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Nonsymmetric unified field theory
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A metric nonsymmetric unified theory of gravitation and electromagnetism is studied. By a suitable modi-
fication of the Einstein part of the Bonnor Lagrangian, it is shown that the antisymmetric part of the metric
tensor can be made to describe a massless spin-1 field obeying Maxwell’s equations in the flat space linear
approximation and thus making its identification to the electromagnetic field strength tensor a possibly con-
sistent procedure. The theory is shown to be free of unphysical ghost-negative energy radiative modes even
when expanded about a curved Riemannian background. The Einstein-Maxwell theory is contained in the first
approximation of the field equations about a curved general relativity background. The field equations contain
only the symmetric part of the connection, making them as close as possible to those of general relativity. The
equations of motion of charged particles are shown to contain the Coulomb force in the lowest nontrivial order
of approximation.

PACS number~s!: 04.50.1h
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I. INTRODUCTION

Einstein @1,2# developed a unified theory of gravitatio
and electromagnetism based on a nonsymmetric metric
sor with its antisymmetric partg[ab] being linked with the
Maxwell field strengthFab . Later Bonnor@3# introduced an
extra term into the Einstein Lagrangian in such a way t
the Lorentz force, which could not arise from previous c
culations@4# on the Einstein theory, could be obtained. Y
later Moffat and Boal@5# proposed a new interpretation of
the Bonnor theory, based on an exact central symmetric
lution, suggesting the identification of the two fields within
constant which we shall callp, as in Eq.~2.4! below, the
formal vanishing of which leads the theory to the usu
Einstein-Maxwell theory. However, none of these theorie
able to reproduce Maxwell’s type of equations forg[ab] in
the weak field linear approximation for normal nonzerop, as
it really is, to sustain such an identification. As pointed o
by Einstein himself@2#, the linearized equations obeyed b
g[ab] in his theory are weaker than Maxwell’s equations.
the Bonnor theory one sees@3# that the linearizedg[ab] does
not obey Maxwell’s equations either: more precisely, the fi
equation is obeyed but the second one, involving the cur
the field, does not. The same occurs in the Moffat-B
theory@5# because here Bonnor’s field equations are kept
the vanishing ofp as by them considered is only formal,p
being a fixed nonzero quantity always present in the the
The fact that the complete Maxwell’s equations are miss
then damages the identification of the two fields. This is
kind of problem that this paper tries to solve. Here we sh
that by a suitable modification of the Einstein part of t
Bonnor Lagrangian we can obtain both the desired Maxw
ian type of equations forg[ab] in the weak field linear ap-
proximation, making then its identification withFab a pos-
sibly consistent procedure.

Moreover, it has been pointed out by Damour, Deser,

*Email address: ragusa@if.sc.usp.br
0556-2821/2000/62~2!/024026~14!/$15.00 62 0240
n-

t
-
t

o-

l
s

t

t
f
l
d

y.
g
e

l-

d

McCarthy@6# ~DDM! that, when expanded about a Rieman
ian background, the Einstein unified theory and a whole cl
of nonsymmetric theories of gravitation based on the E
stein Lagrangian exhibits curvature-coupled negative-ene
~ghost! excitations and unacceptable asymptotic behav
By making use of their type of analysis, it will be shown th
the present theory is free of these unphysical features,
therefore on a rather safe ground. It is shown that with
aforementioned modification of the Einstein part of the Bo
nor Lagrangian it is possible to construct an alternat
theory which, besides having the proper Maxwellian beh
ior in the weak field limit, it is free of radiative ghosts an
bad asymptotic behavior even when expanded about a
mannian background space, becoming thereby a candi
for a physically consistent geometrical unified theory. W
follow the procedure that we have adopted recently@7# to
develop an alternative nonsymmetric theory of gravitation
cope with the aforementioned problems that DDM point
out in previous nonsymmetric theories.

We show first that an extension of the Einstein Lagran
ian to a more general form is possible, satisfying Einstei
condition of Hermiticity @1#. This means invariance unde
transposition, which is defined as the transformation that
changes the indices of the metric tensor and the lower o
of the connection, followed by an exchange of the two in
ces of any second-order tensor that depends on the m
and connection. This symmetry property has the phys
meaning@1# that the same field equations are satisfied
positive and negative charges, the transformation taking
into the other. With this condition and the requirement
havingg[ab] to obey a first Maxwellian type of equation i
the flat space linear approximation we will be led to an e
tended form of the Bonnor-Moffat-Boal~BMB! theory
which contains, besides the universal constantp, only two of
an initial seven parameters. The BMB theory appears
particular values of these two parameters. Then we sh
how the requirement of havingg[ab] to obey also the secon
Maxwell equation in the same linear approximation forc
their values, leading to a consistent unified theory.
©2000 The American Physical Society26-1
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The equation of charged particles are shown to follow
the method of Einstein, Infeld and Hoffmann@8#. This is
done along the same line of Bonnor@3# and Moffat-Boal@5#
calculations. To lowest nontrivial order the result here o
tained coincide with these previous calculations.

The paper is organized as follows. We start, in Sec. II,
looking for the most general Hermitian form of the secon
order tensor, containing at most first-order derivatives a
quadratic products of the affine connection, which will pl
the role of the Einstein tensor, which is the counterpart of
Ricci tensor of general relativity~GR!. In Sec. III we write
the corresponding field equations. In Sec. IV we focus
attention on the requirement of having Maxwell’s equatio
for g[ab] in the flat space linear approximation and analy
the physical implications for the values of the last para
eters. The resulting final field equations are displayed in S
V. In Sec. VI we study the expansion about a Riemann
background. In Sec. VII we discuss the equation of mot
of electric particles and in Sec. VIII we draw our conclusio
and highlight future works.

II. HERMITICITY

We write the field Lagrangian density as

L52gabQab1
1

p2
g[ab]g[ab] , ~2.1!

with the notationX5A2gX, g being the determinant ofgab
whose inversegab is defined by

gabgag5dg
b . ~2.2!

The first term on the right of Eq.~2.1! becomes the Einstein
Lagrangian whenQab is the Einstein Hermitian tensorPab
@2#, defined by

Pab5Gab,s
s 2 1

2 ~Gas,b
s 1Gsb,a

s !1Gab
s G (sg)

g 2Gag
s Gsb

g ,

~2.3!

plus two Lagrange multipliers terms. The notation (ab) and
@ab# will be used to designate symmetric and antisymme
parts of the corresponding quantity. The second term on
right of Eq. ~2.1! is the term introduced by Bonnor@3# (p
being here the inverse of hisp) in the Einstein Lagrangian in
such way that the Lorentz force, which could not arise fro
previous calculations@4# from the Einstein Lagrangian
could be obtained. The problem we pose ourselves her
the following: to find the simplest form ofQab in order to
have g[ab] obeying the usual Maxwell’s equations in th
linear flat space approximation and to have the resul
theory free of ghost-negative energy radiative modes e
when expanded about a Riemannian background, in su
way that the identification ofg[ab] to the Maxwell field
strengthFab defined by

g[ab]5pFab , ~2.4!

as suggested by Moffat and Boal@5#, constitutes a consisten
procedure. As we shall see, by having Maxwell’s equatio
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for g[ab] in the flat space linear approximation, the theo
will be automatically free of unphysical ghost modes ev
when expanded about a Riemannian background. Rea
will be given to have in Eq.~2.4! the proportionality constan
equal to the samep of Eq. ~2.1!.

As showed in@7#, the most general Hermitian form o
Qab , containing at most first-order derivatives and quadra
products of the connection only, is

Qab5P(ab)1aP[ab]1bG [an]
m G [mb]

n 1cGaGb1dG [a,b] ,

~2.5!

with four arbitrary parameters, whereGa5G [am]
m is the tor-

sion vector. We shall sketch now the reasoning behind
expression. One starts from the fact that in an affine sp
the only tensors are@9# the non-Riemannian curvature tens
Ranb

m , the antisymmetric part of the connectionG [ab]
m and

their contractions and covariant~;! derivatives. The most
general form of the second-order tensorQab , containing at
most first-order derivatives and quadratic products of
connection, is found to be a linear combination of eig
second-order tensors@10#, among which one could include
for instance, the two independent contractions of the cur
ture tensor,Ramb

m andRmab
m , or G [ab];m

m , which is related@7#
to P[ab] , or Ga;b . However, a most convenient set of eig
candidates, all of which with definite Hermitian propert
Hermitian or anti-Hermitian, can be constructed@7#. They
are the five Hermitian tensors on the right of Eq.~2.5! and
the following other three tensors:G (a;b) , GmG [ab]

m and
G (am),b

m 2G (bm),a
m , all of which change sign under transpos

tion. As this last three tensors are then anti-Hermitian,
general Hermitian form ofQab will include only the first
five, as written in Eq.~2.5!. We are then left with four arbi-
trary parameters since one of them can be taken equal to

III. FIELD EQUATIONS

Variations of the action*Ld4x with respect togab and
Gab

g yields the field equations. The former gives

Qab2Kab50, ~3.1!

where@3#

Kab5
1

p2 S g[ab]1gamg[mn]gnb1
1

2
gabg[mn]g[mn] D .

~3.2!

The variation with respect toGab
g is best accomplished by

writing

gab~P(ab)1aP[ab] !5fabPab , ~3.3!

where

fab5g(ab)1ag[ab] . ~3.4!

Performing the variation, we get@7#
6-2
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fab
,g1fasGgs

b 1fsbGsg
a 2fabG (sg)

s

2 1
2 dg

a~ fsb
,s1frsGrs

b 22cg(bs)Gs1dg[bs]
,s!

2 1
2 dg

b~ fas
,s1frsGrs

a 12cg(as)Gs2dg[as] ,s!

2b~g(sa)G [gs]
b 2g(bs)G [gs]

a !50. ~3.5!

Contracting the pairsb,g anda,g and adding and subtrac
ing the resulting equations, yields

f(as)
,s1 2

3 f[as]Gs1frsGrs
a 50, ~3.6!

and

f[as]
,s12f(as)Gs12~113c2b!g(as)Gs23dg[as]

,s50.
~3.7!

Using f[as]5ag[as] , from Eq. ~3.4!, we get

~a23d!g[as]
,s12~113c2b!g(as)Gs50. ~3.8!

This is the one equation with which the usual first Maxw
equation will have to be related to. Taking the symmetric a
antisymmetric parts of Eq.~ 3.1! and recalling the expressio
of Qab in Eq. ~2.5!, we get

P(ab)1bG [an]
m G [mb]

n 1cGaGb2K (ab)50, ~3.9!

and

aP[ab]1dG [a,b]2K [ab]50, ~3.10!

which, upon taking its curl, gives

aP[ab,g]2K [ab,g]50. ~3.11!

Here, we have used the indicationX[ab,g]5X[ab],g
1X[ga],b1X[bg],a for the curl ofX[ab] . Of course, the curl
of G [a,b] is zero. Equation~3.11! is the one equation with
which the second Maxwell equation will have to do with.

In the next section we shall study the flat space lin
approximation of the field equations, Eqs.~3.5!, ~3.8! and
~3.11!, and analyze the physical implications for the para
eters when we require that the usual Maxwell’s equati
should hold in that flat space approximation.

IV. LINEAR APPROXIMATION ABOUT A FLAT SPACE:
PHYSICAL IMPLICATION FOR THE PARAMETERS

We shall examine now the linear form of the field equ
tions and analyze the spin content ofg(ab) and of g[ab] .
Linearization about a Minkowski flat space with metr
hab5(1,21,21,21) is achieved by the expansion

gab5hab1hab , ~4.1a!

whereuhabu!1. The inverse of this equation is

gab5hab2hba, ~4.1b!
02402
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where the sub- and superscripts are moved by the me
hab , that is,hba5hbmhanhmn . Notice thatg[ab]51h[ab]

5hamhbnh[mn] .
Let us first focus Eq.~3.8!. Its first-order part is then

~a23d!h[as]
,s12~113c2b!hasGs50. ~4.2!

Therefore, to have a first Maxwellian type of equation f
hab , that is,

h[as],
s50, ~4.3!

we must havea23dÞ0 and the relation

113c2b50, ~4.4!

with which Eq.~3.8! reduces to

g[as]
,s50. ~4.5!

This is our first field equation. When divided byp it gives the
generalized Maxwell first equation. With Eq.~4.4! we can
then eliminate one more parameter. Equation~3.9! becomes

P(ab)1bG [an]
m G [mb]

n 1
1

3
~b21!GaGb2K (ab)50,

~4.6!

and, with the additional help of Eqs.~3.6! and~4.5!, Eq.~3.5!
becomes

fab
,g1fasGgs

b 1fsbGsg
a 2fabG (sg)

s

2b~g(as)G [gs]
b 2g(bs)G [gs]

a !

1 1
3 dg

a
„ag[bs]1~b21!g(br)

…Gs

1 1
3 dg

b
„ag[as]2~b21!g(ar)

…Gs50. ~4.7!

We then see that up to here our field equations, Eqs.~3.11!,
~4.5!, ~4.6! and ~4.7! depend on two parameters only,a and
b. As we shall show in the sequel, by demanding that
second Maxwell equation should arise in this same flat sp
approximation the first parameter will be forced to be nu
a50, and, as a consequence of this,b will just disappear
from the final field equations.

Before we go on we mention at this point that the fie
equations Eqs.~3.11!, ~4.6! and~4.7! can be reduced to sim
pler forms if, on account of the results in Eqs.~4.4! and~4.5!,
we make use of the invariance of the action*L d4x under
Einstein’sl transformation@11#, which is defined as a trans
formation to a new connectionDab

g involving an arbitrary
vector fieldla . Then one can go to a new connection wi
zero torsion leading to the simplification of the field equ
tions. However, we really do not need to go into these s
pler forms of the equations to continue our discussion
cause they will lead exactly to the same final resu
Notwithstanding, for completeness and to make a close c
tact with the BMB theory we discuss thel transformation in
Appendix A. There we show that by going to a new torsio
less connection, as did Einstein in his theory, the BM
theory appears for the particular valuesa51 and b50 of
6-3



u
in

ap
th

g
a

m

e

r
h

g
-

the
m

q.
,

rst
ell

us

-

B.

ua-
a-

-

do

n-

term

S. RAGUSA PHYSICAL REVIEW D 62 024026
our two free parameters. Then, following the same proced
to be discussed below, it is there shown that by demand
that the second Maxwell should hold in the flat space
proximation, the same conditions mentioned at the end of
last paragraph will result for these two parameters leadin
the same final field equations and showing then that they
independent of the transformation.

For future use we write here the symmetric and antisy
metric parts of Eq.~4.7!:

g(ab)
,g1g(as)G (gs)

b 1g(sb)G (sg)
a 2g(ab)G (sg)

s 1a„g[as]G [gs]
b

1g[bs]G [gs]
a 1 1

3 ~dg
ag[bs]1dg

bg[as] !Gs…50 ~4.7a!

and

a~g[ab]
,g1g[as]G (gs)

b 1g[sb]G (sg)
a 2g[ab]G (rg)

r !

1~12b!„g(as)G [gs]
b 2g(bs)G [gs]

a

2 1
3 „dg

ag(bs)2dg
bg(as)

…Gs…50. ~4.7b!

Let us now focus Eq.~3.11!. The first-order part ofK [ab]
is, from Eq.~3.2!,

K [ab]
(1) 5

2

p2
h[ab] . ~4.8!

Therefore to first-order Eq.~3.11! reads

aP[ab,g]
(1) 2

2

p2
h[ab,g]50. ~4.9!

From here we immediately see that the second Maxw
equation will result if we restrict the parametera to vanish,

a50, ~4.10!

giving then

h[ab,g]50, ~4.11!

which is the desired result. This, together with Eq.~4.3!
guarantees thath[ab] has now a Maxwellian type of behavio
describing a massless spin-1 particle. This is actually w
we need for a consistent identification ofh[ab] to the elec-
tromagnetic field strength tensor in flat space, that is,

h[ab]5pF̄ab , ~4.12!

whereF̄ab here is the usual Maxwell field strength satisfyin
F̄ab,

b50 andF̄ [ab,g]50. Another, equivalent, way of put
ting things is to realize that with Eq.~4.8!, Eq. ~3.10! tell us
that the condition to haveh[ab] derivable from a potential is
to havea50 because then the linearized form of Eq.~3.10!
will give

h[ab]5
1

4
p2d~Ga,b

(1) 2Gb,a
(1) !. ~4.13!
02402
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As a bonus we can conclude from this expression that
torsion vector is related to the vector potential. In fact, fro
Eq. ~4.12! we must have

Aa52
1

4
pdGa ~4.14!

to obtain, to first order,F̄ab5Ab,a
(1) 2Aa,b

(1) .
Before we go on notice that upon multiplication of E

~4.9! by p we see clearly why in Moffat-Boal’s theory which
as mentioned before is the case whena51 andb50 and
with the identification in Eq.~2.4!, the second Maxwell
equation will result for a formally vanishingp. This is so
because that formal limit will erase accidentally the fi
term, the one which actually shows that the second Maxw
equation is not present for fixed nonzero normalp always
present in the theory.

To make a close contact with the Bonnor theory let
calculate the first term of Eq.~4.9! before the conditiona
50. From Eq. ~2.3! we get P[ab]

(1) 5G [ab],s
s(1) 2G [a,b]

(1) , and
only the first term of this relation will contribute to Eq.~4.9!.
From Eqs.~4.7a! and~4.7b! we can easily solve for the con
nections to first order. This has been done before@7#, but for
completeness the calculation is delineated in Appendix
The results are

G (ab)
s(1)5 1

2 hsr~h(ar),b1h(br),a2h(ab),r! ~4.15!

as in GR, which we shall be using shortly, and

~12b!G [ab]
s(1)5 1

2 ahsr~h[ar],b2h[br],a1h[ab],r!

1 1
3 ~12b!~Ga

(1)db
s2Gb

(1)da
s!. ~4.16!

Using Eq.~4.3! we then find

~12b!P[ab]
(1) 5 1

2 ahh[ab]2
1
3 ~12b!G [a,b]

(1) . ~4.17!

Thence Eq.~4.9! gives, forbÞ1,

a2

2~12b!
hh[ab,g]2

2

p2
h[ab,g]50. ~4.18!

Without the Bonnor, second, term and witha51 and b
50, this relation reduces to the result of Einstein theory@2#
which, as pointed out by Einstein himself, the resulting eq
tion, hh[ab,m]50, is weaker than Maxwell’s second equ
tion. Next, with the Bonnor term present in Eq.~4.18!, and
still with a51 andb50 we have the linearized field equa
tion of Bonnor @3#, with h[ab] continuing then not to obey
Maxwell’s second equation. As discussed before, it will
so in the present scheme by choosinga50, which eliminates
the undesired contribution ofP[ab] .

To complete the analysis of this linear approximation co
sider now Eq.~4.6!. As the contributions of theb term and of
the next one are at least of second order, as well as the
I (ab) is from Eq.~3.2!, that equation reduces toP(ab)

(1) 50, to
first order. Then, from Eqs.~2.3! and ~4.15!, we get

hh(ab)50, ~4.19!
6-4
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NONSYMMETRIC UNIFIED FIELD THEORY PHYSICAL REVIEW D62 024026
where we have chosen harmonic coordinates,h(ab) , b

2 1
2 h,a50 with h5habh(ab) , which is identical to the GR

result.
We end this section by analyzing the consequences o

valuea50 for the field equations. Equation~3.11! will lose
the contribution of its first term containing the antisymmet
part of the connection. Consider now Eqs.~4.7a! and~4.7b!.
With a50 the first one will also lose itsG-antisymmetric
contribution and the second one reduces to

~12b!~g(as)G [gs]
b 2g(bs)G [gs]

a

2 1
3 ~dg

ag(bs)2 dg
bg(as)!Gs!50. ~4.20!

We shall show now that as a consequence of this relation
field equation Eq.~4.6! will lose the contribution of the an
tisymmetric part of the connection as well. For that purpo
notice first that from Eq.~2.3! the first term of Eq.~4.6! is
given by

P(ab)5G (ab),s
s 2 1

2 @G (as),b
s 1G (bs),a

s #1G (ab)
s G (sg)

g

2G (ag)
s G (sb)

g 2G [ag]
s G [sb]

g . ~4.21!

Therefore, theG-antisymmetric contribution to Eq.~4.6! can
be easily localized and we shall show that it is also null, t
is,

~b21!S G [ag]
s G [sb]

g 1
1

3
GaGbD50, ~4.22!

independently of the value ofb. We start by contracting Eq
~4.20! with samsbn wheresab , symmetric, is the inverse o
g(ab) as defined bysamg(ab)5dm

b . In this way we find

~12b!S sbnG [gm]
b 2samG [gn]

a 1
1

3
~sgnGm2sgmGn! D50.

~4.23!

Adding to this relation those withg andn interchanged and
then withg andm interchanged we get

~12b!FsagG [nm]
a 1

1

3
~sgnGm2sgmGn!G50, ~4.24!

which, upon contraction withg(lg) gives

~12b!S G [nm]
l 1

1

3
~dn

lGm2dm
l Gn! D50. ~4.25!

Contracting this equation first withGl yields (1
2b)G [nm]

l Gl50. Next, by making use of this last relation
contraction of that same equation withG [lr]

m yields immedi-
ately Eq.~4.22!. It is rather remarkable that the simple d
mand thata50 to have the Maxwellian content ofg[ab]
guaranteed in the linear approximation, should produce s
a grand simplification of the field equations: the antisymm
ric part of the connection has disappeared completely fr
sight, and together with it the parameterb too. Let us then go
to the resultant field equations.
02402
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V. AN ALTERNATIVE UNIFIED THEORY

In the last section we saw that by restricting the para
eters of the extended theory to suitable values we were
to achieve a consistent behavior of the fields upon linear
tion in flat space. The symmetric sector, becoming the on
GR, describes the spin-2 graviton and the antisymmetric s
tor describes, forg[ab] , a spin-1 Maxwellian type massles
field, making then the identification in Eq.~2.4! a consistent
procedure. Let us now see the form acquired by the fi
equations. As already said, witha50 the field equation Eq.
~3.11! loses completely itsG-antisymmetric contribution so
does Eq.~4.7a! and, as we have shown at the end of the l
section, the same will happen to the field equation Eq.~4.6!
when use is made of Eqs.~4.21!, and ~4.22!. As it will be
shown in a moment, see Eq.~5.9! below, the two terms in-
side the square brackets of Eq.~4.21! are equal. Conse
quently, Eq.~4.6! becomes

Uab2K (ab)50, ~5.1!

where

Uab5G (ab),s
s 2G (sa),b

s 1G (ab)
s G (sg)

g 2G (ag)
s G (sb)

g ,
~5.2!

symmetric and containing only the symmetric part of t
connection, is the analogue of the usual Ricci tensor. I
that piece of the Einstein tensor which contains only
symmetric part of the connection. Next, Eq.~3.11! with a
50, becomes just

K [ab,g]50, ~5.3!

and Eq.~4.7a! becomes

g(ab)
,g1g(as)G (gs)

b 1g(sb)G (sg)
a 2g(ab)G (sg)

s 50,
~5.4!

which has the same form of the equation for the contrav
ant metric density of GR. To these three field equations
have to add Eq.~4.5!, which we repeat here for convenienc

g[ab]
,b50. ~5.5!

These are the final field equations of the theory. With E
~2.4!, Eqs. ~5.3! and ~5.5! are the generalized Maxwell’s
equations.

Equation~5.4! can be solved forG (ab)
s . We get@7#, re-

produced in Appendix C,

G (ab)
s 5 1

2 g(sl)~sal,b1slb,a2sab,l!1Vab
s , ~5.6!

where

Vab
s 5 1

4 ~g(sl)sab2da
sdb

l2da
ldb

s!S ln
s

gD
,l

~5.7!

andsab , symmetric, and with determinants is the inverse of
g(ab), as defined by

sabg(as)5db
s . ~5.8!
6-5
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When the antisymmetric part ofgab vanishes,sab will be
equal togab and the right-hand side of Eq.~5.6! becomes the
usual Christoffel symbol, as it should. In the course of
derivation of Eq.~5.6! we come across the relation

G (sa)
s 5S ln

2g

A2s
D

,a

, ~5.9!

which can be reobtained from that equation. From this res
we see that the two terms inside the square brackets in
~4.21! are equal, as promised.

The symmetric and antisymmetric parts ofKab are, from
Eq. ~3.2!,

K (ab)5
1

p2
~g(am)g

[mn]g[nb]1g(bm)g
[mn]g[na]

1 1
2 g(ab)g

[mn]g[mn] ! ~5.10!

and

K [ab]5
1

p2
~g[ab]1g(am)g

[mn]g(nb)1g[am]g
[mn]g[nb]

1 1
2 g[ab]g

[mn]g[mn] !. ~5.11!

This completes the discussion of the field equations. As
shown in Appendix A the same field equations will result
we go first to the torsionless connectionD.

Let us write now the Lagrangian in Eq.~2.1! in terms of
Uab , which will lead directly to the field equations. Wit
c5(b21)/3 from Eq. ~4.4!, and with a50 together with
Eqs.~4.21! and ~4.22!, Qab in Eq. ~2.5! reduces to

Qab5Uab1dG [a,b] . ~5.12!

From here we see that Eq.~3.1! becomes

Uab1dG [a,b]2Kab50, ~5.13!

whose symmetric and antisymmetric parts are, respectiv
Eqs.~5.1! and

dG [a,b]2K [ab]50, ~5.14!

which leads to Eq.~5.3!. Now, from Eq.~5.12! the Lagrang-
ian in Eq.~2.1! becomes

L52gab~Uab1dG [a,b] !1
1

p2
gabg[ab] . ~5.15!

If we vary this Lagrangian with respect togab , G (ab)
s and

Ga we get, respectively, Eqs.~5.13!, ~5.4! and~5.5!, the first
one of these leading to Eqs.~5.1! and~5.3!. From Eq.~5.15!
we then see that the modification of the Einstein part@2# of
the Bonnor Lagrangian@3# that we end up with turns out to
be the replacement of the Einstein tensorPab by its piece
Uab which contains the symmetric part of the connecti
only, plus a single Lagrange multiplier term which can
written dGag[ab]

,b , up to a total derivative.
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We end this section by remarking that the situation t
we have here for the electromagnetic related part of
~5.15! is analogous to the first-order form of the action
Maxwell theory as mentioned by Arnowitt, Deser and Mi
ner @12#, Maxwell’s equation being derived from the La
grangian

Lem5F̄abF̄ab22F̄ab~Āb,a2Āa,b!, ~5.16!

by independent variations ofF̄ab and Ā. One finds, respec
tively, F̄ab5Āb,a2Āa,b and F̄ab,b50. Actually, recalling
Eq. ~4.14!, the electromagnetic related part of Eq.~5.15! can
be written 2(2/p)g[ab] (Ab,a2Aa,b)1(1/p2)gabg[ab] ,
which to first-order reduces to Eq.~5.16!, as it should.

VI. LINEARIZATION ABOUT A GR BACKGROUND:
A GHOST-FREE THEORY

Linearization about a Riemannian background with me
gab

(0) can be achieved by the expansion

gab5gab
(0)1gab

(1) , ~6.1!

wheregab
(1) is the perturbation. The inverse ofgab , as de-

fined in Eq.~2.2!, is then

gab5g(0)ab2g(1)ba, ~6.2!

where the sub- and superscripts are moved by the initial m
ric tensorgab

(0) , that is, g(1)ab5g(0)amg(0)bngmn
(1) . We then

have g(ab)5g(0)ab2g(1)(ab) and g[ab]5g(1)[ab] . Thence,
to first order Eq.~5.5! reads

~A2g(0)g(0)amg(0)bng[mn]
(1) !,b50. ~6.3!

On the other hand, as Eq.~5.11! gives

K [ab]
(1) 5

2

p2
g[ab]

(1) , ~6.4!

we find that Eq.~5.3! yields

g[ab,g]
(1) 50. ~6.5!

The conclusion from Eqs.~6.3! and ~6.5! is then thatg[ab]
(1)

satisfies the Maxwell’s equations of the Einstein-Maxw
theory, making then its identification with the field streng
F̃ab of that theory now,

g[ab]
(1) 5pF̃ab , ~6.6!

a consistent procedure. Let us look now at Eq.~5.1!. First,
from Eq. ~5.10! we see that to lowest order

K (ab)5
2

p2 S 1

4
g(ab)

(0) g(1)[mn]g[mn]
(1) 2g(1)

[a
n]g[bn]

(1) D .

~6.7!
6-6
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Therefore, with the identification in Eq.~6.6! we see that this
quantity is proportional to the electromagnetic energ
momentum-stress tensor of the Einstein-Maxwell field:

K (ab)58pEab , ~6.8a!

where

Eab5
1

4p S 1

4
g(ab)

(0) F̃ mnF̃mn2F̃a
nF̃bnD . ~6.8b!

As Uab to zeroth order becomes the usual Ricci tensor,
~6.8a! is exactly what we need to have Eq.~5.1! going into
the Einstein-Maxwell field equation. By the way, this cond
tion fixes the sign of the Bonnor term as written in Eq.~2.1!.
Also, this is why we have chosen the proportionality co
stant in Eq.~2.4! equal to the samep of Eq. ~2.1! so as to
have the proper cancelation of constants in deriving
~6.8a!. Finally, consider the Lagrangian in Eq.~5.15! in the
same approximation. With Eqs.~5.14!, ~6.4!, and Eq.~6.6!
we get

dG [a,b]
(1) 5

2

p
F̃ab , ~6.9!

with which the G term inside the square brackets of E
~5.15! will be equal to22A2g(0)F̃ abF̃ab . This then com-
bines with the one that comes out from the Bonnor te
A2g(0)F̃ abF̃ab , reversing its sign to give finally
2A2g(0)F̃ abF̃ab for the total electromagnetic contribu
tion. This is exactly the Maxwell field Lagrangian of GR
with the correct minus sign, in the second-order form of
action.

From all these considerations it is clear that the theor
free from ghost-negative energy radiative excitations and
asymptotic behavior. However, one might argue that ther
a small piece ofg[ab] second-order dependence ofUab to be
analyzed. We shall do so following the work of DDM@6#.
Using their notation we write

gab5Gab1Bab , ~6.10!

whereGab is the metric of the Riemannian background fie
andBab5g[ab] is the antisymmetric part ofgab , acting as a
perturbation. The inverse of the metric is then, to seco
order,

gab5Gab1Bab1BagBg
b, ~6.11!

where the sub- and superscripts are now moved by the m
Gab , that is, Bba5GbmGanBmn , and its determinant is
given by

A2g5A2GS 11
1

4
BabBabD . ~6.12!

To zeroth and first order, the field equations Eqs.~5.1!, ~5.5!
and ~5.14! become

Rab~G!50, ~6.13!
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whereRab(G)5Uab
(0) is the Ricci tensor of the backgroun

field,

Babu
b50, ~6.14!

where the vertical bar denotes covariant differentiation w
respect to the background metricGab , and

2
2

p2
Bab1dG [a,b]

(1) 50, ~6.15!

leading to

B[ab,g]50. ~6.16!

Continuing with the arguments of DDM let us calculate t
energy in the theory by their method. We give the details
the calculation in Appendix E and quote here only the fin
results. Using the expansions in Eqs.~6.10!–~6.12!, the La-
grangian in Eq.~5.15!, through orderB2, turns out to be

L52A2GR~G!1LB , ~6.17!

whereR(G) is the Ricci scalar of the background field an
the second-orderB part is, up to total derivatives,

LB52A2GFMabRab1BabS dG [a,b]
(1) 2

1

p2
BabD G ,

~6.18!

where

Mab5
1

4
GabBmnBmn2BamBb

m , ~6.19!

having the same structure of the Maxwell electromagne
stress tensor. Actually, by identifyingBab to the electromag-
netic tensorFab

G of theG-field, Bab5pFab
G , Mab is propor-

tional to the electromagnetic stress tensorEab(G) of the
backgroundG-field, Mab54pp2Eab(G). In this formula-
tion theB stress tensorTmn is defined through the variation
of the B action according to@13#

dI B5E dLBd4x528pE TmndGmnA2Gd4x.

~6.20!

Performing the variation we get, after using the field equ
tions Eqs.~6.13!–~6.15!,

Tmn5
1

4pp2 S 1

4
GmnBabBab2BmaBn

aD
1

1

8p FM r(m
u
n)

r2
1

2
Mmn

u
r

rG . ~6.21!

Now, the first, Maxwellian type term on the right-hand si
leads to positive energy. All the other terms inside the squ
brackets, involving totalG-covariant derivatives, can give n
contribution to the average over wavelengths of radiati
6-7
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this average being the measurable observable which lea
the physically well defined effective energy-momentu
stress tensor, as shown by Isaacson@14# for high frequency
radiation after the work of Brill and Hartle@15#, and ex-
tended to lower frequencies by Efroimsky@16#. We are then
left effectively with only the Maxwellian term of Eq.~6.21!,

Te f f
mn 5

1

4pp2 S 1

4
GmnBabBab2BmaBn

aD , ~6.22!

which, with the identificationBab5pFab
G , becomes the

electromagnetic stress tensor of the backgroundG-field

Te f f
mn 5Emn~G!. ~6.23!

Therefore, the theory is, in fact, free of ghost radiati
modes. We close this section with a few comments regard
the comparison of the present theory with the standard fi
order formulation of the Einstein-Maxwell~EM! theory.
Both theories share the same symmetries, general covari
and Maxwell gauge invariance, here forGa and there for the
EM vector potentialÃa , which appear both as Lagrang
multipliers, but all this on completely different grounds. T
variations with respect to these two quantities lead, resp
tively, to the divergence equations forg[ab] and for the EM
Fab. The variation with respect toF̃ab leads to the curl
equation forF̃ab and, here, the variation of the electroma
netic part of the Lagrangian with respect togab ~and, by the
way, not g[ab] ) leads to the curl equation forKab . Now,
F̃ab is related to the electromagnetic field strengthF̃ab

through the EM metric,F̃ab5g(0)amg(0)bnF̃mn , but no such
a simple kind of relation holds betweeng[ab] and g[ab] .
Introducing the determinants of the symmetric and antisy
metric parts of the metric, gS5det(g(ab)) and gA
5det(g[ab] ), and callingaab and mab the inverses of the
respective parts, as defined byaabg(ag)5dg

b and mabg[ag]

5dg
b , one has @17# first the relation g[ab]

5g21(gSaamabng[mn]1
1
2 AgAeabmng@mn#). Here, AgA

5821eabmng[ab]g[mn] and if gA is not equal to zero,mab

5(2AgA)21eabmng[mn] . As the determinants are related b
@17# g5gS(11221amnaabg[ma]g[nb] )1gA , we see that if
the g[ab] are smallg[ab] will contain only odd powers of
g[ab] . To first order we haveg(1)[ab]5g(0)amg(0)bng[mn]

(1) ,

as stated before, and with the identification ofg[ab]
(1) to F̃ab

the electromagnetic field related equations of the theory
reproduce the Maxwell equations of the EM theory.
higher orders we shall have, of course, corrections to the
field equations. Second, focusing now the symmetric part
the metric and of its inverse, one has the relationg(ab)

5g21(gSaab1gAmammbng(mn)). This shows thatg(ab)

contains even powers ofg[ab] only. Therefore, to lowes
order, the EM theory is reobtained. At higher orders
present theory will then give corrections to it.
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VII. EQUATIONS OF MOTION

In this section we shall derive the equations of motion
charged point particles by the method of Einstein, Infeld a
Hoffmann @8#. This was already applied by Bonnor@3#
showing that with his extra term in the Einstein Lagrangi
the equations of motion do contain the Coulomb force in
lowest nontrivial order of approximation considered. T
identification was made ofg[ab] to the dualFab* of the elec-
tromagnetic field tensor. The calculation was repeated
Moffat and Boal@5# in their new interpretation of the theor
but with this same identification, although they sugges
themselves the identification ofg[ab] to Fab itself. This was
pointed out by Johnson@18# in a footnote, mentioning also
that the two identifications lead to the same result in
lowest order considered.

Here we shall derive the equations with the identificati
in Eq. ~2.4!. It will be shown that, although it will appear in
the course of the calculation an extra term induced by
present field equations, that term will not contribute to t
last step of the calculation leaving only the Coulomb for
term: all calculations coincide to the lowest order.

We then putg(ab)5aab andg[ab]5 f ab and assume tha
they can be expanded in powers of a parameterl as follows:

a00511l2
2a001l4

4a001•••,

a0i5l3
3a0i1l5

5a0i1•••,

ai j 52d i j 1l2
2ai j 1l4

4ai j 1•••,
~7.1!

as in GR, and, compatible with the identification in Eq.~2.4!,
where f oi is related to the electric fieldEi and f i j to the
magnetic fieldBk ,

f 0i5l2
2f 0i1l4

4f 0i1••• ~7.2a!

and

f i j 5l3
3f i j 1l5

5f i j 1•••. ~7.2b!

We shall needf ab to orderl2 only. Then as in GR@8#,
we shall be able to construct from the field equation Eq.~5.1!
a nonlinear quantity of orderl4, the surface integral of
which around each one of theN particle system, will give the
equation of motion of that particular particle, in the lowe
order of approximation. Starting then with Eq.~5.5! we find
to lowest order,

2f 0i ,i50. ~7.3!

Next Eq. ~5.3! gives, using Eq.~6.4! and keeping in mind
that time derivatives are one order higher than space der
tives,

2f 0i , j22f 0 j ,i50. ~7.4!

From here we see that2f 0i derives from a potential. We
write

2f 0i52pf ,i ~7.5!
6-8
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with which, according to Eq.~2.4!, f is then the second
order electric potential. From Eq.~7.3! it satisfies the
Laplace equation,

“

2f50. ~7.6!

Equation~7.2b! refers to the magnetic field, which we ca
then neglect in the approximation we are working on. F
simplicity we shall consider the case in which only two pa
ticles are present. The appropriate solution of Eq.~7.6! is
then

f~x!5
2e

1

r
1

1
2e

2

r
2

, ~7.7!

where, withA51,2,

r
A

5ux2z
A

~ t !u, ~7.8!

z
A
(t) being the position vector of particleA at time t, and

charges are expanded ase
A

5l2
2e

A
1•••.

Finally we consider Eq.~5.1! to orderl4, from which the
equations of motion should follow in lowest order. To qu
dratic order inhab5gab2hab Eq. ~5.6! gives, derived in
Appendix D,

G (ab)
s 5~hsl2h(sl)!~h(al) ,b1h(bl),a2h(ab),l!

1
1

2
~mab ,s2ma

s,b2mb
s,a!, ~7.9!

where

mab5
1

4
habh[mn]h[mn]2h[a

m]h[bm] , ~7.10!

having the same structure of the flat space electromagn
energy-momentum tensor. Therefore, to quadratic term
hab we shall have outside the singularities, wheremab ,b

50 by Eqs.~4.3! and ~4.11!,

Uab5Rab1Vab , ~7.11!

Rab being the usual Ricci tensor of GR to orderl4 and, as
ma

a50,

Vab5
1

2
hmab . ~7.12!

As in GR @8#, the equations of motion to the lowest ord
considered here come from the following fourth-order re
tion:

4C8
A

i2
1

4pE
A

2~4Vi j* 24K ~ i j !
* !njdS50. ~7.13!

The first term, constructed withRi j , is the result of GR and
given by @8#, for particle 1,
02402
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4C8
1

i54 2m
1 S d2

dt2
zi

1

1 2m2~zi

1

2zi

2

!r 23D , ~7.14!

where r 5uz
1
2z

2
z is the distance between the two particle

The masses are expanded asm
A

5l2
2m

A
1••• andt5lt is

the auxiliary time variable. In the second term of Eq.~7.13!,
ni is the normal to the spherical surface of integration e
closing particle 1 and no other, then

4K ~ i j !
* 54K ( i j )1

1

2
d i j ~4K0024Kkk!, ~7.15!

and

4V~ i j !
* 54V( i j )1

1

2
d i j ~4V0024Vkk!. ~7.16!

From Eq.~5.10! we find, using Eq.~7.5!,

2 4K ~ i j !
* 52f ,if, j2d i j f ,kf ,k , ~7.17!

which coincides with the result of Moffat and Boal@5#. The
corresponding surface integral is found to be

2
1

4pE
1

24K ~ i j !
* njdS54 2e

1

2e
2

~zi

1

2zi

2

!r 23. ~7.18!

For the second integral in Eq.~7.13! one finds a null result,

E1

4Vi j* njdS50, ~7.19!

as we show in Appendix F, not contributing then to the la
step of the calculation. Thus, with the above two results a
Eq. ~7.14! we find from Eq.~7.13!, after multiplication by
l4,

m
1 d2r

dt2
52

m
1

m
2

r

r 3
1

e
1

e
2

r

r 3
, ~7.20!

wherer5z
1
2z

2
is the instantaneous position vector of partic

1 relative to 2. Equation~7.20! gives the equation of motion
of the first particle in the field of the second. A similar rel
tion holds for particle 2. Therefore, the Coulomb force
present in the lowest nontrivial order. We notice that beca
of the cancelation ofp2 in deriving Eq.~7.17!, there is no
extra factor in the Coulomb term in Eq.~7.20!. This is the
second reason for the choice of the proportionality cons
in Eq. ~2.4! equals to the samep which is present in Eq.
~2.1!.

VIII. CONCLUSIONS

We have developed a metric nonsymmetric unified the
of gravitation and electromagnetism. The formulation
based on a modification of the Einstein@2# part of the Bon-
nor Lagrangian@3#, in such a way that the metricg[ab] de-
6-9
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scribes a spin-1 massless particle obeying Maxwell’s eq
tions in the flat space linear approximation, and thus mak
the identification ofg[ab] to the electromagnetic field tenso
Fab as in Eq.~2.4!, a consistent procedure. The modificati
of the Einstein part of the Bonnor Lagrangian that we end
with turns out to be the replacement of the Einstein tenso
its piece that contains the symmetric part of the connec
only, plus a single Lagrange multiplier term. The field equ
tions, then containing only the symmetric part of the conn
tion, came out to be as close as possible to those of gen
relativity. The Einstein-Maxwell theory is contained in th
first approximation of the field equations about a curved g
eral relativity background . The theory is shown to be free
ghost-negative energy radiative modes even when expa
about a Riemannian background.

The equation of motion of a charged test particle w
obtained in the lowest nontrivial approximation by th
method of Einsteinet al. @8#, showing the appearance of th
Coulomb force.

We end by making a few comments on future works. In
following paper we shall analyze the particle content of
theory showing by a study of the corresponding propaga
that the theory is free of ghost-negative energy particles
the sense of elementary particle theory, and tachyons in
linear approximation.

Another topic of interest would be the analysis of t
equations of motion to the next orders of approximat
where, besides the appearance of the second, velocity de
dent, term of the Lorentz force, a velocity independent
p-dependent term modifying the Coulomb force is expec
to be present. This Coulomb correction term might then
used to determine or to put an upper limit on the univer
constantp.

In a forthcoming paper we shall study the solution of t
field equations for a pointlike charged source with a sph
cally symmetric field.

APPENDIX A: l TRANSFORMATION

Here we shall show that the same final field equations
result if we go first to a torsionless connection by means
Einstein’sl transformation@11#. We start from the form of
the field equations after the requirement of having the fi
Maxwell equation in the flat space linear approximati
limit, as established at the end of Sec. III and in the beg
ning of Sec. IV. They are Eqs.~3.11!, ~4.5!, ~4.6! and ~4.7!.
Following Einstein we shall show now that the last thr
field equations can be brought to a simpler form, which w
permit a close contact with the Bonnor@3# theory. Then we
show that the final field equations, that is after the requ
ment of having also the second Maxwell equation in
weak field limit, will be the same. Einstein has shown@11#
that his action is invariant under a suitable transformation
the connections involving an arbitrary vector fieldla (l
transformation!, as are also the field equations resulting fro
it. In its Hermitian form thel transformation is defined by
the following relation betweenG and a new connectionD,

Gab
s 5Dab

s 1ladb
s2lbda

s . ~A1!
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Notice that the transformation affects only the antisymme
part of the connection, that isG (ab)

s 5D (ab)
s . It is easy to see

that with Eqs.~4.4! and ~4.5!, our field action is invariant
under this transformation. In fact, a simple calculation w
show thatQab transforms as@7#

Qab~G!5Qab~D!1~3d2a!l [a,b]1~12b13c!

3~Dalb1Dbla13lalb!, ~A2!

which is to be substituted in Eq.~2.1!. Then, after an inte-
gration by parts, we see that the action transforms as

E L ~G!d4x5E L ~D!d4x1E $~3d2a!g[ab]
,bla

2~12b13c!g(ab)

3~Dalb1Dbla13lalb!%d4x. ~A3!

Therefore, with Eqs.~4.4! and ~4.5! the invariance of the
action is established. It is interesting to note that, convers
if we demand the invariance of the action under thel trans-
formation, we get the abovementioned two equations. Fr
this viewpoint Eq.~4.5! appears as the physical content
the transformation. With Eq.~4.4!, Eq. ~A2! reduces to

Qab~G!5Qab~D!1~3d2a!l [a,b] . ~A4!

One can easily check that the field equations are also inv
ant under thel transformation as they should. For this, n
tice that when taking Eq.~A4! into Eq.~3.1! its last,l, term
will be eliminated from the antisymmetric part of the resu
ing equation by taking the curl of it. Then, following Ein
stein, we can use the invariance property to simplify the fi
equations by going to that particular connectionD with zero
torsion. As the torsions are related byGa5Da13la , from
Eq. ~A1!, we can achieve

Da50 ~A5a!

by making a convenient choice forla , that is,

la5 1
3 Ga . ~A5b!

Therefore, thel transformation leading to a torsionless co
nectionD is

Gab
s 5Dab

s 1 1
3 ~Gadb

s2Gbda
s!. ~A6!

Thence, Eq.~A4! becomes, using Eq.~2.5! for a torsionless
connectionD,

Qab~G!5P(ab)~D!1aP[ab]~D!1bD [an]
m D [mb]

n

1~d2 1
3 a!G [a,b] , ~A7!

which is to be substituted into Eq.~3.1!, to give

P(ab)~D!1aP[ab]~D!1bD [an]
m D [mb]

n 1~d2 1
3 a!G [a,b]

2Kab50. ~A8!
6-10
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Taking the symmetric and antisymmetric parts of this eq
tion we get

P(ab)~D!1bD [an]
m D [mb]

n 2K (ab)50 ~A9!

and

aP[ab]~D!1S d2
1

3
aDG [a,b]2K [ab]50, ~A10!

which gives

aP[ab,g]~D!2K [ab,g]50. ~A11!

On the other hand, taking Eq.~A6! into Eq. ~4.7! we find

fab
,g1farDgr

b 1frbDrg
a 2fabD (rg)

r

2b~g(as)D [gs]
b 2g(bs)D [gs]

a !50. ~A12!

Equations~A9!, ~A11!, ~A12! and Eq.~4.5!, which we repro-
duce here for completeness

g[ab]
,b50, ~A13!

are the new field equations, in terms of the torsionless c
nectionD. The first three have simpler forms than befo
this being true for Eq.~A11! as well because the Einste
tensor in Eq.~2.3! becomes simpler now,

Pab5Dab,s
s 2 1

2 ~D (as),b
s 1D (sb),a

s !1Dab
s D (sg)

g 2Dag
s Dsb

g ,

~A14!

containing only the symmetric part of the connection in t
second term. The field equations are seen to depend on
parameters onlya andb as before. In the particular case
which a51 andb50 they reduce to the Bonnor field equ
tions @3#. Notice that whena51, Eq. ~3.4! tell us thatfas

5gas and, therefore, when we also haveb50, Eq. ~A12!
reduces to the corresponding Einstein’s field equation
gab , by using Eq.~2.2!.

The symmetric and antisymmetric parts of Eq.~A12! are

g(ab)
,g1g(as)D (gs)

b 1g(sb)D (sg)
a 2g(ab)D (sg)

s

1a~g[as]D [gs]
b 1g[bs]D [gs]

a !50 ~A15a!

and

a~g[ab]
,g1g[as]D (gs)

b 1g[sb]D (sg)
a 2g[ab]D (sg)

s !

1~12b!~g(as)D [gs]
b 2g(bs)D [gs]

a !50. ~A15b!

To obtain the second Maxwell equation from Eq.~A11! in
the flat space linear approximation, when Eq.~4.8! holds, we
need again to have

a50. ~A16!

To make the same close contact with the corresponding B
nor linear field equation we calculate the first term of E
~A11! prior to the conditiona50. Following the same pro
cedure as before, Eqs.~A15a! and~A15b! give, to first order,
02402
-

n-
,

wo

r

n-
.

D (ab)
s(1)5 1

2 hsr~h(ar),b1h(br),a2h(ab),r! ~A17a!

and

~12b!D [ab]
s(1)5 1

2 ahsr~h[ar],b2h[br],a1h[ab],r!.
~A17b!

As a check we can verify that these relations follows direc
from Eqs.~4.15! and ~4.16! when use is made of Eq.~A6!.
From Eq. ~A14! we have nowP[ab]

(1) (D)5D [ab],s
s(1) only.

Therefore, Eq.~4.18! holds again, the coincidence being d
to the fact that the torsion in Eq.~4.17! does not contribute to
the curl, and the discussion proceeds as before. Witha50
Eq. ~A10! becomes

dG [a,b]2Kab50, ~A18!

and Eq.~A11! becomes

K [ab,g]50, ~A19!

with which Eqs.~5.14! and ~5.3! respectively coincide with.
Next, Eq. ~A15a! will lose its antisymmetric contribution
becoming

g(ab)
,g1g(as)D (gs)

b 1g(sb)D (sg)
a 2g(ab)D (sg)

s 50,
~A20!

with which Eq. ~5.4! coincides with becauseG (gs)
b 5D (gs)

b ,
leading then to the same solution as in Eq.~5.6!. From Eq.
~A15b! we shall have

~12b!~g(as)D [gs]
b 2g(bs)D [gs]

a !50, ~A21!

which is simpler than Eq.~4.20!. Repeating the reasonin
after this equation, we get from Eq.~A21!,

~12b!D [gm]
a 50. ~A22!

With this result and from the symmetric part of Eq.~A14!,
the field equation Eq.~A9! will then also lose its
G-antisymmetric contribution becoming

Uab~D!2K (ab)50, ~A23!

whereUab(D) is given by

Uab5D (ab),s
s 2D (as),b

s 1D (ab)
s D (sg)

g 2D (ag)
s D (sb)

g ,
~A24!

which coincides with Eq. ~5.2! because, again,G (ab)
g

5D (ab)
g . Consequently Eq.~5.1! coincides with Eq.~A23!.

Therefore, the final field equations that we got in Sec. V
the same as those that would be obtained by going first to
torsionless connection through thel transformation, show-
ing then that the field equations are independent of it.

Taking Eqs.~A16! and ~A22!, into Eq. ~A7! we see that
the Lagrangian in Eq.~2.1! is
6-11
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L52gab~Uab1dG [a,b] !1
1

p2
gabg[ab] , ~A25!

with which Eq.~5.15!, of course, coincides.

APPENDIX B: SOLUTION FOR G TO FIRST ORDER

We derive here Eqs.~4.15! and ~4.16!. Consider Eq.
~4.7a!. As thea term is of second order, we can write to fir
order,

g(ab)
,g1g(as)G (gs)

b 1g(sb)G (sg)
a 1g(ab)Cg50, ~B1!

where

Cg5@ ln~A2g!# ,g2G (sg)
s . ~B2!

Introduce now the inverse ofg(ab), as defined by

ssbg(ab)5ds
a , ~B3!

wheressb5sbs , symmetric. From here, ifs designates the
determinant ofssb , then

@ ln~A2s!# ,g5 1
2 sab ,gg(ab). ~B4!

Contraction of Eq.~B1! with smb and using Eq.~B3! will
give

2smb ,gg(ab)1smbg(ar)G (gr)
b 1G (mg)

a 1dm
aCg50.

~B5!

If we contractm anda and use Eq.~B2! we get

2sab ,gg(ab)14@ ln~A2g!# ,g22G (sg)
s 50. ~B6!

Using Eq.~B4! it follows that

G (sg)
s 5F lnS 2g

A2s
D G

,g

, ~B7!

which is Eq.~5.9!. With this result, Eq.~B2! becomes

Cg5 1
2 F lnS s

gD G
,g

. ~B8!

Now let us go back to Eq.~B5!. After contraction withsan ,
we obtain

2smn ,g1smbG (gn)
b 1sanG (mg)

a 1smnCg50. ~B9!

We show now thatCg is of second order. To first order w
haveg52(11h), whereh5habhab and, from Eq.~B3!,

ssb5hsb1h(sb) . ~B10!

From here, we gets52(11h), to first order. Therefore, to
first order,g ands are equal and, consequently,Cg is at least
of second order. Then, using Eq.~B10! in Eq. ~B9!, we get,
to first order
02402
2h(mn),g1hmbG (gn)
b 1hanG (mg)

a 50. ~B11!

Subtracting from this relation those obtained by exchang
first m andg, and thenn andg yields, after contraction with
hag

G (mn)
a 5 1

2 hag~h(mg),n1h(ng),m2h(mn),g!, ~B12!

which is Eq.~4.15!. Next, let us consider Eq.~4.7b!. To first
order we have

ah[ab]
,g1~12b!„hasG [gs]

b 2hbsG [gs]
a

2 1
3 ~dg

a hbs2dg
b has!Gs…50. ~B13!

Contraction withhamhbl gives

ah[ml],g1~12b!„hblG [gm]
b 2hamG [gl]

a

2 1
3 ~hmgGl2hlgGm!…50. ~B14!

Adding to this equation, those obtained by exchanging fi
m and g, and thenl and g we get, after contraction with
hng,

1
2 ahng~h[ml] ,g1h[gl] ,m1h[mg] ,l!

5~12b!@G [ml]
n 2 1

3 ~dl
nGm2dm

n Gl!#, ~B15!

which is Eq.~4.16!.

APPENDIX C: SOLUTION FOR G
„ab…

s

Starting from Eq.~5.4!, we see that Eq.~B1! holds as an
exact relation. Therefore, all the results up to Eq.~B9! hold
as exact results. Subtracting from this relation those obtai
by exchanging firstm andg, then by exchangingl andg,
and contracting the final result withg(ag) we obtain Eq.
~5.6!:

G (mn)
a 5 1

2 g(ag)~smg,n1sng,m2smn,g!

1 1
4 ~g(ag)smn2dn

adm
g 2dn

gdm
a !S ln

s

gD
,g

. ~C1!

APPENDIX D: G
„ab…

s TO QUADRATIC TERMS

Pushing Eq.~4.1b! to quadratic terms we findgab5hab

2hba1hsahb
s and, therefore,

g(ab)5hab2h(ab)1hs(ahb)
s . ~D1!

Then, from Eq.~5.8! the inverse of this is

sab5hab1h(ab)1h[ar]h[bs]h
rs, ~D2!

to quadratic terms inhab . Next we need the ratios/g. It is
easier to work with the inverses of the determinants. W
have, with «012351, g215«abgd g0ag1bg2gg3d and s21

5«abgd g(0a)g(1b)g(2g)g(3d). Writing gab5g(ab)1g[ab]

we find g215s212 1
2 h[mn]h[mn] or s/g511 1

2 h[mn]h[mn] .
Therefore,
6-12
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ln
s

g
5

1

2
h[mn]h[mn] , ~D3!

to quadratic terms inhab . Placing all these three results
Eq. ~C1! we get Eq.~7.9!.

APPENDIX E: THE SECOND-ORDER LAGRANGIAN

With the expansion in Eqs.~6.10!–~6.12!, the Uab term
of Eq. ~5.15! is, to second order inBmn ,

gabUab5A2GGabUab

1A2GS 1

4
GabBmnBmn1BamBm

bDRab~G!,

~E1!

whereRab(G)5Uab
(0) is the Ricci tensor of the backgroun

field. To the same order we shall have@7#

Uab5Rab~G!1Uab
(1)1Uab

(2) , ~E2!

Uab
(1)5G (ab)us

(1)s 2G (as)ub
(1)s , ~E3!

and

Uab
(2)5G (ab)us

(2)s 2G (as)ub
(2)s 1G (ab)

(1)s G (sg)
(1)g 2G (ag)

(1)sG (sb)
(1)g .

~E4!

Here, a vertical bar indicates the Riemannian covariant
rivative with respect to the background Christoffel conne
tion $ab

l %(G)[Sab
l . Now, from Eq.~5.4! we see thatG (ab)

s

differs from its zeroth-order valueSab
l by terms of orderB2,

because this is what happens tog(ab) andA2G, from Eqs.
~6.11! and ~6.12!. Consequently,G (ab)

(1)s 50. Therefore, there
will be no contribution fromUab

(1) and, up to total derivatives
neither fromUab

(2) to Eq. ~E1!. Consequently, Eq.~5.15! then
reads as in Eq.~6.17! with LB given in Eq.~6.18!. The stress
B tensor is defined through the variation of the action as
Eq. ~6.20!. Taking into account the first and second-ord
metric derivative of the Ricci tensor when calculatingdLB
we get

Tmn52
1

8pA2G
S ]LB

]Gmn
2]l

]LB

]Gmn,l
1]k]l

]LB

]Gmn,kl
D .

~E5!

We could proceed with the calculation from here. Howev
it is much easier to work directly with Eq.~6.20! by perform-
ing the explicit variation of Eq.~6.18! before integration. We
get

dLB52~dMab!Rab2MabdRab

2S dG [a,b]
(1) 2

1

p2
BabD d~A2GBab!. ~E6!
02402
e-
-

n
r

,

After using the field Eq.~6.13!, Rab50, the first term on the
right of this expression drops out. For the second one we
the well-known relation

dRab5~dSab
l ! ul2~dSlb

l ! ua , ~E7!

with which it can be written

2MabdRab52~MabdSab
l 2MlbdSsb

s ! ul

1Mab
uldSab

l 2Mlb
uldSsb

s . ~E8!

The quantity in the parentheses is a contravariant vector d
sity and consequently the covariant derivative can be
placed by the ordinary derivative. Therefore, the first te
gives no contribution todI B . In this way we have then elimi-
nated second-order derivatives from the start. The last t
of Eq. ~E8! also drops out becauseMlb

ul50, by making use
of Eqs. ~6.14! and ~6.16!. Using Eqs.~5.11! and ~5.14! for
dG [a,b]

(1) in the last term of Eq.~E6! we then find

dI B5E d4xS Mab
uldSab

l 2
1

p2
Babd~A2GBab!D .

~E9!

To calculate the variations we need the following results

dGab52Ga(mGn)bdGmn , ~E10!

then, fromBab5GarGbsBrs ,

dBab5~2Ga(mBn)b1Gb(mBn)a!dGmn ~E11!

and

dSab
l 52Gl(mSab

n) dGmn1
1

2
~da

(mGn)ldb
r

1db
(mGn)lda

r 2da
(mdb

n)Glr!~dGmn! ,r . ~E12!

Thence, up to ar ordinary total derivative,

Mab
uldSab

l 5X2Mab
u
(m Sab

n)

2S M r(m
u
n) 2

1

2
Mmn

u
rD

,r
CdGmn .

~E13!

The expression inside the parentheses can be written in te
of a covariant derivative. Substitution into Eq.~E9! and us-
ing Eq. ~E11! for its last term, one finds

dI B5E d4xS 2M r(m
u
n)

r1
1

2
Mmn

u
r

r

2
1

p2
A2GS 1

2
GmnBabBab22BmbBn

bD D .

~E14!
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From here we finally arrive at Eq.~6.21!, recalling Eq.
~6.20!.

APPENDIX F: THE VANISHING OF THE ADDITIONAL
SURFACE INTEGRAL

Keeping in mind that time derivatives are of one ord
higher than space derivatives, Eq.~7.12! gives, for the com-
ponents we are interested in Eq.~7.19!,

4Vi j* 5 4Vi j 52
1

2 4mi j ,kk , ~F1!

the first equality following from the relationma
a50, from

Eq. ~7.10!. Thence, we see that we have to calculate
spherical surface integral of4mi j ,kknj . Using Eq.~7.5! we

get, from Eq.~7.10!, 4mi j 5p2( 1
2 d i j f,mf,m2f, if, j ) and,

as f is a harmonic function outside the singularities, w
conclude from Eq.~F1! that, for instance around particle 1

E1

4Vi j* njdS52p2E1S 1

2
d i j f,mkf,mk2f, ikf, jkDnjdS,

~F2!

where for two particles onlyf is given by Eq.~7.7!, which

we write asf5c1x, wherec52e
1
/r

1
and x52e

2
/r

2
. Con-

sider first the second term inside the parentheses of Eq.~F2!,
which can then be written as

f, ikf, jk5c, ikc, jk1c, ikx, jk1x, ikc, jk1x, ikx, jk .
~F3!
5

d

02402
r

e

Now we contract this expression with the normalnj5(xj

2z
1

j )(r
1
)21 to the spherical surface which is centered in p

ticle 1. Consider the contribution of the first term. Asc, ik is
proportional to 3nink2d ik , we shall end up by having the
solid angle integral~s.a.i.! of ni , which is equal to zero. Fo

the second term we first expandx, jk aroundz
1
,

x, jk5x, jk~1!1~xm2z
1

m!x, jkm~1!1•••. ~F4!

When taken in the second term of Eq.~F3! the first term of
this expression will lead to the s.a.i. of an odd number
normal components, which is zero. This will also happen
all the other odd terms of Eq.~F4!. On the other hand the
second term of Eq.~F4! will lead to the s.a.i. of (3nink
2d i j )nmnj , the first one being proportional tod ikdm j
1d imd jk1d i j dkm and the second to2d ikd jm . This will then
produce a sum of terms all equal tox, j j i (1), which vanishes
becausex is a harmonic function outside of the singularitie
The same will occur for the even terms of the expansion
Eq. ~F4!. Similar considerations will show that the last tw
terms of Eq.~F3! leads also to vanishing results. Therefo
there is no contribution from the second term in the par
theses of Eq.~F2! and, similarly, none from the first one a
well. Therefore, the surface integral in Eq.~F2! vanishes,

E1

4Vi j* njdS50, ~F5!

as stated in Eq.~7.19!.
d,

,
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