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Hamiltonian structure of the teleparallel formulation of general relativity

M. Blagojević* and I. A. Nikolić
Institute of Physics, P. O. Box 57, 11001 Belgrade, Yugoslavia

~Received 28 January 2000; published 26 June 2000!

We apply Dirac’s Hamiltonian approach to study the canonical structure of the teleparallel form of general
relativity without matter fields. It is shown, without any gauge fixing, that the Hamiltonian has the generalized
Dirac-ADM form, and constraints satisfy all the consistency requirements. The set of constraints involves some
extra first-class constraints, which are used to find additional gauge symmetries and clarify the gauge structure
of the theory.

PACS number~s!: 04.50.1h, 04.20.Cv
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I. INTRODUCTION

Among various attempts to overcome the problems
quantization and the existence of singular solutions in E
stein’s general relativity~GR!, gauge theories of gravity ar
especially attractive, as they are based on the concep
gauge symmetry which has been very successful in the fo
dation of other fundamental interactions. The importance
the Poincare´ symmetry in particle physics leads one to co
sider the Poincare´ gauge theory~PGT! as a natural frame
work for a description of the gravitational phenomena@1–5#
~for more general attempts, see@6#!.

The basic gravitational variables in PGT are the tet
field bk

m and the Lorentz connectionAi j
m , which are asso-

ciated with the translation and Lorentz subgroups of
Poincare´ group, respectively. These gauge fields are coup
to the energy-momentum and spin of matter fields, and t
field strengths are geometrically identified with the torsi
and curvature: Ti

mn5]mbi
n1Ai

smbs
n2(m↔n), Ri j

mn

5]mAi j
n1Ai

smAs j
n2(m↔n). The spacetime of PGT turn

out to be Riemann-Cartan spaceU4, equipped with a metric
and linear, metric compatible connection. The dynami
content of PGT is determined by the LagrangianL̃[b(LG
1LM), where the gravitational partLG is usually assumed to
be at most quadratic in field strengths, andLM describes
minimally coupled matter fields.

The general geometric arena of PGT, the Riemann-Ca
spaceU4, may bea priori restricted by imposing certain
conditions on the curvature and the torsion. Thus, Einste
GR is defined in Riemann spaceV4, which is obtained from
U4 by the requirement of vanishing torsion. Another inte
esting limit of PGT isteleparallelor Weitzenbo¨ck geometry
T4, defined by the requirement of vanishing curvature:

Ri j
mn~A!50. ~1.1!

The vanishing of curvature means that parallel transpor
path independent; hence we have an absolute paralle
The teleparallel geometry is, in a sense, complementar
Riemannian geometry: curvature vanishes, and torsion
mains to characterize the parallel transport.
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Of particular importance for the physical interpretation
the teleparallel geometry is the fact that there is a o
parameter family of teleparallel Lagrangians which isem-
pirically equivalent to GR@5,7,8#. For the parameter value
B51/2 the Lagrangian of the theory coincides, modulo
four-divergence, with the Einstein-Hilbert Lagrangian, a
defines the teleparallel form of GR, GRi .

The teleparallel description of gravity has been one of
most promising alternatives to GR. However, analyzing t
theory Kopczyn´sky @9# found a hidden gauge symmetry, an
concluded that the torsion evolution is not completely det
mined by the field equations. Assuming, then, that the t
sion should be a measurable physical quantity, he argued
this theory is internally inconsistent. Hayashi and Shiraf
@10# tried to avoid this problem by interpreting certain di
ferent torsion configurations as physically equivalent, i
related to each other by a gauge transformation, but the c
sistency of this idea in the interacting theory seems to
questionable for nonscalar matter@9,11#. Various modifica-
tions of the one-parameter teleparallel theory are propose
order to avoid the above problems@9,12,13#. Trying to reex-
amine the gauge structure of the one-parameter telepar
geometry Nester@14# improved the arguments of Kopczyn´-
sky @9#; the predictability problem was stated more precis
and bound to certain special solutions. This conclusion
been further verified by Chenget al. @15#, who recognized
the importance of nonlinear constraint effects for the d
namical structure of the theory.

Hecht et al. @16# traced the appearance of nonphysic
modes of torsion back to some symmetries which are ne
sarily present in the 311 decomposition of spacetime. Usin
certain geometric arguments they concluded that some c
ponents of the tetrad velocity are not suited to represent
namical degrees of freedom. In other words, these veloc
must not appear in the evolution equations; hence t
should appear at most linear in the Lagrangian. The choic
parameters in the teleparallel Lagrangian that ensures th
happen is just the one corresponding to GRi .

The teleparallel geometry possesses many salient feat
Thus, Nester@17# succeeded in formulating a pure tensor
proof of the positivity of total energy for Einstein’s theory i
terms of the teleparallel geometry. He found that spec
gauge features of GRi , which are usually considered to b
problematic, are quite beneficial for this purpose. Miel
@18# used the teleparallel geometry of GRi to give a trans-
©2000 The American Physical Society21-1
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parent description of Ashtekar’s complex variables, while
Andradeet al. @19# formulated a five-dimensional telepara
lel equivalent of Kaluza-Klein theory. There are also so
attempts to understand the role of torsion at the quan
level @20#.

The purpose of this paper is to investigate the canon
structure of GRi using Dirac’s Hamiltonian approach@21#,
as this is, in our opinion, the best way to clarify both t
nature of somewhat mysterious extra gauge symmetries
the question of consistency of GRi . We shall find that a
specific choice of coupling constants in the teleparallel
grangian leads to the appearance of some additional fi
class constraints and, consequently, to extra gauge sym
tries, which clarify the meaning of nondynamical torsio
components and give us a complete picture of the ga
structure of GRi .

We remark here that Maluf@22# tried to analyze some
aspects of the Hamiltonian structure of GRi . However, his
approach is based on some unnecessary gauge fixing c
tions, adopted at the level of Lagrangian in order to simp
the calculations, so that many specific gauge features of
theory remained effectively hidden.

The layout of the paper is as follows. After recalling som
basic elements of the Lagrangian teleparallel formulation
GR in Sec. II, we work out all the primary constraints a
construct the corresponding Hamiltonian density in Sec.
It is shown that a specific choice of parameters in the
grangian leads to additional primary constraints. Then,
study the consistency conditions in Sec. IV, and derive
algebra of constraints in Sec. V. These results are use
Sec. VI to construct extra gauge generators and clarify
nature of the related gauge symmetries. Section VII is
voted to concluding remarks, while some technical det
are presented in the Appendixes.

Our conventions are the same as in Ref.@23#: the Latin
indices refer to the local Lorentz frame, whereas the Gr
indices refer to the coordinate frame; the first letters of b
alphabets (a,b,c, . . . ;a,b,g, . . . ) run over 1,2,3, and the
middle alphabet letters (i , j ,k, . . . ;m,n,l, . . . ) run over
0,1,2,3; h i j 5diag(1,2,2,2), «0123511, « i jkl

mnlr

5«mnlr« i jkl andd5d(x2x8).

II. TELEPARALLEL FORMULATION OF GR

Lagrangian.A gravitational field in the framework of the
teleparallel geometry in PGT is described by the tetradbk

m
and Lorentz connectionAi j

m , subject to the condition o
vanishing curvature~1.1!. We shall consider here the grav
tational dynamics determined by a class of Lagrangians q
dratic in the torsion@5,7,8#

L̃5b~LT1l i j
mnRi j

mn1LM !,

LT5a~ATi jkTi jk1BTi jkTjik1CTkT
k!

[b i jk~T!Ti jk , ~2.1!

where l i j
mn are Lagrange multipliers introduced to ensu

the teleparallelism condition~1.1! in the variational formal-
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ism, a51/2k (k5 Einstein’s gravitational constant!, Tk
5Tm

mk , and LM is the Lagrangian of matter fields. Th
explicit form of b i jk is

b i jk5a~ATi jk1BT[ j ik ]1Ch i [ jTk] !.

The parametersA,B,C in the Lagrangian should be dete
mined on physical grounds, so as to obtain a consis
theory which could describe all the known gravitational e
periments. If we require that the theory~2.1! gives the same
results as GR in the linear, weak–field approximation,
can restrict our considerations to the one–parameter fam
of Lagrangians, defined by the conditions@5,7,8#

~i! 2A1B1C50, C521.
This family represents a viable gravitational theory for ma
roscopic, spinless matter, empirically indistinguishable fro
GR. Von der Heyde@24# and Hehl et al. @5# have given
certain theoretical arguments in favor of the choiceB50.
There is, however, another, particularly interesting cho
determined by the requirement

~ii ! 2A2B50.
It leads effectively to the Einstein–Hilbert LagrangianLGR
52abR(D), defined in Riemann spacetimeV4 with Levi-
Cività connectionA5D, via the geometric identity~A3!:

bR~A!5bR~D!1b~ 1
4 Ti jkTi jk1 1

2 Ti jkTjik2TkT
k!

22]n~bTn!.

Indeed, in Weitzenbo¨ck spacetime the above identity in con
junction with the condition~1.1! implies that the torsion La-
grangian in Eqs.~2.1! is equivalent to the Einstein-Hilber
Lagrangian, up to a four-divergence, provided that

A5 1
4 , B5 1

2 , C521, ~2.2!

which coincides with conditions~i! and ~ii ! given above.
The theory defined by Eqs.~2.1! and ~2.2! is called the

teleparallel formulation of GR~GRi). Note that the equiva-
lence with GR holds certainly for scalar matter, while t
gravitational couplings to spinning matter fields inT4 andV4
are in general different.

Field equations.By varying the Lagrangian~2.1! with
respect tobi

m ,Ai j
m , and l i j

mn we obtain the gravitationa
field equations

24¹m~bb i
mn!24bbnmnTnmi1hi

nbLT5tn
i , ~2.3a!

28bb [ i j ]
n14¹m~bl i j

nm!5sn
i j , ~2.3b!

Ri j
mn50, ~2.3c!

wheretn
i andsn

i j are the energy-momentum and spin cu
rents of matter fields, respectively.

The first field equation can be rewritten as

24¹m~bb i
mk!12bb imnT

kmn24bbnmkTnmi1d i
kbLT5tk

i .

Then, combined with the identity~A5!, it takes the form of
Einstein’s field equation:
1-2
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Rik~D!2 1
2 h ikR~D!5tki/2ab. ~2.4a!

Here, on the left hand side we have Einstein’s tensor of G
which is a symmetric tensor. Therefore, the dynami
energy-momentum tensor must be also symmetric,t ik5tki.

Using the identity~A1! the second field equation can b
written in the form

¹m~2aHi j
nm14bl i j

nm!5sn
i j , ~2.4b!

where Hi j
nm5b(hi

nhj
m2hj

nhi
m. The integrability condition

for this equation is identically satisfied, because the covar
divergence of the left hand side vanishes on accoun
Ri j

mn50, whereas

¹nsn
i j 5t i j 2t j i 50.

The first equality in this relation is a consequence of
covariant conservation of angular momentum for ma
fields ~which holds when matter field equation is satisfie!,
and the vanishing oft [ i j ] follows from the first field equa-
tion.

Simple counting shows that the number of independ
field equations~2.4b! is 2426518. The multipliersl i j

ab

remain arbitrary functions of time, as will be shown in th
forthcoming Hamiltonian analysis. For any specific choice
l i j

ab ~gauge fixing!, Eq. ~2.4b! can be used to determine~at
least locally! the remaining 18 multipliersl i j

0a.
In what follows we shall investigate the Hamiltonia

structure and gauge properties of GRi without matter fields
(sn

i j 5t i j 50). We expect that the results obtained here w
be also useful for the analysis of interacting GRi .

III. PRIMARY CONSTRAINTS AND HAMILTONIAN

~1! The basic Lagrangian dynamical variables of o
theory are (bi

m ,Ai j
m ,l i j

mn), and the corresponding mo
menta are denoted by (p i

m,p i j
m,p i j

mn). Because of the fac
that the torsion and the curvature do not involve velocit
ḃk

0 and Ȧi j
0, one immediately obtains the following set o

so-calledsureprimary constraints:

fk
0[pk

0'0, f i j
0[p i j

0'0. ~3.1!

Similarly, the absence of the time derivative ofl i j
mn implies

f i j
mn[p i j

mn'0. ~3.2!

The next set of constraints follows from the linearity of t
curvature inȦi j

a :

f i j
a[p i j

a24bl i j
0a'0. ~3.3!

Before we continue, it is convenient introduce the so-cal
311 decomposition of spacetime@23#. If n is the unit normal
to the hypersurfaceS0 : x05 const, withnk5hk

0/Ag00, the
four vectors (n,ea) define the Arnowitt-Deser-Misne
~ADM ! basis of tangent vector fields. Introducing the proje
tors onn andS0 , (P')k

i 5nink , (Pi)k
i 5dk

i 2nink , any tan-
gent vectorV can be decomposed in terms of its parallel a
orthogonal components:Vk5Vk̄1nkV' , whereV'5bkVk ,
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Vk̄5Vk2nkV' , and nkVk̄50. Using an analogous decom
position of the torsion and the curvature in the last two in
ces,

Ti
mk5Ti

m̄k̄12n[mTi
' k̄] , Ri j

mk5Ri j
m̄k̄12n[mRi j

' k̄] ,

we find that the parallel componentsTi
k̄ l̄ andRi j

k̄ l̄ are inde-
pendent of velocities. The replacement in the gravitatio
Lagrangian yieldsL5L̄(Ti

k̄ l̄ ,Ri j
k̄ l̄ ;Ti

' l̄ ,Ri j
' l̄ ,nk).

The decomposition ofe0 in the ADM basis yieldse0
5Nn1Naea , where N5nkb

k
0 and Na5hk̄

abk
0 are lapse

and shift functions, respectively. We note also thatb satisfies
the factorization propertyb5NJ, whereJ does not depend
on bk

0.
Now, we turn our attention to the remaining momentap i

a

@23#. The relations definingp i
a can be written in the form

p̂ i
k̄5J

]L̄T

]Ti
' k̄

54Jb i
' k̄~T!,

where p̂ i
k̄5p i

abk
a are conveniently defined ‘‘parallel’’

gravitational momenta. Using now the fact thatb is a linear
function of T we can make the expansionb(T)5b(0)
1b(1), whereb(0) does not depend on ‘‘velocities’’Ti

' k̄
andb(1) is linear in them, and rewrite the above equation
the form

Pik̄[p̂ i k̄ /J24b i' k̄~0!54b i' k̄~1!.

Here, the so-called ‘‘generalized momenta’’Pik̄ do not de-
pend on velocities, which appear only on the right hand s
of the equation. Explicit calculation leads to the result

Pik̄[p̂ i k̄ /J24a@ 1
2 BT' ī k̄1 1

2 CniT
m̄

m̄k̄#

54a@ATi' k̄1 1
2 BTk̄' ī 1

1
2 Ch ī k̄T

m̄
'm̄

1 1
2 ~B1C!niT'' k̄#.

This system of equations can be decomposed into irred
ible parts with respect to the group of three-dimensional
tations inS0:

P' k̄[p̂' k̄ /J22aCTm̄
m̄k̄52a~2A1B1C!T'' k̄ ,

Pī k̄
A

[p̂m̄k̄
A /J22aBT' ī k̄52a~2A2B!Tī' k̄

A ,

Pī k̄
T

[p̂ ī k̄
T /J52a~2A1B!Tī' k̄

T ,

Pm̄
m̄[p̂m̄

m̄ /J52a~2A1B13C!Tm̄
'm̄ ,

where Xī k̄
A

5X[ ī k̄] , Xī k̄
T

5X( ī k̄)2h ī k̄X
n̄

n̄/3. Taking now into
account the special choice of parameters adopted in
~2.2!, we recognize here two sets of relations: the first
representsextra primary constraints

P' k̄5p̂' k̄ /J12aTm̄
m̄k̄'0,
1-3
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Pī k̄
A

5p̂ ī k̄
A /J2aT' ī k̄'0, ~3.4a!

usually calledif constraints, while the second set gives non
singular equations

Pī k̄
T

[p̂ ī k̄
T /J52aTī' k̄

T ,

Pm̄
m̄[p̂m̄

m̄ /J524aTm̄
'm̄ , ~3.4b!

which can be solved for velocities.
Further calculations are greatly simplified by observi

that both sets of extra constraints~3.4a! can be represented i
a unified manner as

f ik5p i k̄2pk ī1a¹aBik
0a , Bik

0a[« ikmn
0abgbb

mbg
n . ~3.5!

This is seen from the fact that relations~3.4a! can be equiva-
lently written as

p i k̄2pk ī'2aJ~T' ī k̄2niT
m̄

m̄k̄1nkT
m̄

m̄ī !52a¹aHik
0a ,

where the last equality follows from Eq.~A1!, and the iden-
tity 2Hik

mn52Bik
mn .

~2! Having found all the primary constraints, we now pr
ceed to find thecanonicalHamiltonian density@23#:

Hc5p i
aḃi

a1 1
2 p i j

a Ȧi j
a2bL.

The velocitiesḃi
a and Ȧi j

a can be calculated from the rela
tions definingTi

0a andRi j
0a :

Ti
0a[]0bi

a1Ai
m0bm

a2]abi
02Ai

mabm
0

5NTi
'a1NbTi

ba ,

Ri j
0a[]0Ai j

a1Ai
m0Am j

a2]aAi j
02Ai

maAm j
0

5NRi j
'a1NbRi j

ba .

After a simple algebra we find that the canonical Ham
tonian can be written as a linear function of unphysical va
ables (bk

0 ,Ai j
0), up to a three-divergence,

Hc5NH'1NaHa2 1
2 Ai j

0Hi j 1]aDa, ~3.6a!

where

Hi j 52p [ i
bbj ]b1¹ap i j

a,

Ha5pk
bTk

ab2bk
a¹bpk

b1 1
2 p i j

bRi j
ab ,

H'5~p̂ i
k̄Ti

' k̄2JL̄T2nk¹bpk
b!

2Jl i j
m̄n̄Ri j

m̄n̄ ,

Da5bk
0pk

a1 1
2 Ai j

0p i j
a. ~3.6b!

Here,Hi j andHa are purely kinematical terms whose for
does not depend on the choice of the Lagrangian, andH' is
the only dynamical part.
02402
-
-

The explicit form ofH' can be obtained by eliminating
‘‘velocities’’ Ti' k̄ with the help of the relations defining mo
mentap i k̄ . To do that we first rewrite the first two terms o
H' in the form

p̂ i k̄Ti' k̄2JL̄T5 1
2 JPik̄Ti' k̄2JL̄T~ T̄!,

where T̄ikl5Tik̄ l̄ . Then, taking into account the constrain
~3.4a! one finds thatT'' k̄ and Tī' k̄

A are absent fromH' ,
whereupon the relations~3.4b! can be used to eliminate th
remaining ‘‘velocities’’ Tī' k̄

T andTm̄
'm̄ , leading directly to

H'5@ 1
2 PT

22JL̄T~ T̄!2nk¹bpk
b#2Jl i j

m̄n̄Ri j
m̄n̄ ,

~3.7a!

where

PT
25

1

2aJ S p ( ī k̄)p
( ī k̄)2

1

2
pm̄

m̄p n̄
n̄D ,

L̄T~ T̄!5a~ 1
4 Tmn̄k̄T

mn̄k̄1 1
2 Tm̄n̄k̄T

n̄m̄k̄2Tm̄
m̄k̄Tn̄

n̄k̄!.
~3.7b!

The general Hamiltonian dynamics of the system is
scribed by thetotal Hamiltonian, which is given as

HT5Hc1ui
0p i

01 1
2 ui j

0p i j
01 1

4 ui j
mnp i j

mn1 1
2 uikf ik

1 1
2 ui j

af i j
a , ~3.8!

whereu’s are, at this stage, arbitrary Hamiltonian multip
ers.

Although the torsion componentsT'' k̄ and Tī' k̄
A are ab-

sent from the canonical Hamiltonian, they reappear in
total Hamiltonian as the nondynamical Hamiltonian multip
ers. Indeed, the Hamiltonian field equations forbk

a imply
~Appendix B!

NT'' k̄5u' k̄, NTA
ī' k̄5uī k̄. ~3.9!

The presence of nondynamical torsion components does
imply that GRi is an inconsistent theory@9#, as it has a very
clear interpretation via the gauge structure of the theory:
related to the existence of additional first-class constra
f ik , as we shall see in Sec. V.

IV. CONSISTENCY CONDITIONS

The consistency of the theory requires that the constra
do not change during the time evolution of the system g
erned by the total Hamiltonian:

x~x![
d

dt
f~x!5E d3x8$f,HT8%'0,

where$A,B8% denotes the Poisson bracket~PB! of two vari-
ablesA(x) and B(x8), andx05(x8)0. The integration sign
will be often omitted for simplicity.
1-4
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A. Consistency conditions of primary constraints

Having found the form of primary constraints in GRi ,
displayed in Eqs.~3.1!, ~3.2!, ~3.3!, and~3.5!, we now con-
sider the requirements for their consistency.

Since the canonical Hamiltonian is linear in unphysic
variables (bi

0 ,Ai j
0), the consistency conditions of the su

primary constraints~3.1! are given by

x'[H''0, xa[Ha'0, x i j [Hi j '0. ~4.1!

By noting that the componentsp i j
ab in Eq. ~3.2! have van-

ishing PBs with all primary constraints, we easily obtain

x i j
ab[Ri j

ab'0. ~4.2a!

On the other hand, the consistency ofp i j
0a implies

x i j
0b[ui j

b2NaRi j
ab'0 ⇒ ui j

b'0. ~4.2b!

The dynamical meaning of the last condition can be s
more clearly if we note that the equation of motion forAi j

b ,
]0Ai j

b5$Ai j
b ,Hc%1ui j

b , can be transformed into the form

Ri j
0b'ui j

b . ~4.3!

Hence, Eqs.~4.2! tell us that all components of the curvatu
tensor weakly vanish, as one could have expected.

Using the PB relation

$f i j
a ,fkl%5a~h ikBl j

0a1h jkBil
0a!d2~k↔ l !,

the consistency condition forf i j
a takes the form

x i j
a 5$f i j

a ,Hc%1a~ui
sBs j

0a1uj
sBis

0a!24bui j
0a'0.

It can be used to determineui j
0a:

ui j
0a5

a

4b
~ui

sBs j
0a1uj

sBis
0a!1ūi j

0a, ūi j
0a[

1

4b
$p i j

a ,Hc%,

~4.4!

where$p i j
a ,Hc% is calculated in Appendix C. The first pa

of ui j
0a containsukl and gives an additional contribution t

uklfkl , so that the replacement of this result intoHT leads
effectively to

ui j
0a→ūi j

0a, uklfkl→uklf̃kl ,

f̃kl[fkl2
a

4b
~pk

s
0aBsl

0a1p l
s

0aBks
0a!. ~4.5!

Note that$f i j
a ,f̃kl8 %50.

The most complicated consistency conditions are th
for the tetrad constraintsf i j ~or, equivalently,f̃ i j ). First we
note that their PB algebra has the form

$f i j ,fmn8 %5~h imfn j1h jmf in!d2~m↔n!, ~4.6!

and that the term1
2 ui j

af i j
a in HT can be discarded accord

ing to Eq.~4.2b!. Then, after showing that the Poisson brac
02402
l
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ets$f i j ,Hc8% vanish weakly, we will be able to conclude th
the consistency condition forf i j is automatically satisfied:

x i j [$f i j ,HT8%'$f i j ,Hc8%'0. ~4.7!

B. Consistency condition off i j

In order to simplify the derivation of the consistency co
dition for f i j we rewrite this constraint in the form

f i j 5Hi j 2Fi j ,

Fi j 5¹a~p i j
a2aBi j

0a![¹aP i j
a . ~4.8!

General arguments in PGT, related to the local Lorentz sy
metry of the theory, imply that the constraintHi j is of the
first class@23#. This is also clear from the PB algebra o
constraints, discussed in the next section. As a conseque
the consistency off i j follows from the consistency ofFi j .

We are now going to show that$Fi j ,HT8%'0. First, we
note that

$Fi j ,fkl8 %50. ~4.9!

Then, using the results~C.4a! we obtain

$Fi j ,Hkl8 %5~h ikFl j 1h jkFil !d2~k↔ l !,

$Fi j ,Hb8 %52¹b~f i j d!1@¹a ,¹b#~P i j
ad!

~4.10a!

while Eq. ~C.4b! leads to

$Fi j ,H'8 %5 1
2 ¹b@~nif jk2njf ik!hk̄bd#1 1

2 @¹a ,¹b#

3~Mi j
abd!,

NMi j
ab[2aHi j

ab24bl i j
ba1Na~P i j

b2f i j
b!

2Nb~P i j
a2f i j

a!. ~4.10b!

Hence, the consistency condition ofFi j , and consequently o
f i j , is automatically satisfied.

C. Consistency conditions of secondary constraints

In the process of investigating the consistency of prim
constraints in GRi , we obtained secondary constraints~4.1!
and ~4.2a!.

Consider, first, the consistency condition of the second
constraintRi j

ab . SinceRi j
ab depends only onAi j

a , one can
expressdRi j

ab /dt in terms ofdAi j
a /dt, use the equation o

motion ~4.3! for Ai j
a , and rewrite the result in the form

¹0Ri j
ab'¹aui j

b2¹bui j
a .

Hence, the consistency condition forRi j
ab is identically sat-

isfied.
The above relation has a very interesting geometric in

pretation. Indeed, using Eq.~4.3! we see that it is a weak
consequence of the second Bianchi identity.
1-5
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General arguments in PGT show that the secondary c
straintsHi j ,Ha , andH' are related to Poincare´ gauge sym-
metry @23,25#. Consequently, they are of the first class, a
their consistency conditions are automatically satisfied. T
will be explicitly seen in the next section, from the form
their PB algebra.

Finally, at the end of the consistency procedure, we g
the final expression for the total Hamiltonian:

HT5H81ui
0p i

01 1
2 ui j

0p i j
01 1

4 ui j
abp i j

ab1 1
2 uikf̃ ik ,

H85Hc1 1
2 ūi j

0bp i j
0b . ~4.11!

The multipliers ui
0 ,ui j

0 ,ui j
ab, and uik remained arbitrary

functions of time; hence we expect that the related c
straintsp i

0 ,p i j
0 ,p i j

ab , andf̃ ik are of the first class.

V. ALGEBRA OF CONSTRAINTS

In the previous analysis we found that GRi is character-
ized by the following set of constraints:

primary: p i
0 ,p i j

0 ,f̃ i j ,p i j
ab ,f i j

a ,p i j
0b ;

secondary:H' ,Ha ,Hi j ,Ri j
ab .

It is simple to see thatf i j
a and p i j

0b are second-class
constraints. They can and will be used as strong equalitie
eliminatel i j

0a andp i j
0b from the theory and simplify fur-

ther exposition. In particular, the term with the determin
multiplier ūi j

a in the total Hamiltonian can be now ne
glected, andf̃ i j reduces tof i j , Eq. ~4.5!. Because of a
simple form of these second-class constraints, the rel
Dirac brackets have the form of PBs in the phase space o
remaining variables. All the remaining constraints are of
first class,as follows from their PB algebra.

Since the kinematical constraintsHi j ,Ha ,H' have the
same general form as in@23,25#, their algebra remains th
same:

$Hi j ,Hkl8 %5~h ikHl j 1h jkHi l !d2~k↔ l !,

$Hi j ,Ha8 %50,

$Ha ,Hb8 %5~Ha8]b1Hb]a2 1
2 Ri j

abHi j !d.
~5.1a!

As a consequence ofRi j
ab'0, the last term in$Ha ,Hb8 % is

quadratic in constraints.
The brackets involvingH' are found to have the form

$Hi j ,H'8 %50,

$Ha ,H'8 %5H']ad,

$H' ,H'8 %52~3gabHa13g8abHa8 !]bd.
~5.1b!

The first two sets of brackets are most easily verified
taking into account thatH' can be written in the formH'

5J f(jA)2nk¹apk
a , where f is a Lorentz scalar formed
02402
n-

d
is

e

-

to

ed
he
e

y

from variables jA5(Ti
m̄n̄ ,Ri j

m̄,n̄ ,p̂ i
k̄/J,p̂ i j

k̄/J,nk), as
shown in@25#. The second set of brackets is obtained fro
the general formula based on the chain rule for PBs,

$Ha ,H'8 %5
]H a

]jA $jA,j8B%
]H'8

]j8B
5S H']a1 1

2

]H'

]p i j
a
Hi j D d,

which explains why the second term is absent in Eq.~5.1b!.
The last and most important set of brackets$H' ,H'8 % is

evaluated using the chain rule and keeping only those te
that contain]ad ~terms proportional tod do not have the
correct symmetry underx↔x8, hence they cancel eac
other!.

In the next step we want to extend the above algebra
addingf̃ i j 5f i j . The relevant PBs involvingf i j are given
by

$f i j ,fkl%5~h ikf l j 1h jkf i l !2~k↔ l !,

$f i j ,Hkl8 %5~h ikf l j 1h jkf i l !d2~k↔ l !,

$f i j ,Hb8 %5¹b~f i j d!2@¹a ,¹b#~P i j
ad!,

$f i j ,H'8 %52 1
2 ¹b@~nif jk2njf ik!hk̄bd#

2 1
2 @¹a ,¹b#~Mi j

abd!. ~5.2!

Finally, we display the nonvanishing PBs involvingRi j
ab

andp i j
ab :

$Ri j
ab ,Hkl8 %5~dk

i Rl
j
ab1dk

j Ri
l ab!d2~k↔ l !,

$Ri j
ab ,Hg8%5¹a~Ri j

gbd!2~a↔b!,

$p i j
ab ,H'8 %54JRi j

ab . ~5.3!

Thus, all constraints exceptf i j
a and p i j

0b are of the first
class. The fact thatf i j is first class is of particular impor
tance for the consistent interpretation of the nondynam
torsion components, as noted at the end of Sec. III.

VI. EXTRA GAUGE SYMMETRIES

The presence of arbitrary multipliers in the total Ham
tonian is related to the existence of gauge symmetries in
theory. The general method of constructing the generator
such symmetries has been given by Castellani@26#. If we
limit ourselves to gauge transformations given in terms
arbitrary parameters«(t) and their first time derivative«̇(t),
which is sufficient for the present analysis, the gauge gen
tors take the form

G5E d3x@«~ t !G(0)1 «̇~ t !G(1)#, ~6.1a!

whereG(0) and G(1) are phase space functions determin
by the conditions

G(1)5CPFC ,
1-6
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G(0)1$G(1),HT%5CPFC ,

$G(0),HT%5CPFC , ~6.1b!

andCPFC denotes primary first-class~PFC! constraint.
The Poincare´ gauge symmetry is present in our formul

tion of GRi by construction, and the related gauge genera
is based on the sure constraintsp i

0 ,p i j
0 and H' ,Ha ,Hi j

@27#. Here, we shall focus our attention on extra gauge sy
metries based onp i j

ab ,f̃ i j , andRi j
ab .

A. Extra gauge symmetry 1

Starting withp i j
ab asG(1) in Eqs.~6.1b! we find that the

related gauge generator is given by

G5E d3x@ 1
4 ~¹0« i j

ab!p i j
ab

1 1
4 « i j

ab~24bRi j
ab1~ ḃ/b!p i j

ab!#. ~6.2!

The only nontrivial gauge transformationsd0X5$X,G% are

d0~bl i j
ab!5¹0~b« i j

ab!,

d0p i j
a54¹b~b« i j

ab!. ~6.3!

To see the meaning of these transformations, consider
Hamiltonian equation for the variableP i j

a5p i j
a2aBi j

0a .
Introducing Ki j

ab54bl i j
ab2aBi j

ab and using the results o
Appendix C we obtain the equation

¹0P i j
a2¹bKi j

ab50, ~6.4!

which is the Hamiltonian analogue of Eq.~2.4b!. The appli-
cation of the above gauge transformation to this equa
yields

~¹0¹b2¹b¹0!~4b« i j
ab!50.

The invariance follows from the fact that the left hand si
vanishes in Weitzenbo¨ck space, whereRi j

0b50.

B. Extra gauge symmetry 2

Starting withGi j
(1)5f i j in Eqs.~6.1b!, one finds that the

gauge generator has the form

Gi j 5E d3x@ 1
2 «̇ i j Gi j

(1)1 1
2 « i j Gi j

(0)#, ~6.5a!

where~Appendix D!

Gi j
(0)5

1

2
Ri

s
abKs j

ab1
1

2

1

4b
@~Ai

n
0pn

s
ab1As

n0p i
n

ab!

3Ks j
ab2p i

s
abK̇s j

ab#2~ i↔ j !. ~6.5b!

The corresponding gauge transformations are

d0bk
a5 «̇k

sb
s
a , d0Ai j

a50,
02402
r

-

he

n

4bd0l i j
ab5@« i

nK̇n j
ab1Ai

m
0~«m

nKn j
ab1« j

nKmn
ab!#

2~ i↔ j !,

d0p i j
a5@a~ «̇ i

sBs j
0a!1¹b~« i

nKn j
ab!#

2~ i↔ j !, ~6.6!

and similarly for other variables.
Consider, again, Eq.~6.4!. Using d0P i j

a5¹b(« i
nKn j

ab)
2( i↔ j ), we easily obtain

d0~¹0P i j
a!5¹0~d0P i j

a!'¹b¹0~« i
nKn j

ab!2~ i↔ j !

5¹b@«̇ i
nKn j

ab1« i
nK̇n j

ab1Ai
s
0~«s

nKn j
ab

1« j
nKsn

ab!#2~ i↔ j !,

where we made use ofRi j
0b50. On the other hand,

d0Ki j
ab5@ «̇ i

nKn j
ab1« i

nK̇n j
ab1Ai

s
0~«s

nKn j
ab1« j

nKsn
ab!#

2~ i↔ j !,

and we see that Eq.~6.4! is gauge invariant.

VII. CONCLUDING REMARKS

The investigation of the Hamiltonian structure of th
teleparallel formulation of GR presented here is based
Dirac’s general method for constrained dynamical syste
@21#.

To complete our results, we now discuss how the phys
degrees of freedom of GRi are counted. After the elimina
tion of l i j

0a andp i j
0a , the reduced phase space is spann

by the 40118 field components (bi
m ,Ai j

m ,l i j
ab) and the

same number of momenta. The primary first-class constra
p i j

ab diminish the number of independent variables for
318, leaving us with the phase space containing effectiv
2340 components. Before going on, we wish to clarify t
counting of constraintsRi j

ab'0. Note that here we have
formally 18 equations, but they represent only 12 indep
dent conditions onAi j

a . Indeed, starting with the simples
solution Āi j

a50 of Ri j
ab(A)50, one can construct a new

Lorentz-rotated solutionĀi j
a(L)5L i

k]aL jk, containing six
arbitrary parametersL ik @8#, so that the number of indepen
dent conditions onAi j

a is 1826512. Continuing now the
counting, we find 20 sure first-class constraints@ten primary
(p i

0 ,p i j
0) and ten secondary (H' ,Ha ,Hi j )# and 6112

518 additional first-class constraintsf i j and Ri j
ab , which

leaves us with 23402233854 physical degrees of free
dom, corresponding to the massless graviton.

We found two types of extra gauge symmetries in t
PGT formulation of GRi . The first type is related to the
primary constraintsp i j

ab . The related gauge transforma
tions do not act onbi

m ; hence they are irrelevant for th
structure of the first field equation~2.4a!. On the other hand
the gauge symmetry acts nontrivially on Lagrange multip
ers. If we recall that the only role of the second field equat
~2.4b! is to determine these multipliers@9#, it becomes clear
1-7
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that this cannot be done uniquely without fixing the gaug
The second type of extra gauge symmetry originates fr

the tetrad constraintsf i j . We note that Nester@14# derived
these constraints in the form~3.4a!, in his analysis of the
positivity of energy in the teleparallel form of GRi . Their
existence may be interpreted as a consequence of the
that the velocities contained inT'' k̄ andTī' k̄

A appear at mos
linear in the Lagrangian@16# and, consequently, remain a
bitrary functions of time. The phenomenon that some velo
ties are dynamically undetermined is quite usual for c
strained dynamical systems@21#. Heht et al. @16# concluded
that the initial-value problem for GRi becomes well defined
if these undetermined velocities are simply gauged aw
ensuring the new kinetic Hessian matrix to be nondege
ate. However, according to the results of Refs.@15,28#, this
conclusion should be revised by taking into account non
ear constraint effects.

The role of this symmetry is very clearly seen if we o
serve that the teleparallel geometry can be also formulate
the translational gauge theory, where local Lorentz symm
try is in general absent@5,8#. However, for the special choic
of parameters corresponding to GRi one finds thatf i j is an
additional first-class constraint, which generates local L
entz symmetry as an extra gauge symmetry@14#. This also
clarifies the form~3.5! of f i j , which is seen to ‘‘imitate’’
Hi j in the tetrad sector.

Maluf @22# studied GRi by imposing the time gauge at th
Lagrangian level. His arguments concerning the necessit
the time gauge in the canonical formalism are conceptu
misleading: this gauge~as well as any other gauge! may be
useful, but certainly not essential@21#. After fixing the time
gauge, he found the Hamiltonian and derived the constr
corresponding to ourf ī k̄ @Eq. ~25! in his paper#, while f' k̄
is missed. Moreover, Maluf was not able to calculate
constraint algebra unless imposing another gauge condi
His constraint algebra@Eqs. ~30!–~34!# does not agree with
our results, which might be a consequence of the adop
gauge conditions. All this makes his analysis of the gau
structure of GRi rather unclear.

The results obtained in this paper refer to noninteract
GRi , and can be used to define and analyze the gravitati
energy and other conserved quantities@29,17#. The interac-
tion with matter fields may be included in a straightforwa
manner@7,30#. Studying consistency requirements impos
by extra gauge symmetries on the matter sector will tell
more about the existence and nature of consistent coup
@16#.
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APPENDIX A: SOME GEOMETRIC IDENTITIES IN T4

We begin with a simple but technically important identi

¹nHi j
mn5bhk

m~Tk
i j 2d i

kTj1d j
kTi !524bb [ i j ]

m/a,
02402
.
m

act

i-
-

y,
r-

-

as
e-

r-

of
ly

nt

e
n.

ed
e

g
al

d
s
gs

s
is
-

Hi j
mn[b~hi

mhj
n2hj

mhi
n!, ~A1!

which implies¹m(bb [ i j ]
m)50 for Ri j

mn50.
In Riemann-Cartan spaceU4 the Lorentz connection can

be expressed in the formA5D1K, whereD is Levi-Cività
connection andK the contortion. Substituting this expressio
into the definition of the curvature tensorRi j

mn(A), we ob-
tain the basic identity

Ri j
mn~A!5Ri j

mn~D!1@¹m8 Ki j
n1Ki

smKs j
n2~m↔n!#,

~A2!

where ¹85¹(D) is the Riemannian covariant derivative
Then, multiplying this relation byHi j

mn/2 and using¹m8 Hi j
mn

50, we find

bR~A!5bR~D!1b~ 1
4 Ti jkTi jk1 1

2 Ti jkTjik2TkT
k!

12]m~bKm!, ~A3!

whereKm5Kmn
n52Tm.

Now, if we write Eq.~A2! in an equivalent form

Ri j
mn~A!5Ri j

mn~D!1@¹mKi j
n2Ki

smKs j
n2~m↔n!#,

and multiply it byHk j
mn/2, we obtain the result

bRi
k~A!5bRi

k~D!1@¹mKi j
n2Ki

smKs j
n#H jk

nm ,

which can be written as

abRik~A!5abRik~D!12¹m~bb imk!12bbmn
kTmni

2bb imnTk
mn2h ika]m~bTm!24¹m~bb [ ik]m!.

~A4!

The last term on the right hand side vanishes forRi j
mn(A)

50. In that case we find

2ab@Rik~D!2 1
2 h ikR~D!#524¹m~bb imk!24bbmn

kTmni

12bb imnTk
mn1h ikbLT .

~A5!

APPENDIX B: UNPHYSICAL TORSION COMPONENTS

In this appendix we show that the unphysical torsion co
ponentsT'' k̄ and Tī' k̄

A can be expressed in terms of th
Hamiltonian multipliersukl .

Using the PB relations

$bi
a ,Hkl8 %5dk

i blad2~k↔ l !,

$bi
a ,Hb8 %5~¹abi

b!d2bi
b]a8d5Tba

i d

1¹a~bi
bd!,

$bi
a ,H'8 %5

1

2a S bmaPT
ī m̄2

1

6
bi

aPm̄
m̄D d

1¹a~nid!, ~B1!
1-8
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one easily finds that the Hamiltonian equation forbk
a can be

written in the form

¹0bi
a5¹abi

01NbTi
ba1Nbka

1

2aJ
~p̂ ( ī k̄)2 1

2 h ī k̄p̂m̄
m̄!

1bka~niu' k̄1uī k̄!. ~B2!

As a consequence,

p̂ ( ī k̄)2 1
2 h ī k̄p̂m̄

m̄52aJT( ī' k̄),

u' k̄5NT'' k̄, uī k̄5NTA
ī' k̄ . ~B3!

APPENDIX C: CONSISTENCY CONDITIONS

We collect here several technical relations which simp
the derivation of the consistency conditions forf i j

a andFi j .
~1! The term$p i j

a ,Hc% in the consistency condition fo
the primary constraintf i j

a is calculated using the relations

$p i j
a ,Hkl8 %5~h ikp l j

a1h jkp i l
a!d2~k↔ l !,

$p i j
a ,Hb8 %52db

a~p i j̄ 2p j ī !d2db
a¹g~p i j

gd!

1¹b~p i j
ad!. ~C1a!

and

$p i j
a ,H'8 %524¹b~Jl i j

bad!

14¹b@J~Nal i j
0b2Nbl i j

0a!d#

2@8Jb [ ī j̄ ] k̄~0!12aJn[ iT' j̄ ] k̄#h
k̄ad

1~nip j k̄2njp i k̄!hk̄ad. ~C1b!

Using the identity 8Jb [ ī j̄ ] k̄(0)hk̄a5a« i jmn
0abgTm

gbnn, we ob-
tain

$p i j
a ,Hc%52~Ai

s
0ps j

a1Aj
s
0p is

a!2Na~p i j̄ 2p j ī !

24¹b~bl i j
ba!2aN« i jmn

0abgTm
gbnn1N~nip ( j̄ k̄)

2njp ( ī k̄)!h
k̄a2¹b@~Naf i j

b2Nbf i j
a!#

1 1
2 N~nif j̄ k̄2njf ī k̄!h

k̄a. ~C2!

~2! In order to calculate the Poisson brackets betweenFi j
and the Hamiltonian constraints, we also need the follow
relations:

$Bi j
oa ,Hkl8 %5~h ikBl j

0a1h jkBil
0a!d2~k↔ l !,

$Bi j
oa ,Hb8 %5¹b~Bi j

0ad!1db
aBi j

0g]g8d, ~C3a!
ev

,

02402
g

and

$Bi j
oa ,H'8 %5

1

a
~nip ( j̄ k̄)2njp ( ī k̄)!h

kad12« i jmn
0abgbb

m¹g~nnd!.

~C3b!

Combining Eqs.~C1a! and ~C3a! we find

$P i j
a ,Hkl8 %5~h ikP l j

a1h jkP i l
a!d2~k↔ l !,

$P i j
a ,Hb8 %52db

af i j d2db
a¹g~P i j

gd!

1¹b~P i j
ad!, ~C4a!

which implies Eqs.~4.10a!.
Similarly, combining Eqs.~C1b! and~C3b!, and using the

identity

Bi j
ab52N« i jmn

abg0bg
mnn2~NaBi j

0b2NbBi j
0a!,

we obtain

$P i j
a ,H'8 %5 1

2 ~nif j̄ k̄2njf ī k̄!h
k̄ad1¹b~Mi j

abd!,

NMi j
ab[2aHi j

ab14bl i j
ab1Na~P i j

b2f i j
b!

2Nb~P i j
a2f i j

a!, ~C4b!

which implies Eq.~4.10b!.

APPENDIX D: EXTRA GAUGE GENERATORS

In this appendix we derive the form of the gauge gene
tor ~6.5!. We start withGi j

(1)5f i j in Eqs.~6.1b!. In order to
find the form of the accompanying componentGi j

(0) , we use
the PB algebra given in Eq.~5.2!, and calculate

$f i j ,HT%52 1
2 @¹a ,¹b#Ki j

ab , Ki j
ab[2aHi j

ab14bl i j
ab,

where terms proportional tof i j
a are discarded. The secon

condition in Eqs.~6.1b! implies

Gi j
(0)5 1

2 @Ri
s

abKs j
ab2~ i↔ j !#1u i j , ~D1a!

whereu i j is a primary FC constraint. The third condition i
Eqs.~6.1b! can be written in the form

1
2 @Ṙi

s
abKs j

ab1Ri
s

abK̇s j
ab2~ i↔ j !#1 u̇ i j 5CPFC ,

where Ẋ5$X,HT%. Then, using the relations¹0Ri
s

ab'0

and ṗ is
ab54bRis

ab we obtain

u i j 5
1

2

1

4b
@~Ai

n
0pn

s
ab1As

n0p i
n

ab!Ks j
ab2p i

s
abK̇s j

ab#

2~ i↔ j !. ~D1b!
e
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