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Nontriviality of Abelian gauged Nambu—Jona-Lasinio models in four dimensions
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We study a particular class of Abelian gauged Nambu—Jona-Lasinio models with glp&) XJUg(N)
symmetry, where\ is the number of fermion flavors. We show, by treating the gauge interaction in the ladder
approximation and four-fermion interactions in the leading order of thd &kpansion, that the
renormalization-grougs function of the U1) gauge coupling has ultraviolet stable fixed points for sufficiently
largeN. This implies the existence of a nontrivial continuum limit.

PACS numbeis): 11.10.Hi, 11.15.Tk, 11.30.Qc, 11.30.Rd

[. INTRODUCTION acting theory only arises whenevgy, has a root which is an
UV stable fixed point. In the case of asymptotic free theories
The absence of an interacting continuum limit or triviality such as QCD the origiaz=0 is an UV stable fixed point.

of Abelian gauge theories in four dimensions such as QED is  In addition to its motivation only on the level of pertur-
due to the screening of charged particles by their interactiongation theory the above consideration is too naive. Accord-
with virtual fermion-antifermion pairs from the vacuum. ing to the RG methods of Wilsot,5], one should consider
Such charge screening is described by the vacuum polarizghe RG flow in the space of all coupling constafrsspect-
tion I1 (Fig. 1). The QED vacuum is not a perfect insulator ing certain symmetrigsor at least for those coupling con-
and can be considered as a medium of dipoles representing, s which can be classified as relevant close to a particular
the fermion loops in the vacuum polarization. Within pertur- o isica manifold in coupling constant space. For a possible
bation theory, the electromagnetic charge or gauge COUpIInﬁontrivial continuum limit of QED, critical and hence non-
is screened completely in the continuum lirfit— o, where perturbative dynamical effects aré required

A is the ultraviolet cutoft Therefore, the discovery of dynamical chiral symmetry

This can be seen by considering the renormalizatio . . .
group (RG) transformation of QED 1], which relates the rl;rzalﬂr:?/g)fg%]'naazetﬁgog)g;gﬁfgngf EgaLSJ?/Os],CtSbIIEeD%{xe q
=q,= -

gauge coupling or fine-structure constant in the infrared c L
(IR) region to the bare gauge couplirag,alﬁaA in the ultra-  Point in the quenched-ladder approximatif®-11] sheds

violet (UV) region via new light on the nonperturbative nature of QED and trivial-
ity. Lattice simulations of so-called noncompact quenched
ag QED have confirmed the existence of a continuous chiral
a, =R /A o], RulplA ap]= [ENTINAE phase transitiofil2—14.
o (1) An important step was performed by Bardeen, Leung, and

Love in Refs.[15,16. These authors realized that, in
In perturbation theory, the one-loop leading contribution toquenched-ladder QED, attractive four-fermion interactions

ITis described by a dimensionless four-fermion couplayg=0
have a so-called scaling dimension 4 instead of 6 at the criti-
2Nag A | lingro=arc. C tly, th t
[ /A, ap]= In—, (2)  cal gauge couplingy,=a.. Consequently, these operators
3T mix with the gauge interaction which also has dimension 4 in

) . ) .. four space-time dimensions; this means that QED is not a
whereN is the number of fermion flavors. This logarithmic ¢jsed theory at the chiral phase transition. The scaling di-
screening effect is sufficient to cause the complete screeningension of an operator is important in determining whether

of charge in the continuum lim©2,3]. or not such an operator describes a long-range interaction.
From the RG point of view triviality is merely due to the e model of Bardeen, Leung, and Love is referred to as the

absence of an UV stable fixed point or nontrivial root of thegauged Nambu—Jona-Lasini@NJL) model, and the mecha-
B function ’

&Ra[w,ao] . dao
|, Maa ®

Ba( aO)

for the gauge coupling. Equatid®) gives rise to thes func-
tion B,(«)=2Na?/37, which only has an IR stable fixed
point or trivial root:a=0 (8.(0)=0). A nontrivial or inter-

FIG. 1. The vacuum polarization tenscﬁw(q)=(—ngw
+quV)H(q2), with the blobs representing full fermion propaga-
*Email address: m.reenders@phys.rug.nl tors and a full photon-fermion vertex.
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nism of dynamical chiral symmetry breaking proposed bysible at that time to investigate by means of lattice simula-
them should be regarded in the context of the RG methods dfons the phase transition along the critical line.
Wilson. Later, the GNJL model was studied on the lattice in non-
Wilson pointed out that a nontrivial renormalizable modelcompact formulation using some mean-field approach for the
can only be formulated if the RG transformation exhibits UV fermions in Ref[21]. They obtained a critical line qualita-
stable fixed points. UV stable fixed points are “singular” tively similar to the one following from the Schwinger-
points of the RG transformation at which the model be- Dyson equatiofSDE) approach Eq(4).
comes scalgconforma) invariant. Natural candidates for In the intermediate region @ay<ca.), the critical ex-
UV stable fixed points are critical points governing a con-ponents describing the chiral phase transition satisfy non-
tinuous phase transition. Since, at a continuous phase transirean-field hyperscaling relations which supports the view
tion, the correlation lengt§ is infinite and the model is scale that, within the quenched-ladder mean-field approximation,
invariant. the GNJL model has a nontrivial continuum lingit9,22.
The most crucial observation of Wilson is that in the RG Also in Ref.[21] nonmean field critical exponents were ob-
transformation, i.e., the “coarse-graining” process, newtained.
types of local interactions are generated and that the new The physical implications and the consistency of the
interactions can be classified as either irrelevant or relevarquenched-ladder results with many quenched lattice simula-
interactions. Only relevarincluding margingl interactions tions, and with the nonperturbative RG techniques, support
are important in determining what kind of infrared dynamicsthe view that the qualitative features of the approach might
characterized by a scale~1/¢ emerges from the micro- be realistic and describe properties of the full theory. Most
scopic or bare model characterized by the cutoffThe ef-  likely this is due to the ladder approximation respecting the
fect of irrelevant interactions can always be absorbed byector and axial Ward-Takahashi identities.
adapting the coupling constants of relevant and marginal in- In Refs.[23,24] the validity of the ladder approximation
teractions. was tested positively by including the effects of, e.g., crossed
Especially, close to a continuous phase transition, the R@hoton exchange graphs. In addition, the nonperturbative
methods show that it is impossiblke priori (without solving  renormalization-group methods of Ref25,26 provide a
the equations of motignto determine which interactions are way to check the quenched-ladder approximation in the
relevant or irrelevant; particular interactions can acquireGNJL model by including the effect of crossed photon ex-
anomalous dimensions and interactions which are irrelevarthange graphs, and four-fermion interactions in the RG flow
in a certain region of coupling constant space might becomef coupling constants. In Refi26] the critical lin€ and criti-
relevant in another region. cal exponents in the full quenched GNJL model were ob-
In this respect the GNJL model should be considered atained in a particular so-called local potential approximation,
the Wilsonian effectivéor microscopi¢ action of QED tak-  which incorporates besides crossed photon exchange graphs
ing into account the four-fermion interactions describingalso four-fermion exchanges beyond the mean-field ap-
neutral scalar and pseudoscalar fermion-antifermion compogroach. Considering the small quantitative differences, quali-
ites. It was shown in Ref$17,1§ that there is a critical line tatively this study supports the reliability of the ladder ap-
(curve in the coupling constant planevg,go) of the GNJL  proximation.
model separating a chiral symmetric phase from the chiral Attempts to include a logarithmic running of the coupling
broken phase. The critical line is given by drastically changes the chiral phase transition and the critical
line, see Refs[27-30. Moreover, it was shown in Refs.
[30-33 that the critical exponents are of the mean-field type
@ (up to logarithmic violationsleading to a trivial theory.
Lattice simulations of noncompact fullunquenched
QED on the latticewith flavors,N=2 andN=4) are con-
In the neighborhood of the critical line four-fermion interac- troversial[34]. The lllinois group[35,36 (see alsd37,13)
tions acquire sufficiently large anomalous dimensions to beand the Zaragosa grouf8,39, find power-law scaling and
come relevant operators. The existence of nontrivial scalingponmean-field critical exponents, signaling a possible non-
behavior of the model near criticality implies that these scatrivial continuum limit for the strong-coupling broken phase,
lar and pseudoscalar composites are relevant degrees of fraghereas[40,41,34 obtain mean-field behavioimean-field
dom at both short and long distances. critical exponents with logarithmic correctiondhus Gek-
Lattice simulations of noncompact quenched QED witheleret al. find a vanishing renormalized gauge coupling and
an induced four-fermion coupling were performed by the Il-a vanishing effective Yukawa couplingdefined by the
linois group in Refs[19,20. The lllinois group obtained a Goldberger-Treiman relationand they conclude that lattice
critical point (0.44x.,0.76) in the @g,00) plane, which fits  QED is trivial, see for their most recent result Ref2].
nicely on the critical line Eq(4). However it was not pos- In this paper we argue that the four-fermion interactions
might play a crucial role in the phenomenon of charge

gc(ag)=(1+w)%/4, w=+1—4No, Ao=3ayl/4r.

UV stable fixed points are specific roots of tBeunctions.
The composites are light states, as well in the symmetric phase as’They obtained the critical linege(ag)=(1+ w)?/3, which dif-
in the broken phase. fers by a factor 3/4 from the quenched-ladder result.
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screening. We show that, by considering the Abelian GNJLset of relevaniincluding marginal dimensionless coupling

model, UV stable fixed points of the function of the gauge

constants respecting particular chiral, vector, and gauge sym-

coupling can be realized, provided the number of fermionmetries.

flavors N exceeds some critical value. The existence of UV

stable fixed points gives rise to a nontrivial theory.

If the bare masamg is zero, £, has a global Y(N)
X Ugr(N) symmetry. The generators, of the UN) Lie al-

An important observation is that the nonmean-field valuegebra have the following properties:

for the critical exponents suggest the existence of a nontrivial
Yukawa interaction describing the interactions of the scalar

N2-1

and pseudoscalar composites with fermions. This also points rT=ro Trrorf=5%F, ZO T Ta= 61 6. (7)
out the inconsistency of the mean-field approximation “

(Hartree-Fock approximatigrfor the four-fermion interac-

The last identity is called the Fierz identity.

tions. Therefore, we go beyond the mean-field approximation e apelian GNJL model described by E6) can be

by incorporating these compositéhe o and = exchanges
in the 1N expansion.

The setup of this paper is the following. In Sec. Il we

introduce the Abelian GNJL model with [(UN) X Ug(N)

symmetry. Furthermore, we sketch how we will search for
the existence of an UV stable fixed point in the coupling

conveniently analyzed in terms of auxiliary or composite
fields o= — Gy and m¥= — Goyy7“(i ys) ¢ describing
scalar and pseudoscalar degrees of freedom. In thisgyay
can be rewritten as

NZ-1

constant plane ¢q,90). In Sec. Il we discuss, within the
guenched-ladder mean-field approximation, the importance
of hyperscaling relations and how this is related to the exis-
tence of a nontrivial Yukawa interaction in the GNJL model.
We discuss how to proceed beyond the quenched mean-field
approximation in Sec. IV. The W/ expansion is discussed in

Sec. IVB. In order to get some idea how the scalar angyherem, has been set to zero. In this formulation the four-
pseudoscalar composites contribute to vacuum polarizatiofsrmion interactions are described by the interactions of the
we illustrate such contributions on the level of perturbationauxi”ary fields with the fermion fields. Then the connected
theory for a gauge-Higgs-Yukawa model in Sec. V. Then, inyo-point Green functions of ther® fields describeN?
Sec. VI, we argue how we can exploit théNléxpansion and  Nambu-Goldstone bosoiis bosons and the connected two-

— 1 e
Lo= il y*D i = 7P FH = 2 (o +iysm )

NZ-1

1
56, &, L@, ®

derive a computable expression for tBefunction, 8,,, of
the gauge coupling. SubsequeniBy, is computed explicitly

in Sec. VII. The existence of UV stable fixed points is ad-

point Green functions of the“ fields describeN? “Higgs”
bosons(o bosons.
Although the Lagrangiai5) has very interesting proper-

dressed in Sec. VIII. Finally, we present our conclusions ines, surprisingly this particular class of GNJL models with

Sec. IX.

Il. THE ABELIAN GNJL MODEL

We consider the GNJL model with(l) gauge symmetry
(the Abelian GNJL modelwith N number of fermion flavors
described by the following Lagrangigsee also Refd.43],
[44]):

o 1
L= (197D, ~Mo)thi — T F , F4”

21

Go"
2 2

[l 2+ (il (iys) )2, (5)

whereD ,=d,—iesA, and where the flavor labei§ run
from 1 toN. The LagrangianC, is parametrized by the fol-
lowing three dimensionless bare coupling constants:
/.LO:mo/AEmA, aoze(z)/47TEC(A,
(6)
gOZG0A2/4’7TZEgA y

whereA is the ultraviolet cutoff. We assume that the above

U, (N) X Ug(N) has not received much attention. One such
property is that Eq(5) comprises the largest set of relevant
chiral invariant four-fermion operators for a modelNffer-

mions. Another independent set of vectorlike chiral invariant

four-fermion interactions such as/§*)? do not acquire
large anomalous dimensions and remain irrelevant near the
critical point (line). This has been shown in Ref®5,26,
where the RG flow of scalarlike chiral invariant and vector-
like chiral invariant four-fermion interactions has been con-
sidered. Moreover, the specific form of the chiral symmetry,
where the number of scalars equals the number of pseudos-
calars, turns out to have useful implications in the context of
1/N expansions as we will discuss later in Sec. IV.

In case ofL, there are four renormalization constants:

ZYANTA) Py (X)= (X)),
9)

ZYAAIAN)AY,

(A,)(X):A#(X),

ZAAN TN T A (X)=0(X),  Z(ATA) T\ (X)=m(X),
(10)

whereA /A <1, and the fieldg), A*, m, o are the bare fields
defined at the UV cutoff\.
Near the critical point a new scale is generated: the cor-

set of dimensionless coupling constants comprises the entirelation lengthé. In case of a second-order type of phase
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transition, the correlation length exists in both phases of thé¢he quenched GNJL modelssly,,<2. Thus the dimension-
system. In the broken phase the inverse correlation length igss bare masg is a relevant coupling requiring fine tun-
real and can be considered as a physical mass of particles, fior.

instance the mass of the scalar bound stéte o boson After setting o=, =0, the problem reduces to the de-
m,, or the mass of fermiomy,. In the symmetric phase termination of the UV stable fixed points in the coupling
the fermion is massless, and the scalar and pseudoscalesnstant planedg,go): i.e.,
composites are unstable states characterized by a complex

mass pole in their respective propagators describing the mass , IPy(@,9)
and the width of the Breit-Wigner type resonance, see Refs.'Bg(a* 9.)=0, Bgla..9.)= g
[45-47). The absolute value of the complex mass gatbg|

<0,
(¢,9)=(a,.9,)

can be considered as the inverse correlation length, i.e., (14
|m0'|~1/§- ] ) ) B, (a,9)

The RG transformation dictates the flow of the dimen- g (a,,9,)=0, B/\(a,.,9.)=— " <0.
sionless bare couplings as function of the UV cutbffTypi- da

(a,9)=(e,,9,)

cally the bare relevant and marginal couplings.g., (15
Mo,a0,00) have to be fine-tuned sufficiently close to the

critical point in order for scaling behavior to set in, so that The quenched-ladder approximation simplifies the solu-
the physics in the infrared can be related to experimentaions of Egs.(14) and (15 considerably since the quenched
data. Scaling behavior is obtained when there is a large scal®/pothesis explicitly setg,=0 for all ay by omiting fer-
hierarchy between the infrared length scéland the ultra- Mion loops. It was shown in Reff48] that, in the symmetric

violet length scal@a=1/A, i.e., &>a. phase §o=<g.),

The fine-tuning depends on the eigenvalues of the RG g
transformation of the couplings close to the critical point and =202 (g— 16
hence on the critical exponents. These critical exponents can Bg(@0.90) @ dc (9o~ 9c), (16

be derived from thes functions for the coupling constants . ) )
Lo, @, anddy; with w andg, given in Eq.(4). In the next section, Eq16)

will be derived. Clearly, in this way, the UV stable fixed

dug dag point of By is the critical line;
AH:BM(MoiaOIgo)I AH:BQ(MO!QO'go)v
(11) 9.=0c(ag), Bg(Qngc(ao))zo- 17
A%ZB (120, @0.00) Now Eg. (15 should be reconsidered. We will analyze Eq.
dA _ Pol#o:@0.Go)- (15) beyond the quenched approximation, and try to solve
The crucial step is to determine the fixed points, (a, ,g,) Bal@g,9c(ag))=0. (18)
of the RG equationg¢ll), i.e., o ) ) )
In Sec. VI an explicit expression fg8,, will be derived by
Bty @\, 8)=0, Bulp,,,,9.)=0, assuming thag, is at its critical valueg, and that it has an
UV stable fixed point so that in the neighborhood of this
Bg(ﬂ*aa*ag*)zoy (12) p0|nt Ba%O
since the nature of the fixed point determines whether a non- |jj. HYPERSCALING IN THE QUENCHED-LADDER
trivial continuum limit can be realized or not. For a non- MEAN-FIELD APPROXIMATION
trivial continuum limit (u,,«,,d,) should be a UV stable ) o ) ) )
fixed point. In analogy with statistical mechanics, the continuous chi-

The RG equations follow from the regularized SDE’s of ral phase transition can be classified in terms of critical ex-
the generating functional described by the Lagrang@d  Ponents which describe the scaling of various macroscopic
The UV stable fixed point fo, is x,=0, hence we can quantities(e.g., the chiral condensate, correlation length, ef-
write . fective potential, chiral susceptibilityelose to or at the criti-

cal point. It is considered a strong indication of the existence
of a nontrivial continuum limit \ — ), if so-called hyper-

A —==~—(1+ymuo, (13 scaling relations between these various critical exponents are
satisfied, see Ref§19,22,49-51

where vy, is the anomalous dimension of the mass operator Because ther boson propagatohs is the connected cor-

. . relation function of the fieldr describing correlations paral-
¢ evaluated at the fixed poing , «..9,). In the case of g ¢4 girection of symmetry breaking.e., parallel to the

direction of long-range orderingthe absolute value of the
mass,m,., of the o boson, which is given byg, is the
4A derivation of the set offull) SDE’s for the two and three-point natural candidate for the inverse correlation length.
functions is given in Chap. 2 d#4]. In the quenched-ladder approximation treating four-
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dQ, »
i@ Y o e - i I's(p+p.a)~1] 5—=Fa(p+4,p)=1fe(p"a%),
(23
where
FIG. 2. SDE for the scalar propagator @bosonAg(q).
- . _ o  fo(p%.0)=Fr(p%0?) 6(q*~p?) +Fuv(p?,%) 6(p*—g?).
fermion interaction in a mean-field approximation, the criti- (24)

cal exponents are ) )
The functionsF g and F, are, respectively, referred to as

24 w 2= w 1 the IR channelinfrared, and the UV channelultravioled.

=5 ’BZW’ V=5 YT 1, (19 The specific choice of Chebyshev expansion and conse-
quently, the choice of zeroth-order coefficidigt is conve-

nient, since the infrared limito>>p?), and ultraviolet limit
(9%2<p?) of I'g are both described bf,. The scaling form
for Ag(q) is well described by these two functiofsg and
FUV .
) ] ) ) - The zeroth-order Chebyshev expansion or two-channel
Other hyperscaling relations involving the critical eXpone“tapproximation gives second-order differential equations for
a describing the scaling of the effective potential are satiSine |owest order harmonic with appropriate IR and UV
fied too[19,23. Furthermore, it was argued [A9] that the  ,5yndary conditions. These differential equations are exactly
validity of the quenched-ladder mean-field approximation re-q|yaple and the solutions are expressed in terms of a Bessel
lies on the verification that the critical exponept1. The  fynction of the first kind forF,; and in terms of modified
interpretation ofy=1 is the factorizatiom,,)2=27¢,,). A Bessel functions foF . The solutions are given if47].
renormalization of the chiral condensate simultaneously \wjity the “asymptotic solutions” fol's given in terms of

renormalizes the propagatofss; andAp . Indeed the lattice Fr andFy, an analytic expression for theboson can be
computations of the critical exponestreported in[19-21  ,piained from

showed strong evidence for=1.

and satisfy the hyperscaling relations

v=B(6—-1), 4v=2B+1. (20

The anomalous dimension describes the scaling of the ) A? s 5
connected two-point Green functiak at the critical point. (9% = 72 T~ [Fuv(A%a7) —1],
In Ref. [47] the scalar propagatakg (see Fig. 2 and the 0 25)
scalar Yukawa verteX g (see Fig. 3 have been computed in 1
the symmetric phase in the quenched-ladder approximation AsHa)=—=—+1Ig(q?),

. O Go
by means of a so-called two-channel approximation.
In the symmetric phase the Yukawa vertex has the follow+yhich has been argued [47] to be correct up to leading and

ing form: next-to-leading order im?/A? and is valid along the entire
o critical curveg..
I's(p+a,p)=1Fi(p+d,p)+(Gp—pa)F2(p+a,p)]. Also one can derive that the solutions fbg are consis-

(2D tent with hyperscaling for & ag<a.. This is intimately re-
lated to the fact that the renormalization of the auxiliary
These vertex functions; andF, can be expanded in terms fields ¢ and =, Eq. (10), simultaneously renormalizes the
of ChebySheV pOIynomials of the second kind, e.g., Yukawa vertex and the scalar propagator.

Near go=g. (with |m,|?,q><A?) the scalar propagator

)

p-q Ag has the scaling fornp44,49-51 (in Euclidean formula-
Fi(p+a,p)= 2 fa(p%a?)Un(cosa), cosa=""5 tion:
(22 1 [ A2\ 172
o _ Ag(q)= P(T) Fa(lm,|?19?),

The two-channel approximation of Rd#7] now holds in q
that the Yukawa vertex is approximated by the angular av- 42 1 (26)
erage of the vertex functioR, in the following way: ~— -

? ' 9w Fa0= =55y Texe

where 7 is the anomalous dimension
< = < +ome 7=2(1-w), (27
and where

16w y(—w) I'(2—w) (E)‘“
5|

FIG. 3. SDE for the scalar vertex or Yukawa vertex B(w)=

28
I's(p+q,p) in the quenched-ladder approximation. (1-w?)? y(w) T(2+w) (28)
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(@)= V2N o[ I1(V2N )1 L (V2N o) + I5 (V2N )1 (V2N o) 1. From the above scaling form fakg andI'g it is clear that
(29)  four-fermion scattering amplitudes such as
With Eq. (19), the anomalous dimensiop Eq.(27), satisfies 1 -
the hyperscaling relation Ps(Pi+a.PUAS@TS(P2 P2+ )% o7, PEPF<O <A,
y=v(2=17). (30 (37

It has been shown if45,47] that Ag has a complex pole are independent ok and express the long-range nafuoé
on a second Riemann sheet {Minkowsky) momentum Yukawa forces. For dimensions<dl<4, this was pointed
space. The mas®,, is the complex pole oA g and the ab- out in Ref.[46]. The long-range Yukawa forces and their
solute valuelm,| scales according tfm,|~(Ago)”. More  nontrivial contributions to scattering amplitudes in the infra-
precisely, in[45,47] it is derived that red are a direct consequence of hyperscaling and thus pow-
erlike renormalizability.

The consensus is that in four dimensions due to the loga-
rithmic corrections, the hyperscaling relations are violated
for the pure NJL model and ¢* theory, and we have the
The absolute value ah, is taken to be the physical, mac- following inequalities:
roscopic or infrared mass scale, which by definition should
be independent oA. Using Eq.(31), we can derive thgg 4v>2B+y, y>p(5-1), (39)
function ofgy by assuming that

120

—Ago
, Ago=0o—dc- (31

9c90B(w)

M| A

d/m,| % see Re_f[52_] for an extensiV(_a dis_cussi(_)n regarding this_ issue.
O:Ad—;:ﬁg(ao,go):—zw—(go—gc), (320  This violation of hyperscaling is believed to be a sign of
e triviality meaning that the effective Yukawa couplifighich
couples Goldstone bosons to the fermijomanishes in the
continuum limit. The continuum limit is noninteracting,
hence trivial. This can be seen in the following way. Assum-
ing that in the low-energy region the correlation lengtts

the only relevant length scale, we define an effective Yukawa
couplinggy by the zero-momentum limit of the four-fermion

which is equivalent to th¢g function given in Ref[48] and
Sec. Il. Hence the critical cungy=g. is an UV stable fixed
point B4(@o,dc) =0(Bg(ag,9:) <0) of the RG flow.

In accordance with Refl47], the scaling form for the
Yukawa vertex can be written as

2\ pla scattering amplitude(two fermions exchanging a scalar
I's(p+ q,p)ml( ?) [ Fr(p?9%) 6(9%—p?) bound statgin the DySB phase
+ Fuou(a?/p?) 6(p*~o?)], (33 9v
. 5 2g5-TH0,0440'(00, (39

where, forp?,g%,<A?,

A2\ 74 whereI'¢(0,0) andA¢(0) are given by the chiral suscepti-
Fir(p?,0%)~ ( ru ) Fr(p?9), bility relations
A2\ 7 39 o) 92(p?)
Fuv(p?,q9)~ (?) FuuleIp?), A0==Cogn TslPp)= S Wy 4O
and where,=2(0) is the fermion mass in the broken phase.

By making use of the scaling lawgl9,22] and that
2sinwr 2 T'(1-w) y g g lawl9,22 ¢

2/2) = ~1/3o~1/m, (o) ~{ ), we can derive that
Fir(p9%) T @) (1te) 0 (o) ~(y)
2 __#(2B+y—4v)lv
No| “/2( g2\ 12 5 gy~§ - (41)
(3T o

This expression is related to the definitiongﬁ~g$ given

L(1-w) (Ao g2\ 12 in Ref.[52], and it is clear that the scaling inequaliti€38)
Fou(@?p?)= —— o) (1<) ( ) ?) imply thatg5—0 when¢—o. Thus, only if the hyperscal-

( ing relations(20) are satisfied, a nonzep, might be real-
27\oq2) ized in the continuum limit § —<0), thereby giving rise to a

X Y(w)lw( e nontrivial interacting theory.

ZAOqZH
5 .

—y(— o)l — 36
ri-w) w( (36) ®The correlation length is large, |, |> 1/A.
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IV. BEYOND THE QUENCHED-LADDER MEAN-FIELD
APPROXIMATION

The quenched approximation is analogous to the assump
tion that the full photon propagator

4.9, 4.9,
D,w(q)=<—g,”+ 7| A(g)—a- 7,
q q B N
(42)
A(Q)= 1 1
V= q° 1+11(g*) FIG. 4. Skeleton expansion for the BS keriéP).
can be approximated by the bare or canonical propagator A. The skeleton expansion

— 2
A(q)=1/g" (for large momenta The non-mean-field values of the critical exponents imply

that one cannot neglets is done in mean-field approxima-
D (q)=( — qﬂqv) 1 43) tions) the full connected Green functions corresponding to
P T g? ) P the compositesgor at least the leading or asymptotic parts of
these functionsin the SDE’s.

; - RN On the level of the Bethe-Salpete(BS) fermion-
n the Landau ga =0). The quenched approximation is
I u gaugeat” 0) au pproxima’ion antifermion scattering kernels tlaeand - composites can be

only consistent when the vacuum polarization is finite in the dinaRGi ) b Ki fth
continuum limit, i.e., the logarithmic running of the coupling incorporated in a Invariant manner by making use of the

is absent. This is the case at an UV stable fixed point of th keleton expansion, €.9., see %@- An_alogous to QED
B function, Eq.(15), of . The assumption that such a ernels we define the one-boson irreducible kekiél, and

critical fixed point exists, and that it lies somewhere on thetne two-fermion one-boson irreducible BS kernif?),
critical curve (4) is the starting point for many studies of Where these kernels now also include thend 7~ compos-
dynamical chiral symmetry breaking in context of the GNJL It€s. For both type of kernels 2 skeletzor_l expansion exists.
model. In fact, the quenched hypothe&t8) is only consis-  The integral equatlon_betwed!ﬁ ) andK? is known as the
tent when the bare gauge coupling is near the fixed point Bethe-Salpeter equation.

of the theory,8,~0. We discuss this issue in more detail in The skelgton expan;ion isa se_ries in topologically distinct
Sec. VI. Feynman diagrams with all vertices and propagators fully

In many approximations of the GNJL model, the four- dressed. The skeleton expansion is a special way of resum-

fermion interactions are treated in a mean-field approaciing the entire set of Feynman diagrams in a consistent

known as the Hartree-Fock approximation. In mean-field apmanne“r, Le., ”WithOUt double counting. The lowest (_)rder
roximations the composite operators suchﬁ,fs are re- terms(“lowest” in terms of loop9 of the skeleton expansion

P _ P Pe i it for K is illustrated in Fig. 4. The blobs with the letteB"
placed by their vacuum expectation valugs/t—(¢4)) and i the full vertices and propagators represent photons, and

fluctuations about that value are ignored. Thus quantum COlgomposites and 7 exchanges.

rections corresponding to four-fermion interactions are ne- £o-h term in the skeleton expansion of the BS kekddl

glected beyond tree level. _ , is RG invariant, up to fermion wave function factors, i.e., the
As long as four-fermion interactions are irrelevant theexpansion is independent of the renormalization fackys

mean-field approach for these operators is justified. Howgqz=7 =7 [see Eqs(9) and (10)] of, respectively, the

ever, in Refs.[19,29 it is concluded that, within the gauge field and the composite fieldsand 7. The twoz-1

quenched-ladder me_an-field gpproximation_ _to the GI\l‘]"factors with anomalous dimensions of each Yukawa vertex
model, the hyperscaling equations for the critical exponents - -1 with thez? factors of thes and = propagators, lead-
are satisfied, implying that the four-fermion operators be- '

ng to cutoff independent fermion-antifermion scattering am-
come relevant due to the appearance of large anomalous “Elitudes e.g., see EG37)
mensions. In other words, the mean-field approach yield T '
non-mean-field exponents, thereby being inconsisterg.,
see Refs[21,50). As was discussed in Sec. lll, the hyper-
scaling relations imply the existence of a nontrivial Yukawa
interaction describing the interaction between fermions and As was mentioned in Sec. Il, the Abelian GNJL model,
o and = composites in the GNJL model at both short andwith N number of fermion flavors, is taken to be invariant
long distances. under global Y(N) X Ug(N) chiral transformations, so that

In order to go beyond the mean-field approach, we proboth the scalar and pseudoscalar four-fermion interactions
pose the following. First, we point out the usefulness of skel-are in the adjoint representation, and, consequently, the num-
eton expansions. Second, we make use of the specific fortver of scalar compositedN¢) equals the number of pseudo-
of the chiral symmetry and adopt theNléxpansioniwith N scalar composites\?). In this way, wherN is large we can
the number of fermion flavoys use the IN expansion introduced by 't Hoof64]. This pro-

B. The U (N)XUg(N) chiral symmetry
and the N expansion
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vides us with a scheme to incorporate four-fermion interacline. Consequently, whenever, after drawing a particular

tions beyond the mean-field approach. Th&l Bxpansion Feynman diagram, an index line closes, it forms an index

states that the plandire., laddey diagrams, with fermions at loop giving rise to a factoN=Tr §.

the edges, describe the leading or dominant contributions to The topology of the Feynman diagram determines the fac-

Green functions. tors of N. The vacuum polarization has the topology of a
The interesting feature of such aNlLexpansion is that sphere with a single holé.e., a disk, where the fermion-

Feynman diagrams can be classified in terms of twoloop forms the boundaryi.e., holg of the graph. It can be

dimensional surfaces with specific topology. Diagrams withshown straightforwardly, that planar diagrams in the vacuum

other (than planar topological structures are suppressed bypolarization withn exchanges of’'s and 7's are associated

at least factors of N, and in the limit of largeN, their  with afactorN”*lg\z(”, wheregy is an “effective” Yukawa

contribution can be neglected with respect to planar graphgoupling describing the interaction of scalars and pseudo-

One important rule is to draw Feynman graphs with fermionscalar with fermions. For the time being we leave unspeci-

loops forming the boundary of the graghpossiblg. In this  fied such a coupling.

way, vertex corrections are not necessarily classified as being In absence of bare mass, the (M) X Ug(N) symmetry

planar. allows us to write each full Yukawa vertex, photon-fermion
In the context of the 't Hooft's I expansion, we should vertex, fermion propagator, ang 7 boson propagator as

consider internal or virtuadr and = exchanges analogous to

the gluon exchanges with the important difference that due to Ian(k,p)=7iTsafk,p), AL (a)=Ag(q), (49

the chiral symmetry we have two2 types of pargicles both B

being in the adjoint representatigN- scalars andN“ pseu- a — (@) q)=

doscalars Then, by keeping track of the flavor indices Fpﬁb(k’p) milpalkip), - ApT(@=4p(Q), (49

within a particular Feynman diagram, we can count factors u ‘

of 1/N. Each fermion carries a flavor indé®, which runs Tan(k,p)=&;Tay(k,p), SV(p)=S(p), (46)

from 1 toN. A virtual o, 7 exchange, being associated with N

two Yukawa vertices, carries two flavor indices. Thereforewith a,b spinor indices,i,j flavor indices, anda the

as a result of the Fierz identit7), each virtualo, 7 ex-  U(N)-generator indeXsee Refs[44,47 for the definitions

change gives rise to a pair of Kroneck&functions connect- of the proper vertices and connected two-point Green func-

ing the flavor indices of the scattered fermions. In the contextions). So that

of flavor indices, either @& or 7= boson can be considered as

2
a propagating fermion-antifermion pair carrying double fla- Nt o o
vo? inFc)ji(?es. ’ P e Zo Fsia_b(k+q,k)Ag‘”)(q)FSﬁF(p,vaq)
Whenever a trace over a flavor Kroneck&function en- ‘ J
ters into the expression for a particular Feynman diagram, = 61 Ol sad K+, K) Ag(q)'scd p,p+9),
we speak of an index loop. An index loop is easily identified 47)

by using the double-line representation of 't Hooft. A fer-

mion propagator is represented by a single index (ire,  because of the Fierz identity). Then the first term of the
fermion ling, whereas each internal scalar, respectivelyskeleton expansion foK(?) is the following single boson
pseudoscalar propagator is represented by a double indexchange term:

. (2) . . . . .
(—ief)K ‘abcd (k,p.p+a)=6 j, 6, (DT scd P+, P)IAS(A) (=) 'sad KK+ A) + 6 j, 6 (=1 pen(P+0,P)iIAR(Q)

l11.12)2

X(=)T padkk+a)+ 6,1, 8 j,(—i€0)Tgp(P+a,p)iD () (—i€o) T gy(k k+a). (48)

21

As a result of the chiral symmetry the contributions of cluded in SDE’s describing nonzero-spin structutesti-
four-fermion interactions, which are representedobgnd 7=  commuting withys) (e.g., the vacuum polarizatioH, the
exchanges, exhibit two distinct features depending orphoton-fermion verteX'#, and the fermion wave function
whether they are incorporated in SDE’s describing quantitiesz— Z,). Henceforth, we refer tdnonzero-spin functions,
connected with so-called zero—s_pin structfiresg., the dy- and their equations a®on)zero-spin channels.
namical masg, the Yukawa vertice$'s,I'p, and theo-and The chiral symmetry gives rise to the following proper-
m propagatorsAg,Ap), or whether the exchanges are in- jjag.

(1) In spin-zero channels, the contribution of planar dia-

grams(i.e., planar ino and 7 exchangesvanishes due to the

8Such structures are characterized by spinor matrices which confact that the exchange of @ has an opposite sign with re-
mute with theys matrix. spect to arr exchange. Why? Let us consider a planar con-
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tribution to the scalar vacuum polarization which contains Z(p?)
(amongst othejsa 7 exchange. Bothys matrices corre- S(p)Zmz—). (49

sponding to this particular planar exchange can be elimi-

nated from the fermion trace of the scalar vacuum polarizawith Sthe fermion propagator an¥l the dynamical mass. In
tion by moving them to the right-hand side of the trace. FOrQED in the quenched-ladder approximation, the fermion
planar diagrams such a process involves the interchange @fave function has a gauge dependent anomalous dimension.
the ys matrix with an even number of fermion propagators,In the Landau gauge, this anomalous dimension vanishes and
and an arbitrary number of Yukawa vertices. Since theZ=1.

Yukawa vertices commute with thgs matrix, andys anti- We conjecture that the inclusion of relevant four-fermion
commutes with the fermion propaga7t0$, the process of interactions does not introduce an anomalous dimension for
moving the ys to the right does not introduce an overall the fermion wave function othgr than already introduced by
minus sign. Now using thati §:s)(i vs) = — (1)(1), we see the gauge interactions. Thus, in the Landau gauge, the wave
that the diagram containing a specific planaexchange is fung:tlon Zis f|n|'Fe though it might de\(late from unity. The .
identical to minus the same diagram with theexchange Main argument in support of the conjecture stated above is

replaced by ar exchange. Since each diagram containing athat only one full Yukawa vertex appears in the self-energy

7 exchange has a scalar counter faet., an analogous dia- part, WhiCh means that anomalous dimensions of four-
gram with ao instead of ar exchangg the sum of all planar fermion interactions are not canceled. Only two fully dressed

. . . . Yukawa vertices and a fully dressed scalar composite are RG

diagrams, with a particular number of exchanges, Van'Shesinvariant (anomalous dimensions canceConsequently a
-sSDI i M - . .

,(,2) In nonzero-spin chgnne(ﬂ;hmk O,f I1,T%, etc). con remnant power of the cutoffelated to anomalous dimension
taining vertices which anticommute with the; matrix, the ¢ 5 yykawa vertexlowers the degree of divergence of the
situation is different: planas- and 7= exchanges contribute self-energy part from a logarithmic divergence to a finite
with identical sign. Let us now consider a planar contributionimegraL Therefore, throughout this paper we assunel.
to the (photon vacuum polarization containing a ex- A nice feature of the assumption that=1 is that with
change. If we again move thg; matrices to the right-hand the gauge interaction treated in the quenched-ladder ap-
side of the trace, we get an overall minus sign due to theroach the chiral and vector Ward-Takahashi identities
anticommutation ofys with y*. This means that any planar (WTI's) are preserved, since in channels with spin-zero the
diagram in the vacuum polarization containingr&xchange planarc and 7 exchanges cancel each other.
is identical to the same diagram with the exchange re-
placed by as exchange. V. SCALARS, PSEUDOSCALARS, AND CHARGE

The properties described above are, strictly speaking, only SCREENING
valid in the symmetri¢dmasslessphase, where the () o i )
and 7 bosons are degenerate. However, in the broken phase, Smc?, Iln tthf GN?\!‘ rr]'ntc;]del,fthe jcalatrs andl pfetjhdos?]alflrs
the properties are valid whenever momenta larger than th re heutral states which theretore do not couple to the photon

Gymamtal mas o1 m et Consdere, boauss h thl o Y CETUMIED 0 he vacuun posraton s do
degeneracy emerges too. y P

These properties also provide us with a general argumeljiions’ and fermion self-energy corrections. Hence, in order to

why the mean-field approach for four-fermion operators forgain some intui.tion for the role of scalar degrees of freedom
Green functions corresponding to spin-zero chanfelg., Ion the meg:bhaplsm qf 'cha:cge screeglng, Weh analyze thﬁ two-
I's and Ag) is reliable. For such channels planar contribu—\?;C%ucrzntgl:rti'zc’;dg:'s'ng romr and 7 exchanges to the
tions vanish and the next nonvanishing contributi¢sisch Let uspconsider aﬁ Abelian aauge-Hioas-Yukawa-tvoe in-
as contributions containing crossedand = exchangesare ¢ tion d ibed by the L 9 gﬁ 99 yp
proportional to 1N, thus small for largeN. This implies that eraction described by the Lagrangian

quantities such as the critical curve, dynamical mass, anoma- 1 o 1 1

lous dimensions, etc., are nearly independenNoénd are Lony=— ZFMVFMV+ Piyko p+ E(aMU)2+ E(aMw)z
described rather well by the mean-field approach. To the

contrary, the cancellation of scalars against pseudoscalars de-
grees of freedom does not occur in the vacuum polarization
IT which is a nonzero-spin channel.

— oy A, Y=gy P(o+iysm) y—V(a,m), (50)

where the potentiaV/ contains, e.g., mass terms, andra

type of interactior(i.e., a quartic scalar interactipri-or sim-

plicity, we ignore the effect of the potenti®l. In Appendix

A, the two-loop contribution tdI has been computed for the
The inclusion of relevant four-fermion interactions be- special case oil=1, see also Fig. 5. If the scalar and pseu-

yond the mean-field approach requires a reinvestigation of

the SDE for the fermion wave functiof=2Z, [Eq. (9)],

C. The fermion wave function

8For a discussion of the renormalizability of non-Abelian gauge-
Higgs-Yukawa models and non-Abelian GNJL models we refer to
’In the symmetric phasgsS= —Sys. Refs.[55], and references therein.
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( > = &
L 4 W‘N L2 VV'W FIG. 6. SDE for the full photon-fermion vertdx*(k,p).
with 7, a critical index characterizing the RG flow in the

FIG. 5. One and two-loop vacuum polarization corrections Con_nelghborhood of ¢..9.). With « close toa, the 3 function

taining both an internal photofwavy) and ac and = exchange linearizes as
(dashedl The contribution ofr equals the contribution aof- Bu(.9.)~n.(ar—a) (54)
doscalar fields in Eq(50) are both in the adjoint representa- The g function for the gauge coupling follows from the RG
tion of U(N), the result, for arbitrarN, reads transformation relating the charge at scalex to the charge
@, at scaley via
H[ /A )\ ] Nao 2+ (¢ %0) Nky>| A
q 1a01 Ym_ A 5" SF_|InN— o
3 2m 2m]g ay=R[X/y,ay,0,]= ; :
VYR 1+ XMy, ay,0y]
I[1,ey,8x]=0,
with )\Y=g$/47r. The B function corresponding to such a 5 _ )
vacuum polarizatioriFig. 5) is wherell(x®) =II[x/y,ay,gy] is the(Euclidean vacuum po-
larization. The RG transformation should satisfy the RG
NaZ(2 g NAy semigroup propertywith x<y<z)
Ay)=— | s+ 77— 5— 52
CE . (3 27 2n ) ®2 RoIxIy.ay.0,)=RulX/2 ;0]
The interesting result of this computation is difference in =RalXly, Rolylz,a7,9,], Ryly/2, @7,0,]]
sign between terms corresponding to photon exchanges, and (56
terms corresponding tpseudgscalar exchanges. From this
point of view, the fundamental scalars and pseudoscalars inB,[X/y,a,,9.]1=R[X/Z,a,,9.], (57

gauge-Higgs-Yukawa system tend to decrease charge screen- . . o

ing. Furthermore, we might be tempted to conclude that aVhereRq is the RG transformation fog, satisfying analo-
nontrivial root of Eqg. (52 could be realized whenever 90us equations. Then th@function for « is defined as
N\ y/2m~2/3. However, the complete situation is more in-

volved. The RG equation for, e.g\y should be considered Baly,gy) = )
too, i.e., we should compute the functions of\y, and of dInw w=1
any quartic scalar coupling. If and only if a nontrivigon-

zerg UV stable fixed point fony exists, the realization of a The RG semigroup property56) gives rise to the well-
zero of Eq.(52) becomes a realistic option. In other words, known differential RG equation

such a scenario is only possible if the Yukawa interackion

is nontrivial. The discussion in Sec. Il implies that in order

to obtain a nontrivial Yukawa coupling, the hyperscaling

laws should be obeyed. The idea is that, nonperturbatively, o
close to the critical curve in the GNJL model, the scalar andV0Se solution is

aRa[an’xrgx] (59)

d
Balty 0= g - (59

pseudoscalar Yukawa interactions are nontrivial, and kinetic % | PRI

terms .for the sc_alar and pseudoscalar composites are effep- = 2 ={InZ| | Bulay.gy) ay. (60)
tively induced via the appearance of a large anomalous di- n=0 N: y dary

mension.

To obtain a nontrivial theory in the IR the existence of an
UV stable fixed point is required. Close to the UV stable

VI. THE VACUUM POLARIZATION fixed point (8,=B,=0), with g,=g,, we have that

IN THE 1/N EXPANSION

n

The purpose of the present paper is to investigate the ex- ay~ By g B s g0)]" 1
y o y1 * o * 1 *x

istence of an UV stable fixed point(,g,) of the gauge
coupling, so that

J
Ba(ay vg*) r‘y

+0(B%), (61)
Ba(a*,g*)=0, 77(15_18(/1(&*19*)>01 (53) thus
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y) Ta

- (62

ay~a,+(ay— a*)(

which is the solution of Eq(59) using Eq.(54). The above
expressions are only valid if botl, anda, are in the neigh-
borhood of the UV stable fixed point, , therefore, we have
the fine-tuning condition:

(a’y_ a’*) (

Qy

(63)

y) Na

which in case ofy>x implies thata, is tuned sufficiently
close toa, .

In case of the Abelian GNJL model the gauge coupling
aq in the infrared(IR) region is related to the bare gauge

coupling a, via the RG transformationeq="R,[a/A,

ap,00], Where the four-fermion interactions contribute to the

vacuum polarizatiodl (Fig. 1) through the full photon fer-

mion vertex, see Fig. 6. Assuming that the hyperscaling laws

are satisfied, we can write the vacuum polarization for
>q=|m,| [i.e. nearg.(aq)] as
A 2
In—)
q

, (64)

A
H[q/A,ao,go]:f(l)(aoygo)lna+f(2)(0101go)(

3
I

+f(3>(0101go)(|na

where each factor of IN/q corresponds to a single fermion
loop with two outgoing photon lines. Thus the function,
represents the contribution of all diagramdtan which the

internal photon propagators are replaced by the bare or ¢

nonical form.

In order forll to give rise to a RG transformation satis-
fying Egs.(55) and(56), it can be derived from Ed60) that
the functionsf ,,, f(5), andf sy should be related t@,, in
the following way:

af y(@,9)=Ba(a,9), (65)
2 1 ,
flo—fa=5_ BuBa: (66)
3 1 3 1?
f(l)_Zf(l)f(zﬂ‘f(s):@ 'Baﬂ Bar -
(67)

PHYSICAL REVIEW D 62 025001

From this we also have that witl,— a, atgy=g, [see
Egs.(54), (62), and(63)]:

BQ(Q/O’g*) A\ 7
H[q//\ﬂo,g*]*Tna[—lJr(a) ,
(68)
BQ(QO!Q*) _1+(£)7a}<1.
o/ P q
Hence,A(q) of Eq. (42) is
1 ﬁa(aO’g*) e
A(Q)N?[l—Tna —1+|—= ] (69

The second term on the right-hand side of E&®) will only
contribute via internal photon propagators to the functions
f£2), f(3), etc. and not to the functiofy,y. In order to find

an UV stable fixed point of3,, we only have to compute
f(1) and, therefore, we neglect all correctionsXtq) other
than canonical in internal photon propagators. Because the
contribution ofII is neglected, this procedure is identical to
quenching the internal photon propagators, although it is not
quenched in the sense of takihiy—0!

Now in correspondence with E¢18) we search for UV
stable roots of Eq(65), i.e., f(1)(ag,9c(a0))=0. In case of
pure QED(without four-fermion couplingthe functionf 4,
has been studied thoroughly by Johnsdral. in Refs.[56—

58] and by Adler[59] in the context of massless QED. In
Ref.[56], an expression fof ;) is obtained in term of the BS
g_erneIK(z) (Sec. IV as the single unknown Green function.

We mention that, although the strong belief of Johnson
et al. in the possible existence of finite QED seems poorly
motivated from the point of view of Wilson's RG methods
[5],1° their methods and techniques are sound and directly
applicable to the GNJL model.

In Appendix B, we expose a brief derivation of the result
of Ref. [56] and point out the applicability to the Abelian
GNJL model. Then, by taking into account also relevant
four-fermion interactions ajo=g.(«aq) via the BS kernel,
we can derive from EqgB1) and (65) that

2
Nao

ko

2 P11 P2+ @)
§+ T , (70

Balag,9c) = + ¢3

where the functiongb,, ¢,, and ¢3 are defined as follows:

These identities are nontrivial and require a high degree of

self-consistency of the theory in the form of Ward identifles.

Since, within our approximation scheme, the Ward identities

are respected, we assume that H§&)—(67) are satisfied.
Equation(65) now relates thgs function to the functiorf 4.

Clearly theg function has a Gaussian or trivial fixed point at

apg= 0

%The proof of Egs.(65—(67) can be performed order by order
within perturbation theory.

ied [ d*p ~ [(v*Py*—y*DPyH)
717

2p*

48N |\ (2m)

¢lE - I|m

Ao

, (71

X K(Z)(p,k)(?’#k)’a_ ’Ya’k’)/,u.)

1%The authors of56] do not address the dynamical origin of the
singular critical behaviofe.g., DySB), which would be required for
the realization of an UV stable fixed point in QED.
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ieS d*p - [py*p In the symmetric phase, the decomposition of the scalar
do=—lim —— —4Tr[ —K@(p,k) Yukawa verteXI's is given by Eq.(21). Furthermore, due to
chiral symmetry, we have the identities
X(VukYa=vakyu) | (72) (iys)Ts(k,p)=Tp(k,p), Ag(@)=Ap(q), (79
" the o and 7 propagators are degenerate. Second, it was
ieg P~ |PY*P shown in Ref.[47] that the structure functiof, is rather
¢3=lim o5 | ——2Tr (p.K)ky,k|, . o
A_48N JA(2m) p* small compared to the leading structure functienp (it is

(73 assumed thafF; describes the leading asymptotic behavior
of the Yukawa vertices Therefore, we neglect contributions
with related to the scalar structure functiba. Although it might
be possible that the contribution coming from gauge interac-
K@ (p,k)=K?(p,p+0q,k+0)|q-0. (74)  tions is smaller than corrections resulting from this structure
functionF,, we keep the gauge interaction in order to com-
pare with results mentioned in the literature. Thus, we take
, (75) for K(z)
gq=0

J
K<2>“(p,k)55 K@ (p,p+q,k+0)

Fi(k+q,p+q)F1(p.k)

5.6
, Kééfqb(p,p+q,k+q)~ L
il

0

K" (p k)= 52 K2 (pptakta) 79

9990,

=0 . .
! X Ag(k—=p)[Laglep+ivs, i vs,,]

The trace over spinor and flavor indices is defined as
+ i1 04D (K= P) ¥YaaYep- (80

TIL(P)K(p.K) R(k)]Ede(p)Kﬁ?;ﬁb(p'k)Rba(k)’ With this truncation for the BS kernél(®), we can actu-
(77) ally compute theg; functions(71)—(73), and subsequently
analyze thes function (70). The truncatior(80) generates an
with L and R some projectors and with appropriate summa-infinite series of planar contributions to the vacuum polariza-
tion over double spinof4) and flavor indicegN). tion as the leading order inl4/ see Fig. 7. As was discussed
The BS kernels in Eqg71)—(73) contain, in principle, all  in Sec. IV B and shown in Appendix A up to two loops, the
diagrams except those corresponding to vacuum polarizatiogcalars and pseudoscalars give the same contribution in the
corrections, since all internal photon propagators are C:’:IFIOI’lftmctlons¢>J The trace over flavor indices yields an overall
cal or “quenched.” As was pointed out in Sec. IV, theN1/  factor of N in the expressions fog; for contributions corre-
expansion states that the planar diagrams forah@nd 7 sponding too and 7 exchanges.
exchanges are dominant. The approximation for the BS ker-
nel K, which generates the entire set of planar scalar and VII. COMPUTATION OF THE 8 FUNCTION
pseudoscalar skeleton diagrams including ladder photon ex-
changes for the vacuum polarization is the following: the BS  In computing the functiong;, ¢,, and¢;, we initially
kernelK(?) is approximated by its “lowest” order skeleton neglect the ladder photon exchange given in @B§). Since
graph, i.e., such contributions were already computed in Ré&b], it
will be rather easy to include them later in the analysis.
5.5 It is straightforward to show thap, vanishes, within the
(2) ij Okl proposed approximations. Using E@®OQ), we obtain from
chq,%b(p,w o,k+q)=——[I'scdk+0a,p+0q)As(k—p) Egs. (72 and (75) that

*TsadPk)+ Teark+a,pta) T py*PK®*(p,K) (7,k¥a— vaky,)]

XAP(k—p)FPad(p.k)] “Tr[@?’ﬂﬁ(’)’uk’)’a_’}’aR’)’M)]:O- (81)

+0i1 0k ¥aaYebD uu(K=P). (78 Thus ¢y(aq,g.) =0.

FIG. 7. Planar skeleton contributions to the
oo vacuum polarization; the blobs represent both
photon ando and 7 exchanges.
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With Eq. (80), Eq. (71) for ¢, reads

i dp 1

—Im 72 )\ 2m)? 2p°

A—oo

N N
$1(@0,90) = I 2 O
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8iF1(k,p)F1(p,k)Ag(k—p)

XTI DY = Y PY™) (¥, K Vo= ¥ak v, ) 1+ T (VDY = DY) ¥5( VK va— vaky,)i 51}

d* +
= |lim 2Ni P (PFk)-k

A—oo

where we have performed a “harmless”shift of integra-
tion, and used the fact th&t; is symmetric in the fermion
momentaF,(p,k)=F(k,p), because oC-PT invariance.
The overall factorN results from tracing the flavor Kro-
necker 6 functions, which is equivalent to closing index
lines, see Sec. IV B. After a Wick rotation

lim

A—o

2 dQ, p?(p-k+k>?)
b1(@g,9c) = 8 2JA J' pp o

(p+k)*
X[F1(k+p,k)]?Ag(p) (83

Since the integrals for the functior are finite, we can
write

¢1(ao:9c):_Njo du Gy(u), (84
whereu=p?/k?, and
1 [ dO, K2pA(k-p+k?)
G4(p¥k?)=— lim
(P==Imez | 202~ (kv p)?
X[F1(k+p,k)J?Ag(p). (85

The functionG, is defined with a minus sign to make it a

positive function, as will be shown to be the case later. Thend F g, see Eq.(24). Then, the asymptotick?> p?,

J' (2,”_)4 (p+k)4 [Fl(k+pvk)]2AS(p)

(82

Cn(kzupz):

(-7
2

(2+n)0<k2—p2><2)

k n+2
—né(p>— kz)(B) . (89)

The Chebyshev expansion for the functibp was already
introduced in Eq(22) (and[47]). Thus, following analogous
derivations in the Appendix of Reff47], the functionG; can
be expressed as

G1(p2k?)=— nm—siﬂ 2 Cimne(K,p7)
A—ow 8 m,n=0
X fm(k2,p?) f (K2, p?), (89
where the fully symmetric indexC,,,=1, if I+m+n

=even and a triangle with siddsm, n exists, i.e.,|| —m)|
<n=<I|+m. OtherwiseC,,,,=0.

We approximateG,; by keeping only the lowest order
term in the Chebyshev expansion,

2
A
G2~ — tim T2 ook po)

Ao

k%,p?) 1%,
(90

wheref, is decomposed into the two channel functidng,
re-

angular integral can be performed if we make use of thespectively,p?>k?, of G, are well approximated by the low-

following Chebyshev expansion:

K2(k-p+k?) o ) K-p
W_nzo ch(k4,p9)U,(cosa), COSa—k—p,
(86)
where
2 (= . k?(k-p+k?)
cn(k2,p2)=;fo de sir? aUn(COSa)W,
(87)

1The integral is finite, therefore translationally invariant.

est order Chebyshev ter(@0). Again, this is the two channel
approximation for the Yukawa verticd47]. However, for
momentak?~ p? the channel approximation is not necessar-
ily valid. So, how abouG(1)? Since, from the appendix of
Refs.[47], it follows that the Chebyshev coefficients
f2n(k?,p?)=0,

f2n+1(k21p2)s0! (91)

and from Eq.(88) that
(—n"
2

cn(k? k?)= —Con(k%,k?)=0, cypsq(k? k?)=<0.

(92)

Hence, by taking into account the properties@f,,, we
conclude that all terms of the series
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> o Cimni (K2, K2 (K2 KO (k%K) (99

I,m,n=

of G, are positive, and the lowest order term gives a lowe

bound on the series,

co(K2 kD[ Fo(k2k?)P< X CimnCi(k2K?)
|,m,n=0

X (k2K (K2 K2).  (94)

Therefore, the approximation EEO) is reliable for the as-

ymptotics k?>p?, and p?>k?. Moreover, Eq.(90) is a

lower bound on Eq(89) at k?=p?, so that at least we will
not overestimate the contribution of scalar and pseudoscalar

composites to the vacuum polarization.

The functionG; can now be computed, sindg is ex-
pressed in terms of the channel functidhg, andF i of Eq.
(24). Furthermore, from Eq(88) we see that

co(k?,p?) = 0(k?>—p?), (95)
and the only nonzero contribution ®; of Eq. (90) comes
from the moment&?=p2. Thus, using Eqs(90), (24), and
(95), we find

2
G4(p?/k?)~— lim LSgp)[Fuv(kzﬁz)]zﬂ('(z—l32)-
Ao OT
(96)
|
1x| 1 T(l-w)y(-w)

Galag)=— = (2+w) T(1+o)y(w)

_2F3(2,1/2,3,1‘l‘ (1),1_ (1),2)\0)"’

><2F3(2—w,1/2—w;3—w,1—2w,1—w;2)\0)}.

The above analysis of the functiaby is repeated for the
function ¢5. The second derivativek (?%(p,k) [see Eq.

(76)], of the BS kernel given by Eq80) is
(92

K(2(p,k)o lim ———F 1 (k+q,p+q).

lm 6 (10

The SDE forF (in quenched-ladder approximation, see Fig.

3) is given by

. PN d*r [r?+(k—p)-r]
1(k+g,p+q)=1-ikg A At k—p)2r—p-q)?

(102

where we recall that we neglect the vertex function Thus

XFq(r+k—p,r),

PHYSICAL REVIEW D 62 025001

As was discussed in Sec. I, the ultraviolet channel function
Fuv(k?,p?) is proportional to (\/p) 72 andp?A4(p) is pro-
portional to (A/p) ~ ”. Therefore, the cutoff dependence can-

rcels in Eq.(96) as was expected and the angular integral Eq.

(85) can indeed be written in terms of a function which de-
pends only on the ratio qi?/k>.

The scaling form p?<A?) for the scalar propagator
Ag(p) atgo=g. (m,=0) is given by Eq(26) and Eq.(28).
The scaling form for the channel functidf,(k?p?) is
given by Egs.(34) and (36), with p?<k?<A?2. Inserting
Eqgs.(26) (with m,=0), (34), and(36) in Eq. (96), we obtain
for G,

I'2-—w)l'(2+ w)

G1(W)= gty —a) U@ -u(N2ho)
—y(— o)l (V2w ?6(1-), 97
whereu=p?/k?. Thus Eq.(84) is
¢1(@0,9c)~—NZi(ap), (98
{1(ag)= foldu Gy (u)=0. (99

The functionG; is positive, hencep, is negative. The inte-
gral over the functiorG; can be done explicitly by making
use of the integral identity 2.15.19.1 in Volume 2 of Prudni-
kov et al.[60]. The result is

?) SF3(24+ 0,112+ 0;3+ 0,1+ 2w,1+ w; 2\ ()

1 I'li+w)y(w)

(2-0) I'(l-0)y(- o)

2

)\0)“”

(100
|
(92
lim———F.k+q,p+
0949, 1(k+0a,p+q)
: d*r [r’+(k=p)-r]
—_”\ofA_Wz r+k-p)? Fi(r+k—=p,r)
X i i ! (103
im .
4—-099%0q, (r—p—0a)*
By making use of the identity
g d 1
I 2;
" 79, 7 A7% 84(q), (104

we obtain

025001-14



NONTRIVIALITY OF ABELIAN GAUGED NAMBU-JONA-. ..

8.6 p-k
K@ co.an(p,k)= ”2“(—4% . 2)[Fl<p.k>12As<p—k>
kl,ij €5 P k

X[LaglepTti ySadi ')’SCb]v (105

in Minkowsky formulation. Inserting the above expression in
Eq. (73) the equation forg; takes the form(in Euclidean

formulation
dQ, p?
¢3<ao,gc)=—Athw f fZWz"F
(p-k+k?)® )
X(p+—k)6[F (k+p,k)]°Ag(p).
(106)
Then
$3(ap,9c) = f du Gy(u), (107
2 2\3
21,2 _aoifdﬂpp<k~p+k)
CaPTKI=IMm =T 872) 202k p)®
X[Fy(k+p,k)]*As(p). (108
We use the following Chebyshev expansion:
(k-p+k?)® ) _kep
k)t HE d(k2,p?)U,(cosa), cosa=
(109
where
2 (= (p-k+k?)3
2 A2y i -
d,(k?,p?) = Wjo da sir aU,(cosa) T
(110
2 A2\ — p
do(k®,p )—( p) 0(k*—p?), (111

_ n n—-1 2
=0 k
P -1"
el ff-5

o5

x&(pz—kz)(g) . n=1. (112

The functionG; can be expressed as

PHYSICAL REVIEW D 62 025001

012 |
¢1(ao)
0.1 |-

0.08 -
0.06
004 |-

0.02 Cs(an)

aof

FIG. 8. The functiong,; and {5 plotted versusyg/a .

2 o
22y o @ PTAS(p) _
Go(p?/k?) = lim ——2 = 5= 2, Cimath(K%,p%)

A—o

X f(K2,p?) (K%, PP). (113

We also approximat&; by keeping only the lowest order
term in the Chebyshev expansion,

2
A
G3(p?/k?)~ lim — %P S(zp) do(k?,p?)[fo(k?,p?)]%.
A—o0 87
(114
Then, again the asymptotick?>p?, respectively p?>k?,

of Gy are well approximated by the lowest order Chebyshev
term. Moreover, for momenti&®= p? the approximation Eq.
(114 is exact, sinced,(k?k?) =0 for all n=1. Therefore,
the approximation Eq(114) is even better than the analo-
gous approximation, Eq90), to G,. Furthermore, from Eq.
(111) we see that the only nonzero contributionsagof Eq.
(114 are given by momente?=p?. Thus, using Eqg114),
(24), and(111), we find

pZAS(p)
872

. Qg
G3(p?/k?)~ lim —7(

A—»

3p?
rd

X[Fuv(k?,p?)120(k?— p?). (115
Substituting Eqs(26), (34), and(36) in Eq. (115, we obtain

for G3

0( 3u) I'(2-w)l(2+ )
G 2 Boyen(—w)

XU[ y( @)1 — (V2N ou) = ¥(— @)1 ,(V2\ou) ]2

X 0(1—u), (116
whereu=p?/k?. Thus Eq.(107) is

$3(ag,9c)~NEs(ap), (117

1
53(a0)= J'O du Gg(u)>O (118)
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The function¢g is positive, and can be computed in the same wayasThe result is

@o
{3(ag)= ?[51(00)_ T(ag)],

where

32 1 TA-w)¥-o)
@)= 75 2 | BFw) T(1+w) 1)

2
3 2Fa(312,4% 0,1~ w;200) +

X oF3(3— w,l/Z—w;4—w,l—2w,l—w;2)\o)].

In the computation of the function¢,, ¢,, and ¢5 the

(119
Ao|“
?) oF3(3+ 0,12+ 0,4+ 0,1+ 20,1+ w; 2\ )
1 I'1l+ow)y(w) (M)“’
B3-w) [(1-w)y-o)| 2
(120

Yukawa coupling is trivial, therefore vanishes. A= «a.,

ladder(planap photon exchanges have been neglected. Aftewvhere the critical exponents become singular, the vanishing

reinstating the ladder photon exchange term of @), we
obtain, together with Eqg98) and(117), that

$1(20,96(@0) = 5~ NEi(ao),  daletg,0e( @) =0,

(121
d3(a,9c(ag))=NE5(ag).

The ladder photon exchange only contributesdtp, see
again[56]. After substitution of Eq(121) in Eq. (70), the 8
function reads

B Na(z) 2 agl2m—N{ ()
ﬁa(aovgc)_ T §+ 1—a0/277+ Ngl(ao) +N€3(a’0) ’
(122

where explicit expressions faf; and {5 are given by Eq.
(100 and Eqgs(119 and(120.

VIII. UV STABLE FIXED POINTS

Let us start analyzing Eq122 by first considering the
properties of the functiong;(«g) and{;(ag). For g small,
the expansion of the functiong and {3 can be computed
from Eqgs.(100) and(119. The result is

3ayg ) 15 af .
Q(%)“E‘FO(%), §3(ao)”1—6;z+@(ao),
(123

showing that/5 vanishes faster thdt, for «;— 0. The func-
tions £;(ag) and{3(ag) have been plotted versug/«a. in
Fig. 8. First, it is clear that; and {5 are positive, and have
a maximum at some intermediate value oK 8,<a,
=/3. For instance,; has a maximum{;~0.123 at
agla.~0.58 (@~0.65). Second, the functiong;, and {3
vanish at the pure NJL pointy=0 in accordance with Eq.
(123, and at the CPT poinky= a.. At a;=0, we can con-

of ¢, and {3 is related to the dynamics of the conformal
phase transitiofCPT), which has been thoroughly discussed
in Ref. [61]. There are no lightr and = exchanges in the
symmetric phasé47] which consequently implies the ab-
sence of effective Yukawa interactiotfs.

Let us compare th@ function (122) with the g function
(52 of the gauge-Higgs-Yukawa mod€&0) in the 1N ex-
pansion. Then, the entire set of planaand 7w exchanges is
generated by the kernel

K(cfil)@b(p.p+q,k+q)
)

2
% . .
~ bij 5kle_(2) As(k=p)[Taglentivs, jvs, ]

(124

whereAg(p) = 1/p?. With such a kernelp, and ¢ are zero,
because the right-hand side of E#24) does not depend on
the momentung. The expression fog,, in this case, can be
computed straightforwardlyA( = g2/4);

d’p p-k 1 Ny
A2m* p* (p—k2 2w’
(125

Again we introduce the ladder photon exchanges by the re-
placement

¢1= lim 2Ng3i

A—so0

Ay

[£7)) N
h1(Ny)— p1(ag,Ny)= 5 o (126

Hence, in this case, the function is

2Moreover at the CPT point four-fermion interactions are mar-

sider this is as a reflection of the fact that hyperscalingginal instead of relevant, and start to mix with the gauge interaction,

breaks down due to logarithmic corrections; the “effective”

hence the analysis becomes considerably more complicated.
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I I I [} I I

001 b N=50 — 0.01 | H One-loop --- -
K N=54 --- H With ¢ and 7 exchange ——

£ 0.005
......... 0
1 1 1
0 0.05 0.1 0.15 0 0.05 0.1
7)) [241]
FIG. 9. Plot of the functior8, versus the gauge couplirg, for FIG. 10. The one-loog function forN=60 compared with the
various values of the fermion flavor number B function including four-fermion interactions.
5 oy Nad[2  agl2m—NNy/27 127 N=60: p,(0.1g,(0.1)=0, 129
a\&osAy)= 2 .
3 1—ayl2m+ NNy 27 na=—B.(0.19:(0.1)~0.15.

) ) In accordance with Eq€15) and (53), the fixed points are
Comparing thes functions(122 and(127) leads to the SUg- firt order zeros of3. The general patter is clear; the larger

gestion thay(ao) s analogous to the Yukawa coupling N, with N>N,, the smaller will be the UV stable fixed
in a gauge-Higgs-Yukawa model; (o) ~\y/2m. goint, but the larger will be the critical exponent, .

This is a crucial point. The general consensus is that for a 114 apove pattern also suggests that wNeac the UV
gauge-Higgs-Yukawa model the Yukawa interaction is  giapie fixed pointr, —0 and we would obtain an asymptoti-
trivial, thus Ay—0 in Eq. (127. However, the situation i .y free theory. This is not the case. It was shown in Refs.
essentially different for; in the GNJL model. There the 14547 a5 o, goes to zero that a logarithmic correction ap-

effective” coupling ¢, is formed by the exchange ofand  ,o55in the expression for the scalar propagatar in fact,

7 bosons, with the Yukawa vertices, arigseudgscalar e seajing form for s (with q/A<1) is only valid for val-
propagators fully dressede., the skeleton expansipnThe ues ofw so that 2/A2)“>q2/A2, see Ref[47]. The loga-
cancellation of the factors,.see Sec..lll, which is _re[ated 1 yithmic correction gives rise to the breakdown of hyperscal-
the fact that the hyperscaling equations are satisfied, givey relations and is synonymous to triviality of the four-
rise to a finite nonzerd;(ao) at the critical curve §o  fermion interactiongthe NJL model. Since our resuilts rely

=9c) for 0<ap<ac. The other nonzero functiofy results  peqyily on the existence of scaling forms such as E2g)
from taking into account fully dressed Yukawa vertices. 5 (34), we can only trust our results for values @f not
Let us now the discuss the possible existence of UV stablg, ;) small.

fixed points. A necessary but not a sufficient condition for ~ g;nce we have made use of results obtained in the

the realization of an UV stable fixed point is théf, has to quenched approximation, we mention that the plots ofghe
be larger than botiNZs and ao/2m, andNZ;~O(1). For  gynction are(at the mostreliable at or in the vicinity of the

large N, the contribution of the planar photon exchangesy siaple fixed points at which the quenched approach is
(represented by theo/2m termg is negligible with respect o consistent. see EG9).

to N¢y andN¢s. Moreover Fig. 8 shows, for, small, that In Fig. 10, the case dfl=60 fermion flavors is compared
¢1 is considerably larger thafl;. This means that only for  ith the one-loops function of QED. For very small values
flavorsN larger than some critical valug, UV stable fixed  of o <1/100 indeed the one-loop QED result coincides with
points can be obtained. _ that of the GNJL model, however for larger valuesagfthe

By substituting the expressiof00) and(119) for {y and g fynction (122) deviates from the one-loop expression, and
¢3in Eq.(122), we can straightforwardly analyze tigfunc-  eyentually an UV stable fixed point is realizedea~0.1.

tion graphically. In Fig. 9 theg function is plotted for vari- The analysis shows that a rather large number of flavors,
ous values oN. Figure 9 shows that for values df>N¢,

with 55>N_.>54, UV stable fixed points exist, the largest N>N ~54, (130
being a,~0.13;
is required to obtain UV stable fixed points. From the point
of view of the 1N expansion this seems a consistent result,
N=55: f,(0.13g(0.13)~0, since other than planar contributions are suppressed by at
(128 least factors ofsay) 1/N.. However, from the phenomeno-
logical point of view, the result is unsatisfactory, since it
7a= — B,(0.139(0.13)~0.07, implies that the unquenched Abelian GNJL mo¢thibit-
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ing UV stable fixed pointsis only practically applicable for hyperscalingsee Sec. Il If the hyperscaling equations are
models which have at leadt. fermion flavors(fractions satisfied, then only two of the critical exponents are indepen-
rounded up. Therefore, it is appropriate to discuss hdly  dent, e.g.,» and y, see Eqs(19) and(27). The existence of
depends on the approximation. hyperscaling relations between the critical exponents is inti-
First, we stress that the second term on the right-hand side@ately connected with the existence of Ward-Takahashi
in Eq. (122 containing the; function causes the suppres- identities(and thus the Goldstone mechanjsanising from
sion of charge screening and is responsible for the possiblée continuous symmetries of the model.
realization of an UV stable fixed point. The denominator in  The skeleton expansion for the BS kerkéf) provides a
the second term is a direct consequence of the resummatigfatural framework to take into account the anomalous di-
of the infinite laddew and 7 exchanges, and it is mainly due mensions of Yukawa vertices and and 7 propagators.
to this denominator  NZ; that the critical number of fer- Wwithin the skeleton expansio; and = exchanges are de-
mion flavorsN, is large. scribed in terms of fully dressed Yukawa vertices anand
Second, the existence of an UV stable fixed point for az propagators. The actual computation of the anomalous di-
specific number of fermion flavold depends on the inter- mension, and the resolution of the scaling form requires a
play between the functions, and {3, which are given in  solution of the SDE'’s for Yukawa vertices, ardand
terms of integrals of the functions; andG;. Let us recall  bosons.
that the lowest order Chebyshev expansionGgqr, Eq. (90) In previous work such fully dressed Yukawa vertices and
is a lower bound orG; of Eqg. (89), since all terms of the ¢ and = propagators have been analyzed in the quenched-
Chebyshev expansion are positivek3t= p?, the same can- ladder mean-field approximation, see REf7] and refer-
not be said about the approximatidhld) for G;. Thus ences therein. To make use of these results consistently, we
keeping more terms in the Chebyshev expansion leads to arsed the following approximations. First, we assumed that
increase of;, whereas the effect ofy, is less clear, because the bare coupling parameters are fine-tuned close to the criti-
of the alternating Chebyshev series foy. Therefore, an cal point, i.e., close to an UV stable fixed point, at which
improvement of the computation ¢f will probably lead to  84~0 and 8,~0. In that case, the quenched or canonical
a decrease of the critical flavor numbdy. approximation for the photon propagator is self-consistent.
Moreover, in the computation of the functiogg and{;  Second, the gauge-interaction is considered in the ladder
we have used Yukawa verticeFd) and o and 7 propaga- form, with bare vertices. Third, we used theé\léxpansion
tors (Ag) which were obtained in the quenched-ladder ap-(with N the number of fermion flavoyswhich states that
proximation. An interesting question is whether the improve-planaro and 7 exchanges describe the leading contribution
ment of the ladder approximation for the gauge interactiorto Green functions for largd. Then, due to the specific form
(e.g., by including crossed photon exchandeads to a in- of the chiral symmetry with both scalars and pseudoscalar in
crease off;, and thus a decrease if . the adjoint representation of thé (N) X Ugr(N) symmetry,
Finally, we recall that we have neglected the effect of thewe argued that in so-called zero-spin chann@ach as
Yukawa vertex functiorF, [Eq. (21)], but clearly the inclu-  Yukawa vertices and and 7 propagatorsthe planars and
sion of F, in the analysis could change the results quantita<r exchanges cancel each other for momenta larger than the
tively. Whether such an improvement will tend to increase omass of theo boson(in fact in the symmetric phase this
decreasd\, remains unclear at this stage. cancellation is exagt Moreover, an important property of
the planar(ladde) approximations is that they respect the
vector and chiral Ward-Takahashi identities.
The method of Ref.[56] provides a nonperturbative
There are strong indications that four-fermion interactionsramework independent of the fermion wave functi&nand
become relevant near the chiral phase transition in GNJlallowed us to compute the contributions of the infinite set of
models in four dimensions, due to the appearance of a largelanar o and = exchanges to the vacuum polarization. The
anomalous dimension. The main objective of this paper wagesult of the computations is that the GNJL model exhibits
to study the effect of such relevant four-fermion interactionsan UV stable fixed point3,(«, ,9.(a,))=0, for any value
on the vacuum polarization of the gauge coupling and tof N that exceeds some critical valig(N>N_). This criti-
reinvestigate the problem of triviality for a particular Abelian cal number of flavors turned out to be~54. The larger the
GNJL model withN fermion flavors. To obtain new results, number of fermion flavors, the smaller the UV stable fixed
the four-fermion interactions had to be taken into accounpoint «, will be, provided N>N; and «, not too small.
beyond the commonly used Hartree-Fock or mean-field apSince our results are derived on the basis of the existence of
proach. hyperscaling laws, we cannot extrapolate our results into the
The crucial feature of the GNJL model, within the region where hyperscaling breaks down due to logarithmic
guenched mean-field approximation, is that a nontrivialviolations, i.e., wheny,—0(N—).
Yukawa interaction(i.e., an interaction between composite  From a phenomenological point of view, the large value
(pseudd scalars and fermionsexists for O<ag<a.. The  for N, puts questions to the applicability of the GNJL. How-
existence of such a nontrivial Yukawa interaction requiresever, we have given a few arguments in the previous section
the cancellation of renormalization constants of thand=  suggesting thalN. could be rather sensitive to approxima-
fields in fermion-antifermion scattering amplitudes such agions, and that an improvement of the approximations and
the BS kerneK(?). This is analogous to the requirement of calculations will probably lead to a smaller value fd.

IX. CONCLUSION
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The realization of an UV stable fixed point is motivated Assuming that the WTI’s are respected, the vacuum polar-
by the observation that contributions of planaand 7 ex-  ization tensor is transverse: I1#*(q)=(—g*"q?
changes to the vacuum polarization, in an Abelian gauge+g*q*)Il(g?), so that
Higgs-Yukawa model, have identical sign, and tend to re-
duce screening. In analogy, four-fermion interactions ie d*k
describe attractive forces between virtual fermion- I1(g%)=— 3—qu (ZT)A,Tr[ ¥ S(K+q)T#(k+q,k) S(k) ].
antifermion pairs in the vacuum polarization. A

) : : _— (A2)

The conventional leading term in the vacuum polarization

is the on.e—loop. correction d.escrlblng the creation of.ferm|on-|_et us write and denote the one-loop vertex and self-energy
antifermion pairs. These virtual pairs can be considered a

, . . . . (?orrections with a subscrigt) as follows:
dipoles causing the screening; the vacuum is a medium o

the insulator type. Such a screening is proportional to the A
coupling ¢ and proportiopal to the pumber of fermion fla-  pu(k,p)= Y+ Al (kp), S(p)= %[1+Z(l)(p2)]_
vors N. However, if a particular fraction of the total amount p
of fermion-antifermion pairs created are correlated by attrac- (A3)
tive four-fermion interactions, represented byand = ex- ) )
changes, then clearly these composite neutral states are riegSides a photon exchange, we take into account a scalar and
capable of screening. The negative te, in the 3 func- pseudos.calar exchange in the one-loop vertex, and self-
tion (122) represents the contributions and the attractive na®M€ray. I-e.,
ture of four-fermion interactions in the vacuum polarization.
Within the quenched-ladder mean-field approximation, A1) (K.p)=Afy)(K.p)+Afig(k,p) +Afip)(K,p),
the critical curve and critical exponents are independent of (A4)
the number of fermion flavors. Within our approximation
scheme, the mechanism of charge screening clearly is flavor  P.Z1)(p?) === (1v)(P) = =(15(P) == (1p)(P).
dependent, since the total number of virtual fermion- (A5)
antifermion pairs is proportional td and the total number of
composite scalars and pseudoscalars grows & Zhe  With one-loop vertex corrections
larger the number of flavors, the stronger the effect of four-

fermion interactions. The fixed point appears when the vir- ) d*w . .

tual pairs completely lose their ability to screen. (—ieg)Afiy)(k,p)= JAW(_I%) YNiS(k—w)
The existence of an UV stable fixed point implies a non-

trivial continuum limit of the Abelian GNJL model. The X(—ieg)y*iS(p—w)

analysis presented here suggests that in the full unquenched . o

GNJL model the critical line is replaced by an UV stable X(~i€0)y7IDyg(W), (AB)

fixed point (on the critical ling whose exact positions de-

. 4,
pends on the number of fermion flavors. If the number of e “ B d*w r L
fermion flavors is below some specific value, the critical ~ (~ €0)Afis(K:p)= A—(Z,]T)A( igy) 1iS(k—w)
four-fermion dynamics are not sufficient to yield an UV
stable fixed point. In that case the unquenched GNJL model X (—ieg)y*iS(p—w)

only has a trivial(IR) fixed point and the chiral phase tran- . .
sition is of the mean-field type. X(=igy)Lidg(w), (A7)

d*w
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APPENDIX A: TWO-LOOP VACUUM POLARIZATION and the self-energies

In this appendix we compute two-loop vacuum polariza- d%k
tion corrections includingr and = exchanges, see Fig. 5. We iz(lV)(p):f ——(—ieg) y*iS(k)(—iep)
derive the two-loop contribution by making use of the one- A(2m)
loop computation of the photon-fermion vertge,63. S i _
The SDE for vacuum polarization tensor reatls<(1) 71D uu(k=p), (A9)

o o[ d% _ d* o
1#"(q )='%LWTV[V“S(HQ)F”(k+q,k)5(k)]- |2(1S)(p):JAW(_|gY)1|S(k)(_|gY)1|AS(k_p),
(A1) (A10)
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. d .
|E(1P)(p):JAW(_ng)l'ySlS(k)(_ng)

XiysiAp(K—p). (A11)

Taking free massless fermion, scalar, and pseudoscala
propagators, and the photon propagator in the Feynman

gauge @=1),
p Duv 1
=—, D, (Q)=——, A =A =—,
S(p) 0’ Q) RE s(9) p(d) RE
(A12)
the one-loop vertices can be expressed as
Ak, p)=2e5R"(k,p) +2€3S"(k,p),  (AL3)
Afis)(k,p)=—gIR*(k,p) +97S"(k,p),
(A14)
Afipy(k,p)=A{35)(k,p), (A15)

where the last identity is obtained from E@8) by using
ysy*=—y*vys, and where

[ diw
won=-i e

YH(P—W) (k—W)/2— (k— W) (p—W) y“/2

8 (k=w)(p— W)W /
(A16)
o dw [ (kw) - (pmw)y#
S04 | oo G wie - wie?
(k= wHp-w) (pmw)Hk—W)
(k=w)>(p—w)w” (k=w)>(p—w)*w? |’
(A17)

Thus the sum of one-loop vertex corrections, Bg), can
be rewritten as

Al (k,p)=2[€§—a7]R*(k,p) +2[ €5+ a7]S*(k,p).
(A18)

The sum of self-energy contributions, E&5), can be com-
puted straightforwardly

(e5+99)

+
1672

A2
Z4y(p?)=— ( 7 , (A19)

-P

2

in Minkowskian formulation.
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ieg [ d*k TrP,,(q)y"(k+§) y*k]

Ma(@="3¢ |, @ms — krgre
(A21)
_ieg [ d%k Ty, (k+)y“k]
ﬁ(Za)(qz)__ 3_cffA(2W)4 (k+q)2k2
X[ Z1)(k+q))+ 21, (k?)], (A22)

ﬁ d* Ty, (k+a) Ak, (k+g,k)k]
39° Ja(2m)?* (k+0q)°k? '

H(zb)(q2)= -
(A23)

The one-loop vacuum polarizatidi ) can be computed
straightforwardly by making use of the projectér,,(q)
=gM,,—4quV/q2, which by contraction with the vacuum
polarization tensor eliminates the termlih,, proportional
to theg,,, tensor. With this projector the quadratically diver-
gent contribution toll ,,, which is an artifact of a hard-
cutoff regularization, is eliminated explicitf?. The result is
the well-known one-loop vacuum polarization:

2, %o
IT(1)(g9) = 3 \ (A24)

A2
In<?) +O(1)

with g2 the Euclidean momentum angd,= e3/4.

The sum of the one-loop vertex functions is given in
terms of the function®* andS*. The one-loop vertex in the
Feynman gauge has been computed in R&%], see also
Ref. [63] for arbitrary gauge. One can show that, wif

=(k—p)?,

2e5R*(k,p) = Al (K,p), (A25)
2e354(k,p) = Aty (k,p) + Al (K,p), (A26)
with
y* (k+p)“(k+p)
Aty kp)=S5[= Z1)(K?) = Z3)(p?) 1+ Tak—p?)
X[ = Z1)(k?) + Z1)(p?)], (A27)

AL (k,p)=T(K?,p%,0°) T4(K,p) + 75(K?,p%,0°) T4(K,p)

+ Tﬁ(kzlpziqz)T’g(klp)i (A28)
AfﬁR)(k,p)ETs(kz,pz,qz)Té‘(k,p), (A29)

whereAé‘lL) is the one-loop longitudinal part of the vertex,
and where ther;T/’s are the one-loop transverse parts as

The vacuum polarization up to two-loop corrections can

be expressed as
I1(q?) =1)(q%) + 1124 (%) + 1L 25)(a%), (A20)

where

3The quadratically divergent contributioh?/g? is a notorious
artifact of computing vacuum polarization corrections in the pres-
ence of a hard cutoffi.e., an explicit cutoff in the momentum
integrations instead of Pauli-Villars regularization, see for a recent
discussion Refl64]).
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defined and computed in Ref$2,63. By construction, this
Ball-Chiu expression for the longitudinal verté;, , satis-
fies the WTI[62]:

q.A L (kp)=— R3(1)(k2) +PZ1)(p?).
Using Eqgs.(A18), (A23), (A25), and (A26), we write

(A30)

2

Oy
IPGRE 1+? [, +112)(g?)]
0
o )
+ 1_? T 2R (), (A31)
0
where
- ,. e f d*k
@@= 5 )zt
Ty, (k+ @) AL (k+a,k)k]
(k+q)2k2 '
. (A32)
i=L,I,R.

Since the one-loop transverse vertex functions themselves
are finite, i.e., these functions are independent of the cutoff
A, the leading logarithmic contributions to the vacuum po-

larization result from integrations over momerkz>q? in

[T;ry and I,y . These leading logarithmic contributions
can be found by first deriving th€?>q? asymptotic behav-

ior of the transverse structure functions given &3], after

which the integration over angles can be performed. In the

Feynman gauga= 1, the asymptotic behavidé?>qg? of the
7S is

ay 1 a1 (g% 29a¢ 1
2T 2 K 3T 6w K2 ”(F)‘ﬁ??’
(A33)
(2k-q+9°) ap 1 ag 1
T2 24k T 20k

where k? and g% are Minskowskian momenta. By making

PHYSICAL REVIEW D 62 025001

Chiu expression(A27) for Ay, the contributionsll ,
andII, ) depend on the one-loop computation of the self-
energy Z(;) given in Eq.(A19). After expandingz,((k
+q)?) for k?>q?,

Z1)(k+ Q)z)*z(l)(kz) +(2k-q+ qz)Z(ll)(kz)

1
+ 5 (2k-q-+a%)2 2, (k)

1 2\3 2 (1,2
+5(2k-q+q ) Z(1(K%), (A36)
and using thatZ(1)((k+ )%~ Z(1)(g?) for g?>k?, the an-
gular integration can be performed, and the logarithmic cor-
rections can be computed. The result is

Ay
11 24)(0%) + 1+a— I 21(a?)
0
_ag(agtNy)
_ 2ol
T
X 1|ZAZ 29 N o(1
22"\ 7| " 1aa ) T O]
(A37)

with aoze3/47r and )\Y=g$/47r. Thus, comparing this ex-
pression with thel,y term in Eq.(A31), we see that the
“overlapping divergencies'{i.e., the Irf) cancel

H(Za)(q2)+ [H(ZL)(q2)+H(2I)(q2)]

A
1+—
&%)

ap(apgt
- L;;Z—Y)O(l). (A38)
Such a cancellation occurs in a similar manner in any cova-
riant gaugea. Thus, the two-loop contribution tol is de-
scribed solely by the part of the transverse vertex containing
the T4 tensor,* i.e., I1(,g), and, after adding all the pieces,
we deduce that

use of these asymptotic expressions the integration over

angles inIl ;) and II(5, can be performed straightfor-
wardly, after performing a Wick rotation. The integrations
over moment&?=q? leads to logarithmic corrections. The

result readgin Euclidean formulation

L, ag[1 (A% 29 2
H(2|)(q )Z? ﬂ'ﬂ az- +m|n az- +O(1) ,
) (A34)
) ag (1 [A2
I 2Ry (q )=;2 Zln rd +0(1)|. (A35)

The logarithmic corrections of, and 7 cancel each other,

and the contributions of; give rise to a IA term.

7)) 2 (4 %0) )\Y

A2
H(q2)=%(§+ PP Z)In(? + (gl m)O(1).

(A39)

APPENDIX B: THE JOHNSON-WILLEY-BAKER
EQUATION

In this appendix we derive the equation

_Nag E+ b1+ ha(2+ )
7 |3 1— ¢

(1) + ¢3 (B1)

An analogous computation can be performed for the self- 14As was shown if{63], this particular transverse structure func-
energy and longitudinal vertex corrections. Due to the Ball-tion 74 does not depend on the gauge paramater
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for the f ;) function given by Eq(64), with the functionse; 14,9, iNag

given by Egs.(71)—(73). The derivation of Eq(B1) was  H(q*)~~— 6 q7 an d*k T S3(k) T (k) S(k) ¥
given (for pure QED by Johnson, Willey, and Bakéd\WB) A

in Ref. [56]. Since their result is formulated in terms of the

BS fermion-fermion scattering kern& ) their method is +28,(k) ' “(k)S(k) y"+ S(K) ' “(k) S(k) y"],
also applicable to the GNJL model.

In order to derive the result d66], the following is as- (BS)
sumed.

The fermion wave function equals ong=1/A=1, inthe  \here the derivatives are defined as follojveith I'*(k)
Landau gauge. In principle, this assumption is redundani&re(k k)]:
since the JWB result is valid in any gauge.

Internal photon propagators are replaced by their canoni-

cal form A(q)=1/g° which is self-consistent in the neigh- S, (k)= iS(k)= _ k”_jk,
borhood of an UV stable fixed point. Only a single fermion aK* k
loop, thus a single power of IA contributes to the vacuum (B6)
polarization.

Translational invariance of naively logarithmically diver- 2 4k
gent and finite momentum space integrals is assumed. Im- S (k)= J S(K)=— —p
plicitly, use is made of invariance under charge-conjugation « KK k*’
(C) and parity-time(PT) transformations.

Also it is assumed that we are in the scaling region of the
theory, where the only relevant dimensionless variable is
g%/ A?. We consider short distances with respect to the IR T (k)zir (k+q,k)
length scalet~1/m,|, thus|m,|?<g?<A?Z. o aqe * gm0
Hence, (B7)

. 92
re (ky=——-—rI,(k+q,k
Z(k®)=1/IA(k*)=1, S(k)= % T#(k,k)=y*. oK) 39,99” ulketak) q=0
(B2)
Since the integral EqB5) can only be proportional tg*?,
The vacuum polarization tensor is it reduces to
i ag - PN |N [£7)) 4 a
rw(q)=—gf d*k Tr{ S(k+ ) T#(k+q,k)S(K) ¥, (@9)~—gg3 |  dKTIS(I*(K)S(K) v,
47° J A T Jg,A

(B3)
~ _ e +28,(K) (k) S(K) v, + S (k) S(K) v, ].
where T denotes the sum over both spinor and flavor indi-
ces. Since, in the chiral symmetric phase, khiermions are (B8)
degenerate, aN fermion propagators and photon-fermion

vertices are degenerate. Hence, the sum over flavor indice% _ ) _
. . .= . The SDE for the verteX'* reads, in terms oK'~/ (see Fig.
gives rise to a factoN, i.e., Tr—N Tr, where Tr is the sum 6)

over spinor indices.
Since vacuum polarization tensor is transverse and the

only relevant momentum variable ig/A%<1, the equation 4t
for the vacuum polarization can be written as 8Tty (k+0,k)=§; 7§b+ie(2) Ners
H(q2)=—gq#wﬂw(qHO(l)wL(’)((q/A)”), "
(B4) X Kme}?(p.p+q,k+ q). (B9)

where ¢ is some positive power. After inserting E(B3), From now on we omit spinor and flavor indices. Differenti-
and settingg®=0 in the integrand, and usingas the infra- ating now the SDE Eq(B9) with respect tog, and setting
red cutoff in the momentum integral, we obtain g=0 for the integrand and as IR cutoff, we obtain
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2 d’p ) @) 2)
I, .(k)=ieg 7[S(P)T ., o(P)S(P)K (P, k) + So(P)T L (P)S(P) K (p,k) +S(p)T L (P)S(P) K (P, K) ],
q,A(27T)
(B10)

and for the second derivative of the vertex, we find

d4
P2 =ie} | B ISPITE (ISP (P + 25, (P)**(PISIPIK P+ SI(PIH(P)SPIK Z (p.K)

+2S(p)T#(p)S(p)K P (p,k) +2S%(p)T*(p)S(P)KZ (p,k) + S(P)T“(p)S(P)K P *(p,k) 1, (B11)

where K@(p,k) and the derivativesK®(p,k) and Nag| &
K®<(p,k) are defined in Eqs74)—(76). (q?)= 5| 2 1n(q?/A?)+O(?/A?) |, (B16)
. . . . . .. n=1
The first derivative of the vertex is antisymmetricdarand
u, because of the assumption EB2). FurthermoreC and

PT invariance imply that the only nonzero contribution to theWhere
first derivative of['* (with g=0 and A—<) must be pro- i dk
portional to the tensory,ky,— v,Kv,). Thus we write l,=— 4—8fq'A?Tr[Sg(k) Y*S(K)y,.], (B17)
(Vukya= Yk, ,
PO =Tl T k) = =550 =_'—f O ST (K)S(K) 7,1 (B18)
[ (0=T, () +T, (K)=S,(Kk), (B13) el d*k dp ~
|3Eﬂf oz WTY[S(p)TM,a(IO)S(P)
where T’ is a dimensionless scalar functibh. Since a.A a.A
S_;Ml(k)=0, due to the WTI for the vertex and E@2), we X K@2(p,k)S(k) y“S(K)], (B19)
find that
2 4 4
N - e d*k d*p -~
1 (Vukva=voky,) | E—OJ —J —T1S,
oK)= 5 T (K) = = =241 77 Jorzm? 1PV 7SP)
(B14 X K@4(p,k)S(K) yS(K)], (B20)
After some algebrdtaking traces over spinor and flavor 5 4 4
indicey, we can derive from Eq$B10) and (B14) that | = @f ﬂf d*p
> 48 )qa 7 Jqa(2m)*
im T, .(K)=(d1tdot ¢y lim T') B
04— A0 XTrS(p) 7, S(PIKL (P, k) S(K) ¥S(K)].
(7,kva— vaky,) (B21)
2
2k Using translational invariancé&-PT invariance, Eqs(71)—
(73) and(B15), we can derive that
. , D1t do
= Ilm I'= ,
g-0a— 17 | _ZfAzdkz o) 12| Pt fAzdk2 o1
(Bls) 1_§ q2 ?_{_ ( )1 2= 1_¢1 q2 ?—'— ( )!
where theg; functions are defined in Eqs71)—(73). A
Since (k)= y#, and using Eq(B11) for [*(k), the | _ , |1t e[ (42K B22
N o L S , iz TOM), (B22)
second derivative df4'* in Eq. (B8) can be eliminated. The é1 Jq

result is
A2 dKk? A2 dKk?
EE— |4=¢2JZV+O(1), |5=¢3j2?+0(1),
q q

5The functionT'’ is related to the transverse structure function
g(k?k?,0) of Ref. [63]. At the one-loop level I',  Where g? is the Euclidean momentum. Substituting Egs.
= —k?75(k? k2,0). (B22) in Eqg. (B16), we get
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Nag[2 ¢+ da(2+ ¢y) A2 With Eq. (64), we obtain Eq(B1). This is the main result of
I(g?)= 5|3+ - o + 3 |nq7 Ref. [56]. The entire derivation did not yet specify the BS
! kernelK(?). Therefore Eq(B23) is applicable to the GNJL
+(Nag/m)O(1). (B23) model as well.
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