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Quasinormal modes of AdS black holes and the approach to thermal equilibrium
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We investigate the decay of a scalar field outside a Schwarzschild anti–de Sitter black hole. This is deter-
mined by computing the complex frequencies associated with quasinormal modes. There are qualitative dif-
ferences from the asymptotically flat case, even in the limit of small black holes. In particular, for a given
angular dependence, the decay is always exponential—there are no power law tails at late times. In terms of the
AdS-CFT correspondence, a large black hole corresponds to an approximately thermal state in the field theory,
and the decay of the scalar field corresponds to the decay of a perturbation of this state. Thus one obtains the
time scale for the approach to thermal equilibrium. We compute these time scales for the strongly coupled field
theories in three, four, and six dimensions, which are dual to string theory in asymptotically AdS spacetimes.

PACS number~s!: 04.70.2s, 04.50.1h, 11.15.2q, 11.25.Hf
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I. INTRODUCTION

It is well known that if you perturb a black hole, th
surrounding geometry will ‘‘ring,’’ i.e., undergo damped o
cillations. The frequencies and damping times of these os
lations are entirely fixed by the black hole and are indep
dent of the initial perturbation. These oscillations are sim
to normal modes of a closed system. However, since the
can fall into the black hole or radiate to infinity, the mod
decay and the corresponding frequencies are complex. T
oscillations are known as ‘‘quasinormal modes.’’ For bla
holes in asymptotically flat spacetimes, they have been s
ied for almost 30 years@1,2#. The radiation associated wit
these modes is expected to be seen with gravitational w
detectors in the coming decade. Motivated by inflation,
quasinormal modes of black holes in de Sitter space h
recently been studied@3,4#.

For spacetimes which asymptotically approach anti–
Sitter ~AdS! spacetime, the situation is slightly different.
the absence of a black hole, most fields propagating in A
spacetime can be expanded in ordinary normal modes.
cosmological constant provides an effective confining b
and solutions only exist with discrete~real! frequencies.
However, once a black hole is present, this is no longer
case. The fields can now fall into the black hole and dec
There should exist complex frequencies, characteristic of
black hole, which describe the decay of perturbations outs
the horizon. We will compute these quasinormal frequenc
below for spacetimes of various dimensions.

The quasinormal frequencies of AdS black holes hav
direct interpretation in terms of the dual conformal fie
theory~CFT! @5–8#.1 According to the AdS-CFT correspon

*Email address: gary@cosmic.physics.ucsb.edu
†Email address: veronika@cosmic.physics.ucsb.edu
1The importance of these modes in AdS spacetime was inde

dently recognized in@9#, but they were not computed. They we
computed in@10#, but only for a conformally invariant scalar fiel
whose asymptotic behavior is similar to flat spacetime. The con
ing behavior of AdS spacetime is crucial for the AdS-CFT cor
spondence.
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dence, a large static black hole in asymptotically AdS spa
time corresponds to an~approximately! thermal state in CFT.
Perturbing the black hole corresponds to perturbing this th
mal state, and the decay of the perturbation describes
return to thermal equilibrium. So we obtain a prediction f
the thermalization time scale in the strongly coupled CFT
seems difficult to compute this time scale directly in CF
Since the system will clearly not thermalize in the free fie
limit, at weak coupling, this time scale will be very long an
depend on the coupling constant. In the limit of strong co
pling, it seems plausible that the time scale will remain no
zero and be independent of the coupling. This is because
initial state is characterized by excitations with size of t
order of the thermal wavelength, so causality suggests
the relaxation time scale should also be of the order of
thermal wavelength.

The results we obtain are consistent with this expectat
A black hole in asymptotically AdS spacetime is determin
by two dimensionful parameters: the AdS radiusR and the
black hole radiusr 1 . The quasinormal frequencies must b
functions of these parameters. For large black holes,r 1

@R, we will show that there is an additional symmet
which ensures that the frequencies can depend only on
black hole temperatureT;r 1 /R2. However, for smaller
black holes, this is no longer the case. Whereas the temp
ture begins to increase as one decreasesr 1 belowR, we find
that the~imaginary part of the! frequency continues to de
crease withr 1 . This is different from what happens for as
ymptotically flat black holes. An ordinary Schwarzschi
black hole has only one dimensionful parameter, which c
be taken to be the temperature. Its quasinormal frequen
must therefore be multiples of this temperature. Thus sm
black holes in asymptotically AdS spacetime donot behave
like black holes in asymptotically flat spacetime. The reas
is simply that the boundary conditions at infinity a
changed. More physically, the late time behavior of the fi
is affected by waves bouncing off the potential at larger.

Another difference from the asymptotically flat case co
cerns the decay at very late times. For a Schwarzschild b
hole, it is known that the exponential decay associated w
the quasinormal modes eventually gives way to a power
tail @11#. This has been shown to be associated with
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GARY T. HOROWITZ AND VERONIKA E. HUBENY PHYSICAL REVIEW D62 024027
scattering of the field off the Coulomb potential at larger. As
we will discuss later, for asymptotically AdS black hole
this does not occur.

We will compute the quasinormal frequencies f
Schwarzschild-AdS black holes in the dimensions of inter
for the AdS-CFT correspondence: four, five, and sev
We will consider minimally coupled scalar perturbations re
resenting, e.g., the dilaton. This corresponds to a partic
perturbation of CFT. For example, for AdS5, it corresponds
to a perturbation of an~approximately! thermal state in supe
Yang-Mills theory onS33R with ^F2& nonzero. In the lin-
earized approximation we are using, the spacetime metr
not affected by the scalar field. So the perturbation of
thermal state does not change the energy density, which
mains uniform over the sphere. The late time decay of
perturbation is universal in the sense that all solutions for
dilaton with the same angular dependence will decay at
same rate, which is determined by the imaginary part of
lowest quasinormal frequency. Different perturbations, c
responding to different linearized supergravity fields, w
have different quasinormal frequencies and hence deca
different rates. Although we work in the classical supergr
ity limit, our results would not be affected if one include
small semiclassical corrections such as black holes in e
librium with their Hawking radiation.

A brief outline of this paper is the following. In the nex
section we review the definition of quasinormal modes a
their relation to the late time behavior of the field, and der
some of their properties using analytic arguments. The
merical approach we use to compute the complex frequ
cies is described in Sec. III. In the following section w
discuss the results for both large black holes,r 1@R, and
intermediate size black holes,r 1;R. In Sec. V we consider
the limit of small black holesr 1!R. Although there is a
striking similarity between some of our results and so
results obtained in the study of black hole critical phenom
@12#, we will argue that this is probably just a numeric
coincidence. The conclusion contains some speculat
about the CFT interpretation of the quasinormal frequenc
in the regime where they do not scale with the temperat
In the Appendix, we give some more details on our nume
cal calculations.

II. DEFINITION OF QUASINORMAL MODES
AND ANALYTIC ARGUMENTS

Since we are interested in studying AdS black holes
various dimensions, we begin with thed-dimensional
Schwarzschild-AdS metric

ds252 f ~r !dt21 f ~r !21dr21r 2dVd22
2 , ~2.1!

where

f ~r ![
r 2

R2
112S r 0

r D d23

. ~2.2!

R is the AdS radius, andr 0 is related to the black hole mas
via
02402
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M5
~d22!Ad22r 0

d23

16pGd
, ~2.3!

where Ad2252p (d21)/2/G„(d21)/2… is the area of a unit
(d22)-sphere. The black hole horizon is atr 5r 1 , the larg-
est zero off, and its Hawking temperature is

T5
f 8~r 1!

4p
5

~d21!r 1
2 1~d23!R2

4pr 1R2
. ~2.4!

We are interested in solutions to the minimally coupl
scalar wave equation

¹2F50. ~2.5!

If we consider modes

F~ t,r ,angles!5r ~22d!/2c~r !Y~angles!e2 ivt, ~2.6!

whereY denotes the spherical harmonics onSd22, and intro-
duce a new radial coordinatedr* 5dr/ f (r ), the wave equa-
tion reduces to the standard form

@] r
*

2 1v22Ṽ~r * !#c50. ~2.7!

The potentialṼ is positive and vanishes at the horizo
which corresponds tor * 52`. It diverges atr 5`, which
corresponds to a finite value ofr * .

To define quasinormal modes, let us first consider the c
of a simple Schwarzschild black hole. Since the spacetim
asymptotically flat, the potential now vanishes near infini
Clearly, a solution exists for eachv corresponding to a wave
coming in from infinity, scattering off the potential and bein
partly reflected and partly absorbed by the black hole. Q
sinormal modes are defined as solutions which are pu
outgoing near infinityF;e2 iv(t2r

*
) and purely ingoing

near the horizonF;e2 iv(t1r
*

). No initial incoming wave
from infinity is allowed. This will only be possible for a
discrete set of complexv called the quasinormal frequencie

For the asymptotically AdS case, the potential diverges
infinity, so we must require thatF vanish there. In the ab
sence of a black hole,r * has only a finite range and solution
exist for only a discrete set of realv. However, once the
black hole is added, there are again solutions with any va
of v. These correspond to an outgoing wave coming fr
the ~past! horizon, scattering off the potential and becomi
an ingoing wave entering the~future! horizon. Quasinormal
modes are defined to be modes with only ingoing waves n
the horizon. These again exist for only a discrete set of co
plex v.

It should perhaps be emphasized that these modes ar
the same as the ones that have recently been compute
connection with the glueball masses@13#. There are severa
differences: First, the background for the glueball ma
calculation is not the spherically symmetric AdS black ho
but an analytic continuation of the plane-symmetric A
black hole. Second, because of the analytic continuation,
horizon becomes a regular origin and the boundary con
tions there are not the analytic continuation of the ingo
7-2
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QUASINORMAL MODES OF AdS BLACK HOLES AND . . . PHYSICAL REVIEW D62 024027
wave boundary condition imposed for quasinormal mod
Finally, the glueball masses are real quantities, while, as
have said, the quasinormal frequencies will be complex. T
makes them more difficult to compute numerically.

One can show@14,2# that the complex quasinormal fre
quencies determine the falloff of the field at late times. T
basic idea is to start by writing the solution to the wa
equation in terms of the retarded Green’s function and ini
data on a constant-t surface. One then rewrites the Green
function in terms of its Fourier transform with respect tot.
The quasinormal modes arise as poles of the Green’s f
tion in the complex frequency plane, and their contributio
to the solution can be extracted by closing the contour wit
large semicircle near infinity.

For a black hole in asymptotically flat spacetimes, Pr
@11# showed that after the exponential decay due to the q
sinormal ringing, the field will decay as a power lawF
;t2(2l 13), wherel is the angular quantum number. This h
been seen explicitly in numerical simulations@15#. Math-
ematically, this is due to a cut in the Green’s function alo
the negative imaginary frequency axis. More physically, t
behavior is due to scattering off the weak Coulomb poten
near infinity. For the case of a black hole in asymptotica
AdS spacetime, the potential diverges at infinity and v
ishes exponentially near the horizon. Chinget al. @14# have
analyzed the late time behavior of a broad class of w
equations with potentials. They show that there are no po
law tails for a potential which vanishes exponentially.
there will be no power law tails for black holes in asym
totically AdS spacetime.

For a black hole with radius much smaller than the A
radius, one might expect an intermediate time regime wh
one sees power law behavior before the new boundary
ditions at infinity become important. However, this wou
occur only if one starts with large quasinormal modes w
v;1/r 1 associated with a Schwarzschild black hole. W
will see that the lowest modes of a Schwarzschild-AdS bl
hole are much smaller and their exponential decay is so s
that it eliminates the intermediate time power law behavi

The quasinormal frequencies will in general depend
the two parameters in the problem:R,r 0 . By rescaling the
metric,dŝ25l2ds2, and rescaling the coordinatest̂5lt and
r̂ 5lr , the new metric again takes the form~2.1! with res-
caled constantsR and r 0 . Since the wave equation~2.5! is
clearly invariant under this constant rescaling of the met
we can use it to set, e.g.,R51. This rescaling is possible fo
any metric and physically just corresponds to a choice
units. In our case, we measure all quantities in units of
AdS radius. The quasinormal frequencies can still be a
trary functions ofr 0 .

We now show that for large black holes,r 0@R, the fre-
quencies must be proportional to the black hole temperat
This is a result of an independent scaling one can do in
limit. For large black holes, the region outside the horizon
the Schwarzschild-AdS metric~2.1! becomes approximatel
plane symmetric:

ds252h~r !dt21h~r !21dr21r 2dxidxi , ~2.8!
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where

h~r ![
r 2

R22S r 0

r D d23

. ~2.9!

For this metric one can rescaler 0 by a pure coordinate trans
formation: t5a t̂, xi5ax̂i , r 5 r̂ /a for constanta. This does
not rescale the overall metric or the AdS radiusR. The ho-
rizon radiusr 1

d215R2r 0
d23 gets rescaled byr 15 r̂ 1 /a. Of

course, under this coordinate transformation of the met
solutions of the wave equation are related by the same c
dinate transformation. For solutions which are independ
of xi ~the analogue of thel 50 modes!, we havee2 iv(r 1)t

5e2 iv( r̂ 1) t̂, which impliesv(r 1)}r 1 . Since the Hawking
temperature of the metric~2.8! is also proportional to the
horizon radius,

T5
d21

4p

r 1

R2
, ~2.10!

we see that the frequencies must scale with the tempera
for large black holes. For solutions proportional toeikix

i
, this

scaling argument impliesv(ar1 ,aki)5av(r 1 ,ki). So if
r 1

2 @kik
i , one can rescale so thatk2 is negligibly small. The

above argument then shows thatv still scales with the tem-
perature. One can then rescale back tor 1@R to apply to
large black holes. In other words, for anyki , the quasinor-
mal frequencies scale with the temperature in the limit
large temperatures,T2@k2. This argument does not apply t
black holes of the order of the AdS radius, and indeed
will find that the quasinormal frequencies do not scale w
the temperature in this regime. But it does confirm the
pectation that the approach to thermal equilibrium in the d
field theory should depend only on the temperature~at least
for large temperature!.

Since we want modes which behave likee2 iv(t1r
*

) near
the horizon, it is convenient to setv5t1r * and work with
ingoing Eddington coordinates. The metric for
Schwarzschild-AdS black hole ind dimensions in ingoing
Eddington coordinates is

ds252 f ~r !dv212dv dr1r 2dVd22
2 , ~2.11!

wheref is again given by Eq.~2.2!. The minimally coupled
scalar wave equation~2.5! may be reduced to an ordinary
second order, linear differential equation inr by the separa-
tion of variables:

F~v,r ,angles!5r ~22d!/2c~r !Y~angles!e2 ivv. ~2.12!

This yields the following radial equation forc(r ):

f ~r !
d2

dr2
c~r !1@ f 8~r !22iv#

d

dr
c~r !2V~r !c~r !50,

~2.13!

with the effective potentialV(r ) given by (R51)
7-3
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GARY T. HOROWITZ AND VERONIKA E. HUBENY PHYSICAL REVIEW D62 024027
V~r !5
~d22!~d24!

4r 2
f ~r !1

d22

2r
f 8~r !1

c

r 2

5
d~d22!

4
1

~d22!~d24!14c

4r 2
1

~d22!2r 0
d23

4r d21
,

~2.14!

where

c5 l ~ l 1d23! ~2.15!

is the eigenvalue of the Laplacian onSd22. Note thatV(r ) is
manifestly positive ford>4.

Ingoing modes near the~future! horizon are described, o
course, by a nonzero multiple ofe2 ivv. Outgoing modes
near the horizon can also be expressed in terms of ing
Eddington coordinates viae2 iv(t2r

*
)5e2 ivve2ivr

* . Since

r * 5E dr

f ~r !
'

1

f 8~r 1!
ln~r 2r 1! ~2.16!

near the horizonr 5r 1 , the outgoing modes behave like

e2 iv~ t2r
*

!5e2 ivve2ivr
* 'e2 ivv~r 2r 1!2iv/ f 8~r 1!. ~2.17!

Sincev, r are good coordinates near the horizon, the o
going modes are not smooth (C`) at r 5r 1 unless
2iv/ f 8(r 1) is a positive integer. We show below that th
imaginary part ofv must be negative, so the exponent in E
~2.17! always has a positive real part. Thus the outgo
modes vanish near the future horizon, while the ingo
modes are nonzero there. However, we also show~in the
next section! that 2iv/ f 8(r 1) cannot be a positive intege
so the outgoing modes are not smooth atr 5r 1 .

We wish to find the complex values ofv such that Eq.
~2.13! has a solution with only ingoing modes near the ho
zon and vanishing at infinity. We will eliminate the outgoin
modes by first assuming the solution is smooth atr 5r 1 and
then showing that the allowed descrete values ofv are such
that 2iv/ f 8(r 1) is not an integer. The actual values ofv
must be computed numerically, but some general prope
can be seen analytically. For example, we now show
there are no solutions withiv pure real and 2iv, f 8(r 1). If
iv were real, then the equation would be real and the s
tions c would be real. If there were a local extremum
some pointr̃ , thenc8( r̃ )50 andc9( r̃ ) would have the same
sign asc( r̃ ). So if c were positive atr̃ , it would have to
increase asr increased. Similarly, if it were negative,
would have to decrease. In neither case, could it appro
zero asymptotically. We conclude that the solutions m
monotonically approach zero. Now if 2iv, f 8(r 1),c8(r 1)
has the same sign asc(r 1).2 So as one moves away from

2This is where the condition of no outgoing modes near the h
zon is used. If outgoing waves were present,f (r )c9(r ) would no
longer vanish atr 5r 1 andc8(r 1) need not have the same sign
c(r 1).
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the horizon, the solutions move farther away from zero a
hence can never reach zero asymptotically. This analytic
gument only applies if 2iv, f 8(r 1). But we will see nu-
merically that even without this restriction, there are no s
lutions with iv pure real.

A more powerful result can be obtained as follows. Mu
tiplying Eq. ~2.13! by c̄ and integrating fromr 1 to ` yields

E
r 1

`

drF c̄ d

dr S f
dc

dr D22ivc̄
dc

dr
2Vc̄cG50. ~2.18!

The first term can be integrated by parts without picking
a surface term sincef (r 1)50 andc̄(`)50. This yields

E
r 1

`

dr@ f uc8u212ivc̄c81Vucu2#50. ~2.19!

Taking the imaginary part Eq.~2.19! yields

E
r 1

`

dr@vc̄c81v̄cc̄8#50. ~2.20!

Integrating the second term by parts yields

~v2v̄ !E
r 1

`

dr c̄c85v̄uc~r 1!u2. ~2.21!

Substituting this back into Eq.~2.19!, we obtain the final
result

E
r 1

`

dr@ f uc8u21Vucu2#52
uvu2uc~r 1!u2

Im v
. ~2.22!

Sincef andV are both positive definite outside the horizo
this equation clearly shows that there are no solutions w
Im v.0. These would correspond to unstable modes wh
grow exponentially in time. There are also no solutions w
Im v50: All solutions must decay in time. In addition, Eq
~2.22! shows that the only solution which vanishes at t
horizon~and infinity! is zero everywhere. Since the equatio
is linear, we can always rescalec so thatc(r 1)51.

III. NUMERICAL APPROACH TO COMPUTING
QUASINORMAL MODES

To compute the quasinormal modes, we will expand
solution in a power series about the horizon and impose
boundary condition that the solution vanish at infinity.
order to map the entire region of interest,r 1,r ,`, into a
finite parameter range, we change variables tox51/r . In
general, a power series expansion will have a radius of c
vergence at least as large as the distance to the nearest
Examining the pole structure of Eq.~2.13! in the whole com-
plex r plane, we findd11 regular singular points, atr 50,
r 5`, and at thed21 zeros of f, one of which,r 5r 1 ,
corresponds to the horizon. At least ford54, 5, or 7, if we
use the variablex51/r and expand about the horizon,x1

i-
7-4



th

e

e

.

or
.

n
w

ear

-

-
olu-

of

om-

ing
s to
dix.

t

ve
ut-
,
re

ut-

lied

s.
ies

he

-

r-
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51/r 1 , the radius of convergence will3 reachx50, so that
we can use this expansion to consider the behavior of
solution asr→`.

In terms of our new variablex51/r , Eq. ~2.13! becomes

s~x!
d2

dx2
c~x!1

t~x!

x2x1

d

dx
c~x!1

u~x!

~x2x1!2
c~x!50,

~3.1!

where the coefficient functions are given by

s~x!5
r 0

d23xd112x42x2

x2x1
5

x1
2 11

x1
d21

xd1¯1
x1

2 11

x1
3

x4

1
1

x1
2

x31
1

x1
x2, ~3.2!

t~x!5~d21!r 0
d23xd22x322x2iv, ~3.3!

u~x!5~x2x1!V~x!. ~3.4!

The parameterr 0
d23 should be viewed as a function of th

horizon radius:r 0
d235(x1

2 11)/x1
d21. Sinces, t, andu are all

polynomials of degreed, we may expand them about th
horizon x5x1 : s(x)5(n50

d sn(x2x1)n, and similarly for
t(x) and u(x). It will be useful to note thats052x1

2 k, t0

52x1
2 (k2 iv), and u050, wherek is the surface gravity,

which is related to the black hole temperature~2.4! by

k5
f 8~r 1!

2
52pT. ~3.5!

Also, sinces0Þ0, x5x1 is a regular singular point of Eq
~3.1!.

To determine the behavior of the solutions near the h
zon, we first setc(x)5(x2x1)a and substitute into Eq
~3.1!. Then to leading order we get

a~a21!s01at052x1
2 a~ak2 iv!50, ~3.6!

which has two solutionsa50 anda5 iv/k. We see from
Eq. ~2.17! that these correspond precisely to the ingoing a
outgoing modes near the horizon, respectively. Since
want to include only the ingoing modes, we takea50. This
corresponds to looking for a solution of the form

c~x!5 (
n50

`

an~x2x1!n. ~3.7!

3For d54 andd55, one can show analytically that starting at t
horizon,x5x1 , the nearest pole is indeedx50. Ford57 we have
checked numerically that this is again the case.
02402
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Substituting Eq.~3.7! into Eq.~3.1! and equating coefficients
of (x2x1)n for eachn, we obtain the following recursion
relations4 for the an :

an52
1

Pn
(
k50

n21

@k~k21!sn2k1ktn2k1un2k#ak ,

~3.8!

where

Pn5n~n21!s01nt052x1
2 n~nk2 iv!. ~3.9!

Since the leading coefficienta0 is undetermined, this yields a
one-parameter family of solutions, as expected for a lin
equation.

The solutions to Eq.~2.5! in asymptotically AdS space
time areF;const andF;1/r d21 asr→`, which translates
into c;r (d22)/2 and c;r 2d/2, respectively. We are inter
ested in normalizable modes, so we must select only s
tions which satisfyc→0 as r→` ~or x→0). This means
that we require Eq.~3.7! to vanish atx50, which is satisfied
only for special~discrete! values ofv. @For all other values
of v, the solution will blow up,c(0)5`.] Thus in order to
find the quasinormal modes, we need to find the zeros
(n50

` an(v)(2x1)n in the complexv plane. This is done by
truncating the series after a large number of terms and c
puting the partial sum as a function ofv. One can then find
zeros of this partial sum and check the accuracy by see
how much the location of the zero changes as one goe
higher partial sums. Some details are given in the Appen

One can now easily show that 2iv/ f 8(r 1)5 iv/k cannot
be an integer. Ifv is pure imaginary andiv5ñk for some
integerñ, thenPñ50. This implies an additional constrain
on the coefficientsak , k50,...,ñ21, which will only be sat-
isfied if they vanish. In other words, the solution will beha
like (x2x1) ñ near the horizon corresponding to a pure o
going wave. However, sincec now vanishes at the horizon
Eq. ~2.22! implies thatc vanishes everywhere. So there a
no nontrivial solutions withiv/k equal to an integer. As we
saw in Sec. II, this means that if one wanted to include o
going modes near the~future! horizon, the solution would
not be smooth there.

IV. DISCUSSION OF RESULTS

The numerical procedure described above can be app
to both large black holes (r 1@R) and intermediate size
black holes (r 1;R). In this section we describe the result
We setR51 and decompose the quasinormal frequenc
into real and imaginary parts:

4Although the standard way of writing Eq.~3.1! is to set the
coefficient ofc9 to 1, which yields simpler-looking recursion rela
tions, the advantage of the present formulation is that sinces(x),
t(x), andu(x) are polynomials, their analytic expansions will te
minate after a finite number of terms, so that eachan will be given
in terms of a relatively small number of terms.
7-5
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TABLE I. The lowest quasinormal mode frequency for the four-, five-, and seven-dimens
Schwarzschild-AdS black hole forl 50 and some selected black hole~BH! sizes.

r 1

4D BH modes 5D BH modes 7D BH modes

v I vR v I vR v I vR

100 266.3856 184.9534 274.6655 311.9627 261.2 500.8
50 133.1933 92.4937 137.3296 156.0077 130.7 250.4
10 26.6418 18.6070 27.4457 31.3699 26.07 50.35
5 13.3255 9.4711 13.6914 15.9454 12.96 25.57
1 2.6712 2.7982 2.5547 4.5788 2.16 7.27
0.8 2.1304 2.5878 1.9676 4.1951
0.6 1.5797 2.4316 1.3656 3.8914
0.4 1.0064 2.3629 0.7462 3.7174
a
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v5vR2 iv I . ~4.1!

With the sign chosen in Eq.~4.1!, v I is positive for all qua-
sinormal frequencies.

In Table I, we list the values of the lowest quasinorm
mode frequencies forl 50 and selected values ofr 1 , for
four-, five-, and seven-dimensional Schwarzschild-A
black holes. For large black holes, both the real and
imaginary parts of the frequency are linear functions ofr 1 .
Since the temperature of a large black hole isT5(d
21)r 1/4p, it follows that they are also linear functions o
T. This is clearly shown in Figs. 1 and 2, wherev I andvR ,
respectively, are plotted as a function of the temperature
the four-, five-, and seven-dimensional cases. The dots,
resenting the quasinormal modes, lie on straight lin
through the origin. In Fig. 1, the top line corresponds to
d54 case, the middle line is thed55 case, and the bottom
line is thed57 case. Explicitly, the lines are given by

v I511.16T for d54,

v I58.63T for d55,

v I55.47T for d57. ~4.2!

FIG. 1. For large black holes,v I is proportional to the tempera
ture. The top line isd54, the middle line isd55, and the bottom
line is d57.
02402
l

e

or
p-
s
e

Notice from Table I that as a function ofr 1 , v I is almost
independent of dimension. The difference in these slope
almost entirely due to the dimension dependence of the r
tion betweenr 1 andT, Eq. ~2.10!. In contrast,vR does de-
pend on the dimension, and in Fig. 2, the order of the line
reversed:

vR510.5T for d57,

vR59.8T for d55,

vR57.75T for d54. ~4.3!

This linear scaling with the temperature is in agreement w
the general argument in Sec. II. According to the AdS-C
correspondence,t51/v I is the time scale for the approach
thermal equilibrium. Equations~4.2! constitute one of the
main results of this work.

For intermediate size black holes, the quasinormal f
quencies do not scale with the temperature. This is cle
shown in Fig. 3, which plotsv I as a function ofr 1 for d
54 black holes withr 1;1. To a remarkable accuracy, th
points continue to lie along a straight linev I52.66r 1 . The
dashed curve represents the continuation of the curvev I
511.16T shown in Fig. 1 to smaller values ofr 1 . ~For large

FIG. 2. For large black holes,vR is also proportional to the
temperature. The top line is nowd57, the middle line isd55, and
the bottom line isd54.
7-6
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QUASINORMAL MODES OF AdS BLACK HOLES AND . . . PHYSICAL REVIEW D62 024027
r 1 these two curves are identical.! It is not yet clear what
the significance of this linear relation is for the dual CF
Some speculations are given in Sec. VI. Since the quasi
mal frequencies can be computed to an accuracy much b
than the size of the dots in Fig. 3, one can check that
points actually lie slightly off the line. This is shown mor
clearly in the five-dimensional results in Fig. 4. Once aga
the dashed curve is the continuation of the curvev I
58.63T shown in Fig. 1 and the solid curve is the linev I
52.75r 1 that it approaches asymptotically.

The real part of the quasinormal frequencies are show
similar plots in Fig. 5 ford54 and Fig. 6 ford55. HerevR
approximates the temperature more closely than the b
hole size, but it is clear from Fig. 6 that it is not diverging f
small black holes.

We have so far discussed only the lowest quasinor
mode with l 50. We have also computed higher modes a
modes with nonzero angular momentum, but the numer
accuracy decreases as one increases the mode numbern or l.
So we restrict our attention to relatively small values ofn
and l.

For large black holes, in both four and five dimensio
we find that the low lying quasinormal modes are appro
mately evenly spaced inn. In particular, for r 15100,

FIG. 3. v I for intermediate black holes in four dimensions. T
solid line isv I52.66r 1 , and the dashed line isv I511.16T.

FIG. 4. v I for intermediate black holes in five dimensions. T
solid line isv I52.75r 1 , and the dashed line isv I58.63T.
02402
.
r-
ter
e

,

in

ck

al
d
al

,
-

v I(n)'411225n and vR(n)'541131n in four dimen-
sions, whereasv I(n)'731201n andvR(n)'1061202n in
five dimensions.

Increasing the angular momentuml mode has the surpris
ing effect of increasing the damping time scale (v I de-
creases! and decreasing the oscillation time scale (vR in-
creases!. This is shown in Fig. 7, wherevR ~smaller points!
andv I ~larger points! are plotted againstl for low values of
l.5 An important open question is the behavior ofv I as l
→`. It appears to decrease withl, but the general argumen
in Sec. II shows that it cannot become negative. Ifv I con-
tinues to decrease withl, then the late time behavior of
general perturbation will be dominated by the largestl mode.
The largel behavior ofv I is currently under investigation
Preliminary results indicate that the frequencies s
bounded away from zero. If this were not the case andv I
approached zero fast enough, then a general superpositio
all spherical harmonics could decay at late times only a
power law. However, even this would not be a problem
the AdS-CFT correspondence, since the decomposition
spherical harmonics can be done in the boundary field the
as well. The statement is that, e.g., a perturbation of^F2&
with given angular dependenceYl on S3 will decay exponen-
tially with a time scale given by the imaginary part of th
lowest quasinormal mode with that value ofl.

V. COMMENTS ON SMALL BLACK HOLES

In this section we briefly discuss the extrapolation of t
quasinormal frequencies to the small black hole regime (r 1

!R). Our numerical approach becomes unreliable in t
regime, so we cannot compute them directly. Instead,
must rely on indirect arguments. But first we give some m
tivation for exploring this question.

Small AdS black holes are not of direct interest for t
AdS-CFT correspondence. This is because an extended b
hole of the form Schwarzschild-AdS crossSm is unstable to

5The size of the dots is not related to the accuracy of the calc
tion.

FIG. 5. vR for intermediate black holes in four dimensions. Th
solid line isvR51.85r 1 , and the dashed line isvR57.75T.
7-7
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GARY T. HOROWITZ AND VERONIKA E. HUBENY PHYSICAL REVIEW D62 024027
forming a black hole localized in all directions whenever t
radius of the black hole is smaller than the radius of
sphere. This is a classical instability first discussed by G
gory and Laflamme@16#. It is quite different from the
Hawking-Page transition@17,18#, which applies to black
holes in contact with a heat bath. In that case, when the b
hole is of the order of the AdS radius it undergoes a tran
tion to a thermal gas in AdS spacetime. The Hawking-P
transition can be avoided if we consider states of fixed
ergy, not fixed temperature. Then black holes dominate
entropy even whenr 1,R and continue to do so untilr 1 /R
is less than a negative power ofN @19,20#. The situation is
very similar to the old studies of a black hole in a box. F
fixed total energy, the maximum entropy state consists
most of the energy in the black hole and a small amoun
radiation. Unfortunately, the stable small black hole config
ration must be a 10- or 11-dimensional black hole~by the
Gregory-Laflamme instability! and is not known explicitly.

Nevertheless, there may be other applications of the q
sinormal modes of small black holes in asymptotically A
spacetime. One possibility comes from the striking fa
~shown in Fig. 3! that for d54, v I is proportional tor 1 to
high accuracy. As we will discuss below, the slope of t
line, 2.66, turns out to be numerically very close to a spe
frequency which arises in black hole critical phenomena fi
studied by Choptuik@12#. To explore this possible connec
tion, one needs to consider quasinormal modes of sm
black holes.

From the intermediate black hole results shown in
previous section, it is tempting to speculate that asr 1→0,
v I→0, andvR→const. Since the decay of the field is due
absorption by the black hole, it is intuitively plausible that
the black hole becomes arbitrarily small, the field will n
longer decay. It is even possible that the quasinormal mo
approach the usual AdS modes in the limitr 1→0, although
this is not guaranteed since the boundary conditions ar
5r 1 do not reduce to regularity at the origin asr 1→0. If
they do approach the usual modes in this limit, thenvR must
approachd21 @21#. Of course, in the context of strin
theory, one cannot trust the Schwarzschild-AdS solut
when the curvature at the horizon becomes larger than
string scale. By taking the AdS radiusR sufficiently large,

FIG. 6. vR for intermediate black holes in five dimensions. T
solid line isvR53.12r 1 , and the dashed line isvR59.8T.
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one can certainly use this solution to describe some sm
black holes, but the geometry would have to be modifi
before the limitr 1→0 is reached.

It has been shown that the low energy absorption cr
section for massless scalars incident on a general asymp
cally flat spherically symmetric black hole is always equal
the area of the event horizon@22#. We can use this to esti
mate the imaginary part of the lowest quasinormal mode
a small AdS black hole as follows. Imagine a wave w
energy of order 1/R propagating toward a black hole wit
r 1!R. Then the spacetime around the black hole is appro
mately Schwarzschild and the low energy condition is sa
fied, so the amplitude of the reflected waveF r will be re-
duced from the amplitude of the incident waveF i by 1
2(F r /F i)

2;r 1
d22. After a time of the order of the AdS

radius, the reflected wave will bounce off the potential
infinity with no change in amplitude. It will again encounte
the black hole potential and be partly absorbed and pa
reflected. Repeating this process leads to a gradual deca
the fieldF;e2at with a;r 1

d22.
This suggests that for small black holes,v I should scale

like the horizon arear 1
d22. In the large black hole regime, o

the other hand, we know that the modes should scale line
with r 1 . To check this, we consider a simple ansatz wh
interpolates between these two regimes and see how w
fits the data. Consider the functionv I(r 1)5ar1

m/(b
1r 1

m21) ~wherea corresponds to the asymptotic slope!. For
eachm we chooseb to give the best fit to the intermediat
black hole data and see whichm yields the lowest overall
error ~as measured byx2).

In the five-dimensional case, using seven points betw
r 150.4 andr 151, we indeed find thatm53 gives the best
fit: x2'931026 for m53, as opposed tox2'331022 for
m52 andm54. The actual fit, shown in Fig. 8 along wit
the modes and the asymptotic line, is given byv I(r 1)
'2.746675r 1

3 /(0.07481r 1
2 ). In four dimensions the story is

much less clear, since there is no significant difference
tween the fit withm52 and the fit withm53. This could be
due to the fact that the data for intermediate black holes h
not yet started to significantly deviate from a straight line

To see the possible connection with black hole critic

FIG. 7. Dependence ofv on l for a four-dimensional black hole
with r 151. The smaller points arevR , and the larger points are
v I .
7-8



in

o
ill

n
e
as

o

,
i-
lv
ld
a

or
s
i
A

ve
r

ix

is
ar
W
a
ig
h
k
la
ifi
til

n

ally
n-
at
e

of
di-
ini-

rge
with

-
ach

nd
ply

re-

,

ense
will
ear-
by

the
ith
al

but
e

a-
he
n-
hen

lid-
ese
ith
ical
al

ate
rip-
he
opi-
he
per-
he
uper-
of
tly
et
ow
ck
ld
is

ck
rg

QUASINORMAL MODES OF AdS BLACK HOLES AND . . . PHYSICAL REVIEW D62 024027
phenomena, consider the evolution of a self gravitat
spherically symmetric scalar field~in an asymptotically flat
4D spacetime!. It is clear that weak waves will scatter and g
off to infinity, just like in flat spacetime. Strong waves w
collapse and form a black hole. Choptuik@12# studied one-
parameter families of initial data~labeled byp! which inter-
polated between these two extremes. In each case there
critical solutionp5p* which marks the boundary betwee
forming a black hole or not forming one. The late time b
havior of this critical solution turns out to be universal. It h
precisely one unstable mode which grows likeelt with l
52.67. This mode is responsible for the famous scaling
the black hole mass forp just above the critical value,Mbh
;(p2p* )g, whereg51/l50.374.~For a review, see@23#.!

The numerical value ofl is very close to the slope, 2.66
of the line in Fig. 3 giving the imaginary part of the quas
normal mode frequencies. Since both numbers invo
imaginary frequencies for spherically symmetric scalar fie
in four dimensions, it is natural to wonder if there might be
deeper connection between these two phenomena. Unf
nately, it appears at the moment that the agreement is ju
numerical coincidence. The first thing one might check
whether the agreement continues in higher dimensions.
though the critical solutions for black hole formation ha
not been studied in five or seven dimensions, they have
cently been calculated in six dimensions@24# with the result
l51/0.42452.36. We have redone our calculation in s
dimensions and do not find agreement. The slope ofv I as a
function of r 1 turns out to be 2.693. Another difference
that the exponents in black hole critical phenomena
known to be independent of the mass of the scalar field.
have checked that the quasinormal frequencies of large
intermediate black holes do depend on the mass. One m
expect that if there is a connection between these two p
nomena, it would apply in the limit of small AdS blac
holes. However, we have seen that the modes of small b
holes actually deviate from the linear relation, so the sign
cance of the asymptotic slope is not clear. While it is s
possible that some deeper connection exists~perhaps just in
four dimensions and for massless fields!, it appears unlikely.

As an aside, we note that if one repeats the calculatio

FIG. 8. The curved line is a fit to the modes of a small bla
hole in d55. The modes approach the straight line shown at la
r 1 .
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critical phenomena for spacetimes which are asymptotic
AdS, the late time results will be quite different. Since e
ergy cannot be lost to infinity, if one forms a black hole
all, it will eventually grow to absorb all the energy of th
initial state.

VI. CONCLUSIONS

We have computed the scalar quasinormal modes
Schwarzschild-AdS black holes in four, five, and seven
mensions. These modes govern the late time decay of a m
mally coupled scalar field, such as the dilaton. For la
black holes, it is easy to see that these modes must scale
the black hole temperatureT. By the AdS-CFT correspon
dence, this decay translates into a time scale for the appro
to thermal equilibrium in CFT, for large temperatures a
perturbations dual to the scalar field. The time scale is sim
given by the imaginary part of the lowest quasinormal f
quency,t51/v I . From Eqs.~4.2!, for perturbations with
homogeneous expectation values (l 50 modes! these time
scales are t50.0896/T for three-dimensional CFT,t
50.116/T for four-dimensional super Yang-Mills theory
and t50.183/T for six-dimensional~0,2! theory. As we
mentioned earlier, these time scales are universal in the s
that all scalar fields with the same angular dependence
decay at this rate. Perturbations associated with other lin
ized supergravity fields will decay at different rates, given
their quasinormal mode frequencies.

Perhaps the most surprising aspect of our analysis are
results for intermediate size black holes. For black holes w
size of order the AdS radius, we find that the quasinorm
frequencies do not continue to scale with temperature,
rather scale approximately linearly with horizon radius. W
do not fully understand the implications of this linear rel
tionship for the dual field theories, but we can make t
following comments. If one considers the field theory at co
stant temperature and slowly lowers the temperature, t
one encounters the Hawking-Page transition@17,18#. At this
point the supergravity description changes from the euc
ean black hole to a thermal gas in AdS spacetime. For th
low temperatures, the relaxation time might still scale w
the temperature, but it cannot be computed by a class
supergravity calculation and is not related to quasinorm
frequencies.

To interpret the quasinormal frequencies of intermedi
size black holes, we must consider a microcanonical desc
tion. Consider all states in CFT with energy equal to t
supergravity energy. Most of these states will be macrosc
cally indistinguishable, in the sense that they will all have t
same expectation values of the operators dual to the su
gravity fields. If the only nonzero expectation value is t
stress energy tensor, the states are described on the s
gravity side by just the black hole. If you perturb one
these CFT states to one which is macroscopically sligh
different, it will decay to a typical state with a timescale s
by the lowest quasinormal mode. The results in Sec. IV sh
that this decay time is determined by the size of the bla
hole in the supergravity description. Of course, the fie
theory knows about the black hole size since its entropy

e
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GARY T. HOROWITZ AND VERONIKA E. HUBENY PHYSICAL REVIEW D62 024027
given by the black hole area. However, the fact that, in t
range of energy, the frequency scales linearly with the rad
is puzzling.

The fact that the quasinormal frequencies do not conti
to scale with temperature is also interesting for the follow
reason. For a certain range of energies, the supergravity
tropy S(E) is dominated by small~10- or 11-dimensional!
black holes6 @19#. This means that the effective temperatu
defined bydS/dE51/T, has the property that it decreases
the energy increases; i.e., the specific heat is negative. By
AdS-CFT correspondence, the same must be true in the
CFT. ~This is not a problem since it applies to only a fini
range of energies.! If the quasinormal modes continued
scale with the temperature, then this negative specific h
would have dynamical effects. Instead, we find that the
laxation time increases monotonically with decreasing
ergy.
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APPENDIX: EVALUATION OF QUASINORMAL MODES

As discussed in Sec. III, in order to find the quasinorm
modes, we need to find the zeros of(n50

` an(v)(2x1)n in
the complexv plane. We compute the quasinormal mod
usingMATHEMATICA in the following way. We search for the
zeros,vN , of cN(v)[(n50

N an(v)(2x1)n by looking for
the minima ofucNu2 and checking that the value at the min
mum is zero,ucN(vN)u250. ~In practice, there are numerica
errors in the computation, so the value at the minimum
instead;10214 or smaller.! In order to find the correct mini-
mum, we need to specify an initial guess forvN . ~This
sometimes poses difficulties in searching for new modes,
apart from using analytical or intuitive understanding as
guide, we are forced to resort to trial and error.! How close
to the actual minimum one is required to start depends on
parameters; for then51, l 50 mode of a reasonably size
black hole, this seldom poses any limitations.

To obtain an accurate estimate of the quasinormal
quenciesv, we typically need to compute on the order
N5100 partial sums, depending on the dimensiond, the
black hole sizer 1 , and the mode~i.e., n and l!. Roughly
speaking, at a fixed partial sumN, the relative error in the
computed quasinormal frequency grows asr 1 decreases, and
as l, n, or d increases.

The task of determining the mode to the necessary a
racy is fortuitously simplified by the fact that the ‘‘conve
gence curve’’ has a surprisingly simple form. In particul

6As we discussed in the previous section, these black holes ca
quantum mechanically stable, since they are in equilibrium w
their Hawking radiation.
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once the partial sums have converged to sufficient accur
the variation ofvN is given by an exponentially damped sin
as a function ofN, i.e.,vN;v1ce2N/a sin(bN1d), wherea
andb depend on the physical parameters such asr 1 , while c
andd just depend on which partial sum we start with. In fa
we can use a fitting algorithm inMATHEMATICA to fit these
convergence curves. An example is given in Fig. 9, wh
the dots represent Re(vN) for a particular set of parameter
(d55, r 150.6, n51, andl 50) and the solid curve is the
corresponding fit. This simplification allows us to determi
the mode with a much higher accuracy than we would be
to expect from the spread ofvN . It also allows us to confirm
that the numerical errors in the computation of eachvN are
negligible, since, otherwise, one would expect a more no
distribution.

Often the quickest way to obtain the quasinormal mode
to simply look for the minimum ofucNu2 near various initial
guesses for the frequency, but when that method fails,
can also adopt a more systematic approach: eliminating
possibility of the occurrence of quasinormal modes in
given frequency range. This may be carried out in a m
systematic manner due to the fact that Re@cN(v)# and
Im@cN(v)# are conjugate harmonic functions ofv, which
must satisfy the maximum principle. Thus, if we find th
cN(v) is bounded inside a given region of the complexv
plane and either Re@cN(v)# or Im@cN(v)# remains nonzero
everywhere on the boundary, thencN is necessarily nonzero
everywhere inside that region. This ensures that there ca
no quasinormal modes with these frequencies. We can
systematically search for the lowest modes by eliminat
the low frequency regions until we find the modes.

Once we find one mode for a given set of paramete
continuity of the solution allows us to trace the mo
through the parameter space; that is, we can findv for
nearby values ofr 1 andl. Also, once we know then51 and
n52 modes for a fixedr 1 and l, the equal spacing betwee
the modes allows us to find the highern modes~provided the
numerical errors stay small!.

Thus the procedure for findingv(r 1) is the follow-
ing: We first consider a large black hole, where the conv
gence is good at a low partial sum, e.g.,N540. For such a
low cutoff N on the partial sum, we may easily compu

be
h

FIG. 9. Convergence plot for a five dimensional black hole w
r 150.6.
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QUASINORMAL MODES OF AdS BLACK HOLES AND . . . PHYSICAL REVIEW D62 024027
cN(v,r 1 ,l ) in full generality. We find the desired mod
vN(r 1 ,n,l ) using the method described above, and we
check the convergence by comparing this result with t
obtained for the lower partial sums. We can now follow t
mode to smaller values ofr 1 until the convergence become
too slow and we need to compute higher partial sums
becomes more practical at this point to fix all the parame
and considercN as a function ofv only. This has the nu-
merical advantage of enabling us to compute the partial s
iv

e
s,

r,

02402
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to much higherN; the drawback, of course, is that now w
need to recompute the whole series for eachr 1 .

Note added in proof.After this work was submitted, we
extended our computations of the higherl modes for large
black holes, up tol525. From fits of the largel behavior of
v I , we find strong evidence that the frequencies indeed s
bounded away from zero: In particular, a fit of the for
v I( l )51.12115.4/(l 111.8) hasx2'231026, as op-
posed tox2'1023 for a fit with v I( l→`)→0.
gy

ys.

S

@1# The earliest papers include C. Vishveshwara, Phys. Rev. D1,
2870 ~1970!; W. Press, Astrophys. J., Lett. Ed.170, L105
~1971!. For an early review, see S. Detweiler, inSources of
Gravitational Radiation, edited by L. Smarr~Cambridge Uni-
versity Press, Cambridge, England, 1979!, p. 221.

@2# For a recent review, see K. Kokkotas and B. Schmidt, in L
ing Reviews in Relativity~to be published!, www.livingre-
views.org, gr-qc/9909058.

@3# P. Brady, C. Chambers, W. Krivan, and P. Laguna, Phys. R
D 55, 7538 ~1997!; P. Brady, C. Chambers, W. Laarakker
and E. Poisson,ibid. 60, 064003~1999!.

@4# A. Barreto and M. Zworski, Math. Res. Lett.4, 103 ~1997!.
@5# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@6# E. Witten, Adv. Theor. Math. Phys.2, 253 ~1998!.
@7# S. Gubser, I. Klebanov, and A. Polyakov, Phys. Lett. B428,

105 ~1998!.
@8# For a comprehensive review, see O. Aharony, S. S. Gubse

Maldacena, H. Ooguri, and Y. Oz, Phys. Rep.323, 183~2000!.
@9# S. Kalyana Rama and B. Sathiapalan, Mod. Phys. Lett. A14,

2635 ~1999!.
@10# J. Chan and R. Mann, Phys. Rev. D55, 7546 ~1997!; 59,

064025~1999!.
@11# R. Price, Phys. Rev. D5, 2419~1972!; 5, 2439~1972!.
-

v.

J.

@12# M. Choptuik, Phys. Rev. Lett.70, 9 ~1993!.
@13# C. Csaki, H. Ooguri, Y. Oz, and J. Terning, J. High Ener

Phys.01, 017 ~1999!; R. de Mello Koch, A. Jevicki, M. Mi-
hailescu, and J. P. Nunes, Phys. Rev. D58, 105009~1998!; M.
Zyskin, Phys. Lett. B439, 373 ~1998!.

@14# E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Ph
Rev. D52, 2118~1995!.

@15# C. Gundlach, R. Price, and J. Pullin, Phys. Rev. D49, 883
~1994!.

@16# R. Gregory and R. Laflamme, Phys. Rev. Lett.70, 2837
~1993!; Nucl. Phys.B428, 399 ~1994!.

@17# S. Hawking and D. Page, Commun. Math. Phys.87, 577
~1983!.

@18# E. Witten, Adv. Theor. Math. Phys.2, 505 ~1998!.
@19# T. Banks, M. Douglas, G. Horowitz, and E. Martinec, ‘‘Ad

Dynamics from Conformal Field Theory,’’ hep-th/9808016.
@20# G. Horowitz, Class. Quantum Grav.17, 1107~2000!.
@21# C. Burgess and C. Lutken, Phys. Lett.153B, 137 ~1985!.
@22# S. R. Das, G. Gibbons, and S. D. Mathur, Phys. Rev. Lett.78,

417 ~1997!.
@23# C. Gundlach, Adv. Theor. Math. Phys.2, 1 ~1998!.
@24# D. Garfinkle, C. Cutler, and G. C. Duncan, Phys. Rev. D60,

104004~1999!.
7-11


