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Hamiltonian structure of the teleparallel formulation of general relativity
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We apply Dirac’s Hamiltonian approach to study the canonical structure of the teleparallel form of general
relativity without matter fields. It is shown, without any gauge fixing, that the Hamiltonian has the generalized
Dirac-ADM form, and constraints satisfy all the consistency requirements. The set of constraints involves some
extra first-class constraints, which are used to find additional gauge symmetries and clarify the gauge structure
of the theory.

PACS numbg(s): 04.50:+h, 04.20.Cv

I. INTRODUCTION Of particular importance for the physical interpretation of
the teleparallel geometry is the fact that there is a one-
Among various attempts to overcome the problems ofparameter family of teleparallel Lagrangians whicheis-
quantization and the existence of singular solutions in Einpirically equivalent to GR5,7,8). For the parameter value
stein’s general relativityGR), gauge theories of gravity are B=1/2 the Lagrangian of the theory coincides, modulo a
especially attractive, as they are based on the concept ®bur-divergence, with the Einstein-Hilbert Lagrangian, and
gauge symmetry which has been very successful in the fourtefines the teleparallel form of GR, GR
dation of other fundamental interactions. The importance of The teleparallel description of gravity has been one of the
the Poincaresymmetry in particle physics leads one to con-most promising alternatives to GR. However, analyzing this
sider the Poincargauge theory(PGT) as a natural frame- theory Kopczysky [9] found a hidden gauge symmetry, and
work for a description of the gravitational phenométa5]  concluded that the torsion evolution is not completely deter-
(for more general attempts, Sg&). mined by the field equations. Assuming, then, that the tor-
The basic gravitational variables in PGT are the tetradsion should be a measurable physical quantity, he argued that
field b¥, and the Lorentz connectioA’ ,, which are asso- this theory is internally inconsistent. Hayashi and Shirafuji
ciated with the translation and Lorentz subgroups of thg10] tried to avoid this problem by interpreting certain dif-
Poincaregroup, respectively. These gauge fields are couplegerent torsion configurations as physically equivalent, i.e.,
to the energy-momentum and spin of matter fields, and theirelated to each other by a gauge transformation, but the con-
field strengths are geometrically identified with the torsionsistency of this idea in the interacting theory seems to be
and curvature: T',,=d,b',+A's, b%,—(u—v), RY,,  questionable for nonscalar mat{&,11]. Various modifica-
=d,AY,+A's, A%, — (u—v). The spacetime of PGT turns tions of the one-parameter teleparallel theory are proposed in
out to be Riemann-Cartan spadg, equipped with a metric order to avoid the above problerf®12,13. Trying to reex-
and linear, metric compatible connection. The dynamicablmine the gauge structure of the one-parameter teleparallel
content of PGT is determined by the Lagrangiésb(L;  geometry Nestef14] improved the arguments of Kopczyn

+ L), where the gravitational paflg is usually assumed to Sky [9]; the predictability problem was stated more precisely
be at most quadratic in field strengths, afig describes @and bound to certain special solutions. This conclusion has

minimally coupled matter fields. been further verified by Chenet al. [15], who recognized

The general geometric arena of PGT, the Riemann-Cartaffie importance of nonlinear constraint effects for the dy-
spaceU,, may bea priori restricted by imposing certain hamical structure of the theory.
conditions on the curvature and the torsion. Thus, Einstein’s Hecht et al. [16] traced the appearance of nonphysical
GR is defined in Riemann spada, which is obtained from Mmodes of torsion back to some symmetries which are neces-
U, by the requirement of vanishing torsion. Another inter-sarily present in the 81 decomposition of spacetime. Using
esting limit of PGT isteleparallelor Weitzenbok geometry ~ Certain geometric arguments they concluded that some com-

T,, defined by the requirement of vanishing curvature: ponents of the tetrad velocity are not suited to represent dy-
namical degrees of freedom. In other words, these velocities

must not appear in the evolution equations; hence they
should appear at most linear in the Lagrangian. The choice of
parameters in the teleparallel Lagrangian that ensures this to
The vanishing of curvature means that parallel transport ifiappen is just the one corresponding to GR
path independent; hence we have an absolute parallelism. The teleparallel geometry possesses many salient features.
The teleparallel geometry is, in a sense, complementary t®hus, Nestef17] succeeded in formulating a pure tensorial
Riemannian geometry: curvature vanishes, and torsion rgsroof of the positivity of total energy for Einstein’s theory in
mains to characterize the parallel transport. terms of the teleparallel geometry. He found that special
gauge features of GR which are usually considered to be
problematic, are quite beneficial for this purpose. Mielke
*Email address: mb@phy.bg.ac.yu [18] used the teleparallel geometry of GR give a trans-

R ,,(A)=0. (1.2
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parent description of Ashtekar’'s complex variables, while ddsm, a=1/2« («= Einstein’s gravitational constantT
Andradeet al. [19] formulated a five-dimensional teleparal- =T™,,, and £,, is the Lagrangian of matter fields. The
lel equivalent of Kaluza-Klein theory. There are also someexplicit form of B; is

attempts to understand the role of torsion at the quantum

level [20]. Bijk=a(ATij+BTpjig + Coigi Tig)-
The purpose of this paper is to investigate the canonical ) )
structure of GR using Dirac’s Hamiltonian approadi21], The parametera,B,C in the Lagrangian should be deter-

as this is, in our opinion, the best way to clarify both themined on physical grounds, so as to obtain a consistent
nature of somewhat mysterious extra gauge symmetries arfBeory which could describe all the known gravitational ex-
the question of consistency of GRWe shall find that a Periments. If we require that the thea(3.1) gives the same
specific choice of coupling constants in the teleparallel Lafesults as GR in the linear, weak—field approximation, we
grangian leads to the appearance of some additional firsEan restrict our considerations to the one—parameter family
class constraints and, consequently, to extra gauge symmef Lagrangians, defined by the conditioi7,8]
tries, which clarify the meaning of nondynamical torsion (i) 2A+B+C=0, C=—1.
components and give us a complete picture of the gaugghis family represents a viable gravitational theory for mac-
structure of GR. roscopic, spinless matter, empirically indistinguishable from
We remark here that Maluf22] tried to analyze some GR. Von der Heydeg24] and Hehlet al. [5] have given
aspects of the Hamiltonian structure of GRHowever, his ~ cértain theoretical arguments in favor of the cholge 0.
approach is based on some unnecessary gauge fixing condibere is, however, anqther, particularly interesting choice
tions, adopted at the level of Lagrangian in order to simplifydetermined by the requirement
the calculations, so that many specific gauge features of the (i) 2A—B=0.
theory remained effectively hidden. It leads effectively to the Einstein—Hilbert Lagrangidgr
The layout of the paper is as follows. After recalling some= —abR(A), defined in Riemann spacetin, with Levi-
basic elements of the Lagrangian teleparallel formulation ofcivita connectionA=A, via the geometric identityA3):
GR in Sec. Il, we work out all the primary constraints and - -
construct the corresponding Hamiltonian density in Sec. III. bR(A)=bR(A)+b(F Tij T+ 3T Tk =T, T%)
It is shown that a specific choice of parameters in the La- ,
grangian leads to additional primary constraints. Then, we —20,(bT").

study the consistency conditions in Sec. IV, and derive th . . . . . o
algebra of constraints in Sec. V. These results are used ﬁqdeed, in Weitzenbtk spacetime the above identity in con-

Sec. VI to construct extra gauge generators and clarify thé“nCtic.m W.ith the condlitior(l..l) implies that the tor.sion. La-

nature of the related gauge symmetries. Section VIl is gedrangian in Egs(2.1) is equivalent to the Einstein-Hilbert

voted to concluding remarks, while some technical detailé‘

are presented in the Appendixes. A
Our conventions are the same as in ReB|: the Latin

!nd!ces refer to the local _Lorentz frame, W_hereas the Greeb\/hich coincides with conditioné) and (ii) given above.

indices refer to the coordinate frame; the first letters of both The theory defined by Eq€2.1) and (2.2) is called the

alphabets ,b,c, ... a,B,7,...) runover 1,2,3, and the ojanarallel formulation of GRGR)). Note that the equiva-

agrangian, up to a four-divergence, provided that

NS

1B:

N

, C=-1, (2.2

middle alphabet lettersif.k, ... ;“"8'1)2‘3; .++) run OVET " lence with GR holds certainly for scalar matter, while the
011’2’}?; my=diag(+,—,—, =), e =+1, &fii’  gravitational couplings to spinning matter fieldsTipandV,
=& ejjq and 6= 8(x—x'). are in general different.
Field equations.By varying the Lagrangiar2.1) with
Il. TELEPARALLEL FORMULATION OF GR respect tob', ,A"Y,, and \;;*” we obtain the gravitational

. o o field equations
Lagrangian.A gravitational field in the framework of the

teleparallel geometry in PGT is described by the tetné)pl —4V (bB*") = 4bB "™ T mi+h’bLr=17", (2.33
and Lorentz connectiol" ,, subject to the condition of a
vamshmg curvatureél.l). We shall consider here the_ gravi- —8bp;," +4V (N ") =" (2.3
tational dynamics determined by a class of Lagrangians qua-
dratic in the torsior{5,7,8 i —
15,7,8) Ri,,=0, (2.39
Zzb(/jTJr )\ij“VR”WJr[,M), where 7", and¢”j; are the energy-momentum and spin cur-
rents of matter fields, respectively.
Lr=a(AT T+ BT, T+ CT, T The first field equation can be rewritten as
=Bi(MTX, (20 —4V (DB ) +2b B, TK™ = 4T i+ S Ly= 7.

where \;;#” are Lagrange multipliers introduced to ensureThen, combined with the identit§A5), it takes the form of
ij p

the teleparallelism conditiofi.1) in the variational formal- Einstein’s field equation:
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RK(A) -1 7*R(A)=/2ab. (2.49  Vi=V—nV,, andn®V,=0. Using an analogous decom-
position of the torsion and the curvature in the last two indi-
Here, on the left hand side we have Einstein’s tensor of GRges,
which is a symmetric tensor. Therefore, the dynamical

energy-momentum tensor must be also symmettfe: 7. Thok= Tt 20T ks R = Rt 2R g
Using the identity(Al) the second field equation can be , -
written in the form we find that the parallel component; andR"y; are inde-
pendent of velocities. The replacement in the gravitational
V. (2aHj" +4bn; ") = 0" (24D Lagrangian yieldsc=Z(T'q, R T, 7, R, 7,n%).

N Y N . . . The decomposition ok, in the ADM basis yields
where Hi*=b(h;"h;*—h;"h;"*. The integrability condition —Nn+ N, , vF\)/hereNzr?,fbko and N*=h; b, a};e Ia;ge

for this equation is identically satisfied, because the covaria nd shift functions, respectively. We note also thattisfies
divergence of the left hand side vanishes on account O}, 4ctorization p’ropertjz)=NJ whereJ does not depend
RY,,=0, whereas k ’
on b*,.
0. Now, we turn our attention to the remaining momenté
[23]. The relations definingr;* can be written in the form
The first equality in this relation is a consequence of the

Vol =1 — i =

covariant conservation of angular momentum for matter A, 9Lt I
fields (which holds when matter field equation is satisfjed ar :JaT‘ - =43 4(T),
and the vanishing ofy;;; follows from the first field equa- Lk

tion.

~ k_ _ apk : . « "
Simple counting shows that the number of independentVnere mi"=m;“b%, are conveniently defined “parallel

field equations(2.4b) is 24—6=18. The multipliersk* gravitational momenta. Using now the fact tifais a linear
remain arbitrary functions of time, as will be shown in the function of T we can make the expansiofi(T)=(0)

forthcoming Hamiltonian analysis. For any specific choice of 7 (1), where 3(0) does not depend on “velocitiesT'
)\ijaﬁ (gauge fixing, Eq. (2.4b can be used to determiriat andpB(1) is linear in them, and rewrite the above equation in
least locally the remaining 18 multipliers ;. the form

In what follows we shall investigate the Hamiltonian .
structure and gauge properties of GRithout matter fields Pik=mik/I—4Bi k(0)=4Bi1i(1).
(0%;=m;=0). We expect that the results obtained here will

be also useful for the analysis of interacting GR Here, the so-called “generalized moment&;, do not de-

pend on velocities, which appear only on the right hand side

Il PRIMARY CONSTRAINTS AND HAMILTONIAN of the equation. Explicit calculation leads to the result

(1) The basic Lagrangian dynamical variables of our Pik’E%iF/J—4a[%BTLW+%CniTamvk]
theory are b',,A" ,,\;j*#"), and the corresponding mo- _
menta are denoted byr(*,m;;*,7' ). Because of the fact =4a[AT, i+ 3BT i+:C7T™ m

that the torsion and the curvature do not involve velocities

b, and All,, one immediately obtains the following set of
so-calledsure primary constraints:

+3(B+C)n; T, il
This system of equations can be decomposed into irreduc-
O=m0~0, ¢ijOE7Tij0~0- (3.1 iblg parps with respect to the group of three-dimensional ro-
tations in:

P, i=71/3-2aCT"—=2a(2A+B+C)T, 1,

oY, =7",,~0. (3.2
A ~A . A
The next set of constraints follows from the linearity of the Pl=mmd I—2aBT 5 =2a(2A—B)T i,
curvature inAl - ;
P=m4J=2a(2A+B)T -,
(ﬁijaEWija_Ll-b)\ijOQ%O. (33) tk 1K Lk

Before we continue, it is convenient introduce the so-called ~ P"m=7"5/J=2a(2A+B+3C)T" ,

3+1 decomposition of spacetinig3]. If n is the unit normal _

to the hypersurfac&y: x°= const, withn,=h%g®, the  where Xa=X(ig, Xi=X i — 7X"/3. Taking now into
four vectors (,e,) define the Arnowitt-Deser-Misner account the special choice of parameters adopted in Eg.
(ADM) basis of tangent vector fields. Introducing the projec-(2.2), we recognize here two sets of relations: the first set
tors onn and3q, (P, ), =n'ny, (P))i=3d—n'n,, any tan-  representextra primary constraints

gent vectoV can be decomposed in terms of its parallel and _

orthogonal componentd/,=V,+nV, , whereV, =bkv,, P = /Jd+2aT H~0,
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PA=701J—aT,7:~0 (3.43 The explicit form of7¢, can be obtained by eliminating
e Tk ' ’ “velocities” T;, with the help of the relations defining mo-
usually calledf constraints while the second set gives non- Mentamc. To do that we first rewrite the first two terms of

singular equations H, in the form
Pl=r/l=2aT" 1, 75T e IL=2IPKT, 3= IL(T),
PEEE %EE/JZ _461-'-5La (3.4b whereﬂd:Tﬂ. Then, taking into account the constraints
(3.43 one finds thafT, | and Tﬁ; are absent front{, ,
which can be solved for velocities. whereupon the relation@.40) can be used to eliminate the

Further calculations are greatly simplified by Observmgremaining “
that both sets of extra constrairi8&4g can be represented in
a unified manner as

velocities” TiIJ andT™, r,, leading directly to

HL:[%P'ZI'_‘JZT(_)_nkvﬁwkﬁ]_J)\ijﬁRin!

bic=Tic— ma+av,Bi’, Bi'=eiihibb]. (3.5 (3.79
This is seen from the fact that relatiof@4a can be equiva- Where
lently written as
— — Pi= i ik wi0— 2 776577;;

mic— mi~2ad(T, = N T+ n T =2av  HI 2al 2
where thVe last evquality follows from E@¢A1), and the iden- Lo(T)=a( LT T L —nmk_ m— k)
tity 2H{"=—BA”. (3.7b

(2) Having found all the primary constraints, we now pro- o _ _
ceed to find theanonicalHamiltonian density23]: The general Hamiltonian dynamics of the system is de-

scribed by theotal Hamiltonian, which is given as

Ho=mb ,+ i72Al —bL. _ ) ) A
“ S HT=HC+U'07T?+%U'Joﬂijo+%Uijwﬂ'ljw‘l‘%u'kd’ik

The velocitiesh', and A", can be calculated from the rela-

. .. : £ 4 Ly a ]
tions definingT'y, andR" g, : 2Wadij"s 38
Toa=dob',+Alob™,— d,b'o— AlL,.b™, \évrr;ereu’s are, at this stage, arbitrary Hamiltonian multipli-
=NT, + NBTiBa, Although the torsion components ,, and Tﬁ; are ab-
sent from the canonical Hamiltonian, they reappear in the
R, =3doAl ,+Al A™ —g Allj— Al AN total Hamiltonian as the nondynamical Hamiltonian multipli-
. N ers. Indeed, the Hamiltonian field equations B, imply
=NRJ, ,+NRI 4. (Appendix B
After a simple algebra we find that the canonical Hamil- NTLJ: uﬁ, NT}jk=u‘_". (3.9

tonian can be written as a linear function of unphysical vari-

N i
ables £%,A"), up to a three-divergence, The presence of nondynamical torsion components does not

H.=NH, +N“H,,— %AijOHij +9,D°, (3.63 |mply_that GR is an inconsistent theor®], as it has a very
clear interpretation via the gauge structure of the theory: it is
where related to the existence of additional first-class constraints
ik, as we shall see in Sec. V.
HijZZW[iﬁbj]'B+Va7Tija,
. IV. CONSISTENCY CONDITIONS
Ha: WkBTkaB_ bkaV,BWkB—’_ %ﬂ-lj BR” aB . . .
The consistency of the theory requires that the constraints
_(okTi 1,k B do not change during the time evolution of the system gov-
=(m'T JL—n*V Lo
Ho=(m e £ erned by the total Hamiltonian:
—JIN™RY G

d
D=b¥ym+ S AT (3.60 X0 = G (0= f A3’ {§,Hi}~0,
ij - .

Here, H;; and’H,, are purely kinematical terms whose form where{A,B’} denotes the Poisson brackeB) of two vari-

does not depend on the choice of the Lagrangian,7dnds  ablesA(x) andB(x’), andx®=(x")°. The integration sign
the only dynamical part. will be often omitted for simplicity.
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A. Consistency conditions of primary constraints ets{#;; ,H,} vanish weakly, we will be able to conclude that

Having found the form of primary constraints in GR the consistency condition fap;; is automatically satisfied:
displayed in Egs(3.1), (3.2, (3.3), and (3.5, we now con-

sider the requirements for their consistency. xij={éij Hr}={¢ij  Hc}~0. 4.7
Since the canonical Hamiltonian is linear in unphysical
variables p'y,A'’y), the consistency conditions of the sure B. Consistency condition ofe;;

primary consiraint¢3.1) are given by In order to simplify the derivation of the consistency con-

X1=H,~0, xo=H,~0, x;j=H;j=0. (4.1 dition for ¢;; we rewrite this constraint in the form

By noting that the components'! 5 in Eq. (3.2 have van- bij=Hi;—Fij,
ishing PBs with all primary constraints, we easily obtain
— o Oay — a

General arguments in PGT, related to the local Lorentz sym-
metry of the theory, imply that the constraiht; is of the

first class[23]. This is also clear from the PB algebra of
constraints, discussed in the next section. As a consequence,

The dynamical meaning of the last condition can be seeff€ consistency of;; follows from the consistency df; .

On the other hand, the consistencydf,,, implies

XijOIBEUijB_NaRijaB%O = UIJB~O (42b)

more clearly if we note that the equation of motion £t 5, We are now going to show thdF; ,H1}~0. First, we
doA ;={Al 5 H }+u'l 5, can be transformed into the form note that
Rigg~u'l ;. (4.3 {Fij i} =0. 4.9

Hence, Egs(4.2) tell us that all components of the curvature Then, using the result&€.43 we obtain
tensor weakly vanish, as one could have expected. ,
Using the PB relation {Fij Hiat = (mikF i+ micFi) 6= (ke 1),

{6 b}t =a( 7B+ nBRY) 8— (ke 1), {Fij Hpt=—Vp(ij0) +[ V4,V 5] (I1;“0)
(4.109

the consistency condition fap;;“ takes the form )
while Eq. (C.4b leads to

@ __ @ Oa sp0a O«
X =10 Hch+a(uiBg) + uiBig") — 4buy;;°*~0. ) =
{Fij M} =3V s[(Nidj—N; i) N*ES81+ 5[V, ,V 4]
It can be used to determiru;joa:

X(MiFs),
a — — 1
;0 =75 (UG + U B + Uy °°, Uy %= g {m M, NMP=2aHgP - 4bx; =+ N*(IL, A — ¢, )
(4.4 —NA(IT; = ¢ ) (4.100
ij ij . .

where{m;;*,’H,} is calculated in Appendix C. The first part
of uijoa containsu,, and gives an additional contribution to
u'¢,,, so that the replacement of this result irtty leads
effectively to

Hence, the consistency conditionfef , and consequently of
¢ij , is automatically satisfied.

C. Consistency conditions of secondary constraints

Uijoa_’iijoay UM gy — uM by, In the process of investigating the consistency of primary
constraints in GR, we obtained secondary constraidsl)
5 a and(4.29.
D= by — E(WE OaBgf‘+ waQBﬁg . (4.5 Consider, first, the consistency condition of the secondary

constraintR",, ;. SinceR'! ,; depends only oA, one can
expresddR! ,;/dt in terms ofd A’ ,/dt, use the equation of

Note that{e;*, ¢y} =0. _ . motion (4.3) for Al ,, and rewrite the result in the form
The most complicated consistency conditions are those

for the tetrad constraintg;; (or, equivalently,ZSij). First we VoRY g~V u" =V u",.
note that their PB algebra has the form -
Hence, the consistency condition faP ,; is identically sat-
191 Pmnt = (Mim@nj+ Njmbin) 6—(Me=n), (4.6  isfied.
B The above relation has a very interesting geometric inter-
and that the terrr%u”a¢ij“ in H+ can be discarded accord- pretation. Indeed, using E¢4.3) we see that it is a weak
ing to Eq.(4.2b). Then, after showing that the Poisson brack-consequence of the second Bianchi identity.
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General arguments in PGT show that the secondary coffrom  variables ¢ = (T’ R, ,7T|k/~] 7T”k/J n), as

straintsH;; ,H,,, and’, are related to Poincagauge sym-  shown in[25]. The second set of brackets is obtained from

metry [23,25. Consequently, they are of the first class, andthe general formula based on the chain rule for PBs,
their consistency conditions are automatically satisfied. This

will be explicitly seen in the next section, from the form of oM, ’ IH,
their PB algebra. {Ho Hi}= e {eh¢ == | Hidat3—2Hij | 6,
Finally, at the end of the consistency procedure, we give 2 Tij

the final expression for the total Hamiltonian: which explains why the second term is absent in GqLb.

The last and most important set of brackgts, ,H|} is
evaluated using the chain rule and keeping only those terms
that containg, & (terms proportional to5 do not have the
correct symmetry undex«<x’, hence they cancel each
othey.

In the next step we want to extend the above algebra by

adding (b” ¢ij - The relevant PBs involving;; are given

He=H'+ulom’+3ull gm0+ Fuy Pl g+ 5u by,
H,:HC+ %EIO‘BWIIOB (41])

The multipliersu'y,u'ly,u;;*#, and u™ remained arbitrary
functions of tlme hence we expect that the related con-

stralnt37-rI T g, and & are of the first class.

IJ T by
V. ALGEBRA OF CONSTRAINTS {bij Dt = (i + micdi) — (k1)

In the previous analysis we found that R character- Y= (4 i) S— (Kes |
ized by the following set of constraints: {6y Hiai = (e + ) 9= (k= 1),

primary: m°,mj°,¢>u, wp i T o) {1 Hph =V 510 = [V, V gl (I1;;%5),

secondary, ,H,,H;; ,R" ap-

It is simple to see thaty;;“ and 'l op aresecond-class CH Y =—1V (N —n.: b )h@g
constraints. They can and will be used as strong equalities to SR 2V ol (M ik My i ]
eliminate);;°* and 7' ; from the theory and simplify fur- =3[V, VEI(M{Ps). (5.2

ther exposition. In particular, the term with the determined
multiplier u'/, in the total Hamiltonian can be now ne-

glected, and?&ij reduces to¢;;, Eq. (4.5. Because of a

S|mple form of these second—class_constralnts, the related {Rijaﬁlel(l}:(ﬁi(leaﬁ_F 5{(Ri|aﬁ)5_(k<_>|)

Dirac brackets have the form of PBs in the phase space of the

remaining variables. All the remaining constraints are of the Rii n—v (Rl .8 —

first class,as follows from their PB algebra. {Rlap My = Va(RYyp0) = (= B)
Since the kinematical constraints;; ,*,,, have the

same general form as 23,25, their algebra remains the

same:

Finally, we display the nonvanishing PBs involvifj'
and 7" ,z5:

{7 5. H }=4IRI 4. (5.3

Thus, all constraints except;“ and 7', are of the first
/ lass. The fact tha;; is first class is of particular impor-
- =(miHi + i Hi ) 6— (ke 1), c Gij 1S 1 _ _
{Hy Fiak = O+ ) 6= (k) tance for the consistent interpretation of the nondynamical
, torsion components, as noted at the end of Sec. Ill.
{Hij ,HQ}ZO,
’ ' i VI. EXTRA GAUGE SYMMETRIES
{Ha!Hﬁ}z(HaaB+HBaa_%RIJQBHij)é'
(5.1a The presence of arbitrary multipliers in the total Hamil-
. _ o tonian is related to the existence of gauge symmetries in the
As a consequence &' ,;~0, the last term i{},,Hz} IS theory. The general method of constructing the generators of
quadratic in constraints. such symmetries has been given by Castel[@6i. If we
The brackets involving{, are found to have the form |imit ourselves to gauge transformations given in terms of
(Hy H}=0 arbitrary parameters(t) and their first time derivative(t),
o tELT which is sufficient for the present analysis, the gauge genera-

(H, H }=H, 3,6 tors take the form
ar LI Uty

{HL ,Hi}: _(3ga,8Ha+ Sg/aﬁH;)O—)Bb‘. ( b) G= f d3X[8(t)G(O)+8(t)G(1)], (613
51

_ _ 3 where G(® and G are phase space functions determined
The first two sets of brackets are most easily verified byby the conditions

taking into account that{, can be written in the forni,
=Jf(")—nkV ,m,*, wheref is a Lorentz scalar formed GW=Cpec,
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GO+{GW,Hr}=Cpec,
{G®,Hy}=Cpec, (6.1b

and Cpgc denotes primary first-clag®FO constraint.

The Poincaregauge symmetry is present in our formula-
tion of GR| by construction, and the related gauge generator

is based on the sure constraintg’,m;° and M, ,H,, ,H;;

[27]. Here, we shall focus our attention on extra gauge sym

metries based om'l 5, %;;, andR 5.

A. Extra gauge symmetry 1

Starting withr'! , 5 asG™ in Egs.(6.1b we find that the
related gauge generator is given by

G:f x5 (Voeij Pl
+3ei;P(—4bR) 5+ (b/b) 7'l 0] (6.2
The only nontrivial gauge transformatiodgX={X,G} are

So(b\ij*#) =V o(be;;*F),

807Tija=4VB(bsij“B). (63)

PHYSICAL REVIEW D 62 024021

4b50>\ijaﬂ=[si“kgjﬁ+ A"o(em Kl +2"Kif)]

—(i=}]),
Somi;“=[a(e;"Bg) +V g(&;"K)]
—(i=]), (6.6)

and similarly for other variables.
Consider, again, Eq(6.4). Using 50Hij“=Vﬁ(si”Kﬁjﬁ)
—(i+j), we easily obtain

So( VoIl *)=Vo( 8olLj; ) =V gV o(&;"Kif) = (i)
=V l&"Kil+ &K+ Ao(e KR
+e,"KED 1= (i-]),
where we made use &' ,;=0. On the other hand,
SoK (="K + &, "Kaf + Ao(e"Kif +&,"KEP)]
—(i<]),
and we see that E@6.4) is gauge invariant.

VII. CONCLUDING REMARKS

To see the meaning of these transformations, consider the 1o investigation of the Hamiltonian structure of the

Hamiltonian equation for the variablH;“=m;“—aB}*.

Introducing K{{’=4b\;;*#—aBi# and using the results of

Appendix C we obtain the equation
Voll;;“—V gKii# =0, (6.4)

which is the Hamiltonian analogue of E@.4b. The appli-

cation of the above gauge transformation to this equatiorg

yields
(VoVB_VﬁVO)(4b8|JaB) =0.

teleparallel formulation of GR presented here is based on
Dirac’s general method for constrained dynamical systems
[21].

To complete our results, we now discuss how the physical
degrees of freedom of GRare counted. After the elimina-
tion of )\ijo" and'y,, the reduced phase space is spanned
by the 40+18 field componentska,A"M,)\ij“B) and the
ame number of momenta. The primary first-class constraints
" 5 diminish the number of independent variables for 2
X 18, leaving us with the phase space containing effectively
2X 40 components. Before going on, we wish to clarify the

The invariance follows from the fact that the left hand sidecounting of constraintsR'/,;~0. Note that here we have

vanishes in Weitzerilok space, wher® o;=0.

B. Extra gauge symmetry 2

Starting withG{"”= ¢;; in Egs.(6.1b, one finds that the
gauge generator has the form

Gij :f d*x[3e1GM+ 361G, (6.59

where(Appendix D

1 11
Gi(jO):ERiSaﬁngﬁ_'—z %[(Ainoﬂ-nsaﬁ"'ASnoﬂ'inaﬁ’)

XK= g (1)) 6.5

The corresponding gauge transformations are

SobX,=&Xbs,, 8oAl,=0,

formally 18 equations, but they represent only 12 indepen-
dent conditions oA ,. Indeed, starting with the simplest
solutionA'l ,=0 of R, 4(A)=0, one can construct a new,
Lorentz-rotated solutiod"” ,(A)=A',d,A%, containing six
arbitrary parameterfls_II< [8], so that the number of indepen-
dent conditions orA" , is 18-6=12. Continuing now the
counting, we find 20 sure first-class constrairéen primary
(m°,m;%) and ten secondaryM, ,H, H;)] and 6+12
=18 additional first-class constraingg; andR" 5, which
leaves us with X40—-2x38=4 physical degrees of free-
dom, corresponding to the massless graviton.

We found two types of extra gauge symmetries in the
PGT formulation of GR. The first type is related to the
primary constraintsz' ;. The related gauge transforma-
tions do not act orb',,; hence they are irrelevant for the
structure of the first field equatidi2.4g9. On the other hand,
the gauge symmetry acts nontrivially on Lagrange multipli-
ers. If we recall that the only role of the second field equation
(2.4b is to determine these multiplief9], it becomes clear
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that this cannot be done uniquely without fixing the gauge. HA’=b(h*h."—h.#h."), (A1)
The second type of extra gauge symmetry originates from ' J !
the tetrad constraintg;; . We note that Nestdil4] derived  which impliesV ,(bAy;;;*)=0 for Riiwzo_

these constraints in the forit8.4a, in his analysis of the In Riemann-Cartan spad#, the Lorentz connection can
positivity of energy in the teleparallel form of GRTheir  pe expressed in the form=A +K, whereA is Levi-Civita
existence may be interpreted as a consequence of the fagbnnection an the contortion. Substituting this expression
that the velocities contained h, i and T, ;-appear at most into the definition of the curvature tensBf! ,,(A), we ob-
linear in the Lagrangiafl6] and, consequently, remain ar- tain the basic identity

bitrary functions of time. The phenomenon that some veloci- B B _ _

ties are dynamically undetermined is quite usual for con- R", (A)=R",,(A)+[V K" +K's K, —(nev)],
strained dynamical systenigl]. Hehtet al. [16] concluded (A2)
that the initial-value problem for GRoecomes well defined _ . _ _ o

if these undetermined velocities are simply gauged awayvhere V'=V(A) is the Riemannian covariant derivative.
ensuring the new kinetic Hessian matrix to be nondegenerFhen, multiplying this relation b)Hﬁ”/Z and usinng’LHﬁ”

ate. However, according to the results of R¢ib,28, this =0, we find
conclusion should be revised by taking into account nonlin-
ear constraint effects. bR(A)=bR(A)+b( 4l-|-ijk-|-ijk + %TijkT”k ~T,TY
The role of this symmetry is very clearly seen if we ob-
serve that the teleparallel geometry can be also formulated as +24,(bK*), (A3)

the translational gauge theory, where local Lorentz symme-
try is in general abseii5,8]. However, for the special choice WhereK#=K#" =—T¥,

of parameters corresponding to GBne finds thaig;; is an Now, if we write Eq.(A2) in an equivalent form
additional first-class constraint, which generates local Lor- i il i P s
entz symmetry as an extra gauge symmeéid]. This also R (A) =R, (B) + [V KT, =Kl K™, = (ke v)],

clarifies the form(3.5 of ¢;;, which is seen to “imitate”
Hjj in the tetrad sector.
Maluf_[22] studleq GR by imposing the time gauge at t_he BRI (A)=bR(A)+[V K, —Kig K, JH
Lagrangian level. His arguments concerning the necessity of “ K !
the time gauge in the canonical formalism are conceptuallyyhich can be written as
misleading: this gaugéas well as any other gaugeay be
useful, but certainly not essentfed1]. After fixing the time  abR¥(A)=abR*(A)+2V ,(bB'*¥)+2ba, <T™"
gauge, he found the Hamiltonian and derived the constraint — " [ik]
corresponding to oud; [Eq. (25) in his papel, while ¢} —bB™ T mn— 7ad, (bT#) — 4V ,(bBHX).
is missed. Moreover, Maluf was not able to calculate the (A4)
constraint algebra unless imposing another gauge condition. -
His constraint algebrEqs. (30)—(34)] does not agree with The last term on the right hand side vanishesR8r,,(A)
our results, which might be a consequence of the adoptee 0. In that case we find
gauge conditions. All this makes his analysis of the gauge " i - i
structure of GR rather unclear. 2ab[R™(A) =3 7"R(A)]= =4V (bB'""*) =4bB,,' T
The results obtained in this paper refer to noninteracting imnk ik
GRy, and can be used to define and analyze the gravitational 2D iyt 7 DLy
energy and other conserved quantitig9,17). The interac- (A5)
tion with matter fields may be included in a straightforward
manner[7,30]. Studying consistency requirements imposed AppENDIX B: UNPHYSICAL TORSION COMPONENTS
by extra gauge symmetries on the matter sector will tell us
more about the existence and nature of consistent couplings [N this appendix we show that the unphysical torsion com-
[16]. ponentsT, and Tﬁ; can be expressed in terms of the

Hamiltonian multipliersuy .
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and multiply it by H{;"/2, we obtain the result

One of us(M.B.) appreciates a short visit to F. W. Hehl at
the University of Cologne, where some interesting features
of GR| were discussed in a stimulating atmosphere. This
work was partially supported by the Serbian Science Foun-

{b'y Mg} = 80y 06— (ke=1),

(bl Hsh=(V b p) 65— 53, 6= T}y, 8

dation, Yugoslavia. +Va(biﬁ5),
APPENDIX A: SOME GEOMETRIC IDENTITIES IN T4 1 Y
i o N (b H}= == bpPi™— Zb! P™| 5
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VVHﬁV:bhk“(Tkij_5iij+5}(Ti):—4bﬂ[ij]“/ay +V,(Nn'6), (B1)
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one easily finds that the Hamiltonian equation 56, can be
written in the form

i i - 1 . — —
Vob' , =V, b'o+ N’gT'ﬁa+ kaaﬁ(ﬂ_(lk)_ % ﬂ'kﬂma)

+by(n'utk 4 uk). (B2)
As a consequence,
70— 1 pikam— 23 T(LW),
utk=NTHK ke NTE, (B3)

APPENDIX C: CONSISTENCY CONDITIONS

PHYSICAL REVIEW D 62 024021

and

1
{B" 1} = (mim(ig—nym(iig)h 0+ 2657V (n"5).

ij » ijmn

(C3b
Combining Egs(C1g and(C3g we find
{5 High = (i L+ I @) 6= (ke D),
{IL;* Hpt=— 8¢y 6— 83V (11,7 )
+V 5(I15;%6), (C4a

which implies Eqs(4.103.
Similarly, combining Eqs(C1b) and(C3b), and using the
identity

We collect here several technical relations which simplify

the derivation of the consistency conditions {y“ andF; .

(1) The term{m;“ ,Hc} in the consistency condition for
the primary constrain;;“ is calculated using the relations

{7 Higb = (e “+ ey ) 6— (ke 1),
{mij Hpt=— og(mij—mji) 6= 6V (7 5)
+V g, 5). (Cla
and
{mi" H{}=—4V (N P95)

+4V 5[ J(N*N;; %= NAN;°) 5]
~[8B(jid0) +2adng T, jjdh s
+ (N mjic— njw@h@a (C1lb

Using the identity BB[mE(O)h?"=asﬂﬁﬁ17Tmann, we ob-
tain

{Wija Hep=— (Aisoﬂ'sja+Ajso7Tisa)_ Na(WiT_ Wjﬂ
—4V g(bX;#*) —aNe o T™ on"+N(n; i
—n ) NV [ (N P— NPy )]
+3N(n; dj— n;¢mh?”-

(2) In order to calculate the Poisson brackets betwggn

(C2

and the Hamiltonian constraints, we also need the followingand s

relations:
{BY* Mg} = (muBJ*+ 7;xB*) 6— (k> 1),

{BS*  Hp} =V 5(B3*8) + 563B19,,6,

ij o (C39

Bﬁ'B: ZNSQBVObr;‘nn_(NaBi(}ﬁ_ NﬁB?ja ,

ijmn
we obtain
[T b= (i iy oo+ V 4(M5 ),
NMiP=2aH’+abx;; “A+N(I1;; A - ¢;;°)
—NA(IT;“— %), (C4b
which implies Eq.(4.10b.

APPENDIX D: EXTRA GAUGE GENERATORS

In this appendix we derive the form of the gauge genera-
tor (6.5). We start withG{)= ¢;; in Egs.(6.1h. In order to
find the form of the accompanying compon@&ff’, we use
the PB algebra given in E@5.2), and calculate

{¢I] !HT}: - %[Va vVﬁ]Kﬁﬁa

where terms proportional te;“ are discarded. The second
condition in Eqs.(6.1b) implies

KiP=2aH{’+4b);; "%,

Gi(JO):%[RiSaBKgJ’B_(iHj)]"‘ bij , (D1a)

where ¢;; is a primary FC constraint. The third condition in
Eqgs.(6.1b can be written in the form

%[Risaﬁngﬁ+ Risaﬁkgjﬁ_(iHj)]"'bij:CPFC:
where X={X,Hr}. Then, using the relation¥,R,*,z~0
«p=4bR", 5 we obtain

11 .
0 =5 E[(AinoﬂnsaBJrAsnoﬂ'in aB)ngB_ WisaﬁngB]

—(i]). (D1b)
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