2p3'dp3
1

p3
1 u~p3

12eP1!
1

p4
1 u~p4

12eP1!

3T2
~L,L8!~F,K,I !²g3g4uvug1³²g18uvug3g4³uL terms, ~91!
si-
n

ter-
wherep45p12p3 . At this point, it is useful to change vari
ables fromp3 to Jacobi variablesy and rW' :

p35~yp1
1 ,ypW 1'1rW'!. ~92!

Then the free mass of the intermediate state is

MK
2 5~p3

21p4
21p5

2!P12PW'
2 5

k2

x~12x!
1

r 2

xy~12y!
,

~93!

and after a lot of additional simplification,

^g18g28uVCD
~2!~L!ug1g2&SE

5
Nc

2p2Ap

2
@L22L82#d1,18d2,28u~x22e!

3F logx2 loge2
11

12GU
L terms

. ~94!

Recalling that ‘‘L terms’’ means that we are to expand t
RHS of this equation in powers of transverse momenta
keep only the terms that are proportional to powers or
verse powers ofL, we find that
d
-

^g18g28uVCD
~2!~L!ug1g2&SE5

Nc

2p2Ap

2
L2d1,18d2,28u~x22e!

3F logx2 loge2
11

12G . ~95!

This result shows that our cutoff violates cluster decompo
tion. The evidence is that the self-energy depends ox
5p1

1/(p1
11p2

1), even thoughp2 is the momentum of a
spectator~see Fig. 3!.

3. The exchange interaction

For the exchange interaction, the free mass of the in
mediate state is

MK
2 5~p3

21p4
21p5

2!P12PW'
2 5

k82

x8
1

~kW'2kW'8 !2

x2x8
1

k2

12x
.

~96!

Then the changes in free mass are
DFK52
k82@12x#21k2@12x8#222kk8~12x8!~12x!cosg

~12x8!~x2x8!~12x!
,

D IK52
k2x821k82x222kk8xx8 cosg

xx8~x2x8!
, ~97!

whereg5f2f8.
5-15
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Using the identity

eW's•kW'5
21

&
kseisf, ~98!

the exchange interaction becomes

^g18g28uVCD
~2!~L!ug1g2&EX564p3P1d~3!~P2P8! f c1cc18 f cc2c28

u~x2x82e!

x2x8

3S 1

DFK
1

1

D IK
D ~e22L824DFKD IK2e22L24DFKD IK ! (

i ,m51

3

Q~ i ,m!U
L terms

, ~99!

where

Q~1,1!5
1

x2x8
s1s18ds2 ,s

28H x8

x
keis1f2k8eis1f8J $k8e2 is18f8@12x#2ke2 is18f@12x8#%,

Q~1,2!5s1s28ds2 ,s
18H x8

x
keis1f2k8eis1f8J H ke2 is28f2

12x

12x8
k8e2 is28f8J ,

Q~1,3!52s1s2d s̄
18 ,s

28H x8

x
keis1f2k8eis1f8J H k8eis2f82

12x8

12x
keis2fJ ,

Q~2,1!52ds1,s
18
ds2 ,s

28
1

~x2x8!2 $x~12x!k821x8~12x8!k22kk8@x8~12x!1x~12x8!#cosg%,

Q~2,2!5ds1 ,s
18
s2s28

1

x2x8
$xk8eis2f82x8keis2f%H ke2 is28f2

12x

12x8
k8e2 is28f8J ,

Q~2,3!5s2s28ds1 ,s
18

1

x2x8
$xk8e2 is28f82x8ke2 is28f%H k8eis2f82

12x8

12x
keis2fJ ,

Q~3,1!5s1s18ds2 ,s
28

1

x2x8 H x

x8
k8e2 is18f82ke2 is18fJ $k8eis1f8@12x#2keis1f@12x8#%,

Q~3,2!52s18s28ds1 ,s̄2H x

x8
k8e2 is18f82ke2 is18fJ H ke2 is28f2

12x

12x8
k8e2 is28f8J ,

Q~3,3!5s2s18ds1 ,s
28 H x

x8
k8e2 is18f82ke2 is18fJ H k8eis2f82

12x8

12x
keis2fJ . ~100!

In Eq. ~99!, if we expand everything multiplying the delta function in powers of transverse momenta, the lowest-order
from the two exponentials cancel and leave two types of terms: those proportional to inverse powers ofL and those propor-
tional to inverse powers ofL8. We can isolate the terms that are proportional to inverse powers ofL without altering the
cancellation of the lowest term by replacing the first exponential with a 1:

^g18g28uVCD
~2!~L!ug1g2&EX564p3P1d~3!~P2P8! f c1cc18 f cc2c28

1

~x2x8!
u~x2x82e!

3S 1

DFK
1

1

D IK
D ~12e22L24DFKD IK ! (

i ,m51

3

Q~ i ,m!. ~101!

D. Combining the interactions

In order to get the infrared (e→0! divergences to cancel, it is useful to combine the interactions in a particular ma
From Eqs.~77!, ~80!, and~86!,
025005-16
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^g18g28uM2~L!ug1g2&5^g18g28uM2~L!ug1g2&KE1^g18g28uM2~L!ug1g2&CON1^g18g28uM2~L!ug1g2& IN

1^g18g28uM2~L!ug1g2&SE1^g18g28uM2~L!ug1g2&EX , ~102!

where

^g18g28uM2~L!ug1g2&KE5MI
2^g18g28ug1g2&,

^g18g28uM2~L!ug1g2&CON5gL
2 e2L24DFI

2
^g18g28uVCI

~2!ug1g2&CON,

^g18g28uM2~L!ug1g2& IN5gL
2 e2L24DFI

2
^g18g28uVCI

~2!ug1g2& IN ,

^g18g28uM2~L!ug1g2&SE5gL
2 e2L24DFI

2
^g18g28uVCD

~2!~L!ug1g2&SE,

^g18g28uM2~L!ug1g2&EX5gL
2 e2L24DFI

2
^g18g28uVCD

~2!~L!ug1g2&EX . ~103!

We break the instantaneous interaction into two parts: a part that is ‘‘above’’ the cutoff, i.e., a part that would vanis
took L→`, and a part that is ‘‘below’’ the cutoff, i.e., a part that would survive if we tookL→`:

^g18g28uM2~L!ug1g2& IN5^g18g28uM2~L!ug1g2& IN
A 1^g18g28uM2~L!ug1g2& IN

B , ~104!

where

^g18g28uM2~L!ug1g2& IN
A 5~12e22L24DFKD IK !^g18g28uM2~L!ug1g2& IN ,

^g18g28uM2~L!ug1g2& IN
B 5e22L24DFKD IK^g18g28uM2~L!ug1g2& IN . ~105!

Next, we break the self-energy and exchange interactions into finite and divergent parts:

^g18g28uM2~L!ug1g2&SE5^g18g28uM2~L!ug1g2&SE
F 1^g18g28uM2~L!ug1g2&SE

D ,

^g18g28uM2~L!ug1g2&EX5^g18g28uM2~L!ug1g2&EX
F 1^g18g28uM2~L!ug1g2&EX

D , ~106!

where the divergent part of the self-energy interaction consists solely of the term containing the loge, and the divergent par
of the exchange interaction consists solely of the term containingQ(2,1). Finally, we define an interaction that is a combinati
of the instantaneous interaction ‘‘above’’ the cutoff and the divergent part of the exchange interaction:

^g18g28uM2~L!ug1g2& IN1EX5^g18g28uM2~L!ug1g2& IN
A 1^g18g28uM2~L!ug1g2&EX

D . ~107!

Then

^g18g28uM2~L!ug1g2&5^g18g28uM2~L!ug1g2&KE1^g18g28uM2~L!ug1g2&SE
F 1^g18g28uM2~L!ug1g2&CON1^g18g28uM2~L!ug1g2&EX

F

1^g18g28uM2~L!ug1g2& IN1EX1^g18g28uM2~L!ug1g2& IN
B 1^g18g28uM2~L!ug1g2&SE

D . ~108!
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Perry showed that with a suitable definition of long-ran
interactions, a renormalization method that is similar to o
yields a logarithmically confining potential for quark
antiquark bound states atO(gL

2 ! @7#. His calculation uses
sharp step-function cutoffs and is based on an analysis o
part of the two-body interaction that is most singular in t
limit in which the exchanged gluon has infinitesimal long
tudinal momentum. The corresponding part of our inter
02500
s

he

-

tion, which is contained in̂ g18g28uM2(L)ug1g2& IN1EX and
^g18g28uM2(L)ug1g2& IN

B , is similar to what Perry found in the
quark-antiquark case. However, to determine whether or
our interaction is truly confining, we would have to do
careful analysis of the complete two-body potential, not j
the most singular part. This analysis would be complica
by the smooth cutoff that we employ, and we leave it f
future consideration.
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V. CALCULATION OF THE MATRIX ELEMENTS
OF THE INVARIANT-MASS OPERATOR IN THE BASIS

FOR PHYSICAL STATES

In this section we compute the matrix elements of
IMO in the basis that we have defined, in terms of integr
that must be evaluated numerically. To avoid roundoff err
we evaluate the integrals for the kinetic energy and the t
point interaction~the self-energy! by writing them as sums o
gamma functions. The remaining integrals are fiv
dimensional, and we wish to compute them with Mon
Carlo methods. However, before we can do this, it is nec
sary for us to make manifest the cancellation of the infra
divergences from exchanged gluons with infinitesimal lon
tudinal momentum. To do this, we first integrate one of
longitudinal momentum integrals by parts to extract the
vergence. We show that this divergence exactly cancels
i
es
e

w

en

02500
e
s
r,
-

-

s-
d
-
e
-
he

infrared divergence that appears in the self-energy. The
mainder of the five-dimensional integral is finite. However
converges poorly when it is calculated numerically using
natural Jacobi variables. This is because it peaks v
strongly in the region where the divergence lay, even a
the divergence is removed. To improve the convergence,
use a change of variables and subtract from the integran
contribution that appears to be divergent but that integra
to zero. We present some of these convergence details
other technical issues in Appendix C.

A. Preliminaries

The matrix elementŝq8,l 8,t8, j uM2(L)uq,l ,t, j &, which
appear in the eigenvalue equation, can be divided into c
tributions corresponding to the different terms in Eq.~108!:
^q8,l 8,t8, j uM2~L!uq,l ,t, j &5^q8,l 8,t8, j uM2~L!uq,l ,t, j &KE1^q8,l 8,t8, j uM2~L!uq,l ,t, j &SE
F

1^q8,l 8,t8, j uM2~L!uq,l ,t, j &CON1^q8,l 8,t8, j uM2~L!uq,l ,t, j &EX
F

1^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN1EX1^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B

1^q8,l 8,t8, j uM2~L!uq,l ,t, j &SE
D . ~109!
rical
for

ite
with
fi-
In this section we express these different contributions
terms of integrals that can be computed numerically. Th
integrals fall into two classes: two-dimensional and fiv
dimensional. We treat each class of integral separately.

Each of the terms in Eq.~109! is proportional to the
plane-wave normalization factor 16p3P1d (3)(P2P8). To
make the remaining equations that we present simpler,
suppress this factor. We also takee→0 in any contribution
to ^q8,l 8,t8, j uM2(L)uq,l ,t, j & that is finite in this limit.

B. The two-dimensional integrals

1. The kinetic energy

Using the definition of our basis in Eq.~69! and the ex-
pression for the free-state matrix element of the kinetic
ergy in Eq.~103!, we find that
n
e

-

e

-

^q8,l 8,t8, j uM2~L!uq,l ,t, j &KE

5dq,q8

1

d2 E
0

1

dxL̄l 8
~e!

~x!L̄ l
~e!~x!E

0

`

drr 3T̄t8~r !T̄t~r !.

~110!

Note that the kinetic energy is infinite unlesse.0, whereas
normalizability requires onlye.21/2.

These integrals can be computed with standard nume
integration routines, but the results can have large errors
large values of the function indicesl, l 8, t, andt8, due to the
oscillating nature of the basis functions. It is better to rewr
the integrals as sums that can be computed numerically
MATHEMATICA @26# to any desired precision. Using the de
nitions of the basis functions
e
same
^q8,l 8,t8, j uM2~L!uq,l ,t, j &KE5dq,q8

G~2e!

d2 F (
m50

l

l l ,m
~e! (

m850

l 8

l l 8,m8
~e! G~2e1m1m8!

G~4e1m1m8! G
3F (

s50

t

s t,s (
s850

t8

s t8,s82
232~s1s8!/2GS 21

s1s8

2 D G . ~111!

2. The Finite Part of the Self-Energy Interaction

The self-energy interaction conserves each particle’s momentum, thusMI
25MF

2 for this contribution. This means that th
Gaussian cutoff factor in Eq.~103! has no effect on the self-energy. For the finite part of the self-energy, we use the
method for evaluating integrals that we use for the kinetic energy. This yields
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^q8,l 8,t8, j uM2~L!uq,l ,t, j &SE
F 5dq,q8d t,t8

NcgL
2

4p2 Ap

2
L2E

0

1

dxL̄l 8
~e!

~x!L̄ l
~e!~x!x~12x!F logx2

11

12G ~112!

52dq,q8d t,t8

NcgL
2

4p2 Ap

2
L2S d l ,l 8

11

12
2G~112e! (

m50

l

l l ,m
~e! (

m850

l 8

l l 8,m8
~e!

3
G~112e1m1m8!

G~214e1m1m8!
@c~112e1m1m8!2c~214e1m1m8!# D , ~113!
in

v
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e
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where the digamma functionc(z! is given by

c~z!5

dG~z!

dz

G~z!
. ~114!

C. The five-dimensional integrals

1. The contact interaction

Using the definition of our basis in Eq.~69! and the ex-
pression for the free-state matrix element of the contact
teraction in Eqs.~81! and ~103!, we find that

^q8,l 8,t8, j uM2~L!uq,l ,t, j &CON

52
NcgL

2

8p2 @d j ,22dq8,2dq,21d j ,2dq8,1dq,1

2d j ,0dq8,3dq,3#E dkdk8kk8u~k!u~k8!Tt8
~d!

~k8!

3Tt
~d!~k!E dxdx8u~x!u~12x!u~x8!u~12x8!

3L̄ l 8
~e!

~x8!L̄ l
~e!~x!e2L24DFI

2
. ~115!

The reader may have noticed that this integral is not fi
dimensional as we have implied, but rather four dimensio
However, when we numerically compute the integrals t
have more than two dimensions, it is most efficient if w
combine them into one integral; so we want their integrat
variables and their ranges of integration to be identical. T
we increase the number of dimensions of this integral by
by introducing an extra integral overg5f2f8 using the
identity

15
1

2p E dgu~g!u~2p2g!. ~116!

This will help us to combine this integral with others th
contain integrals overg that cannot be done analytically.

Since the integration domain of the exchange interac
is restricted so thatx.x8 whene→0 @note the step function
in Eq. ~101!#, we would like to enforce this restriction in th
other contributions. Using the identity
02500
-

e
l.
t

n
s
e

n

15u~x2x8!1u~x82x!, ~117!

we break the longitudinal integral in Eq.~115! into two parts:

E dxdx8u~x!u~12x!u~x8!u~12x8!L̄ l 8
~e!

~x8!

3L̄ l
~e!~x!e2L24DFI

2
@u~x2x8!1u~x82x!#. ~118!

In the second term, we letx→12x andx8→12x8, and then
the longitudinal integral becomes

E dxdx8u~x!u~12x!u~x8!u~12x8!L̄ l 8
~e!

~x8!

3L̄ l
~e!~x!e2L24DFI

2
u~x2x8!@11~21! l 1 l 8#.

~119!

Recall that we are restricting ourselves to the subspace o
statesuq,l,t,j& in which l 1 j is even ifqÞ4, andl 1 j is odd if
q54. Then sinceq5q8 for the contact interaction,l and l 8
must both be even or both be odd for this interaction. T
means that the two terms in Eq.~119! are equal. Thus we can
write the contact interaction contribution as follows:

^q8,l 8,t8, j uM2~L!uq,l ,t, j &CON

52
NcgL

2

8p3 @d j ,22dq8,2dq,21d j ,2dq8,1dq,12d j ,0dq8,3dq,3#

3E Dje2L24DFI
2

, ~120!

where

D5dxdx8dkdk8dgkk8u~x!u~12x!u~x8!

3u~x2x8!u~k!u~k8!u~g!u~2p2g!, ~121!

and

j5L̄ l 8
~e!

~x8!L̄ l
~e!~x!Tt8

~d!
~k8!Tt

~d!~k!. ~122!

2. The finite part of the exchange interaction

In order to simplify the contribution to
^q8,l 8,t8, j uM2(L)uq,l ,t, j & from the finite part of the ex-
change interaction, we wish to change variables fromf to
g5f2f8:
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d2k'd2k'8 5dkdk8dfdf8kk8u~k!u~k8!u~f!

3u~2p2f!u~f8!u~2p2f8!

5dkdk8dgdf8kk8u~k!u~k8!u~g1f8!

3u~2p2g2f8!u~f8!u~2p2f8!.

~123!

All the contributions tô q8,l 8,t8, j uM2(L)uq,l ,t, j & depend
on g only through dependence on cosg and sing. This
means that we can use the identity

E
2f8

2p2f8
dg f ~cosg,sing!5E

0

2p

dg f ~cosg,sing!

~124!

to write

d2k'd2k'8 5dkdk8dgdf8kk8u~k!u~k8!u~g!

3u~2p2g!u~f8!u~2p2f8!. ~125!

Inspection of Eq. ~99! implies that the integrals in
^q8,l 8,t8, j uM2(L)uq,l ,t, j &EX

F depend on complex exponen
tials of f8 andg. However, using the identity

E
0

2p

dg f ~cosg!sinag50, ~126!

where a is an integer, it is possible to trivially do thef8
integral in ^q8,l 8,t8, j uM2(L)uq,l ,t, j &EX

F and write the re-
mainder as a real quantity with integrals that depend og
only through cosg and sing. The result is

^q8,l 8,t8, j uM2~L!uq,l ,t, j &EX
F

52
NcgL

2

8p3 E Dje2L24DFI
2 1

x2x8 S 1

DFK
1

1

D IK
D

3~12e22L24DFKD IK !FMI
2Sq,q8

~1!
1MF

2Sq,q8
~2!

1
kk8

x~12x!x8~12x8!
Sq,q8

~3! G , ~127!

where some of theSq,q8
(1) ’s andSq,q8

(3) ’s are given by

S1,1
~1!5cos~@ j 22#g!,

S1,1
~3!52cos~@ j 21#g!@x~12x8!1x8~12x!#,

S1,3
~1!5

21

&
cos~ j g!@x821~12x8!2#,

S1,3
~3!5

1

&
cos~@ j 21#g!~x@12x8#1x8@12x# !

3~x821@12x8#2!,
02500
S1,4
~1!5

1

&
cos~ j g!~122x8!,

S1,4
~3!5

21

&
cos~@ j 21#g!~122x8!~x@12x8#1x8@12x# !,

S3,1
~1!5

21

&
cos~@ j 22#g!@x21~12x!2#,

S3,3
~1!5cos~ j g!@x21~12x!222x8~12x8!#,

S3,3,
~3!52cos~ j g!cosg~x@12x8#1x8@12x# !

3~122x@12x#22x8@12x8# !,

S3,4
~1!50,

S3,4
~3!5sing sin~ j g!~2x322x2@11x8#1x8@122x8#

1x@122x814x82# !,

S4,1
~1!5

1

&
cos~@ j 22#g!~122x!,

S4,3
~1!50,

S4,4
~1!5cos~ j g!~122x22x814xx8!,

S4,4
~3!52cosg cos~ j g!~122x!~122x8!~x1x822xx8!,

~128!

and

Sq,q8
~3!

5Sq8,q
~3! ux↔x8 . ~129!

The rest of theSq,q8
(1) ’s andSq,q8

(3) ’s are given by

S1,2
~ i !5S2,1

~ i !50,

S2,2
~ i !5S1,1

~ i ! u j→2 j ,

S2,3
~ i !5S1,3

~ i ! u j→2 j ,

S2,4
~ i !52S1,4

~ i ! u j→2 j ,

S3,2
~ i !5S3,1

~ i ! u j→2 j ,

S4,2
~ i !52S4,1

~ i ! u j→2 j , ~130!

wherei 51,3. TheSq,q8
(2) ’s are given by
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Sq,q8
~2!

5Sq8,q
~1! ux↔x8 . ~131!

3. The instantaneous and exchange interactions combination

Using similar methods for the contribution t
^q8,l 8,t8, j uM2(L)uq,l ,t, j & from the combination of the in-
stantaneous interaction above the cutoff and the diverg
part of the exchange interaction, we find that

^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN1EX

52
NcgL

2

8p3 E DjWq,q8e
2L24DFI

2

3
1

~x2x8!2 ~12e22L24DFKD IK !

3F ~x1x8!~12x112x8!1
2

x2x8 S 1

DFK
1

1

D IK
D

3~x~12x!k821x8~12x8!k22kk8@x8~12x!

1x~12x8!#cosg!G , ~132!

where

Wq,q85dq,ldq8,1 cos~g@ j 22# !1dq,2dq8,2 cos~g@ j 12# !

1dq,3dq8,3 cos~g j !1dq,4dq8,4 cos~g j !. ~133!

Note that the divergences from the two interactions that co
prise ^q8,l 8,t8, j uM2(L)uq,l ,t, j & IN1EX cancel, allowing us
to takee→0 in this contribution.

4. The instantaneous interaction below the cutoff

The contribution tô q8,l 8,t8, j uM2(L)uq,l ,t, j & from the
instantaneous interaction below the cutoff is divergent.
this subsection, we extract the divergence, show that it c
cels the divergent part of the self-energy, and compute
remainder of̂ q8,l 8,t8, j uM2(L)uq,l ,t, j & IN

B .
After simplification, the complete contribution t

^q8,l 8,t8, j uM2(L)uq,l ,t, j & from the instantaneous interac
tion below the cutoff is

^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B

52
NcgL

2

16p4 E
2e

12e

dxE
e

x2e

dx8
1

x2x8
F~x,x8!,

~134!
02500
nt

-

n
n-
e

where

F~x,x8!5E d2k'd2k'8
j

x2x8
Wq,q8

3e2L24DFI
2

e22L24DFKD lK~x1x8!~12x112x8!.

~135!

To extract the divergence, we integrate Eq.~134! by parts
with respect tox8:

^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B

52
NcgL

2

16p4 E
2e

12e

dxF2 log~x2x8!F~x,x8!ux85x2e

1 log~x2x8!F~x,x8!ux85e1E
e

x2e

dx8

3 log~x2x8!
dF~x,x8!

dx8 G[B11B21B3 . ~136!

The first contribution tô q8,l 8,t8, j uM2(L)uq,l ,t, j & IN
B is

B15
NcgL

2

16p4

loge

e E
2e

12e

dxE d2k'd2k'8 jWq,q8

3e2L24DFI
2

e22L24DFKD IK~x1x8!

3~12x112x8!ux85x2e . ~137!

To simplify this, we change variables fromx to y:

x5y~123e!12e, ~138!

and fromkW' andkW'8 to QW ' andNW ':

kW'5
QW '1AeNW '

2
,

kW'8 5
QW '2AeNW '

2
. ~139!

Then
B15
NcgL

2

64p4 ~123e!logeE
0

1

dyE d2Q'd2N'jWq,q8e
2L24DFI

2
e22L24DFKD IK~2y@123e#13e!

3~222y@123e#23e!ux85x2e . ~140!

As e→0, the only contribution that survives is
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B15
NcgL

2

16p4 dq,q8 logeE
0

1

dyy~12y!L̄ l 8
~e!

~y!L̄ l
~e!~y!

3E d2Q'Tt8
~d!

~Q/2!Tt
~d!~Q/2!E d2N'e22L24N4

5dq,q8d t,t8

NcgL
2

4p2 Ap

2
L2E

0

1

dxL̄l 8
~e!

~x!L̄ l
~e!~x!

3x~12x!loge. ~141!

Since ^g18g28uM2(L)ug1g2&SE
D is the part of

^g18g28uM2(L)ug1g2&SE with the log e @see Eq.~95!#, from
Eq. ~112! we see that̂ q8,l 8,t8, j uM2(L)uq,l ,t, j &SE

D is just
^q8,l 8,t8, j uM2(L)uq,l ,t, j &SE

F with the @ logx211/12# factor
replaced with2 loge. This means that

B152^q8,l 8,t8, j uM2~L!uq,l ,t, j &SE
D . ~142!

Thus the divergence in̂q8,l 8,t8, j uM2(L)uq,l ,t, j & IN
B can-

cels ^q8,l 8,t8, j uM2(L)uq,l ,t, j &SE
D .

The second contribution tôq8,l 8,t8, j uM2(L)uq,l ,t, j & IN
B

is

B252
NcgL

2

8p3 E
2e

12e

dx log~x2x8!

3E dkdk8dgkk8u~k!u~k8!u~g!u~2p2g!

3
j

x2x8
Wq,q8e

2L24DFI
2

e22L24DFKD IK

3~x1x8!~12x112x8!ux85e . ~143!

To evaluate this, we change variables fromk8 to s5k8/Ae.
Then the leading term ase→0 is

B252ee11/2
NcgL

2

8p3 ds t8,0l l ,0
~e!E

0

1

dx~22x!logx

3E dkdsdgksu~k!u~s!u~g!u~2p2g!L̄ l
~e!~x!

3Tt
~d!~k!Wq,q8e

2L24@s41k4/x2~12x!2#

50, ~144!

sincee.21/2.
To simplify the third contribution to

^q8,l 8,t8, j uM2(L)uq,l ,t, j & IN
B , we take the derivative o

F(x,x8! and takee→0. Then
02500
B352
NcgL

2

8p3 E D log~x2x8!Wq,q8Tt8
~d!

~k8!L̄ l
~e!~x!Tt

~d!~k!

3e2L24~DFK
2

1D IK
2

!(
i 51

5

Ei8 )
m51;mÞ i

5

Em , ~145!

where

E15
1

x2x8
,

E251,

E35L̄ l 8
~e!

~x8!,

E45x1x8,

E5512x112x8, ~146!

and

E185
1

~x2x8!2 ,

E28522L24~DFKDFK8 1D IKD IK8 !,

E385L̄ l 8
8~e!

~x8!,

E4851,

E58521 ~147!

(Ei85dEi /dx8, except fori 52!, and

L̄ l 8
8~e!

~x8!5
dL̄l 8

~e!
~x8!

dx8

5S e2
1

2D @x8~12x8!#e21/221

3@122x8# (
m850

l 8

l l 8,m8
~e! x8m81@x8~12x8!#e21/2

3 (
m851

l 8

m8l l 8,m8
~e! x8m821, ~148!

and

DFK8 5
dDFK

dx8
5

k82

~12x8!22
~kW'2kW'8 !2

~x2x8!2 ,

D IK8 5
dD IK

dx8
5

k82

x822
~kW'2kW'8 !2

~x2x8!2 . ~149!
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This means that we can write the contribution
^q8,l 8,t8, j uM2(L)uq,l ,t, j & from the instantaneous interac
tion below the cutoff as a divergent part and a finite part

^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B

52^q8,l 8,t8, j uM2~L!uq,l ,t, j &SE
D

1^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B,F ~150!

where
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^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B,F

52
NcgL

2

8p3 E D log~x2x8!Wq,q8Tt8
~d!

~k8!L̄ l
~e!~x!Tt

~d!~k!

3e2L24~DFK
2

1D IK
2

!(
i 51

5

Ei8 )
m51;mÞ i

5

Em . ~151!

Using the results of this section, the expression in E
~109! for the matrix elements of the IMO becomes
^q8,l 8,t8, j uM2~L!uq,l ,t, j &5^q8,l 8,t8, j uM2~L!uq,l ,t, j &KE1^q8,l 8,t8, j uM2~L!uq,l ,t, j &SE
F

1^q8,l 8,t8, j uM2~L!uq,l ,t, j &CON1^q8,l 8,t8, j uM2~L!uq,l ,t, j &EX
F

1^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN1EX1^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B,F. ~152!
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Each of these terms is finite and we have takene→0 every-
where. We have written the first two terms as sums that
be computed numerically, and the four remaining terms
five-dimensional integrals that can be grouped into one in
gral suitable for numerical calculation.~See Appendix C for
a discussion of some of the technical issues involved in
numerical calculation of these matrix elements.! Once we
have computed these matrix elements, we can diagona
the matrix to obtain glueball states and masses.

VI. RESULTS AND ERROR ANALYSIS

In this section we diagonalize the IMO matrix, obtainin
glueball states and masses, and then discuss the sourc
error in the calculation. We begin by discussing how
assign quantum numbers to our numerical results for glue
states and proceed with a discussion of the procedure tha
use to compute these results. We derive the nonperturba
cutoff dependence of the coupling and discuss the cutoff
pendence of our glueball masses. We use this analys
choose the value of the cutoff that minimizes our errors.
then present the spectrum that we find with this optimal c
off and compare it to recent results from other approach
The last results that we present are the probability dens
for our five lightest glueballs. We conclude this section
discussing the sources of error in our calculation and estim
ing the sizes of these errors.

A. The procedure for calculating results

We represent a state using the notationJj
PC , whereJ is

our best guess for the spin of the state,P is our best guess fo
the parity of the state,C represents the charge-conjugati
eigenvalue of the state~it is always1 because we have tw
gluons!, and j is the projection of the state’s spin onto th
three-axis. We need to distinguish states with identicalJ’s
and P’s and differentj ’s because we do not have manife
rotational symmetry. IfJ50, we omit the subscriptj in the
n
s
-

e

ze

s of

ll
we
ive
e-
to
e
t-
s.
es

t-

state notation. We use an asterisk in the state notation ne
the value ofC to denote an excited state with the give
quantum numbers. We will base our guesses forJ andP on
the numerical degeneracies of the states that have iden
J’s and P’s and different j ’s, and on the ordering of the
states according to lattice data~see the discussion below!.
We consider only the five lightest glueballs~not counting as
distinct those states that differ only in their value ofj!. The
five lightest glueballs have spinsJ<2. This means that we
need to consider onlyu j u<2. For a givenuju, the states with
j 5u j u and j 52u j u are degenerate and simply related~see
Appendix C!; so we explicitly consider onlyj 50,1,2. We
consider nine values of the coupling:aL5gL

2 /(4p)
50.1,0.2,0.3,...,0.9. To calculate our results, we implem
the following four-step procedure.

We execute the first step for all pairs (j ,aL). In this step,
we defineL51 and diagonalizêq8,l 8,t8, j uM2(L)uq,l ,t, j &
with all four spin basis functions (q51,2,3,4), but with only
the lowest transverse-magnitude basis function (t50! and
the two lowest longitudinal basis functions (l 50,1). ~It is
necessary to use an even number of longitudinal basis fu
tions so that symmetry and antisymmetry of the wave fu
tion underx→12x are equally represented.! We perform
this diagonalization as a function of the basis-function p
rametersd ande that determine the widths of the transvers
magnitude and longitudinal wave functions, respective
and we find the values ofd ande that minimize the ground-
state mass. This yields what we consider to be the opti
wave-function widths for each pair (j ,aL).

We also execute the second step of the procedure fo
pairs (j ,aL). In this step, we fixd and e to be their com-
puted optimal values and again defineL51. We diagonalize
the matrix with all four spin basis functions,Nt transverse-
magnitude basis functions, andN152Nt longitudinal basis
functions, for a total of 8Nt

2 basis functions, withNt

51,2,3,...,10. We use twice as many longitudinal functio
as transverse-magnitude functions becauseuq,l,t,j& is zero if
5-23
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l 1 j is even andq54, or if l 1 j is odd andqÞ4. We want to
use as many basis functions as possible, but we find fo
pairs (j ,aL! that whenNt.7, the statistical errors from th
Monte Carlo integrations of the matrix elements beco
overwhelming and the spectrum and wave functions beco
unreliable. The evidence of the breakdown is sudden c
tamination of the low-lying wave functions with high-orde
components.~See Appendix C for a more complete discu
sion of this topic.! Thus in the remainder of our procedur
we analyze the results that we find in this step whenNt57,
which corresponds to 392 basis functions.

In the third step of the procedure, we use the mass of
021 state~our most numerically reliable state! to determine
the value ofL for eachaL . To do this, we note thatL is the
only mass scale in the problem. This means that the mas
the 021 state,M021, can be written

M0215b~aL!L, ~153!

whereb is a dimensionless function ofaL . Since we defined
L51 in the second step of our procedure, the diagonal
tion of the IMO as a function ofaL yieldedb(aL). In this
third step, we considerL to be a parameter and defineM021

to be a constant. Then for a given coupling, we can use
results of the second step of our procedure to write the cu
in units of M021:

L/M0215
1

b~aL!
. ~154!

Figure 5 shows the result for the third step of our pro
dure: a plot of the coupling as a function of the cutoff. Wh
aL.0.7 it is not a single-valued function of the cutoff. Th
is an indication that the coupling is too large. For this reas

FIG. 5. The coupling as a function of the cutoff. We show t
cutoff in units of the mass of the 021 state, and we use 14 long
tudinal basis functions, 7 transverse-magnitude basis functions
4 spin basis functions, for a total of 392 basis functions. Using
recent anisotropic Euclidean lattice result of Morningstar and P
don for the mass of the 021 state@27#, we estimate that the cutof
is roughly varying from about 3.1–6.0 GeV in this figure.
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we consider onlyaL<0.7 in the remainder of our procedur
When aL<0.7, the coupling decreases as the cutoff
creases, as expected. However,aL depends onL more
strongly than one may expect. We expect that perturba
pure-glue QCD would indicate thataL;1/lnL, but the re-
sult that we get is much closer toaL;exp(2aL), wherea is
a constant. The reason for this is that the truncation of
perturbative series forM2(L! and the truncation of the free
sector expansion of the states introduce spurious cutoff
pendence in our results for physical quantities.M021 is one
such physical quantity. The spurious cutoff dependence
M021 is manifested through incorrect dependence ofb(aL!
on aL . This means thatL has to compensate by dependin
on aL incorrectly in order to keepM021 a constant function
of aL . This results in the strong dependence ofaL on L that
is shown in Fig. 5.

Using the recent anisotropic Euclidean lattice results
Morningstar and Peardon@27#, we can make a rough est
mate of the range over which our cutoff is varying in Fig.
They found that the mass of the 021 state isM02152.590
60.04060.130 GeV. This means that our cutoff is varyin
from about 3.1–6.0 GeV in Fig. 5.

The fourth step of our procedure is to determine the o
mal value of the cutoff, or equivalently, the optimal value
the coupling. We use two criteria to determine this. First
determine the value of the cutoff for which the comput
masses are most independent of the cutoff. Figures 6, 7,
8 show the masses of our states withj 50,1,2, respectively,
as functions of the cutoff. The masses and the cutoff
displayed in units ofM021. ~Recall thatM021 was defined
to be independent of the cutoff in the process of defining
cutoff as a function of the coupling.! The seven values of the
cutoff at the points that we display correspond, from right
left, to aL50.1,0.2,0.3,...,0.7. It is difficult to tell from thes

nd
e
r-

FIG. 6. The masses of the five lightest glueballs withj 50, as
functions of the cutoff. The masses and the cutoff are displaye
units of the mass of the 021 state. The seven values of the cutoff
the points that we display correspond, from right to left, toaL

50.1,0.2,0.3,...,0.7. We use 14 longitudinal basis functions
transverse-magnitude basis functions, and 4 spin basis functions
a total of 392 basis functions.
5-24
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plots where the cutoff dependence is weakest~more points
are needed!, but we see that the dependence is relativ
weak from aL50.5 to aL50.7, which corresponds to
L/M02151.33 toL/M02151.20.

The second criterion that we use to determine the opti
cutoff is the degree to which the states with a givenJ andP
and differentj ’s are degenerate. This determines the cut
that minimizes the violation of rotational symmetry. We fin
that these degeneracies are best whenaL50.5. Given this

FIG. 7. The masses of the two lightest glueballs withj 51, as
functions of the cutoff. The masses and the cutoff are displaye
units of the mass of the 021 state. The seven values of the cutoff
the points that we display correspond, from right to left, toaL

50.1,0.2,0.3,...,0.7. We use 14 longitudinal basis functions
transverse-magnitude basis functions, and 4 spin basis function
a total of 392 basis functions.

FIG. 8. The masses of the two lightest glueballs withj 52, as
functions of the cutoff. The masses and the cutoff are displaye
units of the mass of the 021 state. The seven values of the cutoff
the points that we display correspond, from right to left, toaL

50.1,0.2,0.3,...,0.7. We use 14 longitudinal basis functions
transverse-magnitude basis functions, and 4 spin basis function
a total of 392 basis functions.
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and the fact that Figs. 6–8 indicate that the cutoff dep
dence of the masses is weak whenaL50.5 to aL50.7, we
determine thataL50.5 is the optimal coupling, and thus th
optimal cutoff isL/M02151.33. Using the result of Morn-
ingstar and Peardon for the mass of the 021 state, we esti-
mate that this cutoff is about 3.4 GeV.

B. Results

Now we present our main results. Our glueball masses
aL50.5 are summarized in Table I, in units of the mass
the ground state~the 011 state!. For the sake of comparison
Table I also shows results for the masses from a few o
approaches: an average of lattice calculations@28#, an
effective-Hamiltonian approach@29#, and a method that ana
lyzes the asymptotic behavior of Wilson loops@30#. The un-
certainties in our results that we report in Table I are only
statistical uncertainties associated with the Monte Ca
evaluation of the matrix elements ofM2(L). The full errors
are much larger~see the discussion of sources of error b
low!. We list three values of the masses for the 211 and
211* states for our calculation, corresponding toj 50,1,2.
In each case the three masses would be degenerate i
calculation were exact. Our results agree with the lattice
sults quite well, reasonably well with the effective
Hamiltonian results, and less well with the results from t
Wilson-loop approach.

We display our spectrum graphically in Fig. 9. Th
masses are plotted in units of the mass of the 011 state and
the vertical widths of the levels represent the statistical
certainties in the masses. The black lines connect the s
that we believe should be degenerate. We see that the0

11

and 20
11* glueballs are relatively degenerate with their 21

11

and 21
11* counterparts, and the 22

11* is not too bad, but the

in

7
for

in

7
for

TABLE I. The glueball masses from our calculation compar
to those from a few other approaches: an average of lattice ca
lations@28#, an effective-Hamiltonian approach@29#, and a method
that analyzes the asymptotic behavior of Wilson loops@30#. We
display the masses in units of the mass of the 011 state. The un-
certainties for our results are only the statistical uncertainties a
ciated with the Monte Carlo evaluation of the matrix elements
M2(L). The three values of the masses for the 211 and 211*
states for our calculation correspond toj 50,1,2. We use the opti-
mal coupling aL50.5, with 14 longitudinal basis functions,
transverse-magnitude basis functions, and 4 spin basis functions
a total of 392 basis functions.

State M /M011 Lattice @28#
Effective

Hamiltonian@29#
Wilson

loops @30#

021 1.3860.02 1.3460.18 1.36 1.62

1.5860.01
211 1.5860.02 1.4260.06 1.32 1.64

1.1160.01

1.7060.01
211* 1.6860.02 1.8560.20 1.88 2.36

1.6260.02

011* 1.7760.02 1.7860.12 1.88 1.72
5-25
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22
11 glueball is much too light. Our labeling of the states a

subsequent assignment of the expected degeneracie
based on the ordering of the lattice states~see Table I! and
the apparent degeneracies of the 20

11 and 20
11* states with

the 21
11 and 21

11* states, respectively.
We want to show some of the features of the glueb

wave functions. Rather than presenting the spin-depen
wave functions themselves, we present more illuminat
spin-independent probability densities. A glueball state
the plane-wave normalization shown in Eq.~71! as long as
the wave functionFs1s2

jn (x,kW'! satisfies

E d2k'dxu~x!u~12x!(
s1s2

uFs1s2

jn ~x,kW'!u251. ~155!

This implies that

E
0

`

dS k

L D E
0

1

dxP~x,k/L!51, ~156!

where we define the dimensionless probability dens
P(x,k/L! by

P~x,k/L!52pLk(
s1s2

uFs1s2

jn ~x,kW'!u2. ~157!

We show the probability densities for some of our glu
balls in Figs. 10–14. The masses of the states tend to
crease as the probability densities move away from the

FIG. 9. Our glueball spectrum. The masses are plotted in u
of the mass of the 011 state and the vertical widths of the leve
represent the statistical uncertainties in the masses. The black
connect the states that we believe should be degenerate. We u
optimal couplingaL50.5, with 14 longitudinal basis functions,
transverse-magnitude basis functions, and 4 spin basis function
a total of 392 basis functions.
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gion x; 1
2 and more towards the edges. This is what

expect based on the form of the kinetic energy of a free st
Notice that the probability density for the 22

11 glueball is
peaked around the regionx; 1

2 and looks similar to the prob
ability density for the 011 glueball. This is consistent with
its small mass.

C. Error analysis

We now turn to a discussion of the sources of error in o
calculation. The sources of error are truncation of the ren
malized IMO atO(gL

2 ), truncation of the free-sector expan
sion of physical states at two gluons, truncation of the ba
function expansion of wave functions, and numeric
approximation of the matrix elements ofM2(L).

We do not know how to estimate the size of any physi
effects that require nonperturbative renormalization. Ho
ever, we can naively estimate the size of the effects
higher-order perturbative renormalization. We have cal
lated the matrix elements ofM2(L! throughO(aL); so the
corrections to these matrix elements should beO(aL

2 ). This

ts

es
the

for

FIG. 10. The probability density of the 011 glueball. We use
the optimal couplingaL50.5, with 14 longitudinal basis functions
7 transverse-magnitude basis functions, and 4 spin basis funct
for a total of 392 basis functions.

FIG. 11. The probability density of the 021 glueball. We use
the optimal couplingaL50.5, with 14 longitudinal basis functions
7 transverse-magnitude basis functions, and 4 spin basis funct
for a total of 392 basis functions.
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translates to corrections to the mass spectrum ofO(aL
2 /2).

Since we have usedaL50.5, we estimate that the unce
tainty in the mass spectrum from the effects of higher-or
perturbative renormalization is about 13%.

We do not know how to estimate the size of any physi
effects that require an infinite number of particles. In fa
until we include at least two free sectors, it is impossible
directly estimate the size of corrections from higher free s
tors. However, we can use the lack of degeneracy of the 22

11

state with the 20
11 and 21

11 states to estimate these corre
tions. According to Table I, the discrepancy in the vario
211 states is about 33%, if we believe the quoted latt
result. Since the uncertainty in the mass spectrum from
fects of higher-order perturbative renormalization is arou
13%, an uncertainty of 30% due to the truncation of t
free-sector expansion is necessary to explain the lack o
tational symmetry in the spectrum~neglecting the other
sources of error, which we expect to be small!.

As we mentioned, when we increase the number of b
functions that we use to represent the wave functions,
find that we reach a point where the statistical errors from

FIG. 12. The probability density of the 20
11 glueball. We use

the optimal couplingaL50.5, with 14 longitudinal basis functions
7 transverse-magnitude basis functions, and 4 spin basis funct
for a total of 392 basis functions.

FIG. 13. The probability density of the 21
11 glueball. We use

the optimal couplingaL50.5, with 14 longitudinal basis functions
7 transverse-magnitude basis functions, and 4 spin basis funct
for a total of 392 basis functions.
02500
r

l
,
o
-

s
e
f-
d
e
o-

is
e
e

Monte Carlo evaluations of the matrix elements are ov
whelming and cause our results to become completely u
liable ~see Appendix C!. For this reason, we have to trunca
our basis-function expansion for the wave functions atNt
57 transverse-magnitude functions. (N152Nt514, and
there are 4 spin basis functions, for a total of 392 basis fu
tions.! This truncation results in additional errors in our r
sults. In Figs. 15, 16, and 17, we show the convergence
the masses of the states withj 50,1,2 respectively, as func
tions of Nt . The masses do not decrease as rapidly as fu
tions of the number of states as one might expect. Thi
primarily because we have already optimized the states q
a bit by determining the widths of the transverse-magnitu
and longitudinal basis functions that minimize the mass
the 011 state~using Nt51!. Our best guess for the unce
tainty that we introduce into the spectrum when we trunc
the basis-function expansion, based on Figs. 15–17, is a
percent.12

We can estimate the uncertainty in our results associa
with the Monte Carlo evaluation of our matrix elements. T
do this, we compute our results withaL50.5 four times,
obtaining statistically independent results, and we comp
the standard deviations of the masses that we obtain.
leads us to estimate that the uncertainty in the spectrum f
the Monte Carlo routine is 1–2 %. This is the uncertain
that we report in Table I and Fig. 9. Combining this unce
tainty with the others leads us to estimate that the total
certainty in our results is about 33%.

VII. CONCLUSION

We have presented a formalism for pure-glue QCD t
allows the physical states of the theory to rapidly converge
a free-sector expansion. In this approach, we force the f

12Technically, this is not an uncertainty because improving
states can only reduce their masses, according to the variat
principle. However, our discussion of errors is not meant to
rigorous.

ns,

ns,

FIG. 14. The probability density of the 22
11 glueball. We use

the optimal couplingaL50.5, with 14 longitudinal basis functions
7 transverse-magnitude basis functions, and 4 spin basis funct
for a total of 392 basis functions.
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state matrix elements of the IMO to satisfy three conditio
to make the desired expansion possible. First, the diag
matrix elements of the IMO must be dominated by the f
part of the IMO. Second, the off-diagonal matrix elements
the IMO must quickly decrease as the difference of the f
masses of the states increases. Third, the free mass of a
state must quickly increase as the number of particles in
state increases.

We assume that we can use perturbation theory to de
the operators of the theory, and if this is valid, then the fi
condition is automatically satisfied. To satisfy the seco
condition, we place a smooth cutoff on the IMO. We u

FIG. 15. The masses of the five lightest glueballs withj 50, in
units of the cutoff, as functions of the number of transver
magnitude basis functions,Nt . We use the optimal couplingaL

50.5, with four spin basis functions andNl52Nt longitudinal basis
functions, for a total of 8Nt

2 basis functions.

FIG. 16. The masses of the two lightest glueballs withj 51, in
units of the cutoff, as functions of the number of transver
magnitude basis functions,Nt . We use the optimal couplingaL

50.5, with four spin basis functions andNl52Nt longitudinal basis
functions, for a total of 8Nt

2 basis functions.
02500
s
al

e
f
e
ree
e

ve
t
d

LFFT so that the effects of the vacuum are isolated in p
ticles with zero longitudinal momentum, and we remo
these particles from the theory with the intent of replaci
their physical effects with interactions. This makes it reas
able to expect that the third condition on the IMO is satisfi
automatically due to the free-particle dispersion relation
LFFT.

The cutoff that we use violates a number of physical pr
ciples of light-front pure-glue QCD. However, by requirin
the IMO to produce cutoff-independent physical quantit
and by requiring it to respect the unviolated physical pr
ciples of the theory, we are able to derive recursion relati
that uniquely determine the IMO to all orders in perturbati
theory.

We have applied our method to the calculation of physi
states and masses. For this calculation, we approximate
physical states as two-gluon states. We calculated the c
parts of the states analytically, and we expanded the sta
momentum and spin degrees of freedom in terms of b
functions. We designed the states to be simultaneous ei
states of the IMO, the three-momentum operator, and
projection of the internal rotation generator onto the thr
axis.

Using our recursion relations for the IMO, we calculat
to second order in perturbation theory the two-gluon to tw
gluon matrix element of the IMO, which is required for th
calculation of physical states. We then used it to calculate
IMO matrix in terms of the basis functions. We showed th
the infrared divergences in the matrix from exchanged g
ons with infinitesimal longitudinal momentum cancel wh
treated properly.

In order to diagonalize the IMO matrix, we computed t
five-dimensional integrals in the matrix elements usi
Monte Carlo methods. We calculated the glueball spectr
for a range of couplings and found that we could not u
more than about 400 basis functions without the statist

-

-

FIG. 17. The masses of the two lightest glueballs withj 52, in
units of the cutoff, as functions of the number of transver
magnitude basis functions,Nt . We use the optimal couplingaL

50.5, with four spin basis functions andNl52Nt longitudinal basis
functions, for a total of 8Nt

2 basis functions.
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errors becoming overwhelming. We used the mass of
021 glueball to compute the nonperturbative cutoff depe
dence of the coupling, and we analyzed the cutoff dep
dence of the spectrum. We found that the cutoff that m
mizes our errors isL/M02151.33. The corresponding
coupling isaL50.5. We presented the probability densiti
for some of our glueballs and found that our results for
spectrum compare favorably with some recent results fr
other approaches. The largest discrepancy seems to b
22

11 state, which is much too light. Finally, we analyzed t
errors in our calculation from the various possible sourc
and estimated the total uncertainty in our spectrum to
33%.

There are two main paths that we can take for future w
with our approach. The first path is to further test our meth
with the theories that we have considered so far. Since
scalar theory that we considered in Ref.@1# is relatively
simple, it would be interesting to use it compute the IMO
higher orders in perturbation theory. This would require us
solve the integral equation for the cutoff-independent
duced interaction and could be used to further check
conjecture that our IMO leads to correct scattering am
tudes order-by-order in perturbation theory.

In pure-glue QCD, we can further test our approach
calculating physical states by computing the IMO to high
orders in perturbation theory and by keeping more free s
tors in the expansion of the states. However, to keep m
free sectors in the expansion of the states, we have to be
to calculate IMO matrices that have more degrees of fr
dom, while controlling the statistical errors in the spectru
This means that we need a better algorithm for determin
how accurately individual matrix elements of the IMO ha
to be computed in order to get a desired uncertainty in
spectrum. We could also use a better basis that requ
fewer momentum functions to represent a wave functi
Overcoming these problems will be challenging, but it
important to test our method by studying the rate of conv
gence of the free-sector expansion of states as a functio
both the cutoff and the masses of the states.

Another test of our method that we can do with pure-g
QCD is to analyze the interaction that we have derived
this paper to test the conjecture that it is logarithmically co
fining. It would also be interesting to analyze the long-ran
parts of higher-order interactions to see if the perturba
series for the interaction is building towards a linearly co
fining potential. Analyzing the long-range parts of highe
order interactions may be much easier than computing th
interactions in their entirety.

The second main path that we can take in the future i
extend our method to other theories and operators. In o
to compute quantities that can be compared with experim
we wish to extend our method to full QCD.13 This is com-
plicated for two reasons. First, there is additional algebr

13We are not thinking of including QCD effects that require no
perturbative renormalization or an infinite number of particles
cause these would require a new method rather than an extensi
our current approach.
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and numerical complexity from the vertices involvin
quarks. Second, quark masses complicate the method fo
termining the IMO because they increase the number of
duced interactions that can be cutoff-independent@18#. In
addition, if large and small quark masses are considered
multaneously, then efficient numerical representation of
states and accurate calculation of the IMO’s matrix eleme
become more difficult. Masses also quickly enlarge the
rameter space that must be explored to compare to exp
mental data.

We can also extend our method by applying it to t
computation of operators other than the IMO, such as
rotation generators, the parity operator, and currents.
rotation generators and the parity operator are of partic
interest because they may aid in the classification of
physical states of a theory.

In summary, there are many avenues of research that m
be explored, and some of them are quite complex. Howe
all the improvements that we have discussed are necessa
we are to accurately represent the physical states of quan
field theories as rapidly convergent expansions in free s
tors.

APPENDIX A: CONVENTIONS FOR LIGHT-FRONT
PURE-GLUE QCD

The purpose of this appendix is to state our conventio
With these conventions, any four-vectora is written in the
form

a5~a1,a2,aW'!, ~A1!

where in terms of equal-time vector components

a65a06a3 ~A2!

and

aW'5(
i 51

2

a'
i êi5(

i 51

2

aiêi , ~A3!

where êi is the unit vector pointing along thei-axis. The
inner product is

a•b 5
1

2
a1b21

1

2
a2b12aW'•bW' ~A4!

and

aW'
2 5aW'•aW' . ~A5!

A spacetime coordinate is a four-vector, and according
Eq. ~A1!, it is written

x5~x1,x2,xW'!. ~A6!

The time component is chosen to bex1. x2 is referred to as
the longitudinal component, andxW' contains the transvers
components.

The gradient operator is treated just like any other fo
vector. Its components are

-
of
5-29
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]652
]

]x7 ~A7!

and

]'
i 5

2]

]x'
i . ~A8!

The canonical Lagrangian density for pure-glue QCD is

L52
1

4
FcmnFc

mn , ~A9!

where

Fc
mn5]mAc

n2]nAc
m2gAc1

m Ac2

n f c1c2c. ~A10!

Greek indices are Lorentz indices,c’s are color indices, re-
peated indices are summed over, and thef’s are the SU(Nc!
structure constants.

We derive the canonical Hamiltonian fromL by the fol-
lowing procedure.

~1! We choose the light-cone gauge,Ac
150.

~2! We derive the Euler-Lagrange equation that det
minesAc

2 in terms ofAW'c .
~3! Using the canonical procedure and treating the fi

classically~i.e., letting it and its derivatives commute!, we
derive the Hamiltonian in terms ofAW'c , dropping terms that
are zero if the gluon field is zero at spacetime infinity.

~4! We quantize the gluon field by expanding it in term
of free-particle creation and annihilation operators.~We de-
fine the field expansion and its inverse longitudinal deri
tive below.!

~5! In each term in the Hamiltonian, we treat the creati
and annihilation operators as if they commute and move
the creation operators to the left of all the annihilation o
erators.~This ‘‘normal ordering’’ drops the so-called ‘‘self
inertias,’’ as well as some constants.!

~6! We drop the terms in the Hamiltonian that have
effect if there are no particles withp150.

We work in the Schro¨dinger representation, where oper
tors are time-independent and states are time-depen
Thus we quantize the field by defining it to be a superpo
tion of solutions to the Klein-Gordon equation~since gluons
are bosons!, with the quantization surfacex150:

AW'c~x2,xW'!5E D1dc,c1
@a1«W's1

e2 ip1•x

1a1
†«W's1

* eip1•x#ux150 , ~A11!

where

Di5 (
ci51

Nc

(
si521,1

d2pi'dpi
1

16p3pi
1 u~pi

12eP1!. ~A12!

Here si is the spin polarization of particlei, P is the four-
momentum operator,e is a positive infinitesimal, and the
gluon polarization vector is defined by
02500
-

d

-

ll
-

nt.
i-

«W's5
21

&
~s,i !. ~A13!

p1 andpW' are the momenta conjugate tox2 andxW' ; so they
are referred to as the longitudinal and transverse mome
respectively. The purpose ofe is to regulate divergent effect
from exchanged gluons~either instantaneous or real! with
infinitesimal longitudinal momentum. We takee→0 before
we calculate physical quantities~see Sec. V!.

In the process of deriving the canonical Hamiltonian, w
need to take the inverse longitudinal derivative of the glu
field. We do this by moving the derivative inside the expa
sion:

1

]1 AW 'c~x2,xW'!5E D1dc,c1F2
1

ip1
1 a1«W's1

e2 ip1•x

1
1

ip1
1 a1

†«W's1
* eip1•xGU

x150

. ~A14!

The expansion coefficientsai
† andai are identified as par-

ticle creation and annihilation operators. They follow t
convention

ai5a~pi ,si ,ci !, ~A15!

and have the commutation relations

@ai ,aj
†#5d i j [16p3pi

1d~3!~pi2pj !dsi ,sj
dci ,cj

~A16!

and

@ai ,aj #5@ai
† ,aj

†#50, ~A17!

where

d~3!~pi2pj !5d~pi
12pj

1!d~2!~pW i'2pW j'!. ~A18!

Let M2 be the invariant-mass operator. The moment
conjugate tox1 is p2; so the Hamiltonian is identified asP2

and it follows from

P25M2 ~A19!

that

P25
PW'

2 1M2

P1 . ~A20!

The canonical Hamiltonian that results from the abo
procedure can be written as the sum of a free part and
interacting part:

P25Pfree
2 1v, ~A21!

where

Pfree
2 5E D1

pW 1'
2

p1
1 a1

†a1 . ~A22!
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We give the interaction in terms of its ‘‘modified’’ matrix elements:

v5g
16p3

2! E D1D2D3a2
†a3

†a1d~3!~p12p22p3!²g2g3uvug1³1g
16p3

2! E D1D2D3a3
†a1a2d~3!~p11p22p3!

3²g3uvug1g2³1g2
16p3

2!2! E D1D2D3D4a3
†a4

†a1a2d~3!~p11p22p32p4!

3(
i 51

4

²g3g4uvug1g2³ i1g2
16p3

3! E D1D2D3D4a2
†a3

†a4
†a1d~3!~p12p22p32p4!

3(
i 51

4

²g2g3g4uvug1³ i1g2
16p3

3! E D1D2D3D4a4
†a1a2a3d~3!~p11p21p32p4!

3(
i 51

4

²g4uvug1g2g3³ i , ~A23!

where a modified matrix element is defined by

² i uvu j ³5
^ i uvu j &

16p3d~3!~pi2pj !
U

g51

. ~A24!

The modified matrix elements are

²g2g3uvug1³5 i f c1c2c3F2ds2 ,s̄3
«W's1

•H ~pW 2'2pW 3'!2
pW 1'

p1
1 ~p2

12p3
1!J 1ds1 ,s3

«W's2
* •H ~pW 1'1pW 3'!2

pW 2'

p2
1 ~p1

11p3
1!J

1ds1 ,s2
«W's3
* •H 2~pW 1'1pW 2'!1

pW 3'

p3
1 ~p1

11p2
1!J G ,

²g3uvug1g2³52 i f c1c2c3Fds2 ,s3
«W's1

•H ~pW 3'1pW 2'!2
pW 1'

p1
1 ~p3

11p2
1!J

2ds1 ,s̄2
«W's3
* •H ~pW 1'2pW 2'!2

pW 3'

p3
1 ~p1

12p2
1!J

1ds1 ,s3
«W's2

•H 2~pW 1'1pW 3'!1
pW 2'

p2
1 ~p1

11p3
1!J G , ~A25!

and

²g3g4uvug1g2³15@ f c1c3cf c4c2c~ds2 ,s3
ds1 ,s4

2ds3 ,s̄4
ds1 ,s̄2

!1 f c1c4cf c3c2c~ds2 ,s4
ds1 ,s3

2ds3 ,s̄4
ds1 ,s̄2

!

1 f c1c2cf c3c4c~ds2 ,s4
ds1 ,s3

2ds1 ,s4
ds2 ,s3

!#,

²g3g4uvug1g2³25 f c1c3cf c4c2cds1 ,s3
ds2 ,s4

p1
11p3

1

p1
12p3

1

p4
11p2

1

p4
12p2

1 ,

²g3g4uvug1g2³35 f c1c4cf c3c2cds1 ,s4
ds2 ,s3

p1
11p4

1

p1
12p4

1

p3
11p2

1

p3
12p2

1 ,

²g3g4uvug1g2³45 f c1c2cf c4c3cds1 ,s̄2
ds3 ,s̄4

p1
12p2

1

p1
11p2

1

p4
12p3

1

p4
11p3

1 , ~A26!

and
025005-31
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²g2g3g4uvug1³15@ f c1c3cf c4c2c~2d s̄2 ,s3
ds1 ,s4

1ds3 ,s̄4
ds1 ,s2

!1 f c1c4cf c3c2c~2d s̄2 ,s4
ds1 ,s3

1ds3 ,s̄4
ds1 ,s2

!

1 f c1c2cf c3c4c~2d s̄2 ,s4
ds1 ,s3

1ds1 ,s4
d s̄2 ,s3

!#,

²g2g3g4uvug1³252 f c1c2cf c4c3cds1 ,s2
d s̄3 ,s4

p1
11p2

1

p1
12p2

1

p4
12p3

1

p4
11p3

1 ,

²g2g3g4uvug1³352 f c1c3cf c4c2cds1 ,s3
d s̄2 ,s4

p1
11p3

1

p1
12p3

1

p4
12p2

1

p4
11p2

1 ,

²g2g3g4uvug1³452 f c1c4cf c2c3cds1 ,s4
d s̄3 ,s2

p1
11p4

1

p1
12p4

1

p2
12p3

1

p2
11p3

1 , ~A27!

and

²g4uvug1g2g3³15@ f c1c3cf c4c2c~2ds2 ,s̄3
ds1 ,s4

1ds3 ,s4
ds1 ,s̄2

!1 f c1c4cf c3c2c~2ds2 ,s4
ds1 ,s̄3

1ds3 ,s4
ds1 ,s̄2

!

1 f c1c2cf c3c4c~2ds2 ,s4
ds1 ,s̄3

1ds1 ,s4
ds2 ,s̄3

!#,

²g4uvug1g2g3³252 f c1c4cf c3c2cds1 ,s4
ds2 ,s̄3

p1
11p4

1

p1
12p4

1

p3
12p2

1

p3
11p2

1 ,

²g4uvug1g2g3³352 f c2c4cf c3c1cds2 ,s4
ds1 ,s̄3

p2
11p4

1

p2
12p4

1

p3
12p1

1

p3
11p1

1 ,

²g4uvug1g2g3³452 f c3c4cf c1c2cds3 ,s4
ds2 ,s̄1

p3
11p4

1

p3
12p4

1

p1
12p2

1

p1
11p2

1 , ~A28!
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wheres̄n52sn .
We work in the free basis, the basis of eigenstates

Pfree
2 . They are given by

ug1g2¯gn&5a1
†a2

†
¯an

†u0&, ~A29!

for any integern>0. The associated eigenvalue equation

Pfree
2 ug1g2¯gn&5(

i 51

n

pi
2ug1g2¯gn&, ~A30!

where

pi
25

pW i'
2

pi
1 ~A31!

~sincepi
250! and the sum is zero ifn50.

The noninteracting limit of Eq.~A20! is

Pfree
2 5

PW'
2 1Mfree

2

P1 , ~A32!

whereMfree
2 is the free invariant-mass operator. It has t

eigenvalue equation

Mfree
2 ug1g2¯gn&5M2ug1g2¯gn&, ~A33!
02500
f
where

M25P1(
i 51

n

pi
22PW'

2 , ~A34!

andP is the total momentum of the state. Finally, in terms
the free states, the completeness relation is

15u0&^0u1E D1ug1&^g1u1
1

2! E D1D2ug1g2&^g1g2u1¯ .

~A35!

APPENDIX B: THE DERIVATION OF THE RECURSION
RELATIONS FOR THE REDUCED INTERACTION

This appendix is an extension of Appendix D of Ref.@1#
to the case of pure-glue QCD. In Sec. II D, we derived
constraint on theO(gL

r ! reduced interaction forr>1:

VCD
~r ! ~L!2VCD

~r ! ~L8!5dV~r !2(
s52

r 21

Br 2s,sV
~r 2s!~L!.

~B1!

Since we already know the first-order reduced interact
@see Eq.~18!# and the cutoff-independent part of the secon
order reduced interaction@see Eq.~19!#, we wish to use this
5-32
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equation to computeVCD
(r ) (L! for r>2 andVCI

(r ) for r>3, in
terms of lower-order reduced interactions.

1. The recursion relation for the cutoff-dependent part

We begin by computing the recursion relation for t
cutoff-dependent part of the reduced interaction. Recall
momentum conservation implies that any matrix elemen
V(L! can be written as an expansion in unique products
momentum-conserving delta functions. This means that
arbitrary matrix element of Eq.~B1! can be expanded in
products of delta functions:

(
i

^FuVCD
~r ! ~L!uI &~ i !2(

i
^FuVCD

~r ! ~L8!uI &~ i !

5(
i

F ^FudV~r !uI &2(
s52

r 21

Br 2s,s^FuV~r 2s!~L!uI &G ~ i !

,

~B2!

where the~i! superscripts denote that we are considering
i th product of delta functions that can occur in a del
function expansion of^FuV(r )(L)uI &. This equation is
equivalent to a set of equations, one for each possible p
uct of delta functions:

^FuVCD
~r ! ~L!uI &~ i !2^FuVCD

~r ! ~L8!uI &~ i !

5F ^FudV~r !uI &

2(
s52

r 21

Br 2s,s^FuV~r 2s!~L!uI &G ~ i !

. ~B3!

Cluster decomposition implies that we can write

^FuVCD
~r ! ~L!uI &~ i !5F)

j 51

Nd
~ i !

d j
~ i !GFCD

~ i ! ~$pn%,$sn%,$cn%,L!,

~B4!

whered j
( i ) is the j th momentum-conserving delta function

the i th product of delta functions (d j
( i )includes a

longitudinal-momentum factor!, Nd
( i ) is the number of delta

functions in thei th product, andFCD
( i ) is a function of the

cutoff and the quantum numbers of the particles in the ma
element, but does not contain delta functions that fix m
menta. We defineNpart to be the number of particles in sta
uI& plus the number of particles in stateuF&, and n
51,2,3,...,Npart. The momentum, spin polarization, and col
of particlen are given bypn , sn , andcn . We defineNint

( i ) to
be the number of particles in the matrix element that part
pate in an interaction for thei th product of delta functions. In
02500
at
f
f
n

e
-

d-

ix
-

i-

order for the IMO to have the dimensions~mass!2, FCD
( i ) must

have the dimensions~mass!42Nint
( i )

. Note that we are suppress
ing the dependence of the RHS of this equation onr.

We have assumed that any matrix element of the IMO
be expanded in powers of transverse momenta, not includ
the momentum-conserving delta functions; so

FCD
~ i ! ~$pn%,$sn%,$cn%,L!

5L42Nint
~ i !

(
$mnt%

zi
$mnt%~$pn

1%,$sn%,$cn%!

3 )
n51

Npart

)
t51

2 S pn'
t

L D mnt

, ~B5!

where t denotes a component of transverse momentum
mnt is a non-negative integer index associated w
transverse-momentum componentt of particlen. The sum is
over all values of each of themnt’s, subject to the constrain
that

42Nint
~ i !2(

n,t
mntÞ0, ~B6!

which is necessary to avoid terms in the momentum exp
sion that are cutoff-independent. Thezi

$mnt%’s are the coeffi-
cients for the momentum expansion. They depend oni and
themnt’s and are functions of the particles’ longitudinal m
menta, spin polarizations, and colors.

Since the RHS of Eq.~B3! has the same product of delt
functions as the LHS, we can write

F ^FudV~r !uI &2(
s52

r 21

Br 2s,s^FuV~r 2s!~L!uI &G ~ i !

5F)
j 51

Nd
~ i !

d j
~ i !GG~ i !~$pn%,$sn%,$cn%,L,L8!, ~B7!

whereG( i ) has dimensions~mass!4-Nint
( i )

, and by inspection of
the LHS of Eq.~B3! and Eq.~B4!, is a function of the quan-
tum numbers of the particles,L, andL8. Substitution of Eqs.
~B7! and ~B4! into Eq. ~B3! yields

FCD
~ i ! ~$pn%,$sn%,$cn%,L!2FCD

~ i ! ~$pn%,$sn%,$cn%,L8!

5G~ i !~$pn%,$sn%,$cn%,L,L8!, ~B8!

where the momenta in this equation are constrained by
delta-function conditions.

Since the LHS of Eq.~B8! is the difference of a function
of L and the same function withL→L8,G( i ) must be as
well. Since the LHS of Eq.~B8! can be expanded in power
of transverse momenta,G( i ) must have the form
G~ i !~$pn%,$sn%,$cn%,L,L8!5 (
$mnt%

Zi
$mnt%~$pn

1%,$sn%,$cn%!FL42Nint
~ i !

)
n,t

S pn'
t

L D mnt

2L842Nint
~ i !

)
n,t

S pn'
t

L8
D mntG , ~B9!

where the sum is restricted by Eq.~B6!.
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Substituting Eqs.~B9! and ~B5! into Eq. ~B8!, we find that

L4-Nint
~ i !

(
$mnt%

zi
$mnt%~$pn

1%,$sn%,$cn%!)
n,t

S pn'
t

L D mnt

2L84-Nint
~ i !

(
$mnt%

zi
$mnt%~$pn

1%,$sn%,$cn%!)
n,t

S pn'
t

L8
D mnt

5 (
$mnt%

Zi
$mnt%~$pn

1%,$sn%,$cn%!FL4-Nint
~ i !

)
n,t

S pn'
t

L D mnt

2L84-Nint
~ i !

)
n,t

S pn'
t

L8
D mntG . ~B10!
-
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Matching powers of transverse momenta on both sides
this equation gives

zi
$mnt%~$pn

1%,$sn%,$cn%!@L4-Nint
~ i !

2Sn,tmnt2L84-Nint
~ i !

2Sn,tmnt#

5Zi
$mnt%~$pn

1%,$sn%!,$cn%)@L4-Nint
~ i !

2Sn,tmnt

2L84-Nint
~ i !

2Sn,tmnt#. ~B11!

The factor in brackets cannot be zero becauseLÞL8 and
Eq. ~B6! holds. Thus Eq.~B11! implies that

zi
$mnt%5Zi

$mnt% . ~B12!

Then Eqs.~B5!, ~B9!, and~B12! imply that

FCD
~ i ! ~$pn%,$sn%,$cn%,L!

5G~ i !~$pn%,$sn%,$cn%,L,L8!uL terms, ~B13!

where ‘‘L terms’’ means thatG( i ) is to be expanded in pow
ers of transverse momenta and only the terms in the ex
sion that are proportional to powers or inverse powers oL
contribute. From Eqs.~B4!, ~B7!, and~B13!,

^FuVCD
~r ! ~L!uI &~ i !

5F ^FudV~r !uI &2(
s52

r 21

Br 2s,s^FuV~r 2s!~L!uI &G
L terms

~ i !

,

~B14!

where it is understood that the momentum-conserving d
functions are ignored for the purposes of transver
momentum expansions. Since a matrix element is the sum
the contributions to it from different products of delta fun
tions, both sides of this equation can be summed overi to
obtain

^FuVCD
~r ! ~L!uI &5F ^FudV~r !uI &

2(
s52

r 21

Br 2s,s^FuV~r 2s!~L!uI &G
L terms

.

~B15!

This equation tells us how to calculate the cutoff-depend
part of theO(gL

r ! reduced interaction in terms of lower-ord
contributions.
02500
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-
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2. The recursion relation for the cutoff-independent part

Since we have specifiedV(1) andVCI
(2) , we need to deter-

mine VCI
(r ) for r>3. It is useful to first consider which con

tributions to V(r )(L! can be cutoff independent. A matri
element of the cutoff-independent part ofV(r )(L! can be
expanded in products of delta functions and in powers
transverse momenta just as was done for the cut
dependent part. Thus we can write

^FuVCI
~r !uI &5(

i
^FuVCI

~r !uI &~ i !, ~B16!

where

^FuVCI
~r !uI &~ i !5F)

j 51

Nd
~ i !

d j
~ i !GFCI

~ i !~$pn%,$sn%,$cn%! ~B17!

and

FCI
~ i !~$pn%,$sn%,$cn%!5L4-Nint

~ i !

(
$mnt%

wi
$mnt%~$pn

1%,$sn%,$cn%!

3 )
n51

Npart

)
t51

2 S pn'
t

L D mnt

. ~B18!

The sum is over all values of each of themnt’s, subject to the
constraint that

4-Nint
~ i !2(

n,t
mnt50, ~B19!

which ensures that all the terms in the expansion ofFCI
( i ) are

cutoff-independent.
Eq. ~B19! places constraints on the possible cuto

independent contributions to the reduced interaction. A
contribution to a matrix element ofV(r )(L! has anNint

( i )>2,
but Eq.~B19! can only hold ifNint

( i )<4.
Suppose thatNint

( i )52. In this case, Eq.~B19! implies that
FCI

( i ) is quadratic in transverse momenta. Due to approxim
cluster decomposition, only interacting particles’ transve
momenta can appear inFCI

( i ) . So any contribution toFCI
( i ) can

depend on the transverse momenta of two interacting
ticles. ThusFCI

( i ) can be written as a sum of terms, where ea
term corresponds to a distinct pair of interacting particl
The momentum dependence of each term inFCI

( i ) is limited to
dependence on the momenta of the interacting particles
the total longitudinal momentum:
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FCI
~ i !~$pn%,$sn%,$cn%!5(

m
FCI

~ i ,m!~km ,km8 ,P1,$sn%,$cn%!

5(
m

FCI
~ i ,m!~km ,P1,$sn%,$cn%!, ~B20!

wherekm and km8 are the momenta for the initial and fina
particles in themth interacting pair, and where we have us
the fact that forNint

( i )52, momentum conservation implie

that km5km8 . FCI
( i ,m) must be quadratic inkWm' or it must be

zero. The matrix elements of the IMO are boost invariant
is the delta-function product in Eq.~B17!. This means that
FCI

( i ) must be boost-invariant, but it cannot be ifFCI
( i ,m) is

quadratic inkWm' ; so FCI
( i ,m) must be zero. Thus the reduce

interaction does not contain any cutoff-independent tw
point interactions.

Note that two-point interactions are self-energies, a
they change the particle dispersion relation. If they cha
the dispersion relation such that the coefficients of the f
relation become modified by interactions, then this can
viewed as renormalization of the field operators, i.e., wa
function renormalization. This effect is absent unless eit
FCI

( i ) or FCD
( i ) can be quadratic in transverse momenta

Nint
( i )52. We have just shown that boost invariance preve

this for FCI
( i ) , and according to Eq.~B6!, FCD

( i ) cannot be qua-
dratic in transverse momenta forNint

( i )52; so there is no
wave-function renormalization at any order ingL in our ap-
proach.

According to Eq.~B19!, if Nint
( i )53, thenFCI

( i ) has to be
linear in transverse momenta, and ifNint

( i )54, thenFCI
( i ) has to

be independent of all transverse momenta. According to
sumptions that we made in Sec. II C 4, ifr is odd thenVCI

(r )

has noNint
( i )54 part, and ifr is even thenVCI

(r ) has noNint
( i )

53 part. This means that ifr is odd, thenVCI
(r ) can contain

only three-point interactions that are linear in transverse m
menta, and ifr is even, thenVCI

(r ) can contain only four-point
interactions that are independent of all transverse mome

To calculateVCI
(r ) , we consider Eq.~B3! with r→r 12:

^FuVCD
~r 12!~L!uI &~ i !2^FuVCD

~r 12!~L8!uI &~ i !

5F ^FudV~r 12!uI &2(
s52

r 11

Br 122s,s^FuV~r 122s!~L!uI &G ~ i !

.

~B21!

In the remainder of this appendix, we assume thatr is odd.
Then we need to consider onlyNint

( i )53 initially. We expand
Eq. ~B21! in powers of transverse momenta and keep o
the linear term:

05F ^FudV~r 12!uI &2(
s52

r 11

Br 122s,s

3^FuV~r 122s!~L!uI &G
pW

'
1 term

~ i !

, ~B22!
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where we have used the fact that^FuVCD
(r 12)(L)uI & ( i ) has no

linear part whenNint
( i )53 @see Eq.~B6!#. We move the first

term in the sum on the RHS to the LHS:

Br ,2̂ FuVCI
~r !uI &~ i !

5F ^FudV~r 12!uI &2(
s53

r 11

Br 122s,s

3^FuV~r 122s!~L!uI &G
pW

'
1 term

~ i !

. ~B23!

Now we can sum over all values ofi corresponding to three
point interactions:

^FuVCI
~r !uI &5

1

Br ,2
F ^FudV~r 12!uI &2(

s53

r 11

Br 122s,s

3^FuV~r 122s!~L!uI &G
pW

'
1 term

3-point

. ~B24!

To use this equation, we also need to use Eq.~B21! to
solve forVCI

(r 11) . Sincer is odd,r 11 is even. ThusVCI
(r 11)

will contain only transverse-momentum-independent fo
point interactions. Using steps analogous to those that le
Eq. ~B24!, we find that

^FuVCI
~r 11!uI &5

1

Br 11,2
F ^FudV~r 13!uI &

2(
s53

r 12

Br 132s,s^FuV~r 132s!~L!uI &G
pW

'
0 term

4-point

.

~B25!

To use these equations, the right-hand sides have to be
panded in powers of transverse momenta. Only three-p
interactions that are linear in transverse momenta contrib
to VCI

(r ) , and only four-point interactions that are independe
of all transverse momenta contribute toVCI

(r 11) .
These equations are coupled integral equations14 because-

both VCI
(r ) andVCI

(r 11) appear on the RHS of Eq.~B24! inside
integrals indV(r 12), andVCI

(r 11) appears on the RHS of Eq
~B25! inside integrals indV(r 13). It would seem thatVCI

(r 12)

also appears on the RHS of Eq.~B25! inside integrals in
dV(r 13), but VCI

(r 12) cannot couple toV(1) to produce a
transverse-momentum-independent four-point contribut

to dV(r 13). This is because the cutoff functionT2
(L,L8) van-

ishes when the intermediate state is massless and all ext
transverse momenta are zero. This means that since
specifiedV(1) andVCI

(2) in Sec. II C 4, we can use Eqs.~B24!

14It is very difficult to prove that integral equations of this typ
have a unique solution; so we simply assume that it is true in
case.
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and~B25! to solve forVCI
(3) andVCI

(4) simultaneously, andVCI
(5)

andVCI
(6) simultaneously, and so on. Note that before we c

use these equations to solve forVCI
(r ) and VCI

(r 11) simulta-
neously, we must first use Eq.~B15! both to compute
VCD

(r ) (L! in terms of lower-order interactions and to expre
VCD

(r 11)(L! in terms of lower-order interactions an
V(r )(L).

Before concluding this appendix, we would like to dedu
a bit more about the relationship ofgL to gL8 . According to
Eq. ~27! and the surrounding discussion, this relationship
determined by the matrix element^g2g3udVug1&, which can
be expanded in powers ofgL8 :

^g2g3udVug1&5(
t53

`

gL8
t ^g2g3udV~ t !ug1&. ~B26!

Recall thatdV(t) is built from products ofV(r )(L8!’s. This
implies thatdV(t) can change particle number by 1 only ift
is odd, and thus Eq.~B26! implies that the coupling runs a
odd orders; i.e.,Cs is zero if s is even@see Eq.~29!#.

APPENDIX C: TECHNICAL ISSUES IN THE NUMERICAL
CALCULATION OF MATRIX ELEMENTS

In this appendix, we discuss some of the technical iss
involved in the numerical calculation of the matrix elemen
^q8,l 8,t8, j uM2(L)uq,l ,t, j &. In Appendix C 1 we discuss
how we put the matrix elements into a form that is amena
to numerical calculation. In Appendix C 2 we briefly cov
three topics: we show how the glueball state withJ 3

R eigen-
value 2 j can be written in terms of the glueball state wi
J 3

R eigenvaluej, we list a few tricks that allow us to reduc
the number of matrix elements that we must compute,
we present our method for estimating how numerical unc
tainties in the matrix elements translate into uncertaintie
the spectrum.

1. Preparation of integrals for the Monte Carlo calculation

There are two types of contributions t
^q8,l 8,t8, j uM2(L)uq,l ,t, j &: finite sums and five-
dimensional integrals. We useMATHEMATICA @26# to evalu-
ate the finite sums to as many digits as we wish. To evalu
the integrals, we combine them into one integral and use
VEGAS Monte Carlo routine@31#. It takes a bit of work to put
the integral into a form that will converge.

There are two main difficulties with getting the inte
gral to converge. The first difficulty is that̂ q8,l 8,
t8, j uM2(L)uq,l ,t, j & IN

B,F looks divergent: asx8→x, the sum
in Eq. ~151! diverges. This divergence is misleading becau
it actually contributes nothing to the integral~assuming that
we calculate the integral carefully; see the discussion belo!.
Left unchecked, this false divergence prevents the inte
from converging withVEGAS. To rectify the problem, we
want to subtract the false divergence from the integra
Since it integrates to zero, this is allowed.

The second main difficulty with getting the integral
converge is roundoff error. Even after we subtract the fa
02500
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divergence from the integrand, the integrand peaks aro
x85x, and in this region there are large cancellations
some of the quantities that we have defined. To prevent th
cancellations from causing roundoff error, we rewrite the
quantities so that the cancellations are explicit, before
turn to numerics.

a. Subtraction of the false divergence

We begin by defining a set of variables that is natural
dealing with the false divergence. We define

h5x2x8. ~C1!

We change variables fromkW' and kW'8 to the dimensionless
transverse variablesrW' andwW ' :

rW'5
d

2
~kW'1kW'8 !,

wW '5
d

2

kW'2kW'8

Ah
. ~C2!

We define the angle betweenrW' andwW ' to beb:

rW'•wW '5rw cosb. ~C3!

We also define

r 65Ar 21hw262rwAh cosb, ~C4!

and then we can derive a host of useful relations:

kW'5
rW'1AhwW '

d
,

kW'8 5
rW'2AhwW '

d
,

k5
r 1

d
,

k85
r 2

d
,

kW'•kW'8 5
1

d2 ~r 22hw2!,

cosg5
r 22hw2

r 1r 2
,

sing5
22rwAh

r 1r 2
sinb, ~C5!

and

dkdk8dgkk8u~k!u~k8!u~g!u~2p2g!

5
4h

d4 drdwdbrwu~r !u~w!u~b!u~2p2b!. ~C6!

In terms of these variables,^q8,l 8,t8, j uM2(L)uq,l ,t, j & IN
B,F

takes the form
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^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B,F

52
NcgL

2

2p3d2 E D8 loghWq,q8T̄t8~r 2!T̄t~r 1!

3e2~Ld!24~D̄FK
2

1D̄ IK
2

!(
i 51

5

Ei8 )
m51;mÞ i

5

Em , ~C7!

where
02500
D85dxdx8drdwdbrwhu~x!u~12x!u~x8!

3u~x2x8!u~r !u~w!u~b!u~2p2b!L̄ l
~e!~x!.

~C8!

To avoid roundoff error, we have defined simplified dime
sionless versions of the differences of the free masses an
derivatives of these differences:
mit

infinite.
e

s when
D̄FI5
r 2h~12x2x8!1w2h2~12x2x8!22wrAh~x@12x#1x8@12x8# !cosb

x~12x!x8~12x8!
,

D̄FK52
r 2h1w2~12x112x8!212rwAh~12x112x8!cosb

~12x!~12x8!
,

D̄ IK52
r 2h1w2~x1x8!222rwAh~x1x8!cosb

xx8
,

D̄FK8 5
r 2

2

~12x8!224
w2

h
,

D̄ IK8 5
r 2

2

x8224
w2

h
. ~C9!

Equation~C7! is now dimensionless, except for the factor in front of the integral, which is proportional to 1/d2.
As x8→x (h→0), the contributions to the integrand from the first and second terms in the sum diverge. In the lix8

→x, the contribution to the integral from these terms can be written15

2
NcgL

2

2p3d2 dq,q8E D8 loghT̄t8~r !T̄t~r !e232~Ld!24w4F 1

h2264~Ld!24
w4

h2 G L̄ l 8
~e!

~x8!~x1x8!3~12x112x8!. ~C10!

An examination of this integral reveals a problem: the transverse integrals are zero and the longitudinal integrals are
To solve this problem, we consider what would have happened if we had not yet takene→0. In this case, the transvers
integrals would be zero and the longitudinal integrals would be finite. Thus thee→0 limit of this integral would be zero. This
means that this integral is actually zero, and we can subtract it from the full integral in Eq.~C7!:

^q8,l 8,t8, j uM2~L!uq,l ,t, j & IN
B,F52

NcgL
2

2p3d2 E D8 loghFWq,q8T̄t8~r 2!T̄t~r 1!e2~Ld!24~D̄FK
2

1D̄ IK
2

!(
i 51

5

Ei8 )
m51;mÞ i

5

Em

2dq,q8T̄t8~r !T̄t~r !e232~Ld!24w4S 1

h2264~Ld!24
w4

h2 D L̄ l 8
~e!

~x8!~x1x8!~12x112x8!G .

~C11!

Once we have performed this subtraction, there is no ambiguity about the value of the full integral, and it converge
computed numerically.

15We do not replace all the occurrences ofx8 with x because doing so hampers the convergence of the integral.
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b. Combination of the integrals

We now combine all the five-dimensional integrals into one integral:

^q8,l 8,t8, j uM2~L!uq,l ,t, j &52D52
NcgL

2

2p3d2 E D8@ I CON1I EX
F 1I IN1EX1I IN

B,F#, ~C12!

where

I CON5@d j ,22dq8,2dq,21d j ,2dq8,1dq,12d j ,0dq8,3dq,3#L̄ l 8
~e!

~x8!T̄t8~r 2!T̄t~r 1!e2~Ld!24D̄FI
2

,

I EX
F 5L̄ l 8

~e!
~x8!T̄t8~r 2!T̄t~r 1!e2~Ld!24D̄FI

2 1

h S 1

D̄FK

1
1

D̄ IK
D ~12e22~Dd!24D̄FKD̄ IK !

3F r 1
2

x~12x!
Sq,q8

~1!
1

r 2
2

x8~12x8!
Sq,q8

~2!
1

r 1r 2

x~12x!x8~12x8!
Sq,q8

~3! G ,

I IN1EX5Wq,q8L̄ l 8
~e!

~x8!T̄t8~r 2!T̄t~r 1!e2~Ld!24D̄FI
2 ~12e22~Ld!24D̄FKD̄ IK !

x~12x!x8~12x8!

1

h

1

D̄FKD̄ IK

3@2h5w422h4w2~r 212w2@122x# !2h3~r 414r 2w2@122x#16w4@122x#2!24 cosbAhrw~@211h2#r 2

1hw2@12x2x8#2!~12x2x8!18r 2w2x~12x!24 cos2 br 2w2~h412h3@122x#14x@12x#24h2x@12x#

22h@122x# !24h2w2~w2@122x#31r 2@122x~12x!# !12h~r 422r 2w2@122x#

24w4x@2113x24x212x3# !#,

I IN
B,F5 loghFWq,q8T̄t8~r 2!T̄t~r 1!e2~Ld!24~D̄FK

2
1D̄ IK

2
!(
i 51

5

Ei8 )
m51;mÞ i

5

Em2dq,q8T̄t8~r !T̄t~r !

3e232~Ld!24w4S 1

h2264~Ld!24
w4

h2 D L̄ l 8
~e!

~x8!~x1x8!~12x112x8!G . ~C13!
f
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We have rewritten the integrand o
^q8,l 8,t8, j uM2(L)uq,l ,t, j & IN1EX to eliminate large roundoff
errors, at the expense of making it more complicated.
further avoid roundoff errors, we rewrite a few of theSq,q8

( i ) ’s:

S3,3
~1!5cos~ j g!@2h212h~122x!1~122x!2#,

S3,4
~3!52sing sin~ j g!~2h2@122x#1h@126x16x2#

22x@123x12x2# !,

S4,4
~1!5cos~ j g!~122x!~112h22x!. ~C14!

Note that to compute some of the trigonometric functio
that appear in this integral@such as cos(jg!# in terms of the
integration variables, it is necessary to use recursion relat
that define these functions in terms of cosg and sing so that
we can use Eq.~C5!.

The integral in Eq.~C12! converges slowly. This is be
cause it is strongly peaked whenx8.x, even though we
have subtracted the false divergence. To spread out thi
gion, we change variables fromx8 to p where
02500
o

s

ns

re-

x85x~12e2p!. ~C15!

Now the integral is

^q8,l 8,t8, j uM2~L!uq,l ,t, j &52D

52
NcgL

2

2p3d2 E
0

1

dxE
0

`

dpE
0

`

drE
0

`

dw

3E
0

2p

dbrwh2L̄ l
~e!~x!@ I CON1I EX

F 1I IN1EX1I IN
B,F#.

~C16!

As a final step, we note thatVEGAS requires the region of
integration to be finite. Thus we change variables fromp, r,
andw to yp , yr , andyw :

p5
2

11yp
21,
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r 5
2

11yr
21,

w5
2

11yw
21, ~C17!

and then the final expression for the contribution to the m
trix elements from the five-dimensional integral is

^q8,l 8t8, j uM2~L!uq,l ,t, j &52D

52
4NcgL

2

p3d2 E
0

1

dxE
21

1

dypE
21

1

dyrE
21

1

dywE
0

2p

dbrw

3
1

~11yp!2

1

~11yr !
2

1

~11yw!2 h2L̄ l
~e!~x!

3@ I CON1I EX
F 1I IN1EX1I IN

B,F#. ~C18!

The integral converges nicely in this form.

2. Miscellaneous issues

a. Equivalent bases: j\À j

To compute the glueball spectrum, we compute the ma
^q8,l 8,t8, j uM2(L)uq,l ,t, j & and diagonalize it for each
value of j separately. For a givenuju, the matrices withj
5u j u and j 52u j u are simply related, and we can use th
fact to avoid computing and diagonalizing both of them.
inspection, we determine that

^q8,l 8,t8,2 j uM2~L!uq,l ,t,2 j &

5 (
q9,q-

^q-,l 8,t8, j uM2~L!uq9,l ,t, j & f ~q,q9! f ~q8,q-!,

~C19!

where

f ~q,q8!5dq,1dq8,21dq,2dq8,11dq,3dq8,32dq,4dq8,4 .
~C20!

This simply means that the basisuq,l ,t,2 j & is related to the
basis uq,l,t,j& by swapping the statesu1,l ,t, j & and u2,l ,t, j &,
and changing the sign ofu4,l ,t, j &. Renaming basis states an
changing their phases has no effect on the eigenvalues o
matrix; so uC (2 j )n(P)& has the same mass asuC jn(P)&. It
also means that since

uC jn~P!&5(
qlt

Rqlt
jn uq,l ,t, j &

5(
l t

@R1l t
jn u1,l ,t, j &1R2l t

jn u2,l ,t, j &

1R3l t
jn u3,l ,t, j &1R4l t

jn u4,l ,t, j &], ~C21!

we have
02500
-

ix

the

uC~2 j !n~P!&5(
l t

@R1l t
jn u2,l ,t, j &1R2l t

jn u1,l ,t, j &1R3l t
jn u3,l ,t, j &

2R4l t
jn u4,l ,t, j &]

5 (
q8qlt

Rqlt
jn f ~q,q8!uq8,l ,t, j &. ~C22!

Thus by diagonalizinĝq8,l 8,t8, j uM2(L)uq,l ,t, j &, we also
obtain the eigenvalues and eigenstates of^q8,l 8,t8,
2 j uM2(L)uq,l ,t,2 j &.

b. Reducing the number of matrix elements to compute

There are a few facts that allow us to reduce the num
of matrix elements that we have to compute. First, beca
of gluon-exchange symmetry, the basis stateuq,l,t,j& is zero if
l 1 j is even andq54, or if l 1 j is odd andqÞ4. Second,
M2(L! is Hermitian, and its matrix elements in this bas
are real; so it is symmetric in this basis. Third, by inspectio
we see that

^1,l 8,t8, j uM2~L!u2,l ,t, j &50. ~C23!

Finally, there are some redundancies and additional zero
the matrix whenj 50:

^2,l 8,t8,0uM2~L!u2,l ,t,0&5^1,l 8,t8,0uM2~L!u1,l ,t,0&,

^1,l 8,t8,0uM2~L!u3,l ,t,0&5^2,l 8,t8,0uM2~L!u3,l ,t,0&,

^1,l 8,t8,0uM2~L!u4,l ,t,0&52^2,l 8,t8,0uM2~L!u4,l ,t,0&,

^3,l 8,t8,0uM2~L!u4,l ,t,0&50. ~C24!

C. Estimating uncertainties in the spectrum

When we use theVEGAS Monte Carlo routine to compute
the matrix elements, the results for the matrix elements h
statistical uncertainties. In order to control the resulting u
certainties in the spectrum, we would like to have a meth
that allows us to estimate how accurately we must calcu
any given matrix element in order for the spectrum to hav
desired uncertainty.

Suppose a diagonal matrix eleme
^q,l ,t, j uM2(L)uq,l ,t, j & is given by

^q,l ,t, j uM2~L!uq,l ,t, j &5Z6d, ~C25!

whereZ is the Monte Carlo estimate of the matrix eleme
and d is the associated absolute uncertainty. Us
MATHEMATICA with test matrices, it is straightforward t
convince oneself that ifd is small, then it will yield a relative
uncertainty eM

n
2;d/Z in the eigenvalues of the matrix.16

This translates to a relative uncertainty ofeMn
;d/(2Z! in

the masses.

16In the development of this method, we are guided by the p
ciples of quantum-mechanical perturbation theory, although
cannot legitimately use perturbation theory to analyze the uncert
ties.
5-39



e
s-
d

typ
of

BRENT H. ALLEN AND ROBERT J. PERRY PHYSICAL REVIEW D62 025005
Estimating the uncertainty in the spectrum due to unc
tainties in off-diagonal matrix elements is more difficult. U
ing MATHEMATICA with test matrices, the simplest metho
that we have found that is reasonably reliable is to use a
of degenerate perturbation theory. When we have an
diagonal matrix element given by
at

r

ar

ne

is
o
nt
th

ev

g,

,

w
E

02500
r-

e
f-

^q8,l 8,t8, j uM2~L!uq,l ,t, j &5Z6d, ~C26!

we diagonalize the two matrices
S ^q,l ,t, j uM2~L!uq,l ,t, j & Z1d

Z1d ^q8,l 8,t8, j uM2~L!uq8,l 8,t8, j &
D , ~C27!

and

S ^q,l ,t, j uM2~L!uq,l ,t, j & Z2d

Z2d ^q8,l 8,t8, j uM2~L!uq8,l 8,t8, j &
D , ~C28!

and we compare their eigenvalues to the eigenvalues of the matrix

S ^q,l ,t, j uM2~L!uq,l ,t, j & Z

Z ^q8,l 8,t8, j uM2~L!uq8,l 8,t8, j &
D . ~C29!
es
e

the

s of

-
as
ion
We then defineeM
n
2 to be the largest relative deviation th

we have found in the eigenvalues, and we estimate the
sulting relative uncertainty in the mass spectrum to beeMn

;eM
n
2/2. This estimate tends to work well unless there

too many diagonal matrix elements that are nearly dege
ate with either ^q,l ,t, j uM2(L)uq,l ,t, j & or
^q8,l 8,t8, j uM2(L)uq8,l 8,t8, j &.

To achieve a relative uncertainty ofO(«! in the glueball
masses, we requireeMn

,« for each matrix element. This
method tends to work reasonably well. The main difficulty
that we have neglected to consider the highly nonlinear c
plings between the uncertainties in different matrix eleme
For this reason, as we increase the size of the matrix,
e-

e

r-

u-
s.
e

error in our estimate of the uncertainty eventually becom
critical. At this point, the spectrum that we get when w
diagonalize the matrix becomes completely unreliable.~The
evidence of the breakdown is sudden contamination of
low-lying wave functions with high-order components.! It
should be possible to develop more sophisticated method
estimating uncertainties to suppress this problem.
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