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Twistors and actions on coset manifolds
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Particle and string actions on coset spaces typically lack a quadratic kinetic term, making their quantization
difficult. We define a notion of twistors on these spaces, which are hypersurfaces in a vector space that
transform linearly under the isometry group of the coset. By associating the points of the coset space with these
hypersurfaces, and the internal coordinates of these hypersurfaces with momenta, it is possible to construct
manifestly symmetric actions with leading quadratic terms. We give a general algorithm and work out the case
of a particle on Adg explicitly. In this case, the resulting action is a world-line gauge theory with solitoes
gauge group depending @), which is equivalent to a nonlocal world-line model.

PACS numbgs): 04.62:+v, 02.40—k, 11.10.Kk, 11.30.Ly

[. INTRODUCTION very complicated coset actions.
We demonstrate this construction for a particle on AdS
The standard action for a particle or string on a coseflwistors are built in a vector space which transforms in the
spaceG/H is manifestly invariant unde® but does not have spinor representation c8Q(p—1,2). A world-line gauge
a quadratic kinetic term. This obstructs the usual quantizatheory can be built out of these twistors which is equivalent
tion procedure. Moreover, the isometries are nonlinearly reto the ordinary action for a massive particle on the coset.
alized on the coordinates and so even if the action werdhis theory is equivalent to a nonlocalmodel whose target
guadratic, the fields would not automatically fornGarep-  space is the vector space. This construction can probably be
resentation. This makes it difficult to directly study systemsgeneralized to the study of particles and strings on anti—de
such as strings on Ac¢$2><sd—p—2 which are important for ~ Sitter superspaces such as those important for the AdS-CFT

understanding holography—3]. correspondence.
A hint of how to work around this comes from twistors.
These were originally set up by Penrose to study conformal [l. THE TWISTOR CONSTRUCTION

Minkowski space[4], and have since been generalized to ) o _ _
conformal superspacgs] and AdS [6,7]. In all of these We begin by describing cosets in a language which natu-
cases, twistors associated a hypersurface in some vectGily leads to twistors. A point in a cos&/H is associated
space which transforms linearly under the isometry groupVith & hypersurface in the group manifold by the relation
with every point of the coset space. The internal coordinates
of these hypersurfaces were associated with momenta and

constrained quantities. A - ~ .
This construction can be generalized to arbitrary coseirhex which generate distinap(x) are given by
x:=v(£)Xo, 2)

d(xe G)={xh:heH}. (1)

manifolds G/H. A mapping between points of the coset and
hypersurfaces in a vector space can be constructed which

naturally mimics the geometric structure of the coset. The A . - .
y g herexye G is the origin of the coset spadan arbitrary

isometries, for example, can easily be extracted from the . . : . )
linear isometry transfgrmations of t?l/e twistors point), and¢ is a collective coordinate oB/H. The function

If the vector space is also a Hilbert spdte. posesses an v(&) is a coset representative, which for our purposes is a

appropriate inner producthen one can naturally construct fimctlon from. the coordllna}tes to the group such thém).
objects out of twistors which are manifestly invariant under_.1 an.dﬁ;bov IS 1'1.' so distinct hypersurfaces are ass.omated
the coset isometries. Using the twistor mapping, these can B’é'th C_"St'nCt coorqlmates. A particular form af(£) which
written as (typically fairly complicated functions of the W& Will often use is

coset coordinates and the internal coordinates of the twistor. v(&)=efKh(g) 3)
Since these quantities are manifes@yinvariant, one can '

construct actions out of them which are equivalent to ordinyhere theK are the generators @ not in H, andh(¢) is
nary coset actions if the internal coordinates are identifiedomeH-valued function chosen to simplify the resulting ex-
with momenta. Since the twistor mapping is typically very pression.

complicated, very simple twistor actions are equivalent to  ysing this function, we can associate coset coordinates

with hypersurfaces in the group manifold in a natural way:

*Email address: zunger@leland.standord.edu H(E)= p(X(£))=0v(&) p(Xo). (4

The results below apply both to cosets and supercosets, with no
additional restrictiongreductivity, symmetry, etg.except where These hypersurfaces are naturally invariant under the right
explicitly noted. action ofH.
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Such a construction cannot always be globally performedwhereuv (£) is the A-representation of the coset representa-
The problem is analogous to the selection of coordinates otive, and Z; is an H-invariant hypersurface im. [The

a sphere 3=S0(3)/SO(2). Technically, it arises because A -representation of(x,).] As before, the mapping must
the coset representative(x) is a section of the principal pe 1-1 for the set ofZ(£) to be isomorphic to the coset,
bundle G—G/H and so in general cannot be globally de-\yhich means that the codimension 8§ in A must be no
fined. We may resolve this issue analogously to the problenkss than the dimension of the coseftcodim Z( )

of coordinates by coverings/H with patches(open sets =codimZ, for any £ sincev(X) is surjective] We will also
whose intersections are contractibland performing this restrict ourselves to dirg,>0, since otherwise2 would be
construction on each open set. Transition functions on intery mapping of points onto points and so would lose several of
sections are naturally induced from the transition functiongpe interesting features which we will discover below.

of the principalG-bundle of erichv is a section. It is also We next write Z, explicitly as a linear function of some
necessary to choose a differeqf for each patch, which is coordinates onA. (These coordinates may be curvilinear,
analogous to using the north and south poles as origins of thalthough we do not consider such possibilities in depth here.
two coordinate systems orf.SThe result of such a construc- Then using the explicit form of the coset representatifg),
tion will (as we will see beloyvbe a twistor bundle rather we may write eachZ(¢) as a function of the coordinates
than a global twistor space, but this will not introduce anyand the internal coordinatesof Z, which is linear in\ and
unfamiliar complexities. typically fairly complicated iné.

Using this construction, the geometry on the coset space This process has two advantages. First, sinceZhare
may be defined by the invariances of the Cartan fdrm given as explicit functions of the coset coordinates, it is
=v~!dv. This form is canonically separated into=E-K  straightforward to use Eq(6) to compute the geometric
+Q-H, whereE is the vielbein and} the H-connection. properties of the space. This is especially valuable in the case
(This generalizes the spin connection of Minkowski space.of complicated cosets such as A)dssd‘p superspace,
When G is semisimple, this can be contracted with a re-where traditionaldifferential-equationmethods of calculat-
stricted Cartan-Killing metric to give a metric on the coset, ing isometries are very difficult. Second, sintds a Hilbert

space there is a natural continuous and complete inner prod-

ghr= " BLALS, (5 uct of twistors which is manifestly invariant under the action

of G. This allows one to easily construct quantities with a
where the indicesA and B run over only the cosetK) very complicated dependence é@and\ which are invariant
generatorsof G. In the more general cagwhich includes underG. This invariance persists even thoulgiC G is typi-
Minkowski space the procedure is somewhat more subtle.cally nonlinearly realized on the coset space(as$ we will
For some groups at least, there is an invariant symmetrido late) we identify thex with some internal parameters of
two-form which may take the place of the Cartan-Killing a system such as momenta, it is possible to use these invari-
metric 5; however, there is no general existence proof nor isants to construct very simple twistor-based actions which are
there a method of computing such forms. In this case onequivalent to very complicated coordinate-space actions.
assumes that the transformations which lead to covariant As the preceding discussion was somewhat abstract, it is
transformations of th&-components of the Cartan form will useful to consider some explicit examples. We begin with

become isometries of the coset spaces. the case of conformal Minkowski spa&(3,2)/1SO(3,1)
The isometries of this space are given implicitly by the XD, whereD is the dilatation operator. We choose as our

action of G on the coset representative: representation the 4-component spinor representation of

SO(3,2), which decomposes into a 2-component spinor and
o6& 6v(&)=qu(é), (6) a 2-component conjugate spinor B0O(3,1) of conformal

weights$ +1/2. In this representation, a group element has

whereg e G. This implies that the form

8H(E)=gb(£). (7) LtiDse  —iK,,
It is straightforward to compute the actual transformations of 9= _ipee e E 5% ©
the £ from this relationship if we write Eq(7) in an explicit B 278

representation. This motivates us to define twistors to be ex-
plicit group representations of these hypersurfagds).  and the initial hypersurfacg, has the form
Specifically, if we represent the group on a vector spacea

twistor is a mapping of coordinates krinvariant hypersur-

faces inA given by Zy= , (10

Z(§)=v(£) 2o, ®)

3Although we use spinorial representations here, this is by no
2This procedure is discussed in detail[B]. means a general feature of twistors.
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where thea (d) are (conjugate spinor indices ofSO(3,1) nates, there is a somewhat natural momentum interpretation.
and\ andu are complex. The stability groug is generated We Wwill see more of this construction later.

by theL, K, andD. Lorentz invariance implies that &, has

any point withA #0, it must contain all such points, and IIl. TWISTORIZATION OF AdS »

likewise for w. Thus the dimension constraint<@im Z, ,

<4 requires that exactly one of the two be independent. W& now turn to the case of particles on AGSSO(p

Without loss of generality, we choogeand letu be alinear  —1,2)/SO(p—1,1). The ordinary world-line action for these
function thereof. The remaining part ¢i-invariance then Particles is manifestiys-invariant but does not have a qua-
requiresu=0. dratic kinetic term, so it is useful to try to rephrase this in

Now let us choose the canonical coset representative terms of twistors. This is reasonable since the first-order ac-
tion
b ( 1 0)
v(X)=e X = . . (11 1 1
_iygaa 1] _ 2_ 2p2 2p2
ix L=5P-ox+P,dp+u z—sz —p’P;—m°R?|  (16)

The twistor mapping is now

contains only terms of the for®- dx, which are similar to
)‘_a ) (12 those found in the conformal Minkowski actigh3), and a
—ix®\,)’ constraint term which i&-invariant although not manifestly
so. In a twistor construction one hopes that this can be re-
This is the familiar Penrose twistor formula] We will not  written in a manifestly symmetriéand preferably simp)e
discuss isometries and invariants in this case, saving thatay, and we will see that this is indeed the case.
instead for the more detailed example of Ad&low. Twistorization must begin  with a choice of
It is worth noting that this procedure was by no meansG-representation. The two simplest choices are the funda-
unique. The freedoms of choice are in the selection of amental and the spinor. The fundamental has simpler group
appropriate coset representat{venich will typically be de-  generators, but since its dimension B+1) such twistors
termined by algebraic simplicity, subject to the requirementwould have only one internal coordinate and so momenta
that Z(¢) is 1-1] and in the choice of the initial hypersurface could not be encoded by the twistor. Therefore we use the
Zy. spinor representation, which has complex dimension
We can also naturally ask about the invariants which may2l(P*1/2=2d. The group elements in this representatiorf are
be constructed out of these twistors. The simplest world-line
action which one may construct out of these twistors is L.+ L1Dg, —iK
B 2 B
clearly g s=

Z(x)z(

. _ T a7
_ —ipe —L%%—3Dd%
L=1ZZ, (13

TheK andP generate conformal transformations and confor-

where contraction has been performed with the standarga| momentum, which are related to AdS conformal trans-
spinor metric. If we substitute in Eq12), and write formations and momenta by

then this action reduces to the simple form
P=(K+P)/2. (18
S:ij d7P-dx (15 .
The L* generate the Lorentz group and tBeare dilata-

tions. The stability grougd is generated by the’s and the
which is the usual world-line action for a massless partiele. -, y grouptis g y

is automatically null in this case because the spinor metri S . .
€*P is antisymmetric. Massive actions cannot easily be writ- First we must choose dfl-lnvarlant initial hypersurface.
ten in terms of these twistors, which is unsurprising since weWe can write this surface in the form

are here working in conformal Minkowski space.

In this case we have put the internal coordinatg®of the
twistor to use as momenta of the patrticle. It is not clear how
general such an interpretation is; clearly a precondition for
the possibility of so doing is that the twistor bunditee set
of these hypersurface8(x) over every point, with open sets
as discussed aboyeontains the tangent bundle 6/H as a  “Our index notation ig=0 . ..p—2 is anSQ(p—2,1) (Lorent
subbundle. Even when this is not possible, the procedureector index,,8 anda,3=1 .. .d are Lorentz spinor and conju-
above will turn the\ , into Lagrange multipliers for various gate spinor indices, respectively,B andA,B=1 . .. 2d are spinor
guantities; when the quantities are derivatives of the coordiand conjugate spinor indices 8O(p—1,2).

)\Oa

Zh= : (19

7y
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As in the Penrose casksinvariance requires that i£, con- 2y Zy=Nypto+ 1Ny (31)
tains any points with\y# 0, then it contains all such points,

and similarly for u,. Since we want &dim Zo<2d—p,  Anatural first guess for a particle action is

only one of these two should be independent of the other.

Without loss of generality we choosg to be independent, _

and fix uq by L=1Z0Z. (32

p§=F*Nost+GPNop (200 This matches the kinetic term in E(L.6) if we identify com-
. - ponents ofA with the momenta as follows:
for someF *# andG“# which parametrize our twistorization.

K-invariance then requires that . NE

Paa=2N N,
F'yMF—i-G'yMa: Yu (21
_ T
Fy,G+Gy,F=0 (22 P,= FD\G)\_)\G)\]' (33
] p
where they;* are the Dirac matrices fd8O(p—2,1). For _
simplicity we will consider the casé=0, so In Eq. (32), however, all the components af are inde-
pendent and so their dynamics must be specified. The first
A Ao condition is the mass-shell constraint,
Zo=| — |. (23
G*\op
. . L 1
A simple choice of coset representative is —|:>2—p2|:>2 (zz 2=M?2R?. (34)

p1/2 0

_|pl/2X p—llz); (24) There exist further independent components\ofor most

v(x*,p)=e* Pablogp— (
values ofp. These may be fixed by fixing the values of a set

using this, and defining = p2\,, the twistor is of twistor bilinears
A ha ) H=ZT.Z (35)
Zh(x*p)=| .. . 25 i=ZT,
(x%.p) —iX**\,+p G\ @9 I I
As a check, the isometries of the space can be cr:xlcul::xtevcxfhere (T))a” are some constant matrices which transform in
from e (3,3) of SO(p—1,2). The number of independex
that must be set depends pnlIn an action, these will be
52ZR=g"z 2B, (26)  constrained to valuesy,. For example, using Eq34) the
) ) . mass-shell constraint ishr_;=2MR. So the complete
Varying both sides of Eq(25), one finds twistor action takes the simple form
1 : o
— B B -yapB i1 aBy - = L .
5)\11_ La +2D5a +K,mx )\B Ip KaaG )\5 [,=|Z((?_|U|Ti)z_ulmi (36)
(27)

where theu' are Lagrange multipliers. This action is equiva-
lent to Eq.(16). It has several important features:

(1) The action is manifestl$ O(p—1,2) invariant and has
a quadratic kinetic term. It has the structure of a world-line

and so

5Xﬁa: P&a_ X&BL'Ba_rdBX‘ﬂa+ Dxda

aBy . yBa_ —2paa gauge theory with sources. The “gauge fields" are non-
XK i pK (28) dynamical since there is no field strength in one dimension.
Sp=—Dp—2px-K (29) This statement can be made somewhat more precise by

noting that Eq(32) implies that the Poisson brackétghich

which are the well-known isometries of anti—de Sitter spaceWill become commutators in the quantized thgcaye
Geometric invariants may now be constructed by con-

tracting Z with the SO(p—2,1) metric (24 ,EB}PB: —2iH B (37)
0 ¢ . -
HAB= =5 0 (30) with all other brackets vanishing, and so
Ca
where( is the charge conjugation matrix, so {di,¢}pe=—2iZ[ T, T|]1Z. (38
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Since the set of constraints under Poisson brackets forms a (2) The gauge group containsli(1) factor correspond-
Lie algebra, the set off; form one as well, and this algebra is ing to the mass-shell constraifi= 1, m=2MR. The rest of
invariant undelSO(p—1,2). This guarantees that the action the group may be calculated explicitly for smallby con-

(36) indeed has a gauge symmetry. structing theg; ; they are

p 1 2 3 4 5 6 7
dim Z, 2 2 4 4 8 8 16

Ny 1 0 1 0 3 2 9
Group U(1)? u(1) U(1)? u(1) U(1)xSU(2) u(1)3? U(1)xSU(2)3?

The final two are conjectured but have not been explicitlyseen by explicitly resumming Feynman diagrams involving
calculated. theu'.)

This is related to the result ¢6,7] for AdSs. In that case, The actiong36) and(40) represent a considerable simpli-
the 8-component spinors were decomposed into a pair dfcation over their classical counterpd6). Because they
4-component spinors of the stability grotp=SO(4,1) in-  have leading quadratic terms and maniféstymmetry, their

dexed byl,J=1,2, and guantum solutions automatically fill out representations of
b b the isometry group. A similar construction can be carried out
(Tar"=(0i)"Cq’. (39 for an arbitrary coset manifold, or even a supercoset, and

(similarly to [9]) can be used to construct string actions on
these spaces. Since the known superstring actions are mani-
festly invariant under the isometries, it is likely that these
. . : systems will be amenable to a twistor interpretation which
which transform in representations 8(p—1,2). would allow their quantization and analysis, including inter-

(4) Fori+0, The; may be chosen to be independent of . i\ \vith Ramond-Ramond and Neveu-Schwarz back-
the momenta. In these cases it is not clear what meaning O'Zfround fields.

could assign to a nonzenm, . The analogous quantities in
[6,7] are all zero. '

(5) The Lagrange multipliersi' can be integrated out to ACKNOWLEDGMENTS
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