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A metric nonsymmetric unified theory of gravitation and electromagnetism is studied. By a suitable modi-
fication of the Einstein part of the Bonnor Lagrangian, it is shown that the antisymmetric part of the metric
tensor can be made to describe a massless spin-1 field obeying Maxwell's equations in the flat space linear
approximation and thus making its identification to the electromagnetic field strength tensor a possibly con-
sistent procedure. The theory is shown to be free of unphysical ghost-negative energy radiative modes even
when expanded about a curved Riemannian background. The Einstein-Maxwell theory is contained in the first
approximation of the field equations about a curved general relativity background. The field equations contain
only the symmetric part of the connection, making them as close as possible to those of general relativity. The
equations of motion of charged particles are shown to contain the Coulomb force in the lowest nontrivial order
of approximation.

PACS numbs(s): 04.50+h

I. INTRODUCTION McCarthy[6] (DDM) that, when expanded about a Riemann-
ian background, the Einstein unified theory and a whole class
Einstein[1,2] developed a unified theory of gravitation of nonsymmetric theories of gravitation based on the Ein-
and electromagnetism based on a nonsymmetric metric testein Lagrangian exhibits curvature-coupled negative-energy
sor with its antisymmetric pam,z being linked with the  (ghos) excitations and unacceptable asymptotic behavior.
Maxwell field strengtrF ;. Later Bonnof{3] introduced an By making use of their type of analysis, it will be shown that
extra term into the Einstein Lagrangian in such a way thathe present theory is free of these unphysical features, and
the Lorentz force, which could not arise from previous cal-therefore on a rather safe ground. It is shown that with the
culations[4] on the Einstein theory, could be obtained. Yetaforementioned modification of the Einstein part of the Bon-
later Moffat and Boa[5] proposed a new interpretation of nor Lagrangian it is possible to construct an alternative
the Bonnor theory, based on an exact central symmetric saheory which, besides having the proper Maxwellian behav-
lution, suggesting the identification of the two fields within ajor in the weak field limit, it is free of radiative ghosts and
constant which we shall caf, as in Eq.(2.4) below, the bad asymptotic behavior even when expanded about a Rie-
formal vanishing of which leads the theory to the usualmannian background space, becoming thereby a candidate
Einstein-Maxwell theory. However, none of these theories ifor a physically consistent geometrical unified theory. We
able to reproduce Maxwell’s type of equations @,z in  follow the procedure that we have adopted recefiflyto
the weak field linear approximation for normal nonzer@s  develop an alternative nonsymmetric theory of gravitation to
it really is, to sustain such an identification. As pointed outcope with the aforementioned problems that DDM pointed
by Einstein himsel{2], the linearized equations obeyed by out in previous nonsymmetric theories.
Jiap IN his theory are weaker than Maxwell’s equations. In We show first that an extension of the Einstein Lagrang-
the Bonnor theory one seg3] that the linearized,; does ian to a more general form is possible, satisfying Einstein’s
not obey Maxwell’s equations either: more precisely, the firstcondition of Hermiticity[1]. This means invariance under
equation is obeyed but the second one, involving the curl ofransposition, which is defined as the transformation that ex-
the field, does not. The same occurs in the Moffat-Boalchanges the indices of the metric tensor and the lower ones
theory[5] because here Bonnor’s field equations are kept andf the connection, followed by an exchange of the two indi-
the vanishing ofp as by them considered is only forma@, ces of any second-order tensor that depends on the metric
being a fixed nonzero quantity always present in the theoryand connection. This symmetry property has the physical
The fact that the complete Maxwell's equations are missingneaning[1] that the same field equations are satisfied for
then damages the identification of the two fields. This is thepositive and negative charges, the transformation taking one
kind of problem that this paper tries to solve. Here we showinto the other. With this condition and the requirement of
that by a suitable modification of the Einstein part of thehavinggy,g to obey a first Maxwellian type of equation in
Bonnor Lagrangian we can obtain both the desired Maxwellthe flat space linear approximation we will be led to an ex-
ian type of equations fog,z in the weak field linear ap- tended form of the Bonnor-Moffat-Boa(BMB) theory
proximation, making then its identification with,; a pos-  which contains, besides the universal consgminly two of
sibly consistent procedure. an initial seven parameters. The BMB theory appears for
Moreover, it has been pointed out by Damour, Deser, angarticular values of these two parameters. Then we show
how the requirement of having .4 to obey also the second
Maxwell equation in the same linear approximation forces
*Email address: ragusa@if.sc.usp.br their values, leading to a consistent unified theory.
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The equation of charged particles are shown to follow byfor g, in the flat space linear approximation, the theory
the method of Einstein, Infeld and HoffmariB]. This is  will be automatically free of unphysical ghost modes even
done along the same line of Bon@&] and Moffat-Boal[5] = when expanded about a Riemannian background. Reasons
calculations. To lowest nontrivial order the result here ob-will be given to have in Eq(2.4) the proportionality constant
tained coincide with these previous calculations. equal to the samp of Eq. (2.1).

The paper is organized as follows. We start, in Sec. Il, by As showed in[7], the most general Hermitian form of
looking for the most general Hermitian form of the second-Q,z, containing at most first-order derivatives and quadratic
order tensor, containing at most first-order derivatives angroducts of the connection only, is
quadratic products of the affine connection, which will play
the role of the Einstein tensor, which is the counterpart of the Q,3=P (a5 +aPag+bIf,, g+l ol pg+dl 1 g,

Ricci tensor of general relativityGR). In Sec. Il we write 2.5

the corresponding field equations. In Sec. IV we focus our

attention on the requirement of having Maxwell's equationswith four arbitrary parameters, whef&,=TI'f;, ,; is the tor-

for g;ap in the flat space linear approximation and analyzesion vector. We shall sketch now the reasoning behind this
the physical implications for the values of the last param-expression. One starts from the fact that in an affine space
eters. The resulting final field equations are displayed in Seche only tensors arg9] the non-Riemannian curvature tensor
V. In Sec. VI we study the expansion about a Riemanniamgvﬁ, the antisymmetric part of the connectidif, ; and
background. In Sec. VII we discuss the equation of motiortheir contractions and covariarf) derivatives. The most

of electric particles and in Sec. VIIl we draw our conclusionsgeneral form of the second-order ten§y,, containing at

and highlight future works. most first-order derivatives and quadratic products of the
connection, is found to be a linear combination of eight
Il. HERMITICITY second-order tensof4.0], among which one could include,

for instance, the two independent contractions of the curva-
ture tensorR% , ; andR% 5, or ', 5., , which is related7]
1 to P, , Or I',. 5. However, a most convenient set of eight
L=—g"Q,z+ _zg[aﬂlg[am, (2.1  candidates, all of which with definite Hermitian property,
p Hermitian or anti-Hermitian, can be constructed. They
are the five Hermitian tensors on the right of Eg.5 and
with the notatiorX = y=gX, g being the determinant @,;  the following other three tensors’ ..z, T,I'fys and
whose inversg®” is defined by I't.5~ Tl .« all of which change sign under transposi-
gofg, = &P 2.2 tion. As this last three tensors are then anti-Hermitian, the
ay Ty ' general Hermitian form ofQ,; will include only the first
five, as written in Eq(2.5). We are then left with four arbi-
trary parameters since one of them can be taken equal to one.

We write the field Lagrangian density as

The first term on the right of Eq2.1) becomes the Einstein
Lagrangian wherQ ,; is the Einstein Hermitian tensd?,,
[2], defined by

Ill. FIELD EQUATIONS

—_To _ 1 o a a Y _ T Y
Pas=Tapo™2ao st Lop) *Lapl lon = Larlap Variations of the actionfLd*x with respect tog®? and
(23 17, yields the field equations. The former gives
plus two Lagrange multipliers terms. The notatier3) and
[ «B] will be used to designate symmetric and antisymmetric Qup—Kyep=0, (3.1

parts of the corresponding quantity. The second term on the

right of Eq. (2.1) is the term introduced by Bonn¢8] (p  where[3]
being here the inverse of hiy in the Einstein Lagrangian in

such way that the Lorentz force, which could not arise from

previous calculationg4] from the Einstein Lagrangian, Kap=
could be obtained. The problem we pose ourselves here is

the following: to find the simplest form d®,,z in order to
have g, obeying the usual Maxwell's equations in the
linear flat space approximation and to have the resulta

1
g[aB] + gaﬂg[MV]gVB+ Egaﬁg[MV]g[,uV] .
(3.2

Sl

n‘{'he variation with respect tﬁgﬂ is best accomplished by

theory free of ghost—negatiye energy radiative modes eveWrlting
e e i
strengthF ,; defined by where

Upep=PFap, 2.4 foB = g(@B) 1 agl@h (3.4

as suggested by Moffat and Bdal], constitutes a consistent
procedure. As we shall see, by having Maxwell's equation®erforming the variation, we gé7]

024026-2



NONSYMMETRIC UNIFIED FIELD THEORY PHYSICAL REVIEW D62 024026

foB y+fmfrﬁa+fﬂ'5rg —faB Cr) where the sub- and superscripts are moved by the metric
T 7 7 7 Mg, that is,nP*=7P#7%"h . Notice thatgl®#l =+ hl*#]
—385(f7F ,+ 10T E —2cgPT  +dgPl ) = 77PNy -

Let us first focus Eq(3.8). Its first-order part is then
—$ 881+ 0T, + 200, —dgl*,,) 138 P

e e (a—3d)hl* +2(1+3c—b)»*T',=0. (4.2
Therefore, to have a first Maxwellian type of equation for
Contracting the pairg,y and«,y and adding and subtract- h,s, that is,
ing the resulting equations, yields
h[w]v”=0, (43)
flao) 4 2fledll 4 froT 8 =0, (3.6) ,
we must havea—3d+#0 and the relation

and 1+3c—b=0, (4.4

[ao] (ao) _ (ao) _ [ao] _—

7o+ 2099 +2(1+ 3¢~ b)g*”I',—3dg '0_(??'% with which Eq.(3.8) reduces to
gleol ,=o0. (4.5

This is our first field equation. When divided byt gives the
(a—3d)g* ,+2(1+3c-b)g“’TI',=0. (3.8  generalized Maxwell first equation. With E¢.4) we can

then eliminate one more parameter. Equati®!®) becomes
This is the one equation with which the usual first Maxwell

equation will have to be related to. Taking the symmetric and
antisymmetric parts of Eq.3.1) and recalling the expression

Using fleel=agl*?], from Eq.(3.4), we get

1
Plap) T bI fan]'[up +3 (b= DIl 3= K(ap =0,

of Q. in Eq. (2.5, we get (4.6)
Pap) T bFf‘W]F[”MB] +cl, ' s—Kap=0, (3.9 and, with the additional help of Eg&.6) and(4.5), Eq. (3.5
becomes
and
@ aoT B oBT @ _ faBrm o
feb 41Tl +10PT S —f*PT7 )
aPa +dF @, _Ka :0, (31@ ao)T B o)To
[aB] [«.8] " K[ap] ~b(g“ITE ;—gFITE )
which, upon taking its curl, gives +%5$(ag[ﬂgl+(b_1)g(BP))FU
aPap.1— Klap.,=0. (3.1 +385(ag !~ (b-1)g*Hr,=0. (4.7

Here, we have used the indicatio);.z.,;=Xe., e then see that up to here our field equations, B4,

+X{ya1. g+ X( 41« fOT the curl ofX(,4 . Of course, the curl  (4.5), (4.6) and (4.7) depend on two parameters oniyand

of T';,. 4 is zero. Equatior(3.11) is the one equation with D. As we shall show in the sequel, by demanding that the

which the second Maxwell equation will have to do with. second Maxwell equatlon should arise in this same flat space
In the next section we shall study the flat space linea@Pproximation the first parameter will be forced to be null,

approximation of the field equations, Eq&.5), (3.8) and a=0, and, as a consequence of thiswill just disappear

(3.11), and analyze the physical implications for the param-from the final field equations.

eters when we require that the usual Maxwell's equations Before we go on we mention at this point that the field

should hold in that flat space approximation. equations Eqg(3.11), (4.6) and(4.7) can be reduced to sim-
pler forms if, on account of the results in E¢4.4) and(4.5),

we make use of the invariance of the actipn d*x under
Einstein’s\ transformatiorj 11], which is defined as a trans-
formation to a new connectioa ), involving an arbitrary
We shall examine now the linear form of the field equa-vector field\ ,. Then one can go to a new connection with

IV. LINEAR APPROXIMATION ABOUT A FLAT SPACE:
PHYSICAL IMPLICATION FOR THE PARAMETERS

tions and analyze the spin content @f,z and of g, - zero torsion leading to the simplification of the field equa-
Linearization about a Minkowski flat space with metric tions. However, we really do not need to go into these sim-
Nq5=(1,—1,—1,—1) is achieved by the expansion pler forms of the equations to continue our discussion be-
cause they will lead exactly to the same final results.
9ap= NaptNag, (4.1 Notwithstanding, for completeness and to make a close con-
tact with the BMB theory we discuss thetransformation in
where|haﬁ|<1. The inverse of this equation is Appendix A. There we show that by going to a new torsion-
less connection, as did Einstein in his theory, the BMB
gf= p*B—hbe (4.1p  theory appears for the particular valuas-1 andb=0 of
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our two free parameters. Then, following the same procedur@s a bonus we can conclude from this expression that the
to be discussed below, it is there shown that by demandingprsion vector is related to the vector potential. In fact, from
that the second Maxwell should hold in the flat space apEq. (4.12 we must have

proximation, the same conditions mentioned at the end of the
last paragraph will result for these two parameters leading to

1
the same final field equations and showing then that they are Aa=— Zdea

(4.19

independent of the transformation.

For future use we write here the symmetric and antisymto obtain, to first orderF,, B:Agl)a_ /_\(alfg_

metric parts of Eq(4.7):
(@B) 1 ola)[B 4 qoBTe _ oaBe (a0l B
g TGyt 7T )~ PTG +a(@ T

+ P+ 58505+ Sfgehr,)=0 (473
and
a((-:l[amﬁfF g[aolrgw) + Q[Uﬁlrﬁw) B g[amrfpy))
T (1-b)(@ T~ ¢ 7T
—3(859%7) = 87" ) =0. (4.7D

Let us now focus Eq(3.11). The first-order part oK,z
is, from Eq.(3.2),

2
1) _
Kfa}g]—gh[aﬁ] . (4.8

Therefore to first-order Eq3.11) reads

P, 2 =0 4.9
aF[ap,y) p2 BN = (4.9

From here we immediately see that the second Maxwel
equation will result if we restrict the parameteto vanish,

a=0, (4.10
giving then
(4.11

which is the desired result. This, together with E4.3)

Prep, =0,

Before we go on notice that upoh multiplication of Eg.
(4.9 by p we see clearly why in Moffat-Boal’s theory which,
as mentioned before is the case whenl andb=0 and
with the identification in Eq.(2.4), the second Maxwell
equation will result for a formally vanishing. This is so
because that formal limit will erase accidentally the first
term, the one which actually shows that the second Maxwell
equation is not present for fixed nonzero normahlways
present in the theory.

To make a close contact with the Bonnor theory let us
calculate the first term of Eq4.9) before the conditiora
=0. From Eq.(2.3) we getP{L,=T7{5 ~T(D,, and
only the first term of this relation will contribute to EGL.9).
From Eqgs.(4.79 and(4.7b we can easily solve for the con-
nections to first order. This has been done bef@iebut for
completeness the calculation is delineated in Appendix B.
The results are

(1) _ T,
TR =317 (Nap) s+ NigaNapyp) (419
as in GR, which we shall be using shortly, and
(1=b)I 7 =227 (Mg 5= Ny, at Niagr o)
+3(1-b)(I'Pog-TrPss).  (4.16
bsing Eq.(4.3) we then find
(1-0)P{Ly=3a0h 5 —5(1-b)IYy. (417
Thence Eq(4.9) gives, forb#1,
a® 2
—2(1—b) Dh[aﬁ,y]_ Eh[aﬁ’ﬂ:o. (418)

guarantees thdt,, 5 has now a Maxwellian type of behavior Without the Bonnor, second, term and with=1 and b
describing a massless spin-1 particle. This is actually what 0. this relation reduces to the result of Einstein the@ly

we need for a consistent identification laf, 5 to the elec-

tromagnetic field strength tensor in flat space, that is,

h[aﬁ]:pfaﬁl (412

wherefaﬁ here is the usual Maxwell field strength satisfying
Faﬂ,ﬁzo andF,z ,;=0. Another, equivalent, way of put-
ting things is to realize that with E¢4.8), Eq. (3.10 tell us

which, as pointed out by Einstein himself, the resulting equa-
tion, O0hy,g =0, is weaker than Maxwell’s second equa-
tion. Next, with the Bonnor term present in E¢.18, and
still with a=1 andb=0 we have the linearized field equa-
tion of Bonnor[3], with hy,z continuing then not to obey
Maxwell's second equation. As discussed before, it will do
so in the present scheme by choosing0, which eliminates
the undesired contribution d?, .

To complete the analysis of this linear approximation con-

that the condition to havi,g derivable from a potential is  gijer now Eq(4.6). As the contributions of thb term and of

to havea=0 because then the linearized form of E§.10
will give

1
hag=7P?d(T05-TH). (4.13

the next one are at least of second order, as well as the term
| («p) is from Eq.(3.2), that equation reduces B{}); =0, to
first order. Then, from Eqg2.3) and(4.15, we get

Dh(aﬁ)zo, (419)
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where we have chosen harmonic coordinatlg,g , B
—3h ,=0 with h=%**h(,p , which is identical to the GR
result.

We end this section by analyzing the consequences of th

valuea=0 for the field equations. EquatigB.11) will lose
the contribution of its first term containing the antisymmetric
part of the connection. Consider now E¢$.7a and (4.7b).
With a=0 the first one will also lose it§ -antisymmetric
contribution and the second one reduces to

_ ac)T'B T a
(1-b)(g*Tf,, — g BITE

_%(539(&7)_ 559(‘“7))]“0)=0_ (4.20

PHYSICAL REVIEW D62 024026

V. AN ALTERNATIVE UNIFIED THEORY

In the last section we saw that by restricting the param-
eters of the extended theory to suitable values we were able
e X ) : ) : ;

10 achieve a consistent behavior of the fields upon lineariza-
tion in flat space. The symmetric sector, becoming the one of
GR, describes the spin-2 graviton and the antisymmetric sec-
tor describes, fog,s ., a spin-1 Maxwellian type massless
field, making then the identification in E¢R.4) a consistent
procedure. Let us now see the form acquired by the field
equations. As already said, with=0 the field equation Eq.
(3.1)) loses completely itd"-antisymmetric contribution so
does Eq(4.79 and, as we have shown at the end of the last
section, the same will happen to the field equation )

We shall show now that as a consequence of this relation thehen use is made of Eq#$4.21), and (4.22. As it will be

field equation Eq(4.6) will lose the contribution of the an-

shown in a moment, see E(.9) below, the two terms in-

tisymmetric part of the connection as well. For that purposeside the square brackets of E@.21) are equal. Conse-

notice first that from Eq(2.3) the first term of Eq(4.6) is
given by

—_T0 1 o o o
Pasy=T(ap).o™ 2[V a0y 7 T80y, al T T (apyT (o)
(4.21

Therefore, thd -antisymmetric contribution to E¢4.6) can

_To Y _Te Y
Canl{op)y =T lanT fop -

quently, Eq.(4.6) becomes

where

Uas=I(ap).o Diva) st Llapl oy~ Tlant (o) 52

be easily localized and we shall show that it is also null, thatSymmetric and containing only the symmetric part of the

is,
1

3 (4.22

independently of the value d&f. We start by contracting Eq.
(4.20 with s, , sz, Wheres, ;, symmetric, is the inverse of

g(“? as defined bys,,g(“"= 5, . In this way we find

[aw]

r

yut v

=0.
(4.23

Adding to this relation those witly and v interchanged and
then with y and i interchanged we get

1
+§(SWFM—S

)

(1- b)< Sﬁvrfw] ~Saul’

1
(1-b)| 80y T3 (55,1 | =0, (4.24

which, upon contraction witiy®?) gives

A 1 A\ A\
(1—b)(l“[w]+§(5VFM—6MFV))=0. (4.295
Contracting this equation first withI, vyields (1
—b)Ff‘VM]F);O. Next, by making use of this last relation,
contraction of that same equation wiflf; ,; yields immedi-
ately Eq.(4.22. It is rather remarkable that the simple de-

mand thata=0 to have the Maxwellian content @,z

connection, is the analogue of the usual Ricci tensor. It is
that piece of the Einstein tensor which contains only the
symmetric part of the connection. Next, E®.11) with a
=0, becomes just

K[aﬂw]:O, (53)

and Eq.(4.79 becomes

g(aﬁ)‘y_lr_ g(”‘”’)l"ﬁyo) + g(UB)FEYO"y) — g(ﬂ’,B)FETO”y) = 0,
(5.4

which has the same form of the equation for the contravari-
ant metric density of GR. To these three field equations we
have to add Eq4.5), which we repeat here for convenience,

(5.5

These are the final field equations of the theory. With Eq.
(2.4), Egs. (5.3 and (5.5 are the generalized Maxwell's
equations.

Equation(5.4) can be solved fol"(, 5 . We get[7], re-
produced in Appendix C,

g[aﬁ]'ﬁzo_

Ulapy= 39N(S 0 5T S\~ Sapn) +Q00z, (5.6

where

S
ﬂzf%(g‘f’“saﬁ—5562—6252>(In§)A (5.

guaranteed in the linear approximation, should produce such
a grand simplification of the field equations: the antisymmetands, s, symmetric, and with determinasis the inverse of
ric part of the connection has disappeared completely frong'®?, as defined by

sight, and together with it the paramekbetoo. Let us then go
to the resultant field equations.

Sap9' =57 (5.9
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When the antisymmetric part @f,z vanishess,z will be We end this section by remarking that the situation that
equal tog,; and the right-hand side of E¢5.6) becomes the we have here for the electromagnetic related part of Eq.
usual Christoffel symbol, as it should. In the course of the(5.15 is analogous to the first-order form of the action of

derivation of Eq.(5.6) we come across the relation Maxwell theory as mentioned by Arnowitt, Deser and Mis-
ner [12], Maxwell's equation being derived from the La-
- rangian
o o=l 59 o9
(0a) \/—_s - - _
@ Lem=F“PF 5= 2F*P(Ag .~ Au ). (5.16

which can be reobtained from that equation. From this result, o — — .
we see that the two terms inside the square brackets in E§Y independent variations &,z andA. One finds, respec-

(4.21) are equal, as promised. tively, F,z=Ag .~ A,z andF*? ;=0. Actually, recalling
The symmetric and antisymmetric partskof; are, from  Eq. (4.14), the electromagnetic related part of £§.15 can
Eq. (3.2, be written —(2/p)gl*Pl(Ag AL p) + (10?) 9P} apy »

which to first-order reduces to E(.16), as it should.

1
K, o=— (7] + [wv]
(@B 2 (O™ G1va1 + 9818 O VI. LINEARIZATION ABOUT A GR BACKGROUND:

A GHOST-FREE THEORY

+39(e9""191) (5.10 o . . . .
Linearization about a Riemannian background with metric
and 9%} can be achieved by the expansion
1 —q0) 1)
_ v v ga _ga +ga ’ (61)
K[a/s]—;(g[aﬂﬁg(amg[” 1909+ 91em 9 191s prSap s Sap
Wheregf}g is the perturbation. The inverse gf,;, as de-
41 [nv] ) (5.11) . - .
29119 " Grur)- . fined in EQ.(2.2), is then
This completes the discussion of the field equations. As it is geh=g(@aB_ g(1)pa 6.2)

shown in Appendix A the same field equations will result if
we go first to the torsionless connectidn _ where the sub- and superscripts are moved by the initial met-
Let us write now the Lagrangian in E(R.1) in terms of ric tensorg(o) that is g(l)aﬁ:gw)wg(omg(l) We then
. . . . . . af ’ v
U,z, which will lead directly to the field equations. With have g(@#) = g@a8_ g1)(@8) and g[ang(l)[‘fw] Thence
c=(b—1)/3 from Eq.(4.4), and witha=0 together with it order Eq.(5.5) reads ' ’
Egs.(4.21) and(4.22, Q,z in Eq. (2.5 reduces to o

_ (0)y(0) 0)BrH(1) _
Qup=Ugtdl (e g (5.12 (V=gPgDgPrgll))) 5=0. 6.3
From here we see that EB.1) becomes On the other hand, as E(5.11) gives
Uaﬁ-f-dr[aﬁ]—Kaﬁ:O, (513 W 2 )
, , , : Klap= 2 9ap 6.4
whose symmetric and antisymmetric parts are, respectively, p

Egs.(5.1) and
we find that Eq.(5.3) yields
dr[a’B]—K[aﬁ]IO, (514)
| Ofp = 0. (6.5
which leads to Eq(5.3). Now, from Eq.(5.12) the Lagrang-

ian in Eq.(2.1) becomes The conclusion from Eqg6.3) and (6.5 is then thatg{%),

1 satisfies the Maxwell's equations of the Einstein-Maxwell
L=—g%(U s+ d 4 5)+ _zgaﬁg[am . (5.15  theory, making then its identification with the field strength
p F . Of that theory now,

If we vary this Lagrangian with respect ®,5, I'(, 5 and
I',, we get, respectively, Eq$5.13), (5.4) and(5.5), the first
one of these leading to Eg&.1) and(5.3). From Eq.(5.15
we then see that the modification of the Einstein paftof
the Bonnor Lagrangiaf3] that we end up with turns out to
be the replacement of the Einstein tensyy; by its piece 211
U,p Which contains the symmetric part of the connection Kiop=—| =g, gWlgd) g g |
only, plus a single Lagrange multiplier term which can be (@f) p2l4 (@B) [wr] [ SLAv]
written dT",,g!*#! 5, up to a total derivative. (6.7)

gl =PFap, (6.6

a consistent procedure. Let us look now at Egjl). First,
from Eq. (5.10 we see that to lowest order
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Therefore, with the identification in E¢6.6) we see that this where Raﬁ(e):ugf’g is the Ricci tensor of the background
quantity is proportional to the electromagnetic energy-field,
momentum-stress tensor of the Einstein-Maxwell field:

Ba5|5=0, (6.19
K(aB):SWEaﬁ! (683
where the vertical bar denotes covariant differentiation with
where respect to the background met,z, and
Eusmre| 200 F - FoE | 68D 2 "
aﬁ_4ﬂ_ 4g(aﬁ) Mmv @ Bv|: ) _EBaﬁ'f'dF[a’B]:o, (615)

As U,z to zeroth order becomes the usual Ricci tensor, Eq
(6.89 is exactly what we need to have E&.1) going into
the Einstein-Maxwell field equation. By the way, this condi- Blag.,=0. (6.16
tion fixes the sign of the Bonnor term as written in E2.1). o

Also, this is why we have chosen the proportionality con-Continuing with the arguments of DDM let us calculate the
stant in Eq.(2.4) equal to the same of Eq. (2.1) so as to  energy in the theory by their method. We give the details of
have the proper cancelation of constants in deriving Eqthe calculation in Appendix E and quote here only the final
(6.8a. Finally, consider the Lagrangian in E(.19 inthe  results. Using the expansions in E¢8.10—(6.12, the La-
same approximation. With Eq$5.14), (6.4), and Eq.(6.6)  grangian in Eq(5.15, through ordeB?, turns out to be

we get
, L=—V=GR(G)+Lsg, (6.17)

1 —
dFEa),B]_BFaB’ (6.9 whereR(G) is the Ricci scalar of the background field and
the second-ordeB part is, up to total derivatives,

feading to

with which the I term inside the square brackets of Eq.

(5.19 will be equal to—2—gOF “BT:a . This then com- N 1 i
bines with the one that comes out from the Bonnor term, Le=-1-G Al Lo p2 Baﬁ)
JV-gOF *fF ,, reversing its sign to give finally (6.18
—+—gOF ”"BTZQB for the total electromagnetic contribu-
tion. This is exactly the Maxwell field Lagrangian of GR,
with the correct minus sign, in the second-order form of the 1
action. M“ﬁ=ZG”‘BB’“BW— Be“BF (6.19
From all these considerations it is clear that the theory is

free from ghost-negative energy radiative excitations and baﬁaving the same structure of the Maxwell electromagnetic
asymptotic behavior. However, one might argue that there igtress tensor. Actually, by identifyirf, ; to the electromag-
a small piece 08y, second-order dependenceldf, to be  egic tensoF S ; of the G-field, B, ;= pFo,, M is propor-
analyzed. We shall do so following the work of DDM].  {jgna) to the electromagnetic stress ten&t¥(G) of the
Using their notation we write backgroundG-field, M= 47p?E*#(G). In this formula-

_ tion the B stress tensof“” is defined through the variation

9ap=Capt Bugp (6.10 of the B action according t¢13]

M*PR,z+B*#

where

whereG,,; is the metric of the Riemannian background field

andB,,z=0[.p is the antisymmetric part @z, acting as a 5|B:f SLgd*x= _877f TH6G,,, [—Gdx.
perturbation. The inverse of the metric is then, to second 6.2
order, (6.20
Performing the variation we get, after using the field equa-
af_ aB ap ayg B
9 G*+B*+BYB,7, (6.1 tions Eqs.(6.13—(6.15),
where the sub- and superscripts are now moved by the metric 1 (1
Gap, that is, Bf*=GP*G*'B,,, and its determinant is T“”z—(—G“”B“ﬁBaﬁ—BWB”a)
given by 4mp?\4
1 L p(u v) L M p
V—g=V-G| 1+ ZBaﬁsaﬁ). (6.12 + g | M, S MATP, L (6.2
To zeroth and first order, the field equations E&sl), (5.5  Now, the first, Maxwellian type term on the right-hand side
and(5.14 become leads to positive energy. All the other terms inside the square
brackets, involving totaG-covariant derivatives, can give no
R.5(G)=0, (6.13 contribution to the average over wavelengths of radiation,
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this average being the measurable observable which leads to VII. EQUATIONS OF MOTION
the physically well defined effective energy-momentum-
stress tensor, as shown by Isaackb4 for high frequency
radiation after the work of Brill and Hartl¢l5], and ex-
tended to lower frequencies by Efroimski6]. We are then
left effectively with only the Maxwellian term of Ed6.21),

In this section we shall derive the equations of motion of
charged point particles by the method of Einstein, Infeld and
Hoffmann [8]. This was already applied by BonndB8]
showing that with his extra term in the Einstein Lagrangian
the equations of motion do contain the Coulomb force in the
lowest nontrivial order of approximation considered. The
identification was made afj g to the dualFy; of the elec-

1 /1 C o ap
Th= . ZG“VB“ﬁBaﬁ—BWBVa , (6.2  tromagnetic field tensor. The galculat|on_ was repeated by
Moffat and Boal[5] in their new interpretation of the theory
but with this same identification, although they suggested
themselves the identification gf, 4 to F .z itself. This was
which, with the identificationB,,=pFS,, becomes the pointed out by JohnsofL8] in a footnote, mentioning also
electromagnetic stress tensor of the backgroGrikeld that the two identifications lead to the same result in the
lowest order considered.
Here we shall derive the equations with the identification
Ter=E*"(G). (6.23  in Eq.(2.4). It will be shown that, although it will appear in
the course of the calculation an extra term induced by the
present field equations, that term will not contribute to the
Therefore, the theory is, in fact, free of ghost radiativelast step of the calculation leaving only the Coulomb force
modes. We close this section with a few comments regardingerm: all calculations coincide to the lowest order.
the comparison of the present theory with the standard first- \we then PUD (4 p) = aup @NAJ[ap = fap and assume that

order formulation of the Einstein-MaxwellEM) theory.  they can be expanded in powers of a parametas follows:
Both theories share the same symmetries, general covariance

and Maxwell gauge invariance, here 105 and there for the ago= 1+ N800t N 4800+ - - -,

EM vector potentiaI"AQ, which appear both as Lagrange
multipliers, but all this on completely different grounds. The
variations with respect to these two quantities lead, respec-
tively, to the divergence equations fgt*#! and for the EM

F*2. The variation with respect t&*# leads to the curl

equation forF,; and, here, the variation of the electromag- @S in GR, and, compatible with the identification in E24),
netic part of the Lagrangian with respectg®’® (and, by the ~Where fo; is related to the electric fielé; and f;; to the
way, notgl?!) leads to the curl equation fd€,;. Now, — Magnetic fieldBy,

F2f is related to the_electromagnetic field strendth for= N2y o+ Mg - (7.28
through the EM metrickE*#=g(@arg(@B*E " put no such

a simple kind of relation holds betwee\;{fw] and gj.g - and

Introducing the determinants of the symmetric and antisym-
metric parts of the metric,gs=det(gpz) and ga
=det(g.p). and callinga®” and m*” the inverses of the

resrﬁ)ectlve parts, as defined _hyﬁg(av): 3 and maﬁg[gg we shall be able to construct from the field equation Bafl)
:51’1 one has [117] first —the relation g a nonlinear quantity of ordek*, the surface integral of
=9~ X(9sa*a”" 0y, + 5 VOae"**'g,,).  Here,  Oa  which around each one of theparticle system, will give the
=8 1e"P'g 50, and if gu is not equal to zerom*®  gquation of motion of that particular particle, in the lowest
=(2/ga) "*e*P#7g;,, . As the determinants are related by order of approximation. Starting then with E&.5 we find
[17] g=gs(1+27*a*"a*’g,,10],4) + da, We see that if  to lowest order,

the gj.p are smallgl*# will contain only odd powers of

Ofapg - TO first order we haveyDlesl=g@ang©@prg) 2f0i,i=0. (7.3

as stated before, and with the identificationggf); to F .
the electromagnetic field related equations of the theory wil
reproduce the Maxwell equations of the EM theory. At
higher orders we shall have, of course, corrections to the E
field equations. Second, focusing now the symmetric parts of
the metric and of its inverse, one has the relatgf)

=9 Ygsa*f+gam**mP¥g(,,)). This shows thatg®®  From here we see thaify derives from a potential. We
contains even powers dj,g only. Therefore, to lowest write

order, the EM theory is reobtained. At higher orders the

present theory will then give corrections to it. 2foi=—p, (7.5

_\3 5
aoi =N 380i T N5+ - - -,

aij: - 5” +)\22aij+)\44aij+ ey,
(7.1

fij:)\33fij+)\55fij+"" (72b)

We shall need 4 to orderA\? only. Then as in GR8],

ext Eq. (5.3 gives, using Eq(6.4) and keeping in mind
hat time derivatives are one order higher than space deriva-
jves,

2foij—2f0;,i=0. (7.9
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with which, according to Eq(2.4), ¢ is then the second- 1 1/ g2 1 12
order electric potential. From Eq(7.3) it satisfies the 4C'i=4,m —zzi+2m2(zi—zi)r_3 , (7.14
Laplace equation, T

24
VZ4=0. (7.6 wherer—|z z| is the dlstance between the two particles.

Equation(7.2b refers to the magnetic field, which we can The masses are expandednas A2 2m+ -andr=\t is
then neglect in the approximation we are working on. Forthe auxiliary time variable. In the second term of Ef.13),
simplicity we shall consider the case in which only two par-n; is the normal to the spherical surface of integration en-
ticles are present. The appropriate solution of Ef6) is  closing particle 1 and no other, then

then

1
vz K=Ky + §5ij(4Koo_4Kkk), (7.15
=242 7.7
=T ' and
r r .
Where, withA= 1,2, 4V2kij):4v(ij)+ 55”(4V00—4ka). (71@
A A - -
r=|x—z(t)|, (7.9 From Eq.(5.10 we find, using Eq(7.5),
Kiijy=28,.;— 6 kb« (7.17

A
z(t) being the position vector of particla at timet, and
charges are expanded gs)\222+ . which coincides with the result of Moffat and Bdd]. The

Finally we consider Eq(5.1) to order\®, from which the ~ corresponding surface integral is found to be
equations of motion should follow in lowest order. To qua-

; . ) ; : 21 2
dratic order inh,;=9,.5— 7.5 EQ. (5.6) gives, derived in 1 f ! _3
af™ Jap ap — — — 7
Appendix D, = 2, I])anS 4,e.e(zi—z)r > (7.18
T =0 =) (N st higny.a Mgy ) For the second integral in E€7.13 one finds a null result,
1 1
+§(maﬂlu—_ maa!ﬁ_mﬂo—ia)r (79) f 4VT; nde=0, (719)
where as we show in Appendix F, not contributing then to the last
1 step of the calculation. Thus, with the above two results and
_ v Eq. (7.14 we find from Eq.(7.13), after multiplication b
a,B_Znth['u ]h[/.LV]_h[aM]h[,B/.L] , (7.10 )\9 (7.14 q.(7.13 p y
having the same structure of the flat space electromagnetic 12 12
energy-momentum tensor. Therefore, to quadratic terms in 1d?r mmr  eer
h.s we shall have outside the singularities, whengg,” me- 3 + e (7.20

=0 by Egs.(4.3) and(4.12),

1 2
Uag=RaptVag, (7.1)  wherer=z—zis the instantaneous position vector of particle
] o 1 relative to 2. Equatiofi7.20 gives the equation of motion
R.s being the usual Ricci tensor of GR to ordet and, as  of the first particle in the field of the second. A similar rela-

m“,=0, tion holds for particle 2. Therefore, the Coulomb force is
1 present in the lowest nontrivial order. We notice that because
Vop==0m,;. (7.1  of the cancelation op? in deriving Eq.(7.17), there is no
a 2 a :

extra factor in the Coulomb term in E¢7.20. This is the

second reason for the choice of the proportionality constant
As in GR [8], the equations of motion to the lowest order Eq. (2.4) equals to the samp which is present in Eq.
considered here come from the following fourth-order rela-(z 1.

tion:
A 1 (A VIIl. CONCLUSIONS

4C'i= EJ 2(4Vﬁ (IJ))n dS=0. (7.13 We have developed a metric nonsymmetric unified theory

of gravitation and electromagnetism. The formulation is
The first term, constructed witR;; , is the result of GR and based on a modification of the Einstéi| part of the Bon-
given by([8], for particle 1, nor Lagrangiar{3], in such a way that the metrig;,,; de-
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scribes a spin-1 massless particle obeying Maxwell's equaNotice that the transformation affects only the antisymmetric
tions in the flat space linear approximation, and thus makingart of the connection, that I8, 5)=A(,p, - It is easy to see
the identification ofg, 4 to the electromagnetic field tensor that with Egs.(4.4) and (4.5, our field action is invariant
F.s asin Eq.(2.4), a consistent procedure. The modification under this transformation. In fact, a simple calculation will
of the Einstein part of the Bonnor Lagrangian that we end ughow thatQ, s transforms a$7]

with turns out to be the replacement of the Einstein tensor by

its piece that contains the symmetric part of the connection Qup(I)=Qup(A)+(3d—a)\(, g+ (1—b+3c)

only, plus a single Lagrange multiplier term. The field equa-
tions, then containing only the symmetric part of the connec-
tion, came out to be as close as possible to those of general . , . . . .
relativity. The Einstein-Maxwell tk?eory is contained ir?the Wlh'(?h Is to be substituted in Ecq2.1).'Then, after an inte-
first approximation of the field equations about a curved gengranon by parts, we see that the action transforms as
eral relativity background . The theory is shown to be free of

ghost-negative energy radiative modes even when expanded f L(F)d4x=f L(A)d4x+f {(Sd—a)g[“m,ﬁ)\a
about a Riemannian background.

X(ANgtAN,+3N N p), (A2)

The equation of motion of a charged test particle was —(1—b+3c)g«h)
obtained in the lowest nontrivial approximation by the .
method of Einsteiret al.[8], showing the appearance of the X(A Mg+ AN, +3NAp)d X, (A3)

Coulomb force. ) ] i

We end by making a few comments on future works. In al herefore, with Eqs(4.4) and (4.5) the invariance of the
following paper we shall analyze the particle content of theaction is established. It is interesting to note that, conversely,
theory showing by a study of the corresponding propagatolf We demand the invariance of the action under xheans-
that the theory is free of ghost-negative energy particles, iformation, we get the abovementioned two equations. From
the sense of elementary particle theory, and tachyons in this viewpoint Eq.(4.5 appears as the physical content of

linear approximation. the transformation. With Eq4.4), Eq. (A2) reduces to
Another topic of interest would be the analysis of the _
equations of motion to the next orders of approximation Qap(l)=Qap(A) +(3d=@)A (4,4 - (A4)

where, besides the appearance of the second, velocity depen- . i . . .
dent, term of the Lorer_1tz_ force, a velocity indep_endent bUtBr?[eu%?jTaregselilxyt(r:zr?:flf):?ni[titgr? gzktjhggusi[g)ur:z algiratlﬁiosmr:/c?—n-
p-dependent term modifying the Coulomb force is expected‘fi‘Ce that when taking EqA4) into Eq. (3.1) its Iést \ terr’n

to be present. This Coulomb correction term might then b 9 g.(>. o

used to determine or to put an upper limit on the universa\"’iII be eliminated frc_)m the antisymmetric part of the res_ult—
constantp Ing equation by taking the curl of it. Then, following Ein-

In a forthcoming paper we shall study the solution of theStem’_We canuse the invarianc_e property to s_imp_lify the field
field equations for a pointlike charged source with a spheri-equfatIonS by going to that particular connectibwith zero
cally symmetric field. torsion. As the torsions are related by,=A ,+3\,, from

Eqg. (Al), we can achieve
APPENDIX A: A TRANSFORMATION A =0 (A5a)

a

Here we shall show that the same final field equations wil
result if we go first to a torsionless connection by means o
Einstein’s\ transformation11]. We start from the form of N =1iT (A5b)
the field equations after the requirement of having the first o s
Maxwell equation in the flat space linear approximationTherefore, they transformation leading to a torsionless con-
limit, as established at the end of Sec. Ill and in the beginyactionA is
ning of Sec. IV. They are Eq$3.11), (4.5), (4.6) and(4.7).

Following Einstein we shall show now that the last three I7,=A7,+3(T,85-T 352). (AB)
field equations can be brought to a simpler form, which will b Tep p “

permit a close contact with the Bonn@] theory. Then we  Thence, Eq(A4) becomes, using Eq2.5) for a torsionless
show that the final field equations, that is after the requireconnectionA,

ment of having also the second Maxwell equation in the

|]by making a convenient choice far,, that is,

weak field limit, will be the same. Einstein has shofiri] Qup(l)= P(aﬁ)(A)+ap[aﬁ](A)+bAfLaV]A[VMﬁ]
that his action is invariant under a suitable transformation of .
the connections involving an arbitrary vector field, (A +(d=3a) 4, (A7)

transformatiol, as are also the field equations resulting from = ) ) )
it. In its Hermitian form thex transformation is defined by Which is to be substituted into E3.1), to give
the following relation betweeh' and a new connectioA, .
Pap)(A) +aPp,5(A)+bAf, [Mﬁ]+(d—§a)l“[aﬁ]

[av]

Lop=A0stNod5—Ngd5 . (A1) —K,s=0. (A8)
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. : . . . ) (1) i
Taking the symmetric and antisymmetric parts of this equa A(a(g))—%ﬂ”’(h(ap),ff hegpy.a—Nap),) (AL7Q)
tion we get
v and
Plap)(A) TbAL) A s~ K(ap =0 (A9)
a(l) _ (o
and (1-b) A7 = 3277 (N(ap) 5~ Nigpt.at Niagr p)-
(A17b)
1
aPpup(A)+|d- 38/ 10p = Kiap =0, (A10)  Asacheck we can verify that these relations follows directly
from Eqgs.(4.15 and(4.16) when use is made of EGA6).
which gives From Eq. (A14) we have nowP{};(A)=A74 | only.
Therefore, Eq(4.18 holds again, the coincidence being do
aPpap,4(A) —Kiap,=0. (A11l)  tothe fact that the torsion in E¢#.17) does not contribute to

) . . the curl, and the discussion proceeds as before. A/t
On the other hand, taking EGA6) into Eq. (4.7) we find Eq. (A10) becomes

afB ap A B BA@ _fap
F8  +FPALHIPPAL —T9PAL,) dl'e, 5 —Kap=0, (A18)

—b(gIAL . —gFIA )=0. (A12
& [re1 ™9 (1) (A12) and Eq.(A11) becomes

EquationgA9), (A11), (A12) and Eq.(4.5), which we repro-

duce here for completeness Kiap,y=0, (A19)

gl“#l ;=0, (A13)  with which Egs.(5.14 and(5.3) respectively coincide with.

) _ ) _ Next, Eq. (Al5a) will lose its antisymmetric contribution,
are the new field equations, in terms of the torsionless conyecoming

nectionA. The first three have simpler forms than before,
this being true for Eq(A11) as well because the Einstein (@B) 1 oa)pAB L oBIAY  _(@BIAT —(

: : 9 Te R0 TI ey T Y TRy ™Y
tensor in Eq.(2.3) becomes simpler now, (A20)
_AC 1 o o o _AC
Pap=80p.07 2(Mao) g7 Alop.a) F AapB oy~ A0 A0p

ay with which Eq.(5.4) coincides with becausEf,,,=Af,,,

(Al4)  leading then to the same solution as in E86). From Eq.
containing only the symmetric part of the connection in the(A15b) we shall have
second term. The field equations are seen to depend on two
parameters onlga andb as before. In the particular case in (1=b)(g“IAf,,;—gPIAL, ) =0, (A21)
whicha=1 andb=0 they reduce to the Bonnor field equa-
tions [3]. Notice that whera=1, Eq.(3.4) tell us thatf*>  which is simpler than Eq(4.20. Repeating the reasoning
=g*’ and, therefore, when we also habe-0, Eq.(A12)  after this equation, we get from E(A21),
reduces to the corresponding Einstein’s field equation for
Jap. by using Eq.(2.2). (1-b)A{,,;=0. (A22)

The symmetric and antisymmetric parts of EA12) are
With this result and from the symmetric part of Hé\14),

oP L+ AL, +g AL — g “PAL, the field equation Eq.(A9) will then also lose its
ac o] A @ I'-antisymmetric contribution becomin
+a(g*IAf, +gPIAL 1)=0 (A153) y g
and UaB(A)_K(aﬁ):Oi (AZ‘?’)
a(g A +g Al +d o AAE — " FIAT, ) whereU ,4(A) is given by

+(1=b) (g DAL —gBIA® y=0. (Al5b P o Ao
e I Y (A15b) Uap=A%up).o ™ Alao) T Alap)Doy) ™ AlapBlop) »

(A24)

To obtain the second Maxwell equation from E#11) in
the flat space linear approximation, when E8) holds, we

. o . N
need again to have which coincides with Eq.(5.2) because, againl'(,g

=A/,p - Consequently Eq5.1) coincides with Eq(A23).
a=0. (Ale)  Therefore, the final field equations that we got in Sec. V are
the same as those that would be obtained by going first to the
To make the same close contact with the corresponding Bortersionless connection through thetransformation, show-
nor linear field equation we calculate the first term of Eq.ing then that the field equations are independent of it.
(A11) prior to the conditiora=0. Following the same pro- Taking Egs.(A16) and (A22), into Eq. (A7) we see that
cedure as before, Eq®A15a) and(A15b) give, to first order, the Lagrangian in Eq2.1) is

024026-11



S. RAGUSA

B 1 B
L=—g""(U,z+dl 4 5)+ Ega Olag» (A25)

with which Eq.(5.15), of course, coincides.

APPENDIX B: SOLUTION FOR
We derive here Eqs(4.15 and (4.16. Consider Eq.

I' TO FIRST ORDER

(4.73. As thea term is of second order, we can write to first

order,

g(aﬁ)’y_}_ g(aa)r(ﬁyo_) + g(o'ﬁ)l_'&_y) + g(aB)Cy: 0’ (Bl)

where
C,=[In(N=9)],,— Ty (B2)
Introduce now the inverse @f(*?), as defined by
S(rﬁg(aﬁ) 53 ’ (BS)

wheres, ;=sg,,, symmetric. From here, i§ designates the
determinant o, ;, then

[IN(V=5)1,= 3S4p.,0'".

Contraction of Eq.(B1) with s, ; and using Eq(B3) will
give

(B4)

+6,C,=0.

~Sup> g( Pts ﬁg( ”)F(w)-l-f‘(/w I

(B5)

If we contractu and @ and use Eq(B2) we get

~Sup, 9P +4[IN(=9)] ,~2T'¢,,=0.  (B6)
Using Eq.(B4) it follows that
-9
(o0~ M — ) , (B7)
S Y

which is Eq.(5.9). With this result, Eq(B2) becomes
;
g

Now let us go back to EgBS5). After contraction withs,,,,,
we obtain

C

=1lIn (B8)

Y
Y

+S/LBF(’}/V)+SOZVI‘(/L'}/)+S C,}/ZO (Bg)

Suviry
We show now thaC,
haveg=—(1+h), whereh=5*fh,; and, from Eq.(B3),

S"B: 77(rB+ h(()’,B) . (BlO)
From here, we ges=—(1+h), to first order. Therefore, to
first order,g ands are equal and, consequent(y, is at least
of second order. Then, using E@®10) in Eq. (B9), we get,
to first order

is of second order. To first order we

PHYSICAL REVIEW D 62 024026

_ B a
Ny vt Tl Gyt el (uy)=0 (B11)

Subtracting from this relation those obtained by exchanging
first w andy, and thenwv andy yields, after contraction with
Y

(B12)

1
L= 27" (N uy) o TNy = Nin) 4)

which is Eq.(4.15. Next, let us consider Eq4.7b). To first
order we have

aﬁ] +(1 b)(ﬂaor[y] nBUFEIyU]

—3(85 9P7= 85 9*)T',)=0. (B13)
Contraction withz,, 74, gives
ahy,g, 5+ (1=D) (0 £ = aul g
= 37,0\ = M, )=0. (B14)

Adding to this equation, those obtained by exchanging first
p and vy, and then\ andy we get, after contraction with

7",
1
zan” (Mg, y g wt Py )

=(1-b)[I[,—35(&T,—8,T))], (B1Y

[u\]

which is Eq.(4.16).

APPENDIX C: SOLUTION FOR Fgaﬁ)

Starting from Eq.(5.4), we see that EqB1) holds as an
exact relation. Therefore, all the results up to Q) hold
as exact results. Subtracting from this relation those obtained
by exchanging firsju and y, then by exchanging and 1y,
and contracting the final result witg(*”) we obtain Eq.
(5.6):

FEXMV)Z %Q(QY)(SM%V""SV%M_Sww)

) s

+3(9"s,,— 855]— 5353)(|n§)
Y

(CD

APPENDIX D: F(aﬂ) TO QUADRATIC TERMS
Pushing Eq(4.1b to quadratic terms we fing*#= 5*#

—hP*+noehf _and, therefore,
g(@B) = B —h(@B) 4 holanh) (D1)
Then, from Eq.(5.8) the inverse of this is
Sap= Nap™ N(ap) + NiaplNipo) 777 (D2)

to quadratic terms im,;. Next we need the ratie/g. It is
easier to work with the inverses of the determinants. We
have With eg10=1, g '=e,5,5 9°*g*#g*7g®* and s !

g(oa)g(lﬁ)g(z'y)g(aﬁ) Wr|t|ng ga,B g(aﬂ)+g[aﬁ]
we flnd g '=s'—3hl#h,,; or sig=1+3ht*h;,,.
Therefore,
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s 1 After using the field Eq(6.13), R,;=0, the first term on the
In§ = Eh[’”]h[,w] : (D3)  right of this expression drops out. For the second one we use
the well-known relation

to quadratic terms i, ;. Placing all these three results in

_sSN ) _syA
Eqg. (C1) we get Eq.(7.9). ORap= (0% ap)n— (623p)(a> (E7)

with which it can be written
APPENDIX E: THE SECOND-ORDER LAGRANGIAN

With the expansion in Eq€6.10—(6.12, the U5 term
of Eq. (5.19 is, to second order iB,,,,, +M*B), 530~ MM 537, (ES)

g*AuU wp= \/—_GG"BUaﬁ The quantity in the parentheses is a contravariant vector den-
sity and consequently the covariant derivative can be re-
placed by the ordinary derivative. Therefore, the first term
gives no contribution t@l gz . In this way we have then elimi-
nated second-order derivatives from the start. The last term
of Eq. (E8) also drops out becausé™”|, =0, by making use

of Egs.(6.14) and (6.16. Using Egs.(5.11) and (5.14) for
dei),ﬁ] in the last term of Eq(E6) we then find

1 afpuv appn B
+vV—G ZG B BW-I—B B'u RaB(G),
(ED

whereR,4(G)=U{) is the Ricci tensor of the background
field. To the same order we shall havg

1
Uas=RaplG)+UL+UE), €2 sip= [ a% Mo o%),m B ,p0((~GB) |

p
Q1o _ e (E9
Ues=T@plo™ iaoip (E3)

d To calculate the variations we need the following results:
an

ap_ _ galugrB
UQ=r@e 1@ L pWopd)y _pep(ly oG GTHCTOCL., (E19
ap= 1 (ap)lo L (a0)|pT L (@)t (o) (@) (0B) -

(E4)  then, fromB*“*=G**GF’B,,,,

Here, a vertical bar indicates the Riemannian covariant de- sB*F=(-G*+B"F+GFB"*)5G,,  (E1D)
rivative with respect to the background Christoffel connec-

tion {},5}(G)=2},. Now, from Eq.(5.4) we see thal'(,, and

differs from its zeroth-order valug” , by terms of ordeB?, 1

because this is what happensg@ﬁfand J=G, from Egs. 522,32 —GWLEZ)B&GM# _(5gﬂev)k5%

(6.11) and (6.12. Consequentlyl'{1)=0. Therefore, there 2

will be no contribution fromU ) and, up to total derivatives, + 8GN~ 85)GM)(6G,,,) . (E12
neither fromUZ) to Eq.(E1). Consequently, Eq5.15 then Hee

reads as in Eq6.17) with Lg given in Eq.(6.18. The stress  Thence, up to @ ordinary total derivative,
B tensor is defined through the variation of the action as in

Eqg. (6.20. Taking into account the first and second-order aB soh _ B )
metric derivative of the Ricci tensor when calculatifg M3 82 5=\ =M P2
we get
_(Mp(,uv)_EM/wp) )5(;
1 dlg dlg dlg R v
TMV: - _(9)\ +6K(9)\ . P
877\/_G aGMV aG,uv,)\ ‘9G,u,v,;<)\ (E13)

(ES
The expression inside the parentheses can be written in terms
We COU|d proceed with the Ca|Cu|ati0n from here. HOWeVer,Of a covariant derivative. Substitution into E(ﬁg) and us-
it is much easier to work directly with E¢6.20 by perform-  jng Eq. (E11) for its last term, one finds
ing the explicit variation of Eq(6.18 before integration. We
get 1
_ MP(M|V)p+ EMwlpp
SLg=—(SM*P)R, 5~ MR, 5|B:j 4
1

1
- == G( 5G*'B*B,— 2B4#B",

1 2
—dr . — =B,z 8(V-GB*#).  (E6 p
( s~ 2 B)( ). (&9 (E14
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From here we finally arrive at Eq6.21), recalling Eq. Now we contract this expression with the nornmgk=(x;

(6.20.

1 1
—zj)(r)‘l to the spherical surface which is centered in par-
ticle 1. Consider the contribution of the first term. Agy is
proportional to 3;n,— &;, we shall end up by having the
solid angle integrals.a.i) of n;, which is equal to zero. For

Keeping in m|nd that t|me deriVatiVeS are Of one Orderthe Second term we ﬁrst expamjk aroundé,
higher than space derivatives, E@.12 gives, for the com-

APPENDIX F: THE VANISHING OF THE ADDITIONAL
SURFACE INTEGRAL

ponents we are interested in H@.19), 1
1 ijk:ijk(l)+(Xm_zm)Xajkm(l)+'"- (F4)
aVij = aVij 2 4k (FD) When taken in the second term of H3) the first term of

this expression will lead to the s.a.i. of an odd number of
the first equality following from the relatom;=0, from  normal components, which is zero. This will also happen to
Eqg. (7.10. Thence, we see that we have to calculate thell the other odd terms of EqF4). On the other hand the
spherical surface integral ofm;j ;. Using Eq.(7.5 we  second term of Eq(F4) will lead to the s.a.i. of (8;n
get, from Eq.(7.10, ;m;;=p*(58d.mdb.m— b.i,j) and,  —dj)nyn;, the first one being proportional taiy o,
as ¢ is a harmonic function outside the singularities, we T dimdjk + i; Skm @nd the second te 5y dj, . This will then

conclude from Eq(F1) that, for instance around particle 1, produce a sum of terms all equal ¥g;;; (1), which vanishes
becausey is a harmonic function outside of the singularities.

1 11 The same will occur for the even terms of the expansion in
* — _n2 _5. — b ) ) . . . .
J’ aVijndsS=-p j (2 Sij s mkbrmk™ brikdyji [N dS, Eq. (F4). Similar considerations will show that the last two
(F2) terms of Eq.(F3) leads also to vanishing results. Therefore,
_ o _ there is no contribution from the second term in the paren-
where for two particles onlyp is given by EQ-(7-27)2, which  theses of Eq(F2) and, similarly, none from the first one as
we write as¢ =+ y, where y/=,e/r and y=,e/r. Con-  Well. Therefore, the surface integral in E&2) vanishes,
sider first the second term inside the parentheses ofF. )
which can then be written as f 2Vin;ds=0, (F5)

D,k ® k= Uik ik T YikXo ik T X0kt XoikX ok - _
F3) as stated in Eq(7.19.
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