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Twistors and actions on coset manifolds

Yonatan Zunger*
Department of Physics, Stanford University, Stanford, California 94305-4060

~Received 13 January 2000; published 27 June 2000!

Particle and string actions on coset spaces typically lack a quadratic kinetic term, making their quantization
difficult. We define a notion of twistors on these spaces, which are hypersurfaces in a vector space that
transform linearly under the isometry group of the coset. By associating the points of the coset space with these
hypersurfaces, and the internal coordinates of these hypersurfaces with momenta, it is possible to construct
manifestly symmetric actions with leading quadratic terms. We give a general algorithm and work out the case
of a particle on AdSp explicitly. In this case, the resulting action is a world-line gauge theory with sources~the
gauge group depending onp), which is equivalent to a nonlocal world-lines model.

PACS number~s!: 04.62.1v, 02.40.2k, 11.10.Kk, 11.30.Ly
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I. INTRODUCTION

The standard action for a particle or string on a co
spaceG/H is manifestly invariant underG but does not have
a quadratic kinetic term. This obstructs the usual quant
tion procedure. Moreover, the isometries are nonlinearly
alized on the coordinates and so even if the action w
quadratic, the fields would not automatically form aG rep-
resentation. This makes it difficult to directly study syste
such as strings on AdSp123Sd2p22 which are important for
understanding holography@1–3#.

A hint of how to work around this comes from twistor
These were originally set up by Penrose to study confor
Minkowski space@4#, and have since been generalized
conformal superspace@5# and AdS5 @6,7#. In all of these
cases, twistors associated a hypersurface in some ve
space which transforms linearly under the isometry gro
with every point of the coset space. The internal coordina
of these hypersurfaces were associated with momenta
constrained quantities.

This construction can be generalized to arbitrary co
manifolds1 G/H. A mapping between points of the coset a
hypersurfaces in a vector space can be constructed w
naturally mimics the geometric structure of the coset. T
isometries, for example, can easily be extracted from
linear isometry transformations of the twistors.

If the vector space is also a Hilbert space~i.e. posesses a
appropriate inner product! then one can naturally constru
objects out of twistors which are manifestly invariant und
the coset isometries. Using the twistor mapping, these ca
written as ~typically fairly complicated! functions of the
coset coordinates and the internal coordinates of the twis
Since these quantities are manifestlyG-invariant, one can
construct actions out of them which are equivalent to or
nary coset actions if the internal coordinates are identi
with momenta. Since the twistor mapping is typically ve
complicated, very simple twistor actions are equivalent

*Email address: zunger@leland.standord.edu
1The results below apply both to cosets and supercosets, wit

additional restrictions~reductivity, symmetry, etc.! except where
explicitly noted.
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very complicated coset actions.
We demonstrate this construction for a particle on AdSp .

Twistors are built in a vector space which transforms in
spinor representation ofSO(p21,2). A world-line gauge
theory can be built out of these twistors which is equivale
to the ordinary action for a massive particle on the cos
This theory is equivalent to a nonlocals model whose targe
space is the vector space. This construction can probabl
generalized to the study of particles and strings on anti
Sitter superspaces such as those important for the AdS-
correspondence.

II. THE TWISTOR CONSTRUCTION

We begin by describing cosets in a language which na
rally leads to twistors. A point in a cosetG/H is associated
with a hypersurface in the group manifold by the relation

f~ x̂PG!5$x̂h:hPH%. ~1!

The x̂ which generate distinctf( x̂) are given by

x̂ªv~j!x̂0 , ~2!

where x̂0PG is the origin of the coset space~an arbitrary
point!, andj is a collective coordinate onG/H. The function
v(j) is a coset representative, which for our purposes i
function from the coordinates to the group such thatv(0)
51 andfsv is 1-1, so distinct hypersurfaces are associa
with distinct coordinates. A particular form ofv(j) which
we will often use is

v~j!5ej•Kh~j!, ~3!

where theK are the generators ofG not in H, andh(j) is
someH-valued function chosen to simplify the resulting e
pression.

Using this function, we can associate coset coordina
with hypersurfaces in the group manifold in a natural wa

f~j!5f„x̂~j!…5v~j!f~ x̂0!. ~4!

These hypersurfaces are naturally invariant under the r
action ofH.

no
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YONATAN ZUNGER PHYSICAL REVIEW D 62 024030
Such a construction cannot always be globally perform
The problem is analogous to the selection of coordinates
a sphere S25SO(3)/SO(2). Technically, it arises becaus
the coset representativev(x) is a section of the principa
bundle G→G/H and so in general cannot be globally d
fined. We may resolve this issue analogously to the prob
of coordinates by coveringG/H with patches~open sets
whose intersections are contractible! and performing this
construction on each open set. Transition functions on in
sections are naturally induced from the transition functio
of the principalG-bundle of whichv is a section. It is also
necessary to choose a differentx̂0 for each patch, which is
analogous to using the north and south poles as origins o
two coordinate systems on S2. The result of such a construc
tion will ~as we will see below! be a twistor bundle rathe
than a global twistor space, but this will not introduce a
unfamiliar complexities.

Using this construction, the geometry on the coset sp
may be defined by the invariances of the Cartan formL
5v21dv. This form is canonically separated intoL5E•K
1V•H, whereE is the vielbein andV the H-connection.
~This generalizes the spin connection of Minkowski spac!
When G is semisimple, this can be contracted with a
stricted Cartan-Killing metric to give a metric on the cose

gmn5hABLA
mLB

n , ~5!

where the indicesA and B run over only the coset (K)
generators2 of G. In the more general case~which includes
Minkowski space! the procedure is somewhat more subt
For some groups at least, there is an invariant symme
two-form which may take the place of the Cartan-Killin
metrich; however, there is no general existence proof no
there a method of computing such forms. In this case
assumes that the transformations which lead to covar
transformations of theK-components of the Cartan form wi
become isometries of the coset spaces.

The isometries of this space are given implicitly by t
action ofG on the coset representative:

dj:dv~j!5gv~j!, ~6!

wheregPG. This implies that

df~j!5gf~j!. ~7!

It is straightforward to compute the actual transformations
the j from this relationship if we write Eq.~7! in an explicit
representation. This motivates us to define twistors to be
plicit group representations of these hypersurfacesf(j).
Specifically, if we represent the group on a vector spaceL, a
twistor is a mapping of coordinates toH-invariant hypersur-
faces inL given by

Z~j!5v~j!Z0 , ~8!

2This procedure is discussed in detail in@8#.
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wherev(j) is the L-representation of the coset represen
tive, and Z0 is an H-invariant hypersurface inL. @The
L-representation off( x̂0).# As before, the mappingZ must
be 1-1 for the set ofZ(j) to be isomorphic to the cose
which means that the codimension ofZ0 in L must be no
less than the dimension of the coset.@codimZ(j)
5codimZ0 for any j sincev(x) is surjective.# We will also
restrict ourselves to dimZ0.0, since otherwiseZ would be
a mapping of points onto points and so would lose severa
the interesting features which we will discover below.

We next writeZ0 explicitly as a linear function of some
coordinates onL. ~These coordinates may be curvilinea
although we do not consider such possibilities in depth he!
Then using the explicit form of the coset representativev(j),
we may write eachZ(j) as a function of the coordinatesj
and the internal coordinatesl of Z0 which is linear inl and
typically fairly complicated inj.

This process has two advantages. First, since theZ are
given as explicit functions of the coset coordinates, it
straightforward to use Eq.~6! to compute the geometric
properties of the space. This is especially valuable in the c
of complicated cosets such as AdSp3Sd2p superspace,
where traditional~differential-equation! methods of calculat-
ing isometries are very difficult. Second, sinceL is a Hilbert
space there is a natural continuous and complete inner p
uct of twistors which is manifestly invariant under the acti
of G. This allows one to easily construct quantities with
very complicated dependence onj andl which are invariant
underG. This invariance persists even thoughH,G is typi-
cally nonlinearly realized on the coset space. If~as we will
do later! we identify thel with some internal parameters o
a system such as momenta, it is possible to use these in
ants to construct very simple twistor-based actions which
equivalent to very complicated coordinate-space actions.

As the preceding discussion was somewhat abstract,
useful to consider some explicit examples. We begin w
the case of conformal Minkowski spaceSO(3,2)/ISO(3,1)
3D, whereD is the dilatation operator. We choose as o
representation the 4-component spinor representation
SO(3,2), which decomposes into a 2-component spinor
a 2-component conjugate spinor ofISO(3,1) of conformal
weights3 61/2. In this representation, a group element h
the form

g5S Lb
a1 1

2 Ddb
a 2 iK aȧ

2 iP ȧa 2L̄ ȧ
ḃ2

1

2
dȧ

ḃ
D ~9!

and the initial hypersurfaceZ0 has the form

Z05S la

mȧD , ~10!

3Although we use spinorial representations here, this is by
means a general feature of twistors.
0-2
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TWISTORS AND ACTIONS ON COSET MANIFOLDS PHYSICAL REVIEW D62 024030
where thea (ȧ) are ~conjugate! spinor indices ofSO(3,1)
andl andm are complex. The stability groupH is generated
by theL, K, andD. Lorentz invariance implies that ifZ0 has
any point with l5” 0, it must contain all such points, an
likewise for m. Thus the dimension constraint 0,dimZ0
<4 requires that exactly one of the two be independe
Without loss of generality, we choosel and letm be a linear
function thereof. The remaining part ofH-invariance then
requiresm50.

Now let us choose the canonical coset representative

v~x!5e2 ix•P5S 1 0

2 ix ȧa 1D . ~11!

The twistor mapping is now

Z~x!5S la

2 ix ȧala
D . ~12!

This is the familiar Penrose twistor formula.@4# We will not
discuss isometries and invariants in this case, saving
instead for the more detailed example of AdSp below.

It is worth noting that this procedure was by no mea
unique. The freedoms of choice are in the selection of
appropriate coset representative@which will typically be de-
termined by algebraic simplicity, subject to the requirem
thatZ(j) is 1-1# and in the choice of the initial hypersurfac
Z0.

We can also naturally ask about the invariants which m
be constructed out of these twistors. The simplest world-
action which one may construct out of these twistors
clearly

L5 i Z̄]Z, ~13!

where contraction has been performed with the stand
spinor metric. If we substitute in Eq.~12!, and write

Pȧa5l̄ ȧla , ~14!

then this action reduces to the simple form

S5 i E dtP•]x ~15!

which is the usual world-line action for a massless particleP
is automatically null in this case because the spinor me
eab is antisymmetric. Massive actions cannot easily be w
ten in terms of these twistors, which is unsurprising since
are here working in conformal Minkowski space.

In this case we have put the internal coordinatesla of the
twistor to use as momenta of the particle. It is not clear h
general such an interpretation is; clearly a precondition
the possibility of so doing is that the twistor bundle@the set
of these hypersurfacesZ(x) over every point, with open set
as discussed above# contains the tangent bundle ofG/H as a
subbundle. Even when this is not possible, the proced
above will turn thela into Lagrange multipliers for various
quantities; when the quantities are derivatives of the coo
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We will see more of this construction later.

III. TWISTORIZATION OF AdS P

We now turn to the case of particles on AdSp5SO(p
21,2)/SO(p21,1). The ordinary world-line action for thes
particles is manifestlyG-invariant but does not have a qua
dratic kinetic term, so it is useful to try to rephrase this
terms of twistors. This is reasonable since the first-order
tion

L5
1

2
P•]x1Pr]r1uF 1

2r2
P22r2Pr

22m2R2G ~16!

contains only terms of the formP•]x, which are similar to
those found in the conformal Minkowski action~13!, and a
constraint term which isG-invariant although not manifestly
so. In a twistor construction one hopes that this can be
written in a manifestly symmetric~and preferably simple!
way, and we will see that this is indeed the case.

Twistorization must begin with a choice o
G-representation. The two simplest choices are the fun
mental and the spinor. The fundamental has simpler gr
generators, but since its dimension is (p11) such twistors
would have only one internal coordinate and so mome
could not be encoded by the twistor. Therefore we use
spinor representation, which has complex dimens
2b(p11)/2c[2d. The group elements in this representation a4

gA
B5S Lb

a1 1
2 Ddb

a 2 iK aȧ

2 iP ȧa 2L̄ ȧ
ḃ2 1

2 Ddȧ
ḃ
D . ~17!

TheK andP generate conformal transformations and conf
mal momentum, which are related to AdS conformal tra
formations and momenta by

K̃5~K2P!/2

P̃5~K1P!/2. ~18!

The Lb
a generate the Lorentz group and theD are dilata-

tions. The stability groupH is generated by theL ’s and the
K̃ ’s.

First we must choose anH-invariant initial hypersurface.
We can write this surface in the form

Z 0
A5S l0a

m0
ȧ D . ~19!

4Our index notation ism50 . . .p22 is anSO(p22,1) ~Lorentz!

vector index,a,b and ȧ,ḃ51 . . .d are Lorentz spinor and conju

gate spinor indices, respectively.A,B andȦ,Ḃ51 . . . 2d are spinor
and conjugate spinor indices ofSO(p21,2).
0-3
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YONATAN ZUNGER PHYSICAL REVIEW D 62 024030
As in the Penrose case,L-invariance requires that ifZ0 con-
tains any points withl05” 0, then it contains all such points
and similarly for m0. Since we want 0,dimZ0<2d2p,
only one of these two should be independent of the oth
Without loss of generality we choosel0 to be independent
and fix m0 by

m0
ȧ5F ȧbl0b1Gȧḃl̄0ḃ ~20!

for someF ȧb andGȧḃ which parametrize our twistorization
K̃-invariance then requires that

FgmF1GgmḠ5gm ~21!

FgmG1GgmF̄50 ~22!

where thegm
aȧ are the Dirac matrices forSO(p22,1). For

simplicity we will consider the caseF50, so

Z 0
A5S l0a

Gȧḃl̄0ḃ
D . ~23!

A simple choice of coset representative is

v~xm,r!5ex•PeD log r5S r1/2 0

2 ir1/2xȧa r21/2D ; ~24!

using this, and definingl5r1/2l0, the twistor is

Z A~xm,r!5S la

2 ix ȧala1r21Gȧḃl̄ ḃ
D . ~25!

As a check, the isometries of the space can be calcul
from

dZ A5gA
BZ B. ~26!

Varying both sides of Eq.~25!, one finds

dla5S La
b1

1

2
Dda

b1KaȧxȧbDlb2 ir21KaȧGȧḃl̄ ḃ

~27!

and so

dxȧa5Pȧa2xȧbLb
a2L̄ ȧ

ḃxḃa1Dxȧa

1xȧbKbḃxḃa2r22K ȧa ~28!

dr52Dr22rx•K ~29!

which are the well-known isometries of anti–de Sitter spa
Geometric invariants may now be constructed by c

tractingZ with the SO(p22,1) metric

HȦ
B5S 0 C ȧḃ

C̄ȧḃ 0
D ~30!

whereC is the charge conjugation matrix, so
02403
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Z̄1•Z25l̄1m21m̄1l2 . ~31!

A natural first guess for a particle action is

L5 i Z̄]Z. ~32!

This matches the kinetic term in Eq.~16! if we identify com-
ponents ofl with the momenta as follows:

Paȧ52lal̄ȧ

Pr5
i

2r2
@ l̄Gl̄2lḠl#. ~33!

In Eq. ~32!, however, all the components ofl are inde-
pendent and so their dynamics must be specified. The
condition is the mass-shell constraint,

1

2r2
P22r2Pr

25
1

4
~Z̄Z!25M2R2. ~34!

There exist further independent components ofl for most
values ofp. These may be fixed by fixing the values of a s
of twistor bilinears

f i[Z̄TiZ ~35!

where (Ti) Ȧ
B are some constant matrices which transform

the (1
2 , 1

2 ) of SO(p21,2). The number of independentf i

that must be set depends onp. In an action, these will be
constrained to valuesmi . For example, using Eq.~34! the
mass-shell constraint isfT5152MR. So the complete
twistor action takes the simple form

L5 i Z̄~]2 iuiTi !Z2uimi ~36!

where theui are Lagrange multipliers. This action is equiv
lent to Eq.~16!. It has several important features:

~1! The action is manifestlySO(p21,2) invariant and has
a quadratic kinetic term. It has the structure of a world-li
gauge theory with sources. The ‘‘gauge fields’’ui are non-
dynamical since there is no field strength in one dimensi

This statement can be made somewhat more precise
noting that Eq.~32! implies that the Poisson brackets~which
will become commutators in the quantized theory! are

$ZA ,Z̄Ḃ%PB522iH A
Ḃ ~37!

with all other brackets vanishing, and so

$f i ,f j%PB522i Z̄@Ti ,Tj #Z. ~38!
0-4
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Since the set of constraints under Poisson brackets form
Lie algebra, the set ofTi form one as well, and this algebra
invariant underSO(p21,2). This guarantees that the actio
~36! indeed has a gauge symmetry.
itl

r

a

o
o

n

B
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a ~2! The gauge group contains aU(1) factor correspond-
ing to the mass-shell constraintT51, m52MR. The rest of
the group may be calculated explicitly for smallp by con-
structing thef i ; they are
p 1 2 3 4 5 6 7

dimZ0 2 2 4 4 8 8 16
Nf 1 0 1 0 3 2 9

Group U(1)2 U(1) U(1)2 U(1) U(1)3SU(2) U(1)3? U(1)3SU(2)3?
ng

li-

of
out
and
on
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sh,
for
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m-
du-
The final two are conjectured but have not been explic
calculated.

This is related to the result of@6,7# for AdS5. In that case,
the 8-component spinors were decomposed into a pai
4-component spinors of the stability groupH5SO(4,1) in-
dexed byI ,J51,2, and

~Ti !aI
bJ5~s i ! I

JC a
b. ~39!

@The a,b areSO(4,1) spinor indices.#
~3! This twistor Lagrangian can be quantized following

procedure similar to that used in@7,9#, leading to solutions
which transform in representations ofSO(p21,2).

~4! For i 5” 0, Thef i may be chosen to be independent
the momenta. In these cases it is not clear what meaning
could assign to a nonzeromi . The analogous quantities i
@6,7# are all zero.

~5! The Lagrange multipliersui can be integrated out to
give

L8~k!5 i Z̄~]1 iT•m!Zuk1E dq

2p
~Z̄TiZ!uk1q~Z̄TiZ!uk2q

~40!

which is therefore equivalent to Eq.~36!. ~This can also be
y

of

f
ne

seen by explicitly resumming Feynman diagrams involvi
the ui .!

The actions~36! and~40! represent a considerable simp
fication over their classical counterpart~16!. Because they
have leading quadratic terms and manifestG-symmetry, their
quantum solutions automatically fill out representations
the isometry group. A similar construction can be carried
for an arbitrary coset manifold, or even a supercoset,
~similarly to @9#! can be used to construct string actions
these spaces. Since the known superstring actions are m
festly invariant under the isometries, it is likely that the
systems will be amenable to a twistor interpretation wh
would allow their quantization and analysis, including inte
actions with Ramond-Ramond and Neveu-Schwarz ba
ground fields.
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