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Quasinormal modes of AdS black holes and the approach to thermal equilibrium
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We investigate the decay of a scalar field outside a Schwarzschild anti—de Sitter black hole. This is deter-
mined by computing the complex frequencies associated with quasinormal modes. There are qualitative dif-
ferences from the asymptotically flat case, even in the limit of small black holes. In particular, for a given
angular dependence, the decay is always exponential—there are no power law tails at late times. In terms of the
AdS-CFT correspondence, a large black hole corresponds to an approximately thermal state in the field theory,
and the decay of the scalar field corresponds to the decay of a perturbation of this state. Thus one obtains the
time scale for the approach to thermal equilibrium. We compute these time scales for the strongly coupled field
theories in three, four, and six dimensions, which are dual to string theory in asymptotically AdS spacetimes.

PACS numbgs): 04.70-s, 04.50+h, 11.15-q, 11.25.Hf

[. INTRODUCTION dence, a large static black hole in asymptotically AdS space-
time corresponds to a@pproximately thermal state in CFT.

It is well known that if you perturb a black hole, the Perturbing the black hole corresponds to perturbing this ther-
surrounding geometry will “ring,” i.e., undergo damped os- mal state, and the decay of the perturbation describes the
cillations. The frequencies and damping times of these oscilreturn to thermal equilibrium. So we obtain a prediction for
lations are entirely fixed by the black hole and are indepenthe thermalization time scale in the strongly coupled CFT. It
dent of the initial perturbation. These oscillations are similarseems difficult to compute this time scale directly in CFT.
to normal modes of a closed system. However, since the fiel&ince the system will clearly not thermalize in the free field
can fall into the black hole or radiate to infinity, the modeslimit, at weak coupling, this time scale will be very long and
decay and the corresponding frequencies are complex. Thedepend on the coupling constant. In the limit of strong cou-
oscillations are known as “quasinormal modes.” For blackpling, it seems plausible that the time scale will remain non-
holes in asymptotically flat spacetimes, they have been studzero and be independent of the coupling. This is because the
ied for almost 30 yeargl,2]. The radiation associated with initial state is characterized by excitations with size of the
these modes is expected to be seen with gravitational waverder of the thermal wavelength, so causality suggests that
detectors in the coming decade. Motivated by inflation, thehe relaxation time scale should also be of the order of the
quasinormal modes of black holes in de Sitter space havthermal wavelength.
recently been studielB,4]. The results we obtain are consistent with this expectation.

For spacetimes which asymptotically approach anti—deA black hole in asymptotically AdS spacetime is determined
Sitter (AdS) spacetime, the situation is slightly different. In by two dimensionful parameters: the AdS radRiand the
the absence of a black hole, most fields propagating in Ad®lack hole radius . . The quasinormal frequencies must be
spacetime can be expanded in ordinary normal modes. THenctions of these parameters. For large black hotes,
cosmological constant provides an effective confining box>R, we will show that there is an additional symmetry
and solutions only exist with discret@eal frequencies. which ensures that the frequencies can depend only on the
However, once a black hole is present, this is no longer thélack hole temperaturd@~r_ /R?. However, for smaller
case. The fields can now fall into the black hole and decayblack holes, this is no longer the case. Whereas the tempera-
There should exist complex frequencies, characteristic of theure begins to increase as one decreaselselowR, we find
black hole, which describe the decay of perturbations outsidéhat the(imaginary part of thefrequency continues to de-
the horizon. We will compute these quasinormal frequenciesrease withr , . This is different from what happens for as-
below for spacetimes of various dimensions. ymptotically flat black holes. An ordinary Schwarzschild

The quasinormal frequencies of AdS black holes have #lack hole has only one dimensionful parameter, which can
direct interpretation in terms of the dual conformal field be taken to be the temperature. Its quasinormal frequencies
theory (CFT) [5-8].! According to the AdS-CFT correspon- must therefore be multiples of this temperature. Thus small

black holes in asymptotically AdS spacetime wiat behave
like black holes in asymptotically flat spacetime. The reason
*Email address: gary@cosmic.physics.ucsb.edu is simply that the boundary conditions at infinity are
"Email address: veronika@cosmic.physics.ucsb.edu changed. More physically, the late time behavior of the field
The importance of these modes in AdS spacetime was indepeiis affected by waves bouncing off the potential at large
dently recognized iri9], but they were not computed. They were  Another difference from the asymptotically flat case con-
computed in[10], but only for a conformally invariant scalar field cerns the decay at very late times. For a Schwarzschild black
whose asymptotic behavior is similar to flat spacetime. The confinhole, it is known that the exponential decay associated with
ing behavior of AdS spacetime is crucial for the AdS-CFT corre-the quasinormal modes eventually gives way to a power law
spondence. tail [11]. This has been shown to be associated with the
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scattering of the field off the Coulomb potential at largés (d— Z)Ad_2r8—3
we will discuss later, for asymptotically AdS black holes, T
this does not occur. d

We will compute the quasinormal frequencies forwhereAd,zzzw(d‘l)’zll“((d—1)/2) is the area of a unit
Schwarzschild-AdS black holes in the dimensions of interestd_ 2)-sphere. The black hole horizon isratr . , the larg-
for the AdS-CFT correspondence: four, five, and sevenggi ;arq of., and its Hawking temperature is
We will consider minimally coupled scalar perturbations rep-

2.3

resenting, e.g., the dilaton. This corresponds to a particular f/(r.) (d=1)r2+(d—3)R?
perturbation of CFT. For example, for AglSt corresponds = LR i 5 (2.9
to a perturbation of afapproximately thermal state in super 4m 4mr R

Yang-Mills theory onS®x R with (F2) nonzero. In the lin- _ _ ) -
earized approximation we are using, the spacetime metric is W& are interested in solutions to the minimally coupled
not affected by the scalar field. So the perturbation of the>calar wave equation
thermal state does not change the energy density, which re- V2p=0 (2.5
mains uniform over the sphere. The late time decay of this ' '
perturbation is universal in the sense that all solutions for thgf we consider modes
dilaton with the same angular dependence will decay at the
same rate, which is determined by the imaginary part of the d(t,r,angles=r D2y (ryY(anglege !, (2.6
lowest quasinormal frequency. Different perturbations, cor-
responding to different linearized supergravity fields, will whereY denotes the spherical harmonics$h 2, and intro-
have different quasinormal frequencies and hence decay dtice a new radial coordinatk, =dr/f(r), the wave equa-
different rates. Although we work in the classical supergrav-ion reduces to the standard form
ity limit, our results would not be affected if one includes _
small semiclassical corrections such as black holes in equi- [8f*+w2—V(r*)]l,b= 0. (2.7
librium with their Hawking radiation.

A brief outline of this paper is the following. In the next The potentialV is positive and vanishes at the horizon,
section we review the definition of quasinormal modes anqyhich corresponds to, = —. It diverges atr =, which
their relation to the late time behavior of the field, and derivecorresponds to a finite value of .

some of their properties using analytic arguments. The nu- 1o define quasinormal modes, let us first consider the case
merical approach we use to compute the complex frequeryf a simple Schwarzschild black hole. Since the spacetime is
cies is described in Sec. Il In the following section we asymptotically flat, the potential now vanishes near infinity.
discuss the results for both large black holes>R, and  Clearly, a solution exists for eaehcorresponding to a wave
intermediate size black holes, ~R. In Sec. V we consider coming in from infinity, scattering off the potential and being
the limit of small black holes ., <R. Although there is a partly reflected and partly absorbed by the black hole. Qua-
striking similarity between some of our results and somesinormal modes are defined as solutions which are purely
results obtained in the study of black hole critical phenomen@utgoing near infinity®~e~'“(="+) and purely ingoing
[12], we will argue that this is probably just a numerical near the horizonb~e~“t*+). No initial incoming wave
coincidence. The conclusion contains some speculationggm infinity is allowed. This will only be possible for a
about the CFT interpretation of the quasinormal frequenciegjiscrete set of complex called the quasinormal frequencies.
in the regime where they do not scale with the temperature. EFor the asymptotically AdS case, the potential diverges at
In the Appendix, we give some more details on our numerijnfinity, so we must require thab vanish there. In the ab-

cal calculations. sence of a black hole, has only a finite range and solutions
exist for only a discrete set of real. However, once the
Il. DEFINITION OF QUASINORMAL MODES black hole is added, there are again solutions with any value
AND ANALYTIC ARGUMENTS of w. These correspond to an outgoing wave coming from

. . . . . the (pas}) horizon, scattering off the potential and becoming
$|nce we are interested in §tudy!ng AdS plack holes Man ingoing wave entering th@uture) horizon. Quasinormal
various dimensions, we begin with thd-dimensional

) . modes are defined to be modes with only ingoing waves near
Schwarzschild-AdS meiric the horizon. These again exist for only a discrete set of com-
__ 2 1420 2402 plex w.
ds’ FNde+1(r) “dri+ridQg_, 2.1) It should perhaps be emphasized that these modes are not
the same as the ones that have recently been computed in
connection with the glueball massgk3]. There are several
)dg differences: First, the background for the glueball mass

where

r2
f(r)EE'i‘l_

(2.20  calculation is not the spherically symmetric AdS black hole,
r

but an analytic continuation of the plane-symmetric AdS
black hole. Second, because of the analytic continuation, the
Ris the AdS radius, and, is related to the black hole mass horizon becomes a regular origin and the boundary condi-
via tions there are not the analytic continuation of the ingoing
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wave boundary condition imposed for quasinormal modeswhere

Finally, the glueball masses are real quantities, while, as we

have said, the quasinormal frequencies will be complex. This r2 [ro\d-3

makes them more difficult to compute numerically. h(r)EE_ T) 2.9
One can show14,2] that the complex quasinormal fre-

quencies determine the falloff of the field at late times. Thefor this metric one can rescalg by a pure coordinate trans-

baS|c.|de_a is to start by writing the solution _to the Wavess mation:t=at, x;=a% , r=F/a for constanta. This does

equation in terms of the retarded Green’s function and mma(]

q » 0 h : he G “not rescale the overall metric or the AdS radRisThe ho-
ata on a constantsurface. One then rewrites the Green's ;. - radiusr®~!=R2rd"2 gets rescaled by, =7, /a. Of

?ﬁ:t'%na's?nﬁrr;nj (r);()l(tjselszc;l}liré(zr ;rsanzﬁgrsmoﬂ;z rg*:’ggﬁ}g?un course, under this coordinate transformation of the metric,
neq P ) 'S UNGutions of the wave equation are related by the same coor-
tion in the complex frequency plane, and their contributions

; . - dinate transformation. For solutions which are independent
to the solution can be extracted by closing the contour with s i (the analogue of thé=0 modes, we havee ()t

large semicircle near infinity. L e _ _
For a black hole in asymptotically flat spacetimes, Price=€~'“" ), which impliesw(r.)=r . Since the Hawking

[11] showed that after the exponential decay due to the qudemperature of the metri€2.8) is also proportional to the

sinormal ringing, the field will decay as a power la@y  horizon radius,

~t~(*3) wherel is the angular quantum number. This has

been seen explicitly in numerical simulatiof5]. Math- _d=1r,

ematically, this is due to a cut in the Green'’s function along T 4m R

the negative imaginary frequency axis. More physically, this

behavior is due to scattering off the weak Coulomb potentialye see that the frequencies must scale with the temperature
near infinity. For the case of a black hole in asymptotlcallylcor large black holes. For solutions proportionab{bxi this

AdS spacetime, the potential diverges at infinity and van- i ¢ imoli ) — K). So if
ishes exponentially near the horizon. Chigigal. [14] have Sga"l:gki argument imp |e|:&>(arﬁ£_ i)_al('v('rbr ) I OTr|1
analyzed the late time behavior of a broad class of wavé+> KiK. One can rescale so thet is negligibly small. The

equations with potentials. They show that there are no powefP0ve argument then shows thastill scales with the tem-
law tails for a potential which vanishes exponentially. SoP€rature. One can then rescale back {6>R to apply to

there will be no power law tails for black holes in asymp- 1arge black holes. In other words, for aky, the quasinor-
totically AdS spacetime. mal frequencies scale with the temperature in the limit of
For a black hole with radius much smaller than the Adslarge temperatured;?>k=. This argument does not apply to
radius, one might expect an intermediate time regime wher8lack holes of the order of the AdS radius, and indeed we
one sees power law behavior before the new boundary conyill find that the quasinormal frequencies do not scale with

ditions at infinity become important. However, this would the temperature in this regime. But it does confirm the ex-
occur only if one starts with large quasinormal modes withP€ectation that the approach to thermal equilibrium in the dual

w~1/r . associated with a Schwarzschild black hole. wefie!d theory should depend only on the temperai@ateleast

will see that the lowest modes of a Schwarzschild-AdS blacfor 'arge temperatuje _ e

hole are much smaller and their exponential decay is so slow Since we want modes which behave ligg' " *"+) near

that it eliminates the intermediate time power law behavior.[h€ horizon, it is convenient to set=t+r, and work with
The quasinormal frequencies will in general depend oriN90ing Eddington  coordinates. The metric for a

the two parameters in the problemR;r,. By rescaling the Schwarzschild-AdS black hole id dimensions in ingoing

metric,ds?=\2ds?, and rescaling the coordinates At and Eddington coordinates is
f=\r, the new metric again takes the forf®.1) with res-
caled constant® andr,. Since the wave equatiof2.5) is
clearly invariant under this constant rescaling of the metric
we can use it to set, e.dqR=1. This rescaling is possible for
any metric and physically just corresponds ©a c_h0|ce %Second order, linear differential equationrimy the separa-
units. In our case, we measure all quantities in units of th?ion of variables:
AdS radius. The quasinormal frequencies can still be arbi- '
trary functions ofr. _(2-d)2 —iwv

We now show that for large black holeg>R, the fre- ®(v,r,angleg=r y(r)Y(anglege ", (2.12
guencies must be proportional to the black hole temperature., . . : . . )
This is a result of an independent scaling one can do in thi‘z'hIS yields the following radial equation fa(r):
limit. For large black holes, the region outside the horizon of 2 q
the Schwarzschild-AdS metri@.1) becomes approximately FOF) —— () 4T E (1) = 2i 0] — (1) = V() d(r)=0
plane symmetric: ( )drzt//( )FL (N —2ie] 4o d(r) = V(D g(r) =0,

(2.10

ds?=—f(r)dv?+2dv dr+r2dQ3_,, (2.12)

wheref is again given by Eq(2.2). The minimally coupled
]scalar wave equatiof2.5 may be reduced to an ordinary,

(2.13
ds?=—h(r)dt®+h(r) tdr’+r2dxdx, (2.8  with the effective potential/(r) given by R=1)
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(d—2)(d—4) d—2 c the horizon, the solutions move farthe.r away fr_om zero and
V(r)= 5 f(r)+ > f'(n+— hence can never reach zero asymptotically. This analytic ar-
ar r r gument only applies if Bo<<f'(r.). But we will see nu-
merically that even without this restriction, there are no so-
lutions withiw pure real.

A more powerful result can be obtained as follows. Mul-

(2.14 tiplying Eq. (2.13 by ¢ and integrating front .. to « yields

_dd-2) (d-2)d-4)+dc (d-2)%5 °
B 4r2 4rd-1

where = o |=df d¢g\ _ —dy — |
jr dr[(ﬁa(fa —2le//W—Vl)[I{// =0. (2.18
c=I1(1+d-3) (2.15 *
is the eigenvalue of the Laplacian 6A~2. Note thatv(r) is The first term can be integrated Q/ parts without picking up
manifestly positive ford=4. a surface term sincg(r ) =0 and(e°)=0. This yields
Ingoing modes near th@uture) horizon are described, of
course, by a nonzero multiple & '“’. Outgoing modes Jm 24 2wl + 27_
near the horizon can also be expressed in terms of ingoing r+dr[f|¢ |*+ 20y’ +V[$|*]=0.  (2.19

Eddington coordinates via '“(t""x) =g~ 1@vg2iel  Since

q Taking the imaginary part Eq2.19 yields
r

1
r.=| &=—=~=—=In(r—ry,) (2.16
f f! ” T
(ry F(ry) f drlwyy’ + oy’ 1=0. (220
near the horizom=r , , the outgoing modes behave like T

g 0l1-14) _ g-iavg2ion, _ g-ivo(y _r+)2iw/f’(r+>_ (217 Integrating the second term by parts yields

Sincev, r are good coordinates near the horizon, the out- (w_@f dr gy’ = w|(r )| (2.21)
going modes are not smoothC{) at r=r, unless ry

2iw/f'(ry) is a positive integer. We show below that the

imaginary part ofw must be negative, so the exponent in Eq.Substituting this back into E¢2.19, we obtain the final
(2.17 always has a positive real part. Thus the outgoingresult
modes vanish near the future horizon, while the ingoing
modes are nonzero there. However, we also sfiowthe

next sectiop that 2 w/f'(r ) cannot be a positive integer,

so the outgoing modes are not smooth atr |, .

We wish to find the complex values ef such that EQ.  gincef andV are both positive definite outside the horizon,
(2.13 has a solution with only ingoing modes near the hori-y;g equation clearly shows that there are no solutions with
zon and vanishing at infinity. We will eliminate the outgoing |m 0. These would correspond to unstable modes which
modes by first assuming the solution is smooth=at . and 46\ exponentially in time. There are also no solutions with
then showing that the allowed descrete values @re such |, ,=0: All solutions must decay in time. In addition, Eq.
that 2w/f'(r.) is not an integer. The actual values @f (2 29 shows that the only solution which vanishes at the
must be computed numerically, but some general propertiggorizon (and infinity) is zero everywhere. Since the equation
can be seen analytically. For example, we now show thaf |inear. we can always rescafeso thaty(r.)=1.
there are no solutions withw pure real and Bo<<f'(r,). If

iw were real, then the equation would be real and the solu-
tions ¢ would be real. If there were a local extremum at
some point, theny' (f) =0 andy”(T) would have the same

sign asy(T). So if 4 were positive af, it would have to To compute the quasinormal modes, we will expand the

increase ag increased. Similarly, if it were negative, it splution in a power series about the horizon and impose the

would have to decrease. In neither case, could it approachoundary condition that the solution vanish at infinity. In

zero asymptotically. We conclude that the solutions muskder to map the entire region of interest,<r <, into a

monotonically approach zero. Now ifi@<f'(r.),#'(r) finite parameter range, we change variablesctol/r. In

has the same sign a(r.).> So as one moves away from general, a power series expansion will have a radius of con-
vergence at least as large as the distance to the nearest pole.
Examining the pole structure of E(2.13) in the whole com-

2This is where the condition of no outgoing modes near the horiPl€X I plane, we findd+1 regular singular points, at=0,

zon is used. If outgoing waves were presdi(t,) ¢ (r) would no r=o, and at thed—1 zeros off, one of which,r=r_,

longer vanish at=r . and¢’(r.) need not have the same sign as corresponds to the horizon. At least fb+4, 5, or 7, if we

W(ry). use the variablx=1/r and expand about the horizox,

|l 9(r )|

Im w

| “arttly e vigE-- 222

IIl. NUMERICAL APPROACH TO COMPUTING
QUASINORMAL MODES
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=1/r. , the radius of convergence wilteachx=0, so that
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Substituting Eq(3.7) into Eq.(3.1) and equating coefficients

we can use this expansion to consider the behavior of thef (x—x_)" for eachn, we obtain the following recursion

solution asr — o,
In terms of our new variablg=1/r, Eq. (2.13 becomes

<>d2¢<>+t(x) 0+ ()¢<>o
S(X) — (X
dx? (x=x4)?
3.1
where the coefficient functions are given by
d—3,d+1 4 2 2 2
rog X - —=x"—x x4 +1 xs+1
S(X) = ———— = — x4 e
X—X4 X5 X3
1 1
+—x3+—x (3.2
X+ Xt
t(x)=(d—1)r§ 3x4—2x3-2x% o, (3.3
u(x)=(x—x4)V(X). (3.9

The parameter] 3

horizon radiusrd 3= (x2 +1)/x4" 1. Sinces, t, andu are all

polynomials of degreal, we may expand them about the

horizon x=x, : s(x)=34_;s,(x—x,)", and similarly for
t(x) andu(x). It will be useful to note thasy= 2x+;< to
—2X+(K_|a)) anduy=0, wherex is the surface gravity,
which is related to the black hole temperat(2e4) by

K=—>F =2xT. (3.5

Also, sincesy# 0, x=Xx_ is a regular singular point of Eq.

(3.D.

should be viewed as a function of the

relationd for the a, :

n—1
=5 E [k(k=1)sp_ Kty +u,—Jag,
I:)n k=0

(3.9

where

P,=n(n—1)sy+nty= 2x2 “n(nk—iw). (3.9
Since the leading coefficieat, is undetermined, this yields a
one-parameter family of solutions, as expected for a linear
equation.

The solutions to Eq(2.5 in asymptotically AdS space-
time are® ~ const andP~ 1/r9~* asr— o, which translates
into y~r@=2/2 and y~r~92, respectively. We are inter-
ested in normalizable modes, so we must select only solu-
tions which satisfyy—0 asr—o (or x—0). This means
that we require Eq3.7) to vanish atx= 0, which is satisfied
only for special(discrete values ofw. [For all other values
of w, the solution will blow up,#(0)=~.] Thus in order to
find the quasinormal modes, we need to find the zeros of
Si_o@n(@)(—x4)" in the complexw plane. This is done by
truncating the series after a large number of terms and com-
puting the partial sum as a function aef One can then find
zeros of this partial sum and check the accuracy by seeing
how much the location of the zero changes as one goes to
higher partial sums. Some details are given in the Appendix.

One can now easily show that@/f’(r ) =iw/k cannot
be an integer. lfw is pure imaginary andw =T for some
integern, thenPz=0. This implies an additional constraint
on the coefficients,, k=0,...1— 1, which will only be sat-
isfied if they vanish. In other words, the solution will behave
like (x—x,)" near the horizon corresponding to a pure out-
going wave. However, sincg now vanishes at the horizon,
Eq. (2.22 implies thaty vanishes everywhere. So there are

To determine the behavior of the solutions near the horing nontrivial solutions with w/ equal to an integer. As we

zon, we first sety(x)=(x—x,)“ and substitute into Eq.
(3.1). Then to leading order we get
a(a—1)So+at0=2xia(ak—iw)=0, (3.6

which has two solutionsyr=0 anda=iw/kx. We see from

saw in Sec. I, this means that if one wanted to include out-
going modes near th&uture) horizon, the solution would
not be smooth there.

IV. DISCUSSION OF RESULTS

Eq. (2.17 that these correspond precisely to the ingoing and The numerical procedure described above can be applied
outgoing modes near the horizon, respectively. Since wéo both large black holesr(>R) and intermediate size

want to include only the ingoing modes, we take 0. This
corresponds to looking for a solution of the form

o

P(x)= 20 an(x—x,)".

n=

3.7

black holes (, ~R). In this section we describe the results.
We setR=1 and decompose the quasinormal frequencies
into real and imaginary parts:

4Although the standard way of writing Ed3.1) is to set the
coefficient of /' to 1, which yields simpler-looking recursion rela-

tions, the advantage of the present formulation is that safgg,

SFord=4 andd=5, one can show analytically that starting at the t(x), andu(x) are polynomials, their analytic expansions will ter-

horizon,x=x_ , the nearest pole is indeed=0. Ford=7 we have
checked numerically that this is again the case.

minate after a finite number of terms, so that eaghwill be given
in terms of a relatively small number of terms.
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TABLE |. The lowest quasinormal mode frequency for the four-, five-, and seven-dimensional
Schwarzschild-AdS black hole for=0 and some selected black h@BH) sizes.

4D BH modes 5D BH modes 7D BH modes
I’+ (,l)| wR w| CUR (l)| (.UR
100 266.3856 184.9534 274.6655 311.9627 261.2 500.8
50 133.1933 92.4937 137.3296 156.0077 130.7 250.4
10 26.6418 18.6070 27.4457 31.3699 26.07 50.35
5 13.3255 9.4711 13.6914 15.9454 12.96 25.57
1 2.6712 2.7982 2.5547 4.5788 2.16 7.27
0.8 2.1304 2.5878 1.9676 4.1951
0.6 1.5797 2.4316 1.3656 3.8914
0.4 1.0064 2.3629 0.7462 3.7174
w=0g—iw,. (4.1 Notice from Table | that as a function of, , w, is almost

independent of dimension. The difference in these slopes is

With the sign chosen in Eq4.1), o, is positive for all qua- almost entirely due to the dimension dependence of the rela-
sinormal frequencies. tion betweerr . andT, Eq. (2.10. In contrastwg does de-

In Table I, we list the values of the lowest quasinormal pend on the dimension, and in Fig. 2, the order of the lines is
mode frequencies for=0 and selected values of, , for ~ reversed:
four-, five-, and seven-dimensional Schwarzschild-AdS
black holes. For large black holes, both the real and the
imaginary parts of the frequency are linear functions of
Since the temperature of a large black hole Tis(d
—1)r /4, it follows that they are also linear functions of
T. This is clearly shown in Figs. 1 and 2, wheog¢ and wg,

respectively, are plotted as a function of the temperature for = ) . . .
the four-. five-. and seven-dimensional cases. The dots reg_ms linear scaling with the temperature is in agreement with

resenting the quasinormal modes, lie on straight linedh® general argument in Sec. II. According to the AdS-CFT
through the origin. In Fig. 1, the top line corresponds to thecorrespondence;= 1/w, is the time scale for the approach to
d=4 case, the middle line is thé=5 case, and the bottom thermal equilibrium. Equation$4.2) constitute one of the

line is thed=7 case. Explicitly, the lines are given by main results of this work. _
For intermediate size black holes, the quasinormal fre-

quencies do not scale with the temperature. This is clearly
shown in Fig. 3, which plotsv, as a function ofr , for d
=4 black holes withr , ~1. To a remarkable accuracy, the

wr=10.5T for d=7,
wg=9.8T for d=5,

wg=7.75T for d=4. 4.3

w,=11.16T for d=4,

w =8.63T for d=5, points continue to lie along a straight ling=2.66, . The
dashed curve represents the continuation of the curyve
0, =5.47T for d=7. (4.2 =11.16T shown in Fig. 1 to smaller values of . (For large
Wr Wr
500 |
500
400 |
400
300 300
200 200
100 100 |
T L T
10 20 30 40 50 10 20 30 40 50
FIG. 1. For large black holeg, is proportional to the tempera- FIG. 2. For large black holesyy is also proportional to the
ture. The top line igl=4, the middle line id=5, and the bottom temperature. The top line is node= 7, the middle line igl=5, and
lineisd=7. the bottom line id=4.
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FIG. 3. w, for intermediate black holes in four dimensions. The  FIG. 5. wg for intermediate black holes in four dimensions. The
solid line isw,;=2.6& . , and the dashed line is,=11.16T. solid line iswg=1.85 , , and the dashed line iBg="7.75T.

r_. these two curves are identigal.It is not yet clear what ~®,(n)~41+225 and wg(n)~54+131n in four dimen-
the significance of this linear relation is for the dual CFT.sions, whereas,(n)~73+20In andwg(n)~106+202 in
Some speculations are given in Sec. VI. Since the quasinofive dimensions.
mal frequencies can be computed to an accuracy much better Increasing the angular momentdrmode has the surpris-
than the size of the dots in Fig. 3, one can check that théng effect of increasing the damping time scale, (de-
points actually lie slightly off the line. This is shown more creases and decreasing the oscillation time scateg(in-
clearly in the five-dimensional results in Fig. 4. Once againcreases This is shown in Fig. 7, whereg (smaller points
the dashed curve is the continuation of the cumse andw, (larger pointg are plotted againdtfor low values of
=8.63T shown in Fig. 1 and the solid curve is the ling 1.5 An important open question is the behavior of as|
=2.75 , that it approaches asymptotically. —oo, |t appears to decrease withbut the general argument
The real part of the quasinormal frequencies are shown iin Sec. Il shows that it cannot become negativew |fcon-
similar plots in Fig. 5 fod=4 and Fig. 6 fod=5. Herewg  tinues to decrease with then the late time behavior of a
approximates the temperature more closely than the blacgeneral perturbation will be dominated by the lardesbde.
hole size, but it is clear from Fig. 6 that it is not diverging for The largel behavior ofw, is currently under investigation.
small black holes. Preliminary results indicate that the frequencies stay
We have so far discussed only the lowest quasinormabounded away from zero. If this were not the case and
mode withl =0. We have also computed higher modes andapproached zero fast enough, then a general superposition of
modes with nonzero angular momentum, but the numericahll spherical harmonics could decay at late times only as a
accuracy decreases as one increases the mode narobkr  power law. However, even this would not be a problem for
So we restrict our attention to relatively small valuesnof the AdS-CFT correspondence, since the decomposition into
andl. spherical harmonics can be done in the boundary field theory
For large black holes, in both four and five dimensions,as well. The statement is that, e.g., a perturbatioq F)
we find that the low lying quasinormal modes are approxi-with given angular dependen¥g on S will decay exponen-
mately evenly spaced im. In particular, forr, =100, tially with a time scale given by the imaginary part of the
lowest quasinormal mode with that valuelof

Wi
10 |

\ ~ V. COMMENTS ON SMALL BLACK HOLES

~ In this section we briefly discuss the extrapolation of the
7 quasinormal frequencies to the small black hole regime (
6 \ P <R). Our numerical approach becomes unreliable in this
\\ — regime, so we cannot compute them directly. Instead, we
N - must rely on indirect arguments. But first we give some mo-
d tivation for exploring this question.
-~ Small AdS black holes are not of direct interest for the
2 -~ AdS-CFT correspondence. This is because an extended black
. hole of the form Schwarzschild-AdS croS¥ is unstable to

Iy

0.5 1 1.5 2 2.5 3

FIG. 4. w, for intermediate black holes in five dimensions. The °The size of the dots is not related to the accuracy of the calcula-
solid line isw,=2.7% ., and the dashed line is,=8.63T. tion.
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FIG. 6. wg for intermediate black holes in five dimensions. The

FIG. 7. Dependence ab on| for a four-dimensional black hole
solid line iswg=3.1% , , and the dashed line isg=9.8T. P ur-aimensi

with r . =1. The smaller points areg, and the larger points are

forming a black hole localized in all directions whenever the®'-

radius of the black hole is smaller than the radius of theone can certainly use this solution to describe some small
sphere. This is a classical instability first discussed by Greblack holes, but the geometry would have to be modified
gory and Laflamme[16]. It is quite different from the before the limitr . —0 is reached.

Hawking-Page transitioi17,18, which applies to black It has been shown that the low energy absorption cross
holes in contact with a heat bath. In that case, when the blackection for massless scalars incident on a general asymptoti-
hole is of the order of the AdS radius it undergoes a transically flat spherically symmetric black hole is always equal to
tion to a thermal gas in AdS spacetime. The Hawking-Pagéhe area of the event horizd@2]. We can use this to esti-
transition can be avoided if we consider states of fixed enmate the imaginary part of the lowest quasinormal mode for
ergy, not fixed temperature. Then black holes dominate th@ small AdS black hole as follows. Imagine a wave with
entropy even when, <R and continue to do so until, /R~ €nergy of order R propagating toward a black hole with
is less than a negative power Nf[19,20. The situation is " +<R. Then the spacetime around the black hole is approxi-
very similar to the old studies of a black hole in a box. FormMately Schwarzschild and the low energy condition is satis-
fixed total energy, the maximum entropy state consists ofi€d: SO the amplitude of the reflected wade will be re-
most of the energy in the black hole and a small amount jrfluced frog‘ thdszampl|tude Qf the incident wadg by 1
radiation. Unfortunately, the stable small black hole configu-_(c.pf/q)i) ~ry . After a time of the order of the AdS
ration must be a 10- or 11-dimensional black héy the radius, the reflected wave will bounce off the potential at

Gregorv-Laflamme instabilitvand is not known explicitly. infinity with no changg in amplitude. It will again encounter
gory I ity I wh exprerty a{_he black hole potential and be partly absorbed and partly

sinormal modes of small black holes in asymptotically Ads'€fected. ReFiej“”Q this process leads to a gradual decay of
spacetime. One possibility comes from the striking factthe field®~e " with a~ri-=.
(shown in Fig. 3 that ford=4, o, is proportional tor , to _ This suggests thagt_fé)r small black holes, should_scale
high accuracy. As we will discuss below, the slope of thislikeé the horizon area’.“. In the large black hole regime, on
line, 2.66, turns out to be numerically very close to a speciafhe other hand, we know that the modes should scale linearly
frequency which arises in black hole critical phenomena firswvith 1, . To check this, we consider a simple ansatz which
studied by Choptuif12]. To explore this possible connec- interpolates between these two regimes and see how well it
tion, one needs to consider quasinormal modes of smafits the data. Consider the functiom, (r,)=arl/(b
black holes. +r™ 1) (wherea corresponds to the asymptotic slopEor
From the intermediate black hole results shown in theeachm we chooseb to give the best fit to the intermediate
previous section, it is tempting to speculate thatr as-0, black hole data and see which yields the lowest overall
w,—0, andwg— const. Since the decay of the field is due to error (as measured by?).
absorption by the black hole, it is intuitively plausible that as  In the five-dimensional case, using seven points between
the black hole becomes arbitrarily small, the field will nor.=0.4 andr . =1, we indeed find thaih=3 gives the best
longer decay. It is even possible that the quasinormal modefit: xy2~9x 108 for m=3, as opposed tg?~3x 10 2 for
approach the usual AdS modes in the limjt—0, although m=2 andm=4. The actual fit, shown in Fig. 8 along with
this is not guaranteed since the boundary conditions at the modes and the asymptotic line, is given by(r )
=r, do not reduce to regularity at the origin as—0. If ~2.746675§rl(0.0748+ri). In four dimensions the story is
they do approach the usual modes in this limit, tagnmust  much less clear, since there is no significant difference be-
approachd—1 [21]. Of course, in the context of string tween the fit withm=2 and the fit withm= 3. This could be
theory, one cannot trust the Schwarzschild-AdS solutiordue to the fact that the data for intermediate black holes have
when the curvature at the horizon becomes larger than theot yet started to significantly deviate from a straight line.
string scale. By taking the AdS radid sufficiently large, To see the possible connection with black hole critical
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e critical phenomena for spacetimes which are asymptotically
AdS, the late time results will be quite different. Since en-
ergy cannot be lost to infinity, if one forms a black hole at
all, it will eventually grow to absorb all the energy of the
initial state.

VI. CONCLUSIONS

We have computed the scalar quasinormal modes of
Schwarzschild-AdS black holes in four, five, and seven di-
mensions. These modes govern the late time decay of a mini-
mally coupled scalar field, such as the dilaton. For large
0.2 0.4 0.6 0.8 1 ° black holes, it is easy to see that these modes must scale with
o ) the black hole temperaturé By the AdS-CFT correspon-
FIG. 8. The curved line is a fit to the modes of a small black yo 106 this decay translates into a time scale for the approach
:10Ie ind=5. The modes approach the straight line shown at Iargeto thermal equilibrium in CFT, for large temperatures and
* perturbations dual to the scalar field. The time scale is simply
given by the imaginary part of the lowest quasinormal fre-
phenomena, consider the evolution of a self gravitatingquency, 7=1/w,. From Egs.(4.2), for perturbations with
spherically symmetric scalar fieldh an asymptotically flat homogeneous expectation valuds=0Q mode$ these time
4D spacetimg It is clear that weak waves will scatter and go scales are r=0.08961 for three-dimensional CFT,r
off to infinity, just like in flat spacetime. Strong waves will =0.116T for four-dimensional super Yang-Mills theory,
collapse and form a black hole. Choptuik?] studied one- and r=0.183T for six-dimensional(0,2) theory. As we
parameter families of initial datdabeled byp) which inter-  mentioned earlier, these time scales are universal in the sense
polated between these two extremes. In each case there isHat all scalar fields with the same angular dependence will
critical solutionp=p, which marks the boundary between decay at this rate. Perturbations associated with other linear-
forming a black hole or not forming one. The late time be-ized supergravity fields will decay at different rates, given by
havior of this critical solution turns out to be universal. It hastheir quasinormal mode frequencies.
precisely one unstable mode which grows lige with \ Perhaps the most surprising aspect of our analysis are the
=2.67. This mode is responsible for the famous scaling otesults for intermediate size black holes. For black holes with
the black hole mass fqu just above the critical valueM,,  size of order the AdS radius, we find that the quasinormal
~(p—p«)?, wherey=1/A=0.374.(For a review, seg23].)  frequencies do not continue to scale with temperature, but
The numerical value oX is very close to the slope, 2.66, rather scale approximately linearly with horizon radius. We
of the line in Fig. 3 giving the imaginary part of the quasi- do not fully understand the implications of this linear rela-
normal mode frequencies. Since both numbers involvaionship for the dual field theories, but we can make the
imaginary frequencies for spherically symmetric scalar fieldsollowing comments. If one considers the field theory at con-
in four dimensions, it is natural to wonder if there might be astant temperature and slowly lowers the temperature, then
deeper connection between these two phenomena. Unfortane encounters the Hawking-Page transifibn,18. At this
nately, it appears at the moment that the agreement is just@oint the supergravity description changes from the euclid-
numerical coincidence. The first thing one might check isean black hole to a thermal gas in AdS spacetime. For these
whether the agreement continues in higher dimensions. Allow temperatures, the relaxation time might still scale with
though the critical solutions for black hole formation havethe temperature, but it cannot be computed by a classical
not been studied in five or seven dimensions, they have resupergravity calculation and is not related to quasinormal
cently been calculated in six dimensidr2t] with the result  frequencies.
N=1/0.424=2.36. We have redone our calculation in six To interpret the quasinormal frequencies of intermediate
dimensions and do not find agreement. The slope,ois a size black holes, we must consider a microcanonical descrip-
function of r , turns out to be 2.693. Another difference is tion. Consider all states in CFT with energy equal to the
that the exponents in black hole critical phenomena arsupergravity energy. Most of these states will be macroscopi-
known to be independent of the mass of the scalar field. Weally indistinguishable, in the sense that they will all have the
have checked that the quasinormal frequencies of large arehme expectation values of the operators dual to the super-
intermediate black holes do depend on the mass. One mightavity fields. If the only nonzero expectation value is the
expect that if there is a connection between these two phestress energy tensor, the states are described on the super-
nomena, it would apply in the limit of small AdS black gravity side by just the black hole. If you perturb one of
holes. However, we have seen that the modes of small bladkese CFT states to one which is macroscopically slightly
holes actually deviate from the linear relation, so the signifi-different, it will decay to a typical state with a timescale set
cance of the asymptotic slope is not clear. While it is stillby the lowest quasinormal mode. The results in Sec. IV show
possible that some deeper connection exig&shaps just in  that this decay time is determined by the size of the black
four dimensions and for massless figldsappears unlikely. hole in the supergravity description. Of course, the field
As an aside, we note that if one repeats the calculation afheory knows about the black hole size since its entropy is
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given by the black hole area. However, the fact that, in this Re wy
range of energy, the frequency scales linearly with the radius
is puzzling.

The fact that the quasinormal frequencies do not continue3.8916
to scale with temperature is also interesting for the following
reason. For a certain range of energies, the supergravity er; 4o14
tropy S(E) is dominated by smal{10- or 11-dimensional
black hole§ [19]. This means that the effective temperature,
defined byd SSdE=1/T, has the property that it decreases as3.8912
the energy increases; i.e., the specific heat is negative. By th
AdS-CFT correspondence, the same must be true in the duz
CFT. (This is not a problem since it applies to only a finite \J5 90 95 100 105 110 115
range of energiepIf the quasinormal modes continued to
scale with the temperature, then this negative specific heat FIG. 9. Convergence plot for a five dimensional black hole with
would have dynamical effects. Instead, we find that the ref . =0.6.
laxation time increases monotonically with decreasing en-

ergy. once the partial sums have converged to sufficient accuracy,
the variation ofw, is given by an exponentially damped sine
ACKNOWLEDGMENTS as a function oN, i.e., oy~ w+ce V2 sinpN+d), wherea
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ing, and B. Schmidt for discussions. We also wish to thani@ndd just depend on which partial sum we start with. In fact,
the Institute for Theoretical Physics, Santa Barbara, wher&€ can use a fitting algorithm iMATHEMATICA to fit these
part of this work was done. This work was supported in pariconvergence curves. An example is given in Fig. 9, where

by NSF Grants PHY94-07194 and PHY95-07065. the dots represent Re() for a particular set of parameters
(d=5,r,.=0.6,n=1, andl=0) and the solid curve is the
APPENDIX: EVALUATION OF QUASINORMAL MODES corresponding fit. This simplification allows us to determine
) . ) . ) the mode with a much higher accuracy than we would be led
As discussed in Sec. lll, in order to find the quasinormakg expect from the spread ofy . It also allows us to confirm

modes, we need to find the zeros Bf_a(w)(—X:)" N that the numerical errors in the computation of eaghare

the complexw plane. We compute the quasinormal modespegiigible, since, otherwise, one would expect a more noisy
USINgMATHEMATICA in the following way. We search for the istripution.

zeros, wy, of ‘/’N("’)EEE=Oan_(“’)(_X+)n by looking for  often the quickest way to obtain the quasinormal mode is
the minima of| ¢»y|? and checking that the value at the mini- ¢ simply look for the minimum of |2 near various initial
mum is zero]sz(wN)|2=_0. (In practice, there are numerical gyesses for the frequency, but when that method fails, we
errors in the computation, so the value at the minimum isan also adopt a more systematic approach:  eliminating the
instead~ 10" * or smaller) In order to find the correct mini- possibility of the occurrence of quasinormal modes in a
mum, we need to specify an initial guess fef. (This  given frequency range. This may be carried out in a more
sometimes poses difficulties in searching for new modes, angystematic manner due to the fact that[Rgw)] and
apart from using analytical or intuitive understanding as OUlim[yn(w)] are conjugate harmonic functions af, which
guide, we are forced to resort to trial and errorHow close st satisfy the maximum principle. Thus, if we find that
to the actual minimum one is required to start depends on tth(w) is bounded inside a given region of the complex
parameters; fpr the=1,1=0 mode.of. a _reasonably sized plane and either Reéy(w)] or Im[¢x(w)] remains nonzero
black hole, this seldom poses any limitations. everywhere on the boundary, the# is necessarily nonzero
To obtain an accurate estimate of the quasinormal frégyenwhere inside that region. This ensures that there can be
quenciesw, we typically need to compute on the order of h5 guasinormal modes with these frequencies. We can thus
N=100 partial sums, depending on the dimensinthe  gystematically search for the lowest modes by eliminating
black hole sizer,, and the modedi.e., n andl). Roughly  {ne |ow frequency regions until we find the modes.
speaking, at a fixed partial suM, the relative error in the Once we find one mode for a given set of parameters,
computed quasinormal frequency grows asdecreases, and continuity of the solution allows us to trace the mode
asl, n, ordincreases. through the parameter space; that is, we can findor
The task of determining the mode to the necessary acClyearby values of , andl. Also, once we know the=1 and
racy is fortuitously simplified by the fact that the “conver- =2 modes for a fixed , andl, the equal spacing between
gence curve” has a surprisingly simple form. In particular, ihe modes allows us to find the highemodes(provided the
numerical errors stay small
Thus the procedure for finding(r,) is the follow-
®As we discussed in the previous section, these black holes can h8g: WEe first consider a large black hole, where the conver-
quantum mechanically stable, since they are in equilibrium withgence is good at a low partial sum, ely=40. For such a
their Hawking radiation. low cutoff N on the partial sum, we may easily compute
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Yn(w,r, 1) in full generality. We find the desired mode to much highemN; the drawback, of course, is that now we
wn(r . ,n,1) using the method described above, and we cameed to recompute the whole series for each

check the convergence by comparing this result with that Note added in proofAfter this work was submitted, we
obtained for the lower partial sums. We can now follow theextended our computations of the highemodes for large
mode to smaller values of, until the convergence becomes black holes, up td=25. From fits of the largé behavior of

too slow and we need to compute higher partial sums. lw,, we find strong evidence that the frequencies indeed stay
becomes more practical at this point to fix all the parameterbounded away from zero: In particular, a fit of the form
and considenyy as a function ofw only. This has the nu- ,(1)=1.12+15.4/(+11.8) hasx?~2x10"% as op-
merical advantage of enabling us to compute the partial sumgosed toy?~10~2 for a fit with w,(I—)—0.
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