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Nontriviality of Abelian gauged Nambu–Jona-Lasinio models in four dimensions
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Institute for Theoretical Physics, University of Groningen, 9747 AG Groningen, The Netherlands
~Received 26 August 1999; revised manuscript received 27 January 2000; published 1 June 2000!

We study a particular class of Abelian gauged Nambu–Jona-Lasinio models with global UL(N)3UR(N)
symmetry, whereN is the number of fermion flavors. We show, by treating the gauge interaction in the ladder
approximation and four-fermion interactions in the leading order of the 1/N expansion, that the
renormalization-groupb function of the U~1! gauge coupling has ultraviolet stable fixed points for sufficiently
largeN. This implies the existence of a nontrivial continuum limit.

PACS number~s!: 11.10.Hi, 11.15.Tk, 11.30.Qc, 11.30.Rd
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I. INTRODUCTION

The absence of an interacting continuum limit or triviali
of Abelian gauge theories in four dimensions such as QED
due to the screening of charged particles by their interact
with virtual fermion-antifermion pairs from the vacuum
Such charge screening is described by the vacuum pola
tion P ~Fig. 1!. The QED vacuum is not a perfect insulat
and can be considered as a medium of dipoles represe
the fermion loops in the vacuum polarization. Within pertu
bation theory, the electromagnetic charge or gauge coup
is screened completely in the continuum limit~L→`, where
L is the ultraviolet cutoff!.

This can be seen by considering the renormalizat
group ~RG! transformation of QED@1#, which relates the
gauge coupling or fine-structure constantam in the infrared
~IR! region to the bare gauge couplinga05aL in the ultra-
violet ~UV! region via

am5Ra@m/L,a0#, Ra@m/L,a0#5
a0

11P@m/L,a0#
.

~1!

In perturbation theory, the one-loop leading contribution
P is

P@m/L,a0#5
2Na0

3p
ln

L

m
, ~2!

whereN is the number of fermion flavors. This logarithm
screening effect is sufficient to cause the complete scree
of charge in the continuum limit@2,3#.

From the RG point of view triviality is merely due to th
absence of an UV stable fixed point or nontrivial root of t
b function

ba~a0![
]Ra@w,a0#

]w U
w51

5L
da0

dL
~3!

for the gauge coupling. Equation~2! gives rise to theb func-
tion ba(a)52Na2/3p, which only has an IR stable fixe
point or trivial root:a50 „ba8 (0)>0…. A nontrivial or inter-
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acting theory only arises wheneverba has a root which is an
UV stable fixed point. In the case of asymptotic free theor
such as QCD the origina50 is an UV stable fixed point.

In addition to its motivation only on the level of pertu
bation theory the above consideration is too naive. Acco
ing to the RG methods of Wilson@4,5#, one should conside
the RG flow in the space of all coupling constants~respect-
ing certain symmetries! or at least for those coupling con
stants which can be classified as relevant close to a partic
critical manifold in coupling constant space. For a possi
nontrivial continuum limit of QED, critical and hence non
perturbative dynamical effects are required.

Therefore, the discovery of dynamical chiral symme
breaking~DxSB! in the strong coupling phase of QED (a0

>ac5p/3) @6–8# and the existence of an UV stable fixe
point in the quenched-ladder approximation@9–11# sheds
new light on the nonperturbative nature of QED and trivi
ity. Lattice simulations of so-called noncompact quench
QED have confirmed the existence of a continuous ch
phase transition@12–14#.

An important step was performed by Bardeen, Leung, a
Love in Refs. @15,16#. These authors realized that,
quenched-ladder QED, attractive four-fermion interactio
described by a dimensionless four-fermion couplingg0>0
have a so-called scaling dimension 4 instead of 6 at the c
cal gauge couplinga05ac . Consequently, these operato
mix with the gauge interaction which also has dimension 4
four space-time dimensions; this means that QED is no
closed theory at the chiral phase transition. The scaling
mension of an operator is important in determining whet
or not such an operator describes a long-range interac
The model of Bardeen, Leung, and Love is referred to as
gauged Nambu–Jona-Lasinio~GNJL! model, and the mecha

FIG. 1. The vacuum polarization tensorPmn(q)5(2q2gmn

1qmqn)P(q2), with the blobs representing full fermion propag
tors and a full photon-fermion vertex.
©2000 The American Physical Society01-1
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nism of dynamical chiral symmetry breaking proposed
them should be regarded in the context of the RG method
Wilson.

Wilson pointed out that a nontrivial renormalizable mod
can only be formulated if the RG transformation exhibits U
stable fixed points. UV stable fixed points are ‘‘singula
points1 of the RG transformation at which the model b
comes scale~conformal! invariant. Natural candidates fo
UV stable fixed points are critical points governing a co
tinuous phase transition. Since, at a continuous phase tr
tion, the correlation lengthj is infinite and the model is scal
invariant.

The most crucial observation of Wilson is that in the R
transformation, i.e., the ‘‘coarse-graining’’ process, ne
types of local interactions are generated and that the
interactions can be classified as either irrelevant or relev
interactions. Only relevant~including marginal! interactions
are important in determining what kind of infrared dynam
characterized by a scalem;1/j emerges from the micro
scopic or bare model characterized by the cutoffL. The ef-
fect of irrelevant interactions can always be absorbed
adapting the coupling constants of relevant and margina
teractions.

Especially, close to a continuous phase transition, the
methods show that it is impossible,a priori ~without solving
the equations of motion!, to determine which interactions ar
relevant or irrelevant; particular interactions can acqu
anomalous dimensions and interactions which are irrelev
in a certain region of coupling constant space might beco
relevant in another region.

In this respect the GNJL model should be considered
the Wilsonian effective~or microscopic! action of QED tak-
ing into account the four-fermion interactions describi
neutral scalar and pseudoscalar fermion-antifermion com
ites. It was shown in Refs.@17,18# that there is a critical line
~curve! in the coupling constant plane (a0 ,g0) of the GNJL
model separating a chiral symmetric phase from the ch
broken phase. The critical line is given by

gc~a0!5~11v!2/4, v5A124l0, l053a0/4p.
~4!

In the neighborhood of the critical line four-fermion intera
tions acquire sufficiently large anomalous dimensions to
come relevant operators. The existence of nontrivial sca
behavior of the model near criticality implies that these s
lar and pseudoscalar composites are relevant degrees of
dom at both short and long distances.2

Lattice simulations of noncompact quenched QED w
an induced four-fermion coupling were performed by the
linois group in Refs.@19,20#. The Illinois group obtained a
critical point (0.44ac,0.76) in the (a0 ,g0) plane, which fits
nicely on the critical line Eq.~4!. However it was not pos-

1UV stable fixed points are specific roots of theb functions.
2The composites are light states, as well in the symmetric phas

in the broken phase.
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sible at that time to investigate by means of lattice simu
tions the phase transition along the critical line.

Later, the GNJL model was studied on the lattice in no
compact formulation using some mean-field approach for
fermions in Ref.@21#. They obtained a critical line qualita
tively similar to the one following from the Schwinger
Dyson equation~SDE! approach Eq.~4!.

In the intermediate region (0,a0,ac), the critical ex-
ponents describing the chiral phase transition satisfy n
mean-field hyperscaling relations which supports the vi
that, within the quenched-ladder mean-field approximati
the GNJL model has a nontrivial continuum limit@19,22#.
Also in Ref. @21# nonmean field critical exponents were o
tained.

The physical implications and the consistency of t
quenched-ladder results with many quenched lattice sim
tions, and with the nonperturbative RG techniques, supp
the view that the qualitative features of the approach mi
be realistic and describe properties of the full theory. M
likely this is due to the ladder approximation respecting
vector and axial Ward-Takahashi identities.

In Refs. @23,24# the validity of the ladder approximation
was tested positively by including the effects of, e.g., cros
photon exchange graphs. In addition, the nonperturba
renormalization-group methods of Refs.@25,26# provide a
way to check the quenched-ladder approximation in
GNJL model by including the effect of crossed photon e
change graphs, and four-fermion interactions in the RG fl
of coupling constants. In Ref.@26# the critical line3 and criti-
cal exponents in the full quenched GNJL model were o
tained in a particular so-called local potential approximatio
which incorporates besides crossed photon exchange gr
also four-fermion exchanges beyond the mean-field
proach. Considering the small quantitative differences, qu
tatively this study supports the reliability of the ladder a
proximation.

Attempts to include a logarithmic running of the couplin
drastically changes the chiral phase transition and the crit
line, see Refs.@27–30#. Moreover, it was shown in Refs
@30–33# that the critical exponents are of the mean-field ty
~up to logarithmic violations! leading to a trivial theory.

Lattice simulations of noncompact full~unquenched!
QED on the lattice~with flavors,N52 andN54! are con-
troversial@34#. The Illinois group@35,36# ~see also@37,13#!
and the Zaragosa group@38,39#, find power-law scaling and
nonmean-field critical exponents, signaling a possible n
trivial continuum limit for the strong-coupling broken phas
whereas@40,41,34# obtain mean-field behavior~mean-field
critical exponents with logarithmic corrections!. Thus Göck-
eler et al. find a vanishing renormalized gauge coupling a
a vanishing effective Yukawa coupling~defined by the
Goldberger-Treiman relation!, and they conclude that lattic
QED is trivial, see for their most recent result Ref.@42#.

In this paper we argue that the four-fermion interactio
might play a crucial role in the phenomenon of char

as3They obtained the critical line:gc(a0)5(11v)2/3, which dif-
fers by a factor 3/4 from the quenched-ladder result.
1-2
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NONTRIVIALITY OF ABELIAN GAUGED NAMBU–JONA - . . . PHYSICAL REVIEW D 62 025001
screening. We show that, by considering the Abelian GN
model, UV stable fixed points of theb function of the gauge
coupling can be realized, provided the number of ferm
flavorsN exceeds some critical value. The existence of U
stable fixed points gives rise to a nontrivial theory.

An important observation is that the nonmean-field valu
for the critical exponents suggest the existence of a nontri
Yukawa interaction describing the interactions of the sca
and pseudoscalar composites with fermions. This also po
out the inconsistency of the mean-field approximat
~Hartree-Fock approximation! for the four-fermion interac-
tions. Therefore, we go beyond the mean-field approxima
by incorporating these composites~the s andp exchanges!
in the 1/N expansion.

The setup of this paper is the following. In Sec. II w
introduce the Abelian GNJL model with UL(N)3UR(N)
symmetry. Furthermore, we sketch how we will search
the existence of an UV stable fixed point in the coupli
constant plane (a0 ,g0). In Sec. III we discuss, within the
quenched-ladder mean-field approximation, the importa
of hyperscaling relations and how this is related to the e
tence of a nontrivial Yukawa interaction in the GNJL mod
We discuss how to proceed beyond the quenched mean-
approximation in Sec. IV. The 1/N expansion is discussed i
Sec. IV B. In order to get some idea how the scalar a
pseudoscalar composites contribute to vacuum polariza
we illustrate such contributions on the level of perturbat
theory for a gauge-Higgs-Yukawa model in Sec. V. Then
Sec. VI, we argue how we can exploit the 1/N expansion and
derive a computable expression for theb function, ba , of
the gauge coupling. Subsequently,ba is computed explicitly
in Sec. VII. The existence of UV stable fixed points is a
dressed in Sec. VIII. Finally, we present our conclusions
Sec. IX.

II. THE ABELIAN GNJL MODEL

We consider the GNJL model with U~1! gauge symmetry
~the Abelian GNJL model! with N number of fermion flavors
described by the following Lagrangian~see also Refs.@43#,
@44#!:

L15c̄ i~ igmDm2m0!c i2
1

4
FmnFmn

1
G0

2 (
a50

N221

@~ c̄ it i j
a c j !

21„c̄ it i j
a~ ig5!c j…

2#, ~5!

where Dm5]m2 ie0Am and where the flavor labelsi,j run
from 1 to N. The LagrangianL1 is parametrized by the fol
lowing three dimensionless bare coupling constants:

m05m0 /L[mL , a05e0
2/4p[aL ,

~6!
g05G0L2/4p2[gL ,

whereL is the ultraviolet cutoff. We assume that the abo
set of dimensionless coupling constants comprises the e
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set of relevant~including marginal! dimensionless coupling
constants respecting particular chiral, vector, and gauge s
metries.

If the bare massm0 is zero, L1 has a global UL(N)
3UR(N) symmetry. The generators,t, of the U(N) Lie al-
gebra have the following properties:

ta†5ta, Tr tatb5dab, (
a50

N221

t i j
a tkl

a 5d i l dk j . ~7!

The last identity is called the Fierz identity.
The Abelian GNJL model described by Eq.~5! can be

conveniently analyzed in terms of auxiliary or compos
fields sa52G0c̄tac andpa52G0c̄ta( ig5)c describing
scalar and pseudoscalar degrees of freedom. In this wayL1
can be rewritten as

L25c̄ i ig
mDmc i2

1

4
FmnFmn2 (

a50

N221

c̄ it i j
a~sa1 ig5pa!c j

2
1

2G0
(
a50

N221

@~sa!21~pa!2#, ~8!

wherem0 has been set to zero. In this formulation the fou
fermion interactions are described by the interactions of
auxiliary fields with the fermion fields. Then the connect
two-point Green functions of thepa fields describeN2

Nambu-Goldstone bosons~p bosons! and the connected two
point Green functions of thesa fields describeN2 ‘‘Higgs’’
bosons~s bosons!.

Although the Lagrangian~5! has very interesting proper
ties, surprisingly this particular class of GNJL models w
UL(N)3UR(N) has not received much attention. One su
property is that Eq.~5! comprises the largest set of releva
chiral invariant four-fermion operators for a model ofN fer-
mions. Another independent set of vectorlike chiral invaria
four-fermion interactions such as (c̄gmc)2 do not acquire
large anomalous dimensions and remain irrelevant near
critical point ~line!. This has been shown in Refs.@25,26#,
where the RG flow of scalarlike chiral invariant and vecto
like chiral invariant four-fermion interactions has been co
sidered. Moreover, the specific form of the chiral symmet
where the number of scalars equals the number of pseu
calars, turns out to have useful implications in the contex
1/N expansions as we will discuss later in Sec. IV.

In case ofL2 there are four renormalization constants:

Z2
1/2~L8/L!c~L8!~x!5c~x!,

~9!
Z3

1/2~L8/L!A
~L8!

m
~x!5Am~x!,

Zs~L8/L!s~L8!~x!5s~x!, Zp~L8/L!p~L8!~x!5p~x!,
~10!

whereL8/L<1, and the fieldsc, Am, p, s are the bare fields
defined at the UV cutoffL.

Near the critical point a new scale is generated: the c
relation lengthj. In case of a second-order type of pha
1-3
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MANUEL REENDERS PHYSICAL REVIEW D 62 025001
transition, the correlation length exists in both phases of
system. In the broken phase the inverse correlation leng
real and can be considered as a physical mass of particle
instance the mass of the scalar bound state~the s boson!
ms , or the mass of fermionmdyn. In the symmetric phase
the fermion is massless, and the scalar and pseudos
composites are unstable states characterized by a com
mass pole in their respective propagators describing the m
and the width of the Breit-Wigner type resonance, see R
@45–47#. The absolute value of the complex mass poleumsu
can be considered as the inverse correlation length,
umsu;1/j.

The RG transformation dictates the flow of the dime
sionless bare couplings as function of the UV cutoffL. Typi-
cally the bare relevant and marginal couplings~e.g.,
m0 ,a0 ,g0! have to be fine-tuned sufficiently close to th
critical point in order for scaling behavior to set in, so th
the physics in the infrared can be related to experime
data. Scaling behavior is obtained when there is a large s
hierarchy between the infrared length scalej and the ultra-
violet length scalea51/L, i.e., j@a.

The fine-tuning depends on the eigenvalues of the
transformation of the couplings close to the critical point a
hence on the critical exponents. These critical exponents
be derived from theb functions for the coupling constant
m0 , a0 , andg0 ;

L
dm0

dL
5bm~m0 ,a0 ,g0!, L

da0

dL
5ba~m0 ,a0 ,g0!,

~11!

L
dg0

dL
5bg~m0 ,a0 ,g0!.

The crucial step is to determine the fixed points (m! ,a! ,g!)
of the RG equations~11!, i.e.,

bm~m! ,a! ,g!!50, ba~m! ,a! ,g!!50,

bg~m! ,a! ,g!!50, ~12!

since the nature of the fixed point determines whether a n
trivial continuum limit can be realized or not. For a no
trivial continuum limit (m! ,a! ,g!) should be a UV stable
fixed point.

The RG equations follow from the regularized SDE’s
the generating functional described by the Lagrangian~8!.4

The UV stable fixed point forbm is m!50, hence we can
write

L
dm0

dL
'2~11gm!m0 , ~13!

wheregm is the anomalous dimension of the mass opera
c̄c evaluated at the fixed point (m! ,a! ,g!). In the case of

4A derivation of the set of~full ! SDE’s for the two and three-poin
functions is given in Chap. 2 of@44#.
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the quenched GNJL models 1<gm<2. Thus the dimension-
less bare massm0 is a relevant coupling requiring fine tun
ing.

After settingm05m!50, the problem reduces to the de
termination of the UV stable fixed points in the couplin
constant plane (a0 ,g0): i.e.,

bg~a! ,g!!50, bg8~a! ,g!!5
]bg~a,g!

]g U
~a,g!5~a! ,g!!

,0,

~14!

ba~a! ,g!!50, ba8 ~a! ,g!!5
]ba~a,g!

]a U
~a,g!5~a! ,g!!

,0.

~15!

The quenched-ladder approximation simplifies the so
tions of Eqs.~14! and ~15! considerably since the quenche
hypothesis explicitly setsba50 for all a0 by omiting fer-
mion loops. It was shown in Ref.@48# that, in the symmetric
phase (g0<gc),

bg~a0 ,g0!522v
g0

gc
~g02gc!, ~16!

with v andgc given in Eq.~4!. In the next section, Eq.~16!
will be derived. Clearly, in this way, the UV stable fixe
point of bg is the critical line;

g!5gc~a0!, bg„a0 ,gc~a0!…50. ~17!

Now Eq. ~15! should be reconsidered. We will analyze E
~15! beyond the quenched approximation, and try to solv

ba„a0 ,gc~a0!…50. ~18!

In Sec. VI an explicit expression forba will be derived by
assuming thatg0 is at its critical valuegc and that it has an
UV stable fixed point so that in the neighborhood of th
point ba'0.

III. HYPERSCALING IN THE QUENCHED-LADDER
MEAN-FIELD APPROXIMATION

In analogy with statistical mechanics, the continuous c
ral phase transition can be classified in terms of critical
ponents which describe the scaling of various macrosco
quantities~e.g., the chiral condensate, correlation length,
fective potential, chiral susceptibility! close to or at the criti-
cal point. It is considered a strong indication of the existen
of a nontrivial continuum limit (L→`), if so-called hyper-
scaling relations between these various critical exponents
satisfied, see Refs.@19,22,49–51#.

Because thes boson propagatorDS is the connected cor
relation function of the fields describing correlations paral
lel to direction of symmetry breaking~i.e., parallel to the
direction of long-range ordering!, the absolute value of the
mass,ms , of the s boson, which is given byDS , is the
natural candidate for the inverse correlation length.

In the quenched-ladder approximation treating fo
1-4
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fermion interaction in a mean-field approximation, the cr
cal exponents are

d5
21v

22v
, b5

22v

2v
, n5

1

2v
, g51, ~19!

and satisfy the hyperscaling relations

g5b~d21!, 4n52b1g. ~20!

Other hyperscaling relations involving the critical expone
a describing the scaling of the effective potential are sa
fied too @19,22#. Furthermore, it was argued in@19# that the
validity of the quenched-ladder mean-field approximation
lies on the verification that the critical exponentg51. The
interpretation ofg51 is the factorizationh (c̄c)252h (c̄c) . A
renormalization of the chiral condensate simultaneou
renormalizes the propagatorsDS andDP . Indeed the lattice
computations of the critical exponentg reported in@19–21#
showed strong evidence forg51.

The anomalous dimensionh describes the scaling of th
connected two-point Green functionDS at the critical point.
In Ref. @47# the scalar propagatorDS ~see Fig. 2! and the
scalar Yukawa vertexGS ~see Fig. 3! have been computed i
the symmetric phase in the quenched-ladder approxima
by means of a so-called two-channel approximation.

In the symmetric phase the Yukawa vertex has the follo
ing form:

GS~p1q,p!51@F1~p1q,p!1~ q̂p̂2 p̂q̂!F2~p1q,p!#.
~21!

These vertex functionsF1 andF2 can be expanded in term
of Chebyshev polynomials of the second kind, e.g.,

F1~p1q,p!5 (
n50

`

f n~p2,q2!Un~cosa!, cosa5
p•q

pq
.

~22!

The two-channel approximation of Ref.@47# now holds in
that the Yukawa vertex is approximated by the angular
erage of the vertex functionF1 in the following way:

FIG. 2. SDE for the scalar propagator ors bosonDS(q).

FIG. 3. SDE for the scalar vertex or Yukawa verte
GS(p1q,p) in the quenched-ladder approximation.
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GS~p1p,q!'1E dVp

2p2 F1~p1q,p!51f 0~p2,q2!,

~23!

where

f 0~p2,q2![F IR~p2,q2!u~q22p2!1FUV~p2,q2!u~p22q2!.
~24!

The functionsF IR and FUV are, respectively, referred to a
the IR channel~infrared!, and the UV channel~ultraviolet!.
The specific choice of Chebyshev expansion and con
quently, the choice of zeroth-order coefficientf 0 , is conve-
nient, since the infrared limit (q2@p2), and ultraviolet limit
(q2!p2) of GS are both described byf 0 . The scaling form
for DS(q) is well described by these two functionsF IR and
FUV .

The zeroth-order Chebyshev expansion or two-chan
approximation gives second-order differential equations
the lowest order harmonic with appropriate IR and U
boundary conditions. These differential equations are exa
solvable and the solutions are expressed in terms of a Be
function of the first kind forF IR and in terms of modified
Bessel functions forFUV . The solutions are given in@47#.

With the ‘‘asymptotic solutions’’ forGS given in terms of
F IR andFUV , an analytic expression for thes boson can be
obtained from

PS~q2!5
L2

4p2

1

l0
@FUV~L2,q2!21#,

~25!

DS
21~q!52

1

G0
1PS~q2!,

which has been argued in@47# to be correct up to leading an
next-to-leading order inq2/L2 and is valid along the entire
critical curvegc .

Also one can derive that the solutions forDS are consis-
tent with hyperscaling for 0,a0,ac . This is intimately re-
lated to the fact that the renormalization of the auxilia
fields s and p, Eq. ~10!, simultaneously renormalizes th
Yukawa vertex and the scalar propagator.

Near g05gc ~with umsu2,q2!L2! the scalar propagato
DS has the scaling form@44,49–51# ~in Euclidean formula-
tion!:

DS~q!5
1

L2 S L2

q2 D 12h/2

FD~ umsu2/q2!,

~26!

FD~x!'2
4p2

B~v!

1

11xv ,

whereh is the anomalous dimension

h52~12v!, ~27!

and where

B~v![
16v

~12v2!2

g~2v!

g~v!

G~22v!

G~21v! S l0

2 D v

, ~28!
1-5



-
ul

ir
a-
ow-

ga-
ted

ue.
of

,
m-

wa
n
r

i-

e.

MANUEL REENDERS PHYSICAL REVIEW D 62 025001
g~v![A2l0@J1~A2l0!I v8 ~A2l0!1J18~A2l0!I v~A2l0!#.
~29!

With Eq. ~19!, the anomalous dimensionh, Eq.~27!, satisfies
the hyperscaling relation

g5n~22h!. ~30!

It has been shown in@45,47# that DS has a complex pole
on a second Riemann sheet in~Minkowsky! momentum
space. The massms is the complex pole ofDS and the ab-
solute valueumsu scales according toumsu;(Dg0)n. More
precisely, in@45,47# it is derived that

umsu}LF 2Dg0

gcg0B~v!G
1/2v

, Dg05g02gc . ~31!

The absolute value ofms is taken to be the physical, mac
roscopic or infrared mass scale, which by definition sho
be independent ofL. Using Eq.~31!, we can derive theb
function of g0 by assuming that

05L
dumsu
dL

⇒bg~a0 ,g0!522v
g0

gc
~g02gc!, ~32!

which is equivalent to theb function given in Ref.@48# and
Sec. II. Hence the critical curveg05gc is an UV stable fixed
point bg(a0 ,gc)50„bg8(a0 ,gc),0… of the RG flow.

In accordance with Ref.@47#, the scaling form for the
Yukawa vertex can be written as

GS~p1q,p!'1S L2

q2 D h/4

@FIR~p2/q2!u~q22p2!

1FUV~q2/p2!u~p22q2!#, ~33!

where, forp2,q2,!L2,

F IR~p2,q2!'S L2

q2 D h/4

FIR~p2/q2!,

~34!

FUV~p2,q2!'S L2

q2 D h/4

FUV~q2/p2!,

and

FIR~p2/q2!5
2 sinvp

p

2

g~v!

G~12v!

~11v!

3S l0

2 D v/2S q2

p2D 1/2

J1SA2g0p2

q2 D , ~35!

FUV~q2/p2!5
2

g~v!

G~12v!

~11v! S l0

2 D v/2S q2

p2D 1/2

3Fg~v!I 2vSA2l0q2

p2 D
2g~2v!I vSA2l0q2

p2 D G . ~36!
02500
d

From the above scaling form forDS and GS it is clear that
four-fermion scattering amplitudes such as

GS~p11q,p1!DS~q!GS~p2 ,p21q!}
1

q2 , p1
2,p2

2!q2!L2,

~37!

are independent ofL and express the long-range nature5 of
Yukawa forces. For dimensions 2,d,4, this was pointed
out in Ref. @46#. The long-range Yukawa forces and the
nontrivial contributions to scattering amplitudes in the infr
red are a direct consequence of hyperscaling and thus p
erlike renormalizability.

The consensus is that in four dimensions due to the lo
rithmic corrections, the hyperscaling relations are viola
for the pure NJL model andlf4 theory, and we have the
following inequalities:

4n.2b1g, g.b~d21!, ~38!

see Ref.@52# for an extensive discussion regarding this iss
This violation of hyperscaling is believed to be a sign
triviality meaning that the effective Yukawa coupling~which
couples Goldstone bosons to the fermions! vanishes in the
continuum limit. The continuum limit is noninteracting
hence trivial. This can be seen in the following way. Assu
ing that in the low-energy region the correlation lengthj is
the only relevant length scale, we define an effective Yuka
couplinggY by the zero-momentum limit of the four-fermio
scattering amplitude~two fermions exchanging a scala
bound state! in the DxSB phase

gY
2

ms
2 ;j2gY

2;GS~0,0!DS~0!GS~0,0!, ~39!

whereGS(0,0) andDS(0) are given by the chiral suscept
bility relations

DS~0!52G0

]^s&
]m0

, GS~p,p!5~1!
]S~p2!

]^s&
, ~40!

whereS05S(0) is the fermion mass in the broken phas
By making use of the scaling laws@19,22# and that j

;1/S0;1/ms ,^s&;^c̄c&, we can derive that

gY
2;j~2b1g24n!/n. ~41!

This expression is related to the definition ofgR;gY
2 given

in Ref. @52#, and it is clear that the scaling inequalities~38!
imply that gY

2→0 whenj→`. Thus, only if the hyperscal-
ing relations~20! are satisfied, a nonzerogY might be real-
ized in the continuum limit (j→`), thereby giving rise to a
nontrivial interacting theory.

5The correlation length is large, 1/umsu@1/L.
1-6
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IV. BEYOND THE QUENCHED-LADDER MEAN-FIELD
APPROXIMATION

The quenched approximation is analogous to the assu
tion that the full photon propagator

Dmn~q!5S 2gmn1
qmqn

q2 DD~q!2a
qmqn

q4 ,

~42!

D~q![
1

q2

1

11P~q2!

can be approximated by the bare or canonical propag
D(q)51/q2 ~for large momenta!,

Dmn~q!5S 2gmn1
qmqn

q2 D 1

q2 , ~43!

in the Landau gauge (a50). The quenched approximation
only consistent when the vacuum polarization is finite in
continuum limit, i.e., the logarithmic running of the couplin
is absent. This is the case at an UV stable fixed point of
b function, Eq. ~15!, of a0 . The assumption that such
critical fixed point exists, and that it lies somewhere on
critical curve ~4! is the starting point for many studies o
dynamical chiral symmetry breaking in context of the GN
model. In fact, the quenched hypothesis~43! is only consis-
tent when the bare gauge couplinga0 is near the fixed point
of the theory,ba'0. We discuss this issue in more detail
Sec. VI.

In many approximations of the GNJL model, the fou
fermion interactions are treated in a mean-field appro
known as the Hartree-Fock approximation. In mean-field
proximations the composite operators such asc̄c are re-
placed by their vacuum expectation values (c̄c→^c̄c&) and
fluctuations about that value are ignored. Thus quantum
rections corresponding to four-fermion interactions are
glected beyond tree level.

As long as four-fermion interactions are irrelevant t
mean-field approach for these operators is justified. Ho
ever, in Refs. @19,22# it is concluded that, within the
quenched-ladder mean-field approximation to the GN
model, the hyperscaling equations for the critical expone
are satisfied, implying that the four-fermion operators b
come relevant due to the appearance of large anomalou
mensions. In other words, the mean-field approach yie
non-mean-field exponents, thereby being inconsistent~e.g.,
see Refs.@21,50#!. As was discussed in Sec. III, the hype
scaling relations imply the existence of a nontrivial Yukaw
interaction describing the interaction between fermions
s and p composites in the GNJL model at both short a
long distances.

In order to go beyond the mean-field approach, we p
pose the following. First, we point out the usefulness of sk
eton expansions. Second, we make use of the specific
of the chiral symmetry and adopt the 1/N expansion~with N
the number of fermion flavors!.
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A. The skeleton expansion

The non-mean-field values of the critical exponents im
that one cannot neglect~as is done in mean-field approxima
tions! the full connected Green functions corresponding
the composites~or at least the leading or asymptotic parts
these functions! in the SDE’s.

On the level of the Bethe-Salpeter~BS! fermion-
antifermion scattering kernels thes andp composites can be
incorporated in a RG invariant manner by making use of
skeleton expansion, e.g., see Ref.@53#!. Analogous to QED
kernels we define the one-boson irreducible kernelK (1), and
the two-fermion one-boson irreducible BS kernelK (2),
where these kernels now also include thes andp compos-
ites. For both type of kernels a skeleton expansion exi
The integral equation betweenK (1) andK (2) is known as the
Bethe-Salpeter equation.

The skeleton expansion is a series in topologically disti
Feynman diagrams with all vertices and propagators fu
dressed. The skeleton expansion is a special way of res
ming the entire set of Feynman diagrams in a consis
manner, i.e., without double counting. The lowest ord
terms~‘‘lowest’’ in terms of loops! of the skeleton expansion
for K (2) is illustrated in Fig. 4. The blobs with the letter ‘‘B’’
in the full vertices and propagators represent photons,
composites andp exchanges.

Each term in the skeleton expansion of the BS kernelK (2)

is RG invariant, up to fermion wave function factors, i.e., t
expansion is independent of the renormalization factorsZ3
andZ5Zs5Zp @see Eqs.~9! and ~10!# of, respectively, the
gauge field and the composite fieldss andp. The twoZ21

factors with anomalous dimensions of each Yukawa ver
cancel with theZ2 factors of thes andp propagators, lead-
ing to cutoff independent fermion-antifermion scattering a
plitudes, e.g., see Eq.~37!.

B. The UL„N…ÃUR„N… chiral symmetry
and the 1ÕN expansion

As was mentioned in Sec. II, the Abelian GNJL mod
with N number of fermion flavors, is taken to be invaria
under global UL(N)3UR(N) chiral transformations, so tha
both the scalar and pseudoscalar four-fermion interacti
are in the adjoint representation, and, consequently, the n
ber of scalar composites (N2) equals the number of pseudo
scalar composites (N2). In this way, whenN is large we can
use the 1/N expansion introduced by ’t Hooft@54#. This pro-

FIG. 4. Skeleton expansion for the BS kernelK (2).
1-7
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vides us with a scheme to incorporate four-fermion inter
tions beyond the mean-field approach. The 1/N expansion
states that the planar~i.e., ladder! diagrams, with fermions a
the edges, describe the leading or dominant contribution
Green functions.

The interesting feature of such a 1/N expansion is that
Feynman diagrams can be classified in terms of tw
dimensional surfaces with specific topology. Diagrams w
other ~than planar! topological structures are suppressed
at least factors of 1/N, and in the limit of largeN, their
contribution can be neglected with respect to planar grap
One important rule is to draw Feynman graphs with ferm
loops forming the boundary of the graph~if possible!. In this
way, vertex corrections are not necessarily classified as b
planar.

In the context of the ’t Hooft’s 1/N expansion, we should
consider internal or virtuals andp exchanges analogous t
the gluon exchanges with the important difference that du
the chiral symmetry we have two types of particles bo
being in the adjoint representation~N2 scalars andN2 pseu-
doscalars!. Then, by keeping track of the flavor indice
within a particular Feynman diagram, we can count fact
of 1/N. Each fermion carries a flavor index~i!, which runs
from 1 to N. A virtual s, p exchange, being associated wi
two Yukawa vertices, carries two flavor indices. Therefo
as a result of the Fierz identity~7!, each virtuals, p ex-
change gives rise to a pair of Kroneckerd functions connect-
ing the flavor indices of the scattered fermions. In the cont
of flavor indices, either as or p boson can be considered a
a propagating fermion-antifermion pair carrying double fl
vor indices.

Whenever a trace over a flavor Kroneckerd function en-
ters into the expression for a particular Feynman diagr
we speak of an index loop. An index loop is easily identifi
by using the double-line representation of ’t Hooft. A fe
mion propagator is represented by a single index line~i.e.,
fermion line!, whereas each internal scalar, respective
pseudoscalar propagator is represented by a double i
of

o
tie

n-

o
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line. Consequently, whenever, after drawing a particu
Feynman diagram, an index line closes, it forms an ind
loop giving rise to a factorN5Tr d.

The topology of the Feynman diagram determines the f
tors of N. The vacuum polarization has the topology of
sphere with a single hole~i.e., a disk!, where the fermion-
loop forms the boundary~i.e., hole! of the graph. It can be
shown straightforwardly, that planar diagrams in the vacu
polarization withn exchanges ofs’s andp’s are associated
with a factorNn11gY

2n , wheregY is an ‘‘effective’’ Yukawa
coupling describing the interaction of scalars and pseu
scalar with fermions. For the time being we leave unspe
fied such a coupling.

In absence of bare mass, the UL(N)3UR(N) symmetry
allows us to write each full Yukawa vertex, photon-fermio
vertex, fermion propagator, ands, p boson propagator as

GS
i j
ab

a
~k,p!5t i j

a GSab~k,p!, DS
~a!~q!5DS~q!, ~44!

GP
i j
ab

a
~k,p!5t i j

a GPab~k,p!, DP
~a!~q!5DP~q!, ~45!

Gab
i j

m
~k,p!5d i j Gab

m ~k,p!, S~ i !~p!5S~p!, ~46!

with a,b spinor indices, i,j flavor indices, anda the
U(N)-generator index~see Refs.@44,47# for the definitions
of the proper vertices and connected two-point Green fu
tions!. So that

(
a50

N221

GS
i j
ab

a
~k1q,k!DS

~a!~q!GS
kl
cd

a
~p,p1q!

5d i l dk jGSab~k1q,k!DS~q!GScd~p,p1q!,

~47!

because of the Fierz identity~7!. Then the first term of the
skeleton expansion forK (2) is the following single boson
exchange term:
~2 ie0
2!K ab,cd

i 1 j 1 ,i 2 j 2

~2!
~k,p,p1q!5d i 1 j 1

d i 2 j 2
~2 i !GScb~p1q,p!iDS~q!~2 i !GSad~k,k1q!1d i 1 j 1

d i 2 j 2
~2 i !GPcb~p1q,p!iDP~q!

3~2 i !GPad~k,k1q!1d i 2 j 1
d i 1 j 2

~2 ie0!Gcb
l ~p1q,p!iD ls~q!~2 ie0!Gad

s ~k,k1q!. ~48!
r-

ia-

-
n-
As a result of the chiral symmetry the contributions
four-fermion interactions, which are represented bys andp
exchanges, exhibit two distinct features depending
whether they are incorporated in SDE’s describing quanti
connected with so-called zero-spin structures6 ~e.g., the dy-
namical massS, the Yukawa verticesGS ,GP , and thes and
p propagatorsDS ,DP!, or whether the exchanges are i

6Such structures are characterized by spinor matrices which c
mute with theg5 matrix.
n
s

cluded in SDE’s describing nonzero-spin structures~anti-
commuting withg5! ~e.g., the vacuum polarizationP, the
photon-fermion vertexGm, and the fermion wave function
Z5Z2!. Henceforth, we refer to~non!zero-spin functions,
and their equations as~non!zero-spin channels.

The chiral symmetry gives rise to the following prope
ties.

~1! In spin-zero channels, the contribution of planar d
grams~i.e., planar ins andp exchanges! vanishes due to the
fact that the exchange of as has an opposite sign with re
spect to ap exchange. Why? Let us consider a planar co

m-
1-8
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tribution to the scalar vacuum polarization which conta
~amongst others! a p exchange. Bothg5 matrices corre-
sponding to this particular planarp exchange can be elimi
nated from the fermion trace of the scalar vacuum polar
tion by moving them to the right-hand side of the trace. F
planar diagrams such a process involves the interchang
the g5 matrix with an even number of fermion propagato
and an arbitrary number of Yukawa vertices. Since
Yukawa vertices commute with theg5 matrix, andg5 anti-
commutes with the fermion propagator7 S, the process of
moving the g5 to the right does not introduce an overa
minus sign. Now using that (ig5)( ig5)52(1)(1), we see
that the diagram containing a specific planarp exchange is
identical to minus the same diagram with thep exchange
replaced by as exchange. Since each diagram containin
p exchange has a scalar counter part~i.e., an analogous dia
gram with as instead of ap exchange!, the sum of all planar
diagrams, with a particular number of exchanges, vanish

~2! In nonzero-spin channels~think of P,Gm, etc.! con-
taining vertices which anticommute with theg5 matrix, the
situation is different: planars and p exchanges contribute
with identical sign. Let us now consider a planar contributi
to the ~photon! vacuum polarization containing ap ex-
change. If we again move theg5 matrices to the right-hand
side of the trace, we get an overall minus sign due to
anticommutation ofg5 with gm. This means that any plana
diagram in the vacuum polarization containing ap exchange
is identical to the same diagram with thep exchange re-
placed by as exchange.

The properties described above are, strictly speaking, o
valid in the symmetric~massless! phase, where the (2N2) s
andp bosons are degenerate. However, in the broken ph
the properties are valid whenever momenta larger than
dynamical massS or ms are considered, because then t
degeneracy emerges too.

These properties also provide us with a general argum
why the mean-field approach for four-fermion operators
Green functions corresponding to spin-zero channels~e.g.,
GS and DS! is reliable. For such channels planar contrib
tions vanish and the next nonvanishing contributions~such
as contributions containing crosseds andp exchanges! are
proportional to 1/N, thus small for largeN. This implies that
quantities such as the critical curve, dynamical mass, ano
lous dimensions, etc., are nearly independent ofN, and are
described rather well by the mean-field approach. To
contrary, the cancellation of scalars against pseudoscalar
grees of freedom does not occur in the vacuum polariza
P which is a nonzero-spin channel.

C. The fermion wave function

The inclusion of relevant four-fermion interactions b
yond the mean-field approach requires a reinvestigation
the SDE for the fermion wave functionZ5Z2 @Eq. ~9!#,

7In the symmetric phaseg5S52Sg5 .
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S~p!5
Z~p2!

p̂2S~p2!
, ~49!

with S the fermion propagator andS the dynamical mass. In
QED in the quenched-ladder approximation, the ferm
wave function has a gauge dependent anomalous dimen
In the Landau gauge, this anomalous dimension vanishes
Z51.

We conjecture that the inclusion of relevant four-fermi
interactions does not introduce an anomalous dimension
the fermion wave function other than already introduced
the gauge interactions. Thus, in the Landau gauge, the w
function Z is finite though it might deviate from unity. The
main argument in support of the conjecture stated abov
that only one full Yukawa vertex appears in the self-ene
part, which means that anomalous dimensions of fo
fermion interactions are not canceled. Only two fully dress
Yukawa vertices and a fully dressed scalar composite are
invariant ~anomalous dimensions cancel!. Consequently a
remnant power of the cutoff~related to anomalous dimensio
of a Yukawa vertex! lowers the degree of divergence of th
self-energy part from a logarithmic divergence to a fin
integral. Therefore, throughout this paper we assumeZ51.

A nice feature of the assumption thatZ51 is that with
the gauge interaction treated in the quenched-ladder
proach the chiral and vector Ward-Takahashi identit
~WTI’s! are preserved, since in channels with spin-zero
planars andp exchanges cancel each other.

V. SCALARS, PSEUDOSCALARS, AND CHARGE
SCREENING

Since, in the GNJL model, the scalars and pseudosca
are neutral states which therefore do not couple to the pho
field, their contribution to the vacuum polarization is d
scribed indirectly in terms of photon-fermion vertex corre
tions, and fermion self-energy corrections. Hence, in orde
gain some intuition for the role of scalar degrees of freed
on the mechanism of charge screening, we analyze the
loop contribution arising froms and p exchanges to the
vacuum polarization.

Let us consider an Abelian gauge-Higgs-Yukawa-type
teraction described by the Lagrangian8

LGHY52
1

4
FmnFmn1c̄ igm]mc1

1

2
~]ms!21

1

2
~]mp!2

2e0c̄gmAmc2gYc̄~s1 ig5p!c2V~s,p!, ~50!

where the potentialV contains, e.g., mass terms, and as4

type of interaction~i.e., a quartic scalar interaction!. For sim-
plicity, we ignore the effect of the potentialV. In Appendix
A, the two-loop contribution toP has been computed for th
special case ofN51, see also Fig. 5. If the scalar and pse

8For a discussion of the renormalizability of non-Abelian gaug
Higgs-Yukawa models and non-Abelian GNJL models we refer
Refs.@55#, and references therein.
1-9
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doscalar fields in Eq.~50! are both in the adjoint represent
tion of U(N), the result, for arbitraryN, reads

P@q/L,a0 ,lY#'
Na0

p S 2

3
1

a0

2p
2

NlY

2p D ln
L

q

1~a0 /p!O~1!, ~51!

with lY5gY
2/4p. The b function corresponding to such

vacuum polarization~Fig. 5! is

ba~a0 ,lY!5
Na0

2

p S 2

3
1

a0

2p
2

NlY

2p D . ~52!

The interesting result of this computation is difference
sign between terms corresponding to photon exchanges
terms corresponding to~pseudo!scalar exchanges. From th
point of view, the fundamental scalars and pseudoscalars
gauge-Higgs-Yukawa system tend to decrease charge sc
ing. Furthermore, we might be tempted to conclude tha
nontrivial root of Eq. ~52! could be realized wheneve
NlY/2p;2/3. However, the complete situation is more i
volved. The RG equation for, e.g.,lY should be considered
too, i.e., we should compute theb functions oflY , and of
any quartic scalar coupling. If and only if a nontrivial~non-
zero! UV stable fixed point forlY exists, the realization of a
zero of Eq.~52! becomes a realistic option. In other word
such a scenario is only possible if the Yukawa interactionlY
is nontrivial. The discussion in Sec. III implies that in ord
to obtain a nontrivial Yukawa coupling, the hyperscali
laws should be obeyed. The idea is that, nonperturbativ
close to the critical curve in the GNJL model, the scalar a
pseudoscalar Yukawa interactions are nontrivial, and kin
terms for the scalar and pseudoscalar composites are e
tively induced via the appearance of a large anomalous
mension.

VI. THE VACUUM POLARIZATION
IN THE 1 ÕN EXPANSION

The purpose of the present paper is to investigate the
istence of an UV stable fixed point (a! ,g!) of the gauge
coupling, so that

ba~a! ,g!!50, ha[2ba8 ~a! ,g!!.0, ~53!

FIG. 5. One and two-loop vacuum polarization corrections c
taining both an internal photon~wavy! and as and p exchange
~dashed!. The contribution ofp equals the contribution ofs.
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with ha a critical index characterizing the RG flow in th
neighborhood of (a! ,g!). With a close toa! theb function
linearizes as

ba~a,g!!'ha~a!2a!. ~54!

The b function for the gauge coupling follows from the R
transformation relating the chargeax at scalex to the charge
ay at scaley via

ax5Ra@x/y,ay ,gy#5
ay

11P@x/y,ay ,gy#
,

~55!
P@1,ax ,gx#50,

whereP(x2)5P@x/y,ay ,gy# is the~Euclidean! vacuum po-
larization. The RG transformation should satisfy the R
semigroup property~with x,y,z!

Ra@x/y,ay ,gy#5Ra@x/z,az ,gz#

5Ra†x/y,Ra@y/z,az ,gz#,Rg@y/z,az ,gz#‡,

~56!

Ra@x/y,a! ,g!#5Ra@x/z,a! ,g!#, ~57!

whereRg is the RG transformation forg, satisfying analo-
gous equations. Then theb function for a is defined as

ba~ax ,gx![
]Ra@w,ax ,gx#

] ln w U
w51

. ~58!

The RG semigroup property~56! gives rise to the well-
known differential RG equation

ba~ay ,gy!5y
day

dy
, ~59!

whose solution is

ax5 (
n50

`
1

n! S ln
x

yD nFba~ay ,gy!
]

]ay
Gn

ay . ~60!

To obtain a nontrivial theory in the IR the existence of
UV stable fixed point is required. Close to the UV stab
fixed point (ba5bg50), with gy5g! , we have that

Fba~ay ,g!!
]

]ay
Gn

ay'ba~ay ,g!!@ba8 ~a! ,g!!#n21

1O~b2!, ~61!

thus

-

FIG. 6. SDE for the full photon-fermion vertexGm(k,p).
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ax'a!1~ay2a!!S y

xD ha

, ~62!

which is the solution of Eq.~59! using Eq.~54!. The above
expressions are only valid if bothax anday are in the neigh-
borhood of the UV stable fixed pointa! , therefore, we have
the fine-tuning condition:

U~ay2a!!

a!
S y

xD haU!1, ~63!

which in case ofy@x implies thatay is tuned sufficiently
close toa! .

In case of the Abelian GNJL model the gauge coupl
aq in the infrared~IR! region is related to the bare gaug
coupling a0 via the RG transformationaq5Ra@q/L,
a0 ,g0#, where the four-fermion interactions contribute to t
vacuum polarizationP ~Fig. 1! through the full photon fer-
mion vertex, see Fig. 6. Assuming that the hyperscaling la
are satisfied, we can write the vacuum polarization forL
@q>umsu @i.e. neargc(a0)# as

P@q/L,a0 ,g0#5 f ~1!~a0 ,g0!ln
L

q
1 f ~2!~a0 ,g0!S ln

L

q D 2

1 f ~3!~a0 ,g0!S ln
L

q D 3

1¯ , ~64!

where each factor of lnL/q corresponds to a single fermio
loop with two outgoing photon lines. Thus the functionf (1)
represents the contribution of all diagrams toP in which the
internal photon propagators are replaced by the bare or
nonical form.

In order forP to give rise to a RG transformation sati
fying Eqs.~55! and~56!, it can be derived from Eq.~60! that
the functionsf (1) , f (2) , and f (3) should be related toba in
the following way:

a f ~1!~a,g!5ba~a,g!, ~65!

f ~1!
2 2 f ~2!5

1

2a
baba8 , ~66!

f ~1!
3 22 f ~1! f ~2!1 f ~3!5

1

6a Fba

]

]aG2

ba , . . . .

~67!

These identities are nontrivial and require a high degree
self-consistency of the theory in the form of Ward identitie9

Since, within our approximation scheme, the Ward identit
are respected, we assume that Eqs.~65!–~67! are satisfied.
Equation~65! now relates theb function to the functionf (1) .
Clearly theb function has a Gaussian or trivial fixed point
a050.

9The proof of Eqs.~65!–~67! can be performed order by orde
within perturbation theory.
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From this we also have that witha0→a! at g05g! @see
Eqs.~54!, ~62!, and~63!#:

P@q/L,a0 ,g!#'
ba~a0 ,g!!

a!ha
F211S L

q D haG ,
~68!

ba~a0 ,g!!

a!ha
F211S L

q D haG!1.

Hence,D(q) of Eq. ~42! is

D~q!'
1

q2 H 12
ba~a0 ,g!!

a!ha
F211S L

q D haG J . ~69!

The second term on the right-hand side of Eq.~69! will only
contribute via internal photon propagators to the functio
f (2) , f (3) , etc. and not to the functionf (1) . In order to find
an UV stable fixed point ofba , we only have to compute
f (1) and, therefore, we neglect all corrections toD(q) other
than canonical in internal photon propagators. Because
contribution ofP is neglected, this procedure is identical
quenching the internal photon propagators, although it is
quenched in the sense of takingN→0!

Now in correspondence with Eq.~18! we search for UV
stable roots of Eq.~65!, i.e., f (1)„a0 ,gc(a0)…50. In case of
pure QED~without four-fermion coupling! the functionf (1)
has been studied thoroughly by Johnsonet al. in Refs.@56–
58# and by Adler@59# in the context of massless QED. I
Ref. @56#, an expression forf (1) is obtained in term of the BS
kernelK (2) ~Sec. IV! as the single unknown Green functio

We mention that, although the strong belief of Johns
et al. in the possible existence of finite QED seems poo
motivated from the point of view of Wilson’s RG method
@5#,10 their methods and techniques are sound and dire
applicable to the GNJL model.

In Appendix B, we expose a brief derivation of the res
of Ref. @56# and point out the applicability to the Abelia
GNJL model. Then, by taking into account also releva
four-fermion interactions atg05gc(a0) via the BS kernel,
we can derive from Eqs.~B1! and ~65! that

ba~a0 ,gc!5
Na0

2

p F2

3
1

f11f2~21f2!

12f1
1f3G , ~70!

where the functionsf1 , f2 , andf3 are defined as follows

f1[2 lim
L→`

ie0
2

48N E
L

d4p

~2p!4 T̃rF ~gmp̂ga2gap̂gm!

2p4

3K ~2!~p,k!~gmk̂ga2gak̂gm!G , ~71!

10The authors of@56# do not address the dynamical origin of th
singular critical behavior~e.g., DxSB!, which would be required for
the realization of an UV stable fixed point in QED.
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f2[2 lim
L→`

ie0
2

48N E
L

d4p

~2p!4 T̃rF p̂gmp̂

p4 K ~2!a~p,k!

3~gmk̂ga2gak̂gm!G , ~72!

f3[ lim
L→`

ie0
2

48N E
L

d4p

~2p!4 T̃rF p̂gmp̂

p4 Ka
~2!a~p,k!k̂gmk̂G ,

~73!

with

K ~2!~p,k![K ~2!~p,p1q,k1q!uq50 , ~74!

K ~2!a~p,k![
]

]qa
K ~2!~p,p1q,k1q!U

q50

, ~75!

Ka
~2!a~p,k![

]2

]qa]qa
K ~2!~p,p1q,k1q!U

q50

. ~76!

The trace over spinor and flavor indices is defined as

T̃r@L~p!K~p,k!R~k!#[Ldc~p!Kcd,ab
ii , j j

~p,k!Rba~k!,

~77!

with L andR some projectors and with appropriate summ
tion over double spinor~4! and flavor indices~N!.

The BS kernels in Eqs.~71!–~73! contain, in principle, all
diagrams except those corresponding to vacuum polariza
corrections, since all internal photon propagators are can
cal or ‘‘quenched.’’ As was pointed out in Sec. IV, the 1/N
expansion states that the planar diagrams for thes and p
exchanges are dominant. The approximation for the BS
nel K (2), which generates the entire set of planar scalar
pseudoscalar skeleton diagrams including ladder photon
changes for the vacuum polarization is the following: the
kernelK (2) is approximated by its ‘‘lowest’’ order skeleto
graph, i.e.,

Kcd,ab
kl,i j

~2!
~p,p1q,k1q!5

d i j dkl

e0
2 @GScb~k1q,p1q!DS~k2p!

3GSad~p,k!1GPcb~k1q,p1q!

3DP~k2p!GPad~p,k!#

1d i l dk jgad
m gcb

n Dmn~k2p!. ~78!
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In the symmetric phase, the decomposition of the scal
Yukawa vertexGS is given by Eq.~21!. Furthermore, due to
chiral symmetry, we have the identities

~ ig5!GS~k,p!5GP~k,p!, DS~q!5DP~q!, ~79!

the s and p propagators are degenerate. Second, it w
shown in Ref.@47# that the structure functionF2 is rather
small compared to the leading structure functionF1 ~it is
assumed thatF1 describes the leading asymptotic behavio
of the Yukawa vertices!. Therefore, we neglect contributions
related to the scalar structure functionF2 . Although it might
be possible that the contribution coming from gauge intera
tions is smaller than corrections resulting from this structur
functionF2 , we keep the gauge interaction in order to com
pare with results mentioned in the literature. Thus, we tak
for K (2)

Kcd,ab
kl,i j

~2!
~p,p1q,k1q!'

d i j dkl

e0
2 F1~k1q,p1q!F1~p,k!

3DS~k2p!@1ad1cb1 ig5ad
ig5cb

#

1d i l dk jDmn~k2p!gad
m gcb

n . ~80!

With this truncation for the BS kernelK (2), we can actu-
ally compute thef j functions ~71!–~73!, and subsequently
analyze theb function ~70!. The truncation~80! generates an
infinite series of planar contributions to the vacuum polariza
tion as the leading order in 1/N, see Fig. 7. As was discussed
in Sec. IV B and shown in Appendix A up to two loops, the
scalars and pseudoscalars give the same contribution in
functionsf j . The trace over flavor indices yields an overal
factor ofN in the expressions forf j for contributions corre-
sponding tos andp exchanges.

VII. COMPUTATION OF THE b FUNCTION

In computing the functionsf1 , f2 , andf3 , we initially
neglect the ladder photon exchange given in Eq.~80!. Since
such contributions were already computed in Ref.@56#, it
will be rather easy to include them later in the analysis.

It is straightforward to show thatf2 vanishes, within the
proposed approximations. Using Eq.~80!, we obtain from
Eqs.~72! and ~75! that

Tr@ p̂gmp̂K ~2!a~p,k!~gmk̂ga2gak̂gm!#

}Tr@ p̂gmp̂~gmk̂ga2gak̂gm!#50. ~81!

Thusf2(a0 ,gc)50.
FIG. 7. Planar skeleton contributions to the
vacuum polarization; the blobs represent both
photon ands andp exchanges.
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With Eq. ~80!, Eq. ~71! for f1 reads

f1~a0 ,gc!52 lim
L→`

i

48N E
L

d4p

~2p!4

1

2p4 (
i 51

N

(
j 51

N

d i i d j j F1~k,p!F1~p,k!DS~k2p!

3$Tr@~gmp̂ga2gap̂gm!~gmk̂ga2gak̂gm!#1Tr@~gmp̂ga2gap̂gm!ig5~gmk̂ga2gak̂gm!ig5#%

5 lim
L→`

2NiE
L

d4p

~2p!4

~p1k!•k

~p1k!4 @F1~k1p,k!#2DS~p!, ~82!
-
x

a
h
th

r

-
l

ar-
f

where we have performed a ‘‘harmless’’11 shift of integra-
tion, and used the fact thatF1 is symmetric in the fermion
momenta,F1(p,k)5F1(k,p), because ofC-PT invariance.
The overall factorN results from tracing the flavor Kro
necker d functions, which is equivalent to closing inde
lines, see Sec. IV B. After a Wick rotation

f1~a0 ,gc!5 lim
L→`

N

8p2 E
0

L2

dp2E dVp

2p2

p2~p•k1k2!

~p1k!4

3@F1~k1p,k!#2DS~p!. ~83!

Since the integrals for the functionsf j are finite, we can
write

f1~a0 ,gc!52NE
0

`

du G1~u!, ~84!

whereu5p2/k2, and

G1~p2/k2![2 lim
L→`

1

8p2 E dVp

2p2

k2p2~k•p1k2!

~k1p!4

3@F1~k1p,k!#2DS~p!. ~85!

The functionG1 is defined with a minus sign to make it
positive function, as will be shown to be the case later. T
angular integral can be performed if we make use of
following Chebyshev expansion:

k2~k•p1k2!

~k1p!4 5 (
n50

`

cn~k2,p2!Un~cosa!, cosa5
k•p

kp
,

~86!

where

cn~k2,p2!5
2

p E
0

p

da sin2 aUn~cosa!
k2~k•p1k2!

~k1p!4 ,

~87!

11The integral is finite, therefore translationally invariant.
02500
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cn~k2,p2!5
~21!n

2 F ~21n!u~k22p2!S p

k D n

2nu~p22k2!S k

pD n12G . ~88!

The Chebyshev expansion for the functionF1 was already
introduced in Eq.~22! ~and@47#!. Thus, following analogous
derivations in the Appendix of Ref.@47#, the functionG1 can
be expressed as

G1~p2/k2!52 lim
L→`

p2DS~p!

8p2 (
l ,m,n50

`

Clmncl~k2,p2!

3 f m~k2,p2! f n~k2,p2!, ~89!

where the fully symmetric indexClmn51, if l 1m1n
5even and a triangle with sidesl, m, n exists, i.e.,u l 2mu
<n< l 1m. OtherwiseClmn50.

We approximateG1 by keeping only the lowest orde
term in the Chebyshev expansion,

G1~p2/k2!'2 lim
L→`

p2DS~p!

8p2 c0~k2,p2!@ f 0~k2,p2!#2,

~90!

where f 0 is decomposed into the two channel functionsFUV
and F IR , see Eq.~24!. Then, the asymptotics,k2@p2, re-
spectively,p2@k2, of G1 are well approximated by the low
est order Chebyshev term~90!. Again, this is the two channe
approximation for the Yukawa vertices@47#. However, for
momentak2;p2 the channel approximation is not necess
ily valid. So, how aboutG1(1)? Since, from the appendix o
Refs.@47#, it follows that the Chebyshev coefficients

f 2n~k2,p2!>0, f 2n11~k2,p2!<0, ~91!

and from Eq.~88! that

cn~k2,k2!5
~21!n

2
→c2n~k2,k2!>0, c2n11~k2,k2!<0.

~92!

Hence, by taking into account the properties ofClmn , we
conclude that all terms of the series
1-13
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(
l ,m,n50

`

Clmmcl~k2,k2! f m~k2,k2! f n~k2,k2! ~93!

of G1 are positive, and the lowest order term gives a low
bound on the series,

c0~k2,k2!@ f 0~k2,k2!#2< (
l ,m,n50

`

Clmncl~k2,k2!

3 f m~k2,k2! f n~k2,k2!. ~94!

Therefore, the approximation Eq.~90! is reliable for the as-
ymptotics k2@p2, and p2@k2. Moreover, Eq.~90! is a
lower bound on Eq.~89! at k25p2, so that at least we will
not overestimate the contribution of scalar and pseudosc
composites to the vacuum polarization.

The functionG1 can now be computed, sincef 0 is ex-
pressed in terms of the channel functionsFUV andF IR of Eq.
~24!. Furthermore, from Eq.~88! we see that

c0~k2,p2!5u~k22p2!, ~95!

and the only nonzero contribution toG1 of Eq. ~90! comes
from the momentak2>p2. Thus, using Eqs.~90!, ~24!, and
~95!, we find

G1~p2/k2!'2 lim
L→`

p2DS~p!

8p2 @FUV~k2,p2!#2u~k22p2!.

~96!
ig
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As was discussed in Sec. III, the ultraviolet channel funct
FUV(k2,p2) is proportional to (L/p)h/2 andp2DS(p) is pro-
portional to (L/p)2h. Therefore, the cutoff dependence ca
cels in Eq.~96! as was expected and the angular integral E
~85! can indeed be written in terms of a function which d
pends only on the ratio ofp2/k2.

The scaling form (p2!L2) for the scalar propagato
DS(p) at g05gc (ms50) is given by Eq.~26! and Eq.~28!.
The scaling form for the channel functionFUV(k2,p2) is
given by Eqs.~34! and ~36!, with p2<k2!L2. Inserting
Eqs.~26! ~with ms50!, ~34!, and~36! in Eq. ~96!, we obtain
for G1

G1~u!5
G~22v!G~21v!

8vg~v!g~2v!
u@g~v!I 2v~A2l0u!

2g~2v!I v~A2l0u!#2u~12u!, ~97!

whereu5p2/k2. Thus Eq.~84! is

f1~a0 ,gc!'2Nz1~a0!, ~98!

z1~a0!5E
0

1

du G1~u!>0. ~99!

The functionG1 is positive, hencef1 is negative. The inte-
gral over the functionG1 can be done explicitly by making
use of the integral identity 2.15.19.1 in Volume 2 of Prudn
kov et al. @60#. The result is
z1~a0!5
1

v

l0

2 H 1

~21v!

G~12v!g~2v!

G~11v!g~v! S l0

2 D v

2F3~21v,1/21v;31v,112v,11v;2l0!

22F3~2,1/2;3,11v,12v;2l0!1
1

~22v!

G~11v!g~v!

G~12v!g~2v! S l0

2 D 2v

32F3~22v,1/22v;32v,122v,12v;2l0!J . ~100!
The above analysis of the functionf1 is repeated for the
function f3 . The second derivative,Ka

(2)a(p,k) @see Eq.
~76!#, of the BS kernel given by Eq.~80! is

Ka
~2!a~p,k!} lim

q→0

]2

]qa]qa
F1~k1q,p1q!. ~101!

The SDE forF1 ~in quenched-ladder approximation, see F
3! is given by

F1~k1q,p1q!512 il0E
L

d4r

p2

@r 21~k2p!•r #

r 2~r 1k2p!2~r 2p2q!2

3F1~r 1k2p,r !, ~102!

where we recall that we neglect the vertex functionF2 . Thus
.

lim
q→0

]2

]qa]qa
F1~k1q,p1q!

52 il0E
L

d4r

p2

@r 21~k2p!•r #

r 2~r 1k2p!2 F1~r 1k2p,r !

3 lim
q→0

]2

]qa]qa

1

~r 2p2q!2 . ~103!

By making use of the identity

]

]qa

]

]qa

1

q2 524p2id4~q!, ~104!

we obtain
1-14
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Ka
~2!a

cd,ab
kl,i j

~p,k!5
d i j dkl

e0
2 S 24l0

p•k

p2k2D @F1~p,k!#2DS~p2k!

3@1ad1cb1 ig5ad
ig5cb

#, ~105!

in Minkowsky formulation. Inserting the above expression
Eq. ~73! the equation forf3 takes the form~in Euclidean
formulation!

f3~a0 ,gc!52 lim
L→`

a0

p

N

8p2 E
0

L2

dp2E dVp

2p2

p2

k2

3
~p•k1k2!3

~p1k!6 @F1~k1p,k!#2DS~p!.

~106!

Then

f3~a0 ,gc!5NE
0

`

du G3~u!, ~107!

G3~p2/k2![ lim
L→`

2
a0

p

1

8p2 E dVp

2p2

p2~k•p1k2!3

~k1p!6

3@F1~k1p,k!#2DS~p!. ~108!

We use the following Chebyshev expansion:

~k•p1k2!3

~k1p!6 5 (
n50

`

dn~k2,p2!Un~cosa!, cosa5
k•p

kp
,

~109!

where

dn~k2,p2!5
2

p E
0

p

da sin2 aUn~cosa!
~p•k1k2!3

~p1k!6 ,

~110!

d0~k2,p2!5S 12
3p2

4k2D u~k22p2!, ~111!

dn~k2,p2!5
~21!n

8 H n111F61 (
l 50

n21

~41 l !G S 12
p2

k2D J
3u~k22p2!S p

k D n

2
~21!n

8

3H n112F (
l 50

n21

~22 l !G S 12
k2

p2D J
3u~p22k2!S k

pD n

, n>1. ~112!

The functionG3 can be expressed as
02500
G3~p2/k2!5 lim
L→`

2
a0

p

p2DS~p!

8p2 (
l ,m,n50

`

Clmndl~k2,p2!

3 f m~k2,p2! f n~k2,p2!. ~113!

We also approximateG3 by keeping only the lowest orde
term in the Chebyshev expansion,

G3~p2/k2!' lim
L→`

2
a0

p

p2DS~p!

8p2 d0~k2,p2!@ f 0~k2,p2!#2.

~114!

Then, again the asymptotics,k2@p2, respectively,p2@k2,
of G3 are well approximated by the lowest order Chebysh
term. Moreover, for momentak25p2 the approximation Eq.
~114! is exact, sincedn(k2,k2)50 for all n>1. Therefore,
the approximation Eq.~114! is even better than the analo
gous approximation, Eq.~90!, to G1 . Furthermore, from Eq.
~111! we see that the only nonzero contributions toG3 of Eq.
~114! are given by momentak2>p2. Thus, using Eqs.~114!,
~24!, and~111!, we find

G3~p2/k2!' lim
L→`

2
a0

p S 12
3p2

4k2D p2DS~p!

8p2

3@FUV~k2,p2!#2u~k22p2!. ~115!

Substituting Eqs.~26!, ~34!, and~36! in Eq. ~115!, we obtain
for G3

G3~u!5
a0

p S 12
3u

4 D G~22v!G~21v!

8vg~v!g~2v!

3u@g~v!I 2v~A2l0u!2g~2v!I v~A2l0u!#2

3u~12u!, ~116!

whereu5p2/k2. Thus Eq.~107! is

f3~a0 ,gc!'Nz3~a0!, ~117!

z3~a0!5E
0

1

du G3~u!>0. ~118!

FIG. 8. The functionsz1 andz3 plotted versusa0 /ac .
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The functionf3 is positive, and can be computed in the same way asf1 . The result is

z3~a0!5
a0

p
@z1~a0!2t~a0!#, ~119!

where

t~a0!5
3

4v

l0

2 H 1

~31v!

G~12v!g~2v!

G~11v!g~v! S l0

2 D v

2F3~31v,1/21v;41v,112v,11v;2l0!

2
2

3 2F3~3,1/2;4,11v,12v;2l0!1
1

~32v!

G~11v!g~v!

G~12v!g~2v! S l0

2 D 2v

32F3~32v,1/22v;42v,122v,12v;2l0!J . ~120!
fte

.
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’’

ing
al
d

-

re-

ar-
ion,
In the computation of the functionsf1 , f2 , andf3 the
ladder~planar! photon exchanges have been neglected. A
reinstating the ladder photon exchange term of Eq.~80!, we
obtain, together with Eqs.~98! and ~117!, that

f1„a0 ,gc~a0!…5
a0

2p
2Nz1~a0!, f2„a0 ,gc~a0!…50,

~121!
f3„a0 ,gc~a0!…5Nz3~a0!.

The ladder photon exchange only contributes tof1 , see
again@56#. After substitution of Eq.~121! in Eq. ~70!, theb
function reads

ba~a0 ,gc!5
Na0

2

p F2

3
1

a0/2p2Nz1~a0!

12a0/2p1Nz1~a0!
1Nz3~a0!G ,

~122!

where explicit expressions forz1 and z3 are given by Eq.
~100! and Eqs.~119! and ~120!.

VIII. UV STABLE FIXED POINTS

Let us start analyzing Eq.~122! by first considering the
properties of the functionsz1(a0) andz3(a0). Fora0 small,
the expansion of the functionsz1 and z3 can be computed
from Eqs.~100! and ~119!. The result is

z1~a0!'
3a0

2p
1O~a0

2!, z3~a0!'
15

16

a0
2

p2 1O~a0
3!,

~123!

showing thatz3 vanishes faster thatz1 for a0→0. The func-
tions z1(a0) andz3(a0) have been plotted versusa0 /ac in
Fig. 8. First, it is clear thatz1 andz3 are positive, and have
a maximum at some intermediate value of 0,a0,ac
5p/3. For instance,z1 has a maximumz1'0.123 at
a0 /ac'0.58 (v'0.65). Second, the functionsz1 and z3
vanish at the pure NJL pointa050 in accordance with Eq
~123!, and at the CPT pointa05ac . At a050, we can con-
sider this is as a reflection of the fact that hyperscal
breaks down due to logarithmic corrections; the ‘‘effective
02500
r

g

Yukawa coupling is trivial, therefore vanishes. Ata05ac ,
where the critical exponents become singular, the vanish
of z1 and z3 is related to the dynamics of the conform
phase transition~CPT!, which has been thoroughly discusse
in Ref. @61#. There are no lights and p exchanges in the
symmetric phase@47# which consequently implies the ab
sence of effective Yukawa interactions.12

Let us compare theb function ~122! with the b function
~52! of the gauge-Higgs-Yukawa model~50! in the 1/N ex-
pansion. Then, the entire set of planars andp exchanges is
generated by the kernel

Kcd,ab
kl,i j

~2!
~p,p1q,k1q!

'd i j dkl

gY
2

e0
2 DS~k2p!@1ad1cb1 ig5ad

ig5cb
#,

~124!

whereDS(p)51/p2. With such a kernel,f2 andf3 are zero,
because the right-hand side of Eq.~124! does not depend on
the momentumq. The expression forf1 , in this case, can be
computed straightforwardly (lY5gY

2/4p);

f15 lim
L→`

2NgY
2 i E

L

d4p

~2p!4

p•k

p4

1

~p2k!2 52
NlY

2p
.

~125!

Again we introduce the ladder photon exchanges by the
placement

f1~lY!→f1~a0 ,lY!5
a0

2p
2

NlY

2p
. ~126!

Hence, in this case, theb function is

12Moreover at the CPT point four-fermion interactions are m
ginal instead of relevant, and start to mix with the gauge interact
hence the analysis becomes considerably more complicated.
1-16
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ba~a0 ,lY!5
Na0

2

p F2

3
1

a0/2p2NlY/2p

12a0/2p1NlY/2pG . ~127!

Comparing theb functions~122! and~127! leads to the sug-
gestion thatz1(a0) is analogous to the Yukawa couplinglY
in a gauge-Higgs-Yukawa model,z1(a0);lY/2p.

This is a crucial point. The general consensus is that fo
gauge-Higgs-Yukawa model the Yukawa interactionlY is
trivial, thus lY→0 in Eq. ~127!. However, the situation is
essentially different forz1 in the GNJL model. There the
‘‘effective’’ coupling z1 is formed by the exchange ofs and
p bosons, with the Yukawa vertices, and~pseudo!scalar
propagators fully dressed~i.e., the skeleton expansion!. The
cancellation of theZ factors, see Sec. III, which is related
the fact that the hyperscaling equations are satisfied, g
rise to a finite nonzeroz1(a0) at the critical curve (g0
5gc) for 0,a0,ac . The other nonzero functionz3 results
from taking into account fully dressed Yukawa vertices.

Let us now the discuss the possible existence of UV sta
fixed points. A necessary but not a sufficient condition
the realization of an UV stable fixed point is thatNz1 has to
be larger than bothNz3 and a0/2p, and Nz1;O(1). For
large N, the contribution of the planar photon exchang
~represented by thea0/2p terms! is negligible with respect
to Nz1 andNz3 . Moreover Fig. 8 shows, fora0 small, that
z1 is considerably larger thanz3 . This means that only for
flavorsN larger than some critical valueNc UV stable fixed
points can be obtained.

By substituting the expressions~100! and~119! for z1 and
z3 in Eq. ~122!, we can straightforwardly analyze theb func-
tion graphically. In Fig. 9 theb function is plotted for vari-
ous values ofN. Figure 9 shows that for values ofN.Nc ,
with 55.Nc.54, UV stable fixed points exist, the large
beinga!'0.13;

N555: ba„0.13,gc~0.13!…'0,
~128!

ha52ba8 „0.13,gc~0.13!…'0.07,

FIG. 9. Plot of the functionba versus the gauge couplinga0 for
various values of the fermion flavor numberN.
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N560: ba„0.1,gc~0.1!…'0,
~129!

ha52ba8 „0.1,gc~0.1!…'0.15.

In accordance with Eqs.~15! and ~53!, the fixed points are
first-order zeros ofb. The general pattern is clear; the larg
N, with N.Nc , the smaller will be the UV stable fixed
point, but the larger will be the critical exponentha .

The above pattern also suggests that whenN→` the UV
stable fixed pointa!→0 and we would obtain an asymptot
cally free theory. This is not the case. It was shown in Re
@45,47# asa0 goes to zero that a logarithmic correction a
pears in the expression for the scalar propagatorDS . In fact,
the scaling form forDS ~with q/L!1! is only valid for val-
ues ofv so that (q2/L2)v@q2/L2, see Ref.@47#. The loga-
rithmic correction gives rise to the breakdown of hypersc
ing relations and is synonymous to triviality of the fou
fermion interactions~the NJL model!. Since our results rely
heavily on the existence of scaling forms such as Eqs.~26!
and ~34!, we can only trust our results for values ofa! not
too small.

Since we have made use of results obtained in
quenched approximation, we mention that the plots of thb
function are~at the most! reliable at or in the vicinity of the
UV stable fixed points at which the quenched approach
self consistent, see Eq.~68!.

In Fig. 10, the case ofN560 fermion flavors is compared
with the one-loopb function of QED. For very small values
of a0,1/100 indeed the one-loop QED result coincides w
that of the GNJL model, however for larger values ofa0 the
b function ~122! deviates from the one-loop expression, a
eventually an UV stable fixed point is realized ata!'0.1.

The analysis shows that a rather large number of flav

N.Nc'54, ~130!

is required to obtain UV stable fixed points. From the po
of view of the 1/N expansion this seems a consistent res
since other than planar contributions are suppressed b
least factors of~say! 1/Nc . However, from the phenomeno
logical point of view, the result is unsatisfactory, since
implies that the unquenched Abelian GNJL model~exhibit-

FIG. 10. The one-loopb function forN560 compared with the
b function including four-fermion interactions.
1-17
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ing UV stable fixed points! is only practically applicable for
models which have at leastNc fermion flavors ~fractions
rounded up!. Therefore, it is appropriate to discuss howNc
depends on the approximation.

First, we stress that the second term on the right-hand
in Eq. ~122! containing thez1 function causes the suppre
sion of charge screening and is responsible for the poss
realization of an UV stable fixed point. The denominator
the second term is a direct consequence of the resumm
of the infinite ladders andp exchanges, and it is mainly du
to this denominator 11Nz1 that the critical number of fer-
mion flavorsNc is large.

Second, the existence of an UV stable fixed point fo
specific number of fermion flavorsN depends on the inter
play between the functionsz1 and z3 , which are given in
terms of integrals of the functionsG1 andG3 . Let us recall
that the lowest order Chebyshev expansion forG1 , Eq. ~90!
is a lower bound onG1 of Eq. ~89!, since all terms of the
Chebyshev expansion are positive atk25p2, the same can-
not be said about the approximation~114! for G3 . Thus
keeping more terms in the Chebyshev expansion leads t
increase ofz1 , whereas the effect onz3 is less clear, becaus
of the alternating Chebyshev series forz3 . Therefore, an
improvement of the computation ofz1 will probably lead to
a decrease of the critical flavor numberNc .

Moreover, in the computation of the functionsz1 andz3
we have used Yukawa vertices (GS) ands andp propaga-
tors (DS) which were obtained in the quenched-ladder a
proximation. An interesting question is whether the improv
ment of the ladder approximation for the gauge interact
~e.g., by including crossed photon exchanges! leads to a in-
crease ofz1 , and thus a decrease ofNc .

Finally, we recall that we have neglected the effect of
Yukawa vertex functionF2 @Eq. ~21!#, but clearly the inclu-
sion of F2 in the analysis could change the results quant
tively. Whether such an improvement will tend to increase
decreaseNc remains unclear at this stage.

IX. CONCLUSION

There are strong indications that four-fermion interactio
become relevant near the chiral phase transition in GN
models in four dimensions, due to the appearance of a la
anomalous dimension. The main objective of this paper w
to study the effect of such relevant four-fermion interactio
on the vacuum polarization of the gauge coupling and
reinvestigate the problem of triviality for a particular Abelia
GNJL model withN fermion flavors. To obtain new results
the four-fermion interactions had to be taken into acco
beyond the commonly used Hartree-Fock or mean-field
proach.

The crucial feature of the GNJL model, within th
quenched mean-field approximation, is that a nontriv
Yukawa interaction~i.e., an interaction between composi
~pseudo! scalars and fermions! exists for 0,a0,ac . The
existence of such a nontrivial Yukawa interaction requi
the cancellation of renormalization constants of thes andp
fields in fermion-antifermion scattering amplitudes such
the BS kernelK (2). This is analogous to the requirement
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hyperscaling~see Sec. III!. If the hyperscaling equations ar
satisfied, then only two of the critical exponents are indep
dent, e.g.,h andg, see Eqs.~19! and ~27!. The existence of
hyperscaling relations between the critical exponents is i
mately connected with the existence of Ward-Takaha
identities~and thus the Goldstone mechanism! arising from
the continuous symmetries of the model.

The skeleton expansion for the BS kernelK (2) provides a
natural framework to take into account the anomalous
mensions of Yukawa vertices ands and p propagators.
Within the skeleton expansion,s and p exchanges are de
scribed in terms of fully dressed Yukawa vertices ands and
p propagators. The actual computation of the anomalous
mension, and the resolution of the scaling form require
solution of the SDE’s for Yukawa vertices, ands and p
bosons.

In previous work such fully dressed Yukawa vertices a
s and p propagators have been analyzed in the quench
ladder mean-field approximation, see Ref.@47# and refer-
ences therein. To make use of these results consistently
used the following approximations. First, we assumed t
the bare coupling parameters are fine-tuned close to the c
cal point, i.e., close to an UV stable fixed point, at whi
bg'0 andba'0. In that case, the quenched or canoni
approximation for the photon propagator is self-consiste
Second, the gauge-interaction is considered in the lad
form, with bare vertices. Third, we used the 1/N expansion
~with N the number of fermion flavors! which states that
planars andp exchanges describe the leading contributi
to Green functions for largeN. Then, due to the specific form
of the chiral symmetry with both scalars and pseudoscala
the adjoint representation of theUL(N)3UR(N) symmetry,
we argued that in so-called zero-spin channels~such as
Yukawa vertices ands andp propagators! the planars and
p exchanges cancel each other for momenta larger than
mass of thes boson ~in fact in the symmetric phase thi
cancellation is exact!. Moreover, an important property o
the planar~ladder! approximations is that they respect th
vector and chiral Ward-Takahashi identities.

The method of Ref.@56# provides a nonperturbative
framework independent of the fermion wave functionZ, and
allowed us to compute the contributions of the infinite set
planars and p exchanges to the vacuum polarization. T
result of the computations is that the GNJL model exhib
an UV stable fixed point,ba„a! ,gc(a!)…50, for any value
of N that exceeds some critical valueNc(N.Nc). This criti-
cal number of flavors turned out to beNc'54. The larger the
number of fermion flavors, the smaller the UV stable fix
point a! will be, provided N.Nc and a! not too small.
Since our results are derived on the basis of the existenc
hyperscaling laws, we cannot extrapolate our results into
region where hyperscaling breaks down due to logarithm
violations, i.e., whena!→0(N→`).

From a phenomenological point of view, the large val
for Nc puts questions to the applicability of the GNJL. How
ever, we have given a few arguments in the previous sec
suggesting thatNc could be rather sensitive to approxim
tions, and that an improvement of the approximations a
calculations will probably lead to a smaller value forNc .
1-18
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The realization of an UV stable fixed point is motivate
by the observation that contributions of planars andp ex-
changes to the vacuum polarization, in an Abelian gau
Higgs-Yukawa model, have identical sign, and tend to
duce screening. In analogy, four-fermion interactio
describe attractive forces between virtual fermio
antifermion pairs in the vacuum polarization.

The conventional leading term in the vacuum polarizat
is the one-loop correction describing the creation of fermi
antifermion pairs. These virtual pairs can be considered
dipoles causing the screening; the vacuum is a medium
the insulator type. Such a screening is proportional to
couplinga0 and proportional to the number of fermion fla
vors N. However, if a particular fraction of the total amou
of fermion-antifermion pairs created are correlated by attr
tive four-fermion interactions, represented bys and p ex-
changes, then clearly these composite neutral states ar
capable of screening. The negative termNz1 in the b func-
tion ~122! represents the contributions and the attractive
ture of four-fermion interactions in the vacuum polarizatio

Within the quenched-ladder mean-field approximatio
the critical curve and critical exponents are independen
the number of fermion flavors. Within our approximatio
scheme, the mechanism of charge screening clearly is fl
dependent, since the total number of virtual fermio
antifermion pairs is proportional toN and the total number o
composite scalars and pseudoscalars grows as 2N2. The
larger the number of flavors, the stronger the effect of fo
fermion interactions. The fixed point appears when the
tual pairs completely lose their ability to screen.

The existence of an UV stable fixed point implies a no
trivial continuum limit of the Abelian GNJL model. The
analysis presented here suggests that in the full unquen
GNJL model the critical line is replaced by an UV stab
fixed point ~on the critical line! whose exact positions de
pends on the number of fermion flavors. If the number
fermion flavors is below some specific value, the critic
four-fermion dynamics are not sufficient to yield an U
stable fixed point. In that case the unquenched GNJL mo
only has a trivial~IR! fixed point and the chiral phase tran
sition is of the mean-field type.

ACKNOWLEDGMENTS

The author wishes to thank Valery Gusynin for the enjo
able and fruitful collaboration, the numerous stimulating d
cussions, and important suggestions. It is a pleasure to th
Marinus Winnink for useful comments and encourageme

APPENDIX A: TWO-LOOP VACUUM POLARIZATION

In this appendix we compute two-loop vacuum polariz
tion corrections includings andp exchanges, see Fig. 5. W
derive the two-loop contribution by making use of the on
loop computation of the photon-fermion vertex@62,63#.

The SDE for vacuum polarization tensor reads (N51)

Pmn~q2!5 ie0
2E

L

d4k

~2p!4 Tr@gmS~k1q!Gn~k1q,k!S~k!#.

~A1!
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Assuming that the WTI’s are respected, the vacuum po
ization tensor is transverse: Pmn(q)5(2gmnq2

1qmqn)P(q2), so that

P~q2!52
ie0

2

3q2 E
L

d4k

~2p!4 Tr@gmS~k1q!Gm~k1q,k!S~k!#.

~A2!

Let us write and denote the one-loop vertex and self-ene
corrections with a subscript~1! as follows:

Gm~k,p!5gm1L~1!
m ~k,p!, S~p!5

p̂

p2 @11Z~1!~p2!#.

~A3!

Besides a photon exchange, we take into account a scala
pseudoscalar exchange in the one-loop vertex, and s
energy, i.e.,

L~1!
m ~k,p!5L~1V!

m ~k,p!1L~1S!
m ~k,p!1L~1P!

m ~k,p!,
~A4!

p̂Z~1!~p2!52S~1V!~p!2S~1S!~p!2S~1P!~p!.
~A5!

With one-loop vertex corrections

~2 ie0!L~1V!
m ~k,p!5E

L

d4w

~2p!4 ~2 ie0!gliS~k2w!

3~2 ie0!gmiS~p2w!

3~2 ie0!gsiD ls~w!, ~A6!

~2 ie0!L~1S!
m ~k,p!5E

L

d4w

~2p!4 ~2 igY!1iS~k2w!

3~2 ie0!gmiS~p2w!

3~2 igY!1iDS~w!, ~A7!

~2 ie0!L~1P!
m ~k,p!5E

L

d4w

~2p!4 ~2 igY!ig5iS~k2w!

3~2 ie0!gmiS~p2w!

3~2 igY!ig5iDP~w!, ~A8!

and the self-energies

iS~1V!~p!5E
L

d4k

~2p!4 ~2 ie0!gmiS~k!~2 ie0!

3gniD mn~k2p!, ~A9!

iS~1S!~p!5E
L

d4k

~2p!4 ~2 igY!1iS~k!~2 igY!1iDS~k2p!,

~A10!
1-19
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iS~1P!~p!5E
L

d4k

~2p!4 ~2 igY!ig5iS~k!~2 igY!

3 ig5iDP~k2p!. ~A11!

Taking free massless fermion, scalar, and pseudosc
propagators, and the photon propagator in the Feynm
gauge (a51),

S~p!5
p̂

p2 , Dmn~q!52
gmn

q2 , DS~q!5DP~q!5
1

q2 ,

~A12!

the one-loop vertices can be expressed as

L~1V!
m ~k,p!52e0

2Rm~k,p!12e0
2Sm~k,p!, ~A13!

L~1S!
m ~k,p!52gY

2Rm~k,p!1gY
2Sm~k,p!,

~A14!

L~1P!
m ~k,p!5L~1S!

m ~k,p!, ~A15!

where the last identity is obtained from Eq.~A8! by using
g5gm52gmg5 , and where

Rm~k,p![2 i E
L

d4w

~2p!4

3
gm~ p̂2ŵ!~ k̂2ŵ!/22~ k̂2ŵ!~ p̂2ŵ!gm/2

~k2w!2~p2w!2w2 ,

~A16!

Sm~k,p![2 i E
L

d4w

~2p!4 F ~k2w!•~p2w!gm

~k2w!2~p2w!2w2

2
~k2w!m~ p̂2ŵ!

~k2w!2~p2w!2w22
~p2w!m~ k̂2ŵ!

~k2w!2~p2w!2w2G .

~A17!

Thus the sum of one-loop vertex corrections, Eq.~A4!, can
be rewritten as

L~1!
m ~k,p!52@e0

22gY
2 #Rm~k,p!12@e0

21gY
2 #Sm~k,p!.

~A18!

The sum of self-energy contributions, Eq.~A5!, can be com-
puted straightforwardly

Z~1!~p2!52
~e0

21gY
2 !

16p2 F lnS L2

2p2D1
3

2G , ~A19!

in Minkowskian formulation.
The vacuum polarization up to two-loop corrections c

be expressed as

P~q2!5P~1!~q2!1P~2a!~q2!1P~2b!~q2!, ~A20!

where
02500
lar
an

P~1!~q2!52
ie0

2

3q2 E
L

d4k

~2p!4

Tr@Pmn~q!gn~ k̂1q̂!gmk̂#

~k1q!2k2 ,

~A21!

P~2a!~q2!52
ie0

2

3q2 E
L

d4k

~2p!4

Tr@gm~ k̂1q̂!gmk̂#

~k1q!2k2

3@Z~1!„~k1q!2
…1Z~1!~k2!#, ~A22!

P~2b!~q2!52
ie0

2

3q2 E
L

d4k

~2p!4

Tr@gm~ k̂1q̂!L~1!
m ~k1q,k!k̂#

~k1q!2k2 .

~A23!

The one-loop vacuum polarizationP (1) can be computed
straightforwardly by making use of the projectorPmn(q)
5gmn24qmqn /q2, which by contraction with the vacuum
polarization tensor eliminates the term inPmn proportional
to thegmn tensor. With this projector the quadratically dive
gent contribution toPmn , which is an artifact of a hard-
cutoff regularization, is eliminated explicitly.13 The result is
the well-known one-loop vacuum polarization:

P~1!~q2!5
a0

3p F lnS L2

q2 D1O~1!G , ~A24!

with q2 the Euclidean momentum anda05e0
2/4p.

The sum of the one-loop vertex functions is given
terms of the functionsRm andSm. The one-loop vertex in the
Feynman gauge has been computed in Ref.@62#, see also
Ref. @63# for arbitrary gauge. One can show that, withq2

5(k2p)2,

2e0
2Rm~k,p!5L~1R!

m ~k,p!, ~A25!

2e0
2Sm~k,p!5L~1L !

m ~k,p!1L~1I !
m ~k,p!, ~A26!

with

L~1L !
m ~k,p![

gm

2
@2Z~1!~k2!2Z~1!~p2!#1

~k1p!m~ k̂1 p̂!

2~k22p2!

3@2Z~1!~k2!1Z~1!~p2!#, ~A27!

L~1I !
m ~k,p![t2~k2,p2,q2!T2

m~k,p!1t3~k2,p2,q2!T3
m~k,p!

1t6~k2,p2,q2!T6
m~k,p!, ~A28!

L~1R!
m ~k,p![t8~k2,p2,q2!T8

m~k,p!, ~A29!

whereL (1L)
m is the one-loop longitudinal part of the verte

and where thet iTi
m’s are the one-loop transverse parts

13The quadratically divergent contributionL2/q2 is a notorious
artifact of computing vacuum polarization corrections in the pr
ence of a hard cutoff~i.e., an explicit cutoff in the momentum
integrations instead of Pauli-Villars regularization, see for a rec
discussion Ref.@64#!.
1-20
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defined and computed in Refs.@62,63#. By construction, this
Ball-Chiu expression for the longitudinal vertexL (1L)

m satis-
fies the WTI@62#:

qmL~1L !
m ~k,p!52 k̂Z~1!~k2!1 p̂Z~1!~p2!. ~A30!

Using Eqs.~A18!, ~A23!, ~A25!, and~A26!, we write

P~2b!~q2!5S 11
gY

2

e0
2 D @P~2L !~q2!1P~2I !~q2!#

1S 12
gY

2

e0
2 DP~2R!~q2!, ~A31!

where

P~2 j !~q2![2
ie0

2

3q2 E
L

d4k

~2p!4

3
Tr@gm~ k̂1q̂!L~1 j !

m ~k1q,k!k̂#

~k1q!2k2 ,

~A32!
j 5L,I ,R.

Since the one-loop transverse vertex functions themse
are finite, i.e., these functions are independent of the cu
L, the leading logarithmic contributions to the vacuum p
larization result from integrations over momentak2@q2 in
P (2R) and P (2I ) . These leading logarithmic contribution
can be found by first deriving thek2@q2 asymptotic behav-
ior of the transverse structure functions given in@63#, after
which the integration over angles can be performed. In
Feynman gaugea51, the asymptotic behaviork2@q2 of the
t’s is

t2'
a0

24p

1

k4 , t3'
a0

6p

1

k2 lnS q2

k2D2
29

72

a0

p

1

k2 ,

~A33!

t6'
~2k•q1q2!

2

a0

24p

1

k4 , t8'2
a0

2p

1

k2 ,

where k2 and q2 are Minskowskian momenta. By makin
use of these asymptotic expressions the integration o
angles in P (2R) and P (2I ) can be performed straightfor
wardly, after performing a Wick rotation. The integratio
over momentak2>q2 leads to logarithmic corrections. Th
result reads~in Euclidean formulation!:

P~2I !~q2!5
a0

2

p2 F 1

24
ln2S L2

q2 D1
29

144
lnS L2

q2 D1O~1!G ,
~A34!

P~2R!~q2!5
a0

2

p2 F1

4
lnS L2

q2 D1O~1!G . ~A35!

The logarithmic corrections oft2 andt6 cancel each other
and the contributions oft3 give rise to a ln2 term.

An analogous computation can be performed for the s
energy and longitudinal vertex corrections. Due to the B
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Chiu expression~A27! for L (1L)
m , the contributionsP (2a)

and P (2L) depend on the one-loop computation of the se
energyZ(1) given in Eq. ~A19!. After expandingZ(1)„(k
1q)2

… for k2@q2,

Z~1!„~k1q!2
…'Z~1!~k2!1~2k•q1q2!Z~1!8 ~k2!

1
1

2
~2k•q1q2!2Z~1!9 ~k2!

1
1

6
~2k•q1q2!3Z~1!- ~k2!, ~A36!

and using thatZ(1)„(k1q)2
…'Z(1)(q

2) for q2@k2, the an-
gular integration can be performed, and the logarithmic c
rections can be computed. The result is

P~2a!~q2!1S 11
lY

a0
DP~2L !~q2!

5
a0~a01lY!

p2

3F2
1

24
ln2S L2

q2 D2
29

144
lnS L2

q2 D1O~1!G ,
~A37!

with a05e0
2/4p and lY5gY

2/4p. Thus, comparing this ex
pression with theP (2I ) term in Eq.~A31!, we see that the
‘‘overlapping divergencies’’~i.e., the ln2! cancel

P~2a!~q2!1S 11
lY

a0
D @P~2L !~q2!1P~2I !~q2!#

5
a0~a01lY!

p2 O~1!. ~A38!

Such a cancellation occurs in a similar manner in any co
riant gaugea. Thus, the two-loop contribution toP is de-
scribed solely by the part of the transverse vertex contain
the T8

m tensor,14 i.e., P (2R) , and, after adding all the pieces
we deduce that

P~q2!5
a0

2p S 2

3
1

a0

2p
2

lY

2p D lnS L2

q2 D1~a0 /p!O~1!.

~A39!

APPENDIX B: THE JOHNSON-WILLEY-BAKER
EQUATION

In this appendix we derive the equation

f ~1!5
Na0

p F2

3
1

f11f2~21f2!

12f1
1f3G ~B1!

14As was shown in@63#, this particular transverse structure fun
tion t8 does not depend on the gauge parametera.
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for the f (1) function given by Eq.~64!, with the functionsf j
given by Eqs.~71!–~73!. The derivation of Eq.~B1! was
given ~for pure QED! by Johnson, Willey, and Baker~JWB!
in Ref. @56#. Since their result is formulated in terms of th
BS fermion-fermion scattering kernelK (2) their method is
also applicable to the GNJL model.

In order to derive the result of@56#, the following is as-
sumed.

The fermion wave function equals one,Z51/A51, in the
Landau gauge. In principle, this assumption is redund
since the JWB result is valid in any gauge.

Internal photon propagators are replaced by their can
cal form D(q)51/q2 which is self-consistent in the neigh
borhood of an UV stable fixed point. Only a single fermio
loop, thus a single power of lnL contributes to the vacuum
polarization.

Translational invariance of naively logarithmically dive
gent and finite momentum space integrals is assumed.
plicitly, use is made of invariance under charge-conjugat
~C! and parity-time~PT! transformations.

Also it is assumed that we are in the scaling region of
theory, where the only relevant dimensionless variable
q2/L2. We consider short distances with respect to the
length scalej;1/umsu, thusumsu2<q2!L2.
Hence,

Z~k2!51/A~k2!51, S~k!5
k̂

k2 , Gm~k,k!5gm.

~B2!

The vacuum polarization tensor is

Pmn~q!5
ia0

4p3 E
L

d4k T̃r@S~k1q!Gm~k1q,k!S~k!gn#,

~B3!

where T̃r denotes the sum over both spinor and flavor in
ces. Since, in the chiral symmetric phase, theN fermions are
degenerate, allN fermion propagators andN photon-fermion
vertices are degenerate. Hence, the sum over flavor ind
gives rise to a factorN, i.e., T̃r→N Tr, where Tr is the sum
over spinor indices.

Since vacuum polarization tensor is transverse and
only relevant momentum variable isq2/L2!1, the equation
for the vacuum polarization can be written as

P~q2!52
1

6

qmqn

q2

]2

]qaqa Pmn~q!1O~1!1O„~q/L!s
…,

~B4!

where s is some positive power. After inserting Eq.~B3!,
and settingq250 in the integrand, and usingq as the infra-
red cutoff in the momentum integral, we obtain
02500
nt

i-

-
n

e
is

-

es

e

P~q2!'2
1

6

qmqn

q2

iNa0

4p3 E
q,L

d4k Tr@Sa
a~k!Gm~k!S~k!gn

12Sa~k!Gm,a~k!S~k!gn1S~k!Ga
m,a~k!S~k!gn#,

~B5!

where the derivatives are defined as follows@with Gm(k)
[Gm(k,k)#:

Sa~k![
]

]ka S~k!52
k̂gak̂

k4 ,

~B6!

Sa
a~k![

]2

]ka]ka S~k!52
4k̂

k4 ,

Gm,a~k![
]

]qa Gm~k1q,k!U
q50

,

~B7!

Gm,a
a ~k![

]2

]qa]qa Gm~k1q,k!U
q50

.

Since the integral Eq.~B5! can only be proportional togmn,
it reduces to

P~q2!'2
iNa0

96p3 E
q,L

d4k Tr@Sa
a~k!Gm~k!S~k!gm

12Sa~k!Gm,a~k!S~k!gm1S~k!Ga
m,a~k!S~k!gm#.

~B8!

The SDE for the vertexGm reads, in terms ofK (2) ~see Fig.
6!

d i j Gab
m ~k1q,k!5d i j gab

m 1 ie0
2E

L

d4p

~2p!4

3@S~p1q!dnmGm~p1q,p!S~p!#dc

3Kcd,ab
mn,i j

~2!
~p,p1q,k1q!. ~B9!

From now on we omit spinor and flavor indices. Differen
ating now the SDE Eq.~B9! with respect toq, and setting
q50 for the integrand andq as IR cutoff, we obtain
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Gm,a~k!5 ie0
2E

q,L

d4p

~2p!4 @S~p!Gm,a~p!S~p!K ~2!~p,k!1Sa~p!Gm~p!S~p!K ~2!~p,k!1S~p!Gm~p!S~p!Ka
~2!~p,k!#,

~B10!

and for the second derivative of the vertex, we find

Ga
m,a~k!5 ie0

2E
q,L

d4p

~2p!4 @S~p!Ga
m,a~p!S~p!K ~2!~p,k!12Sa~p!Gm,a~p!S~p!K ~2!~p,k!1Sa

a~p!Gm~p!S~p!K ~2!~p,k!

12S~p!Gm,a~p!S~p!Ka
~2!~p,k!12Sa~p!Gm~p!S~p!Ka

~2!~p,k!1S~p!Gm~p!S~p!Ka
~2!a~p,k!#, ~B11!
he

r

s.
on
where K (2)(p,k) and the derivatives Ka
(2)(p,k) and

Ka
(2)a(p,k) are defined in Eqs.~74!–~76!.
The first derivative of the vertex is antisymmetric ina and

m, because of the assumption Eq.~B2!. Furthermore,C and
PT invariance imply that the only nonzero contribution to t
first derivative ofGm ~with q50 andL→`! must be pro-
portional to the tensor (gmk̂ga2gak̂gm). Thus we write

G@m,a#~k![Gm,a~k!2Ga,m~k!5
~gmk̂ga2gak̂gm!

k2 G8,

~B12!

G~m,a!~k![Gm,a~k!1Ga,m~k!5Sma
21~k!, ~B13!

where G8 is a dimensionless scalar function.15 Since
Snm

21(k)50, due to the WTI for the vertex and Eq.~B2!, we
find that

Gm,a~k!5
1

2
G@m,a#~k!5

~gmk̂ga2gak̂gm!

2k2 G8.

~B14!

After some algebra~taking traces over spinor and flavo
indices!, we can derive from Eqs.~B10! and ~B14! that

lim
q→0,L→`

Gm,a~k!5~f11f21f1 lim
q→0,L→`

G8!

3
~gmk̂ga2gak̂gm!

2k2

⇒ lim
q→0,L→`

G85
f11f2

12f1
,

~B15!

where thef j functions are defined in Eqs.~71!–~73!.
SinceGm(k)5gm, and using Eq.~B11! for Ga

m,a(k), the
second derivative ofGa

m,a in Eq. ~B8! can be eliminated. The
result is

15The functionG8 is related to the transverse structure functi
t8(k2,k2,0) of Ref. @63#. At the one-loop level G (1)8
52k2t8(k2,k2,0).
02500
P~q2!5
Na0

2p F (
n51

5

I n~q2/L2!1O~q2/L2!G , ~B16!

where

I 1[2
i

48Eq,L

d4k

p2 T̃r@Sa
a~k!gmS~k!gm#, ~B17!

I 2[2
i

24Eq,L

d4k

p2 T̃r@Sa~k!Gm,a~k!S~k!gm#, ~B18!

I 3[
e0

2

24Eq,L

d4k

p2 E
q,L

d4p

~2p!4 T̃r@S~p!Gm,a~p!S~p!

3K ~2!a~p,k!S~k!gmS~k!#, ~B19!

I 4[
e0

2

24Eq,L

d4k

p2 E
q,L

d4p

~2p!4 T̃r@Sa~p!gmS~p!

3K ~2!a~p,k!S~k!gmS~k!#, ~B20!

I 5[
e0

2

48Eq,L

d4k

p2 E
q,L

d4p

~2p!4

3T̃r@S~p!gmS~p!Ka
~2!a~p,k!S~k!gmS~k!#.

~B21!

Using translational invariance,C-PT invariance, Eqs.~71!–
~73! and ~B15!, we can derive that

I 15
2

3 Eq2

L2 dk2

k2 1O~1!, I 25Ff11f2

12f1
G E

q2

L2 dk2

k2 1O~1!,

I 35f2Ff11f2

12f1
G E

q2

L2 dk2

k2 1O~1!, ~B22!

I 45f2E
q2

L2 dk2

k2 1O~1!, I 55f3E
q2

L2 dk2

k2 1O~1!,

where q2 is the Euclidean momentum. Substituting Eq
~B22! in Eq. ~B16!, we get
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P~q2!5
Na0

2p F2

3
1

f11f2~21f2!

12f1
1f3G ln L2

q2

1~Na0 /p!O~1!. ~B23!
uk
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With Eq. ~64!, we obtain Eq.~B1!. This is the main result of
Ref. @56#. The entire derivation did not yet specify the B
kernelK (2). Therefore Eq.~B23! is applicable to the GNJL
model as well.
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