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Generality of singularity avoidance in superstring theory: Anisotropic case
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In the one-loop string effective action, we study a generality of nonsingular cosmological solutions found in
the isotropic and homogeneous case. We discuss Bianchi type-I and -1X spacetimes. We find that nonsingular
solutions still exist in the Bianchi type-I model around nonsingular flat Friedmann solutions. On the other hand,
we cannot find any nonsingular solutions in the Bianchi type-IX model. The nonexistence of a nonsingular
Bianchi type-IX universe may be consistent with the analysis of Kawai, Sakagami, and Soda; i.e., the tensor-
mode perturbations against a nonsingular flat Friedmann universe are unstable, because the Bianchi type-IX
model is regarded as a closed Friedmann universe with a single gravitational wave. With the stability analysis
of Kawai, Sakagami, and Soda, the nonsingular universe found in the isotropic case is unstable, and a singu-
larity avoidance may not work in generic spacetimes.

PACS numbsg(s): 04.70-s, 04.50+h, 95.30.Tg. 97.60.Lf

[. INTRODUCTION tween large and small scales. Assuming that the Universe has
such a duality[4], we find a cosmological solution which
The initial singularity is one of the most serious problemsconsists of two distinct and disconnected branches. One of
in the big bang universe. Even the inflationary universethe branchest(>0) corresponds to the expanding Friedmann
model, which resolves many difficulties in the early uni- universe, and other branch<(0) gives another expanding
verse, cannot avoid are initial singularity. The quantum ef-universe, ending up with a singularitytat 0. In the pre-big-
fect might resolve it as a scenario in quantum cosmology, buibang scenario, however, those two disconnected branches are
quantum gravity is not yet completed. To construct a theoryassumed that be connected without a singularity on account
of quantum gravity, a unification of fundamental interactionsof some unknown stringy effect, which is not included in the
may be one of the most promising ways. Among the manyowest effective action.
attempts at such a unification, the superstring model would There are several works that study whether two branches
be the best candidafd]. In fact, the origin of black hole can be connected without a singularity. At the tree-level in a
entropy may be understood by string theory. Hence, the inisuperstring action, however, a possibility of classical branch-
tial singularity problem might also be solved in the contextchanging solutions is excludg®]. Only a quantum effect
of string theory, which may allow us to manage the physicamay be a method to connect two branches. In fact, taking
at the Planck scale. However, a full theory has not yet beeinto consideration one-loop contributions to a superstring ef-
developed. We have so far been unable to discuss the eadgctive action with dilaton and modulus fielfi§], Antonia-
universe in string theory as it is, except for some restrictedlis, Rizos, and Tamvakis found a nonsingular solution with a
models[2]. Therefore, many attempts to find a nonsingularspatially flat background. Then, with the same action,
universe are mainly based on a low-energy effective fieldEasther and one of the present authors also showed a non-
theory of superstring model. Such an effective field theorysingular closed univerd€]. Although those solutions do not
will be invalid beyond the Planck energy scale. However, ifhelp the pre-big-bang scenario, they may still be interesting
a superstring theory is truly the theory of everything, its ef-because of singularity avoidance.
fective theory may reveal some important aspects about A question about such nonsingular solutions, however, is
gravity. In particular, if it has a property of singularity avoid- whether or not they are generic. Although we find nonsingu-
ance, it would be good evidence for a superstring. lar solutions for some finite range of initial data, the space-
Based on an effective theory, there is one interesting apime is assumed to be isotropic and homogend@lisThe
proach called the pre-big-bang universe mofi@]. This  universe, however, may begin with an anisotropic and/or in-
model is based off duality, which gives some relation be- homogeneous geometry. Therefore, we have to study
whether or not the present nonsingular solution is generic, or
is stable or unstable. Recently, Kawai, Sakagami, and Soda

*Electronic address: yajima@gravity.phys.waseda.ac.jp analyzed the stability of the flat nonsingular solution against
"Electronic address: maeda@gravity.phys.waseda.ac.jp perturbations, and found that a tensor mode is unstable.
*Electronic address: ohkubo-h@post.yamaha.co.jp However, since a closed nonsingular universe bounces in a
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FIG. 1. We show the fate of the flat Friedmann universe in terms
of initial values ¢, and ¢, in the cases of the flat Universe)
means regular solutions, whike means that the Universe evolves
into a singularity. ForA, the solution seems to be singular, al-
though we could not confirm it because we need more CPU time.
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finite time, it is not clear whether it is unstable against tensor
mode perturbations. In order to clarify such a problem and to
study the generality of nonsingular solutions, in this paper,
x we will analyze two types of Bianchi models; Bianchi type-|
& and type-IX models.

This paper is organized as follows. In the next section, we

introduce the basic equations for Bianchi type-I and type-IX

models. The numerical results are presented in Sec. lll, and
conclusions and discussions follow. We adopt the metric sig-
nature (—,+,+,+) and units ofc=87G=1.

II. BASIC EQUATIONS

We take the following one-loop effective actipf—11]:
s:f d*x\—g }R— EV ¢V"¢—§V A
2 4 # VI
1 2N 1 b 2
- gH” Hont E[)\e — 0&(0)]RGR

+ (higher curvature tern)% (2.1
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FIG. 2. We show one nonsingular solution. We choose a negative valdesb= —48/r. We have seﬂoz —0.1, o= o=0, 0y

=0, and,ZLO:O.OS, ,B,O:O.O. 0,=0.173 205 has been determined by the constraint equatign §.200 for the isotropic cageWe show
the scale factoa in (a), the dilaton field¢ in (b), the modulus fieldr in (c), andl :R’”“‘*Rwaﬁ in (d), respectively. The solid line,
dashed line, and dotted line represent scale fa@pobs andc in the anisotropic case, respectively. The dash-dotted line represents a scale

factor in the isotropic case.
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FIG. 3. We show one singular solution. We choose a negative valdeasfs= — 48/m. We have seﬂoz —0.1, ¢o= dbo 0, 0p=0,

andﬁ+o—0 1, ,8 0=0.0. 0'0—0 00 has been determined by the constraint equatnariro 200 for the isotropic cageWe show the scale
factorain (a), the dilaton fieldg in (b), the modulus fieldr in (c), andl = “”“[’Rﬂmﬁ in (d), respectively. The solid line, dashed line,

and dotted line represent scale factard, andc in the anisotropic case, respectively. The dash-dotted line represents a scale factor in the
isotropic case.

whereR, ¢, ando are the scalar curvature, the dilaton, and e’ ® pe-2nme”

the modulus field, respectively, ((0)=1— —— +877e"2 —_—,
3 = 1_efzn7re

(2.9

Rig=R’—4R*'R,,+R**PR (2.2

prap which is approximated very well by sirhas

is the Gauss-Bonnet term, ahblis the antisymmetric tensor

field. The coefficienh is positive definite and determined by £ (o)~— Z—Wsinha (2.6)

the inverse string tensioa’. The coefficients, which de- 7 3 '

pends on the relative numbers of chiral, vector, and $pin-

massless supermultiplets, is proportional to the fouras was shown if7]. Then we will use Eq.(2.6) in our

dimensional trace anomaly of tiN=2 sector. TheS would  analysis just for simplicity, although we have also checked

be either positive or negative. The functié(v) is given by  our results by use of the exact functi@5). We also intro-
duce the following functiorf (¢,o) for convenience:

&(0)=In[2e"7"(ie”)] (2.3
1 _
— _[a?—
with the Dedekindy function[12], defined by f(d,0)= 16[e 6é(a)], 2.7
_ 112 . __on it where 6= 8/\. We setH=0 and ignore higher curvature
7(7)=q nﬂl (1=07), g=e"" 24 terms than second order. It_is conven_ient to rescale time and
spatial coordinates by ast=t/\/\, X' =x'/\/\. Hereafter
The first derivative off with respect too is we drop a bar for brevity.
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With the present model, cosmological solutions have been
studied from a view point of the initial singularity problem.
Antoniadis, Rizos, and Tamvakis analyzed a spatially flat
Friedmann model and found a nonsingular solufiéh Eas-
ther and Maeda extended their analysis to a closed Fried-
mann model and also showed a nonsingular solufign
Since we are interested in the generality of those nonsingular
solutions, we extend their works to anisotropic spacetimes.
Here we study only Bianchi type-l and type-IX models be-
cause those spacetimes include a flat and a closed Friedmann
models.

Taking a variation of the action, we obtain the basic equa-
tions. With those basic equations, for Bianchi type-l and
type-1X models, we can assume the following diagonal met-

. _ ric form:
FIG. 4. Changing the anisotropic parametgrs, and 8_,, we
search nonsingular solutions. Fér —48/m, Qo=—0.1, andoy ds?=—dt?+e 2%l 0, (2.9
=0, we show the boundary on the,, and 8_, plane, beyond
which no nonsingular solution is found. The boundary is almost avhere
circle. The solid line, dashed line, and dotted line represent the
boundary in the cases @f,= ¢o=0, of po=1.5, ¢,=0.20, and of B.+38_ 0 0
$0=3.0, ¢o=0.40, respectively. —
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FIG. 5. We show a nonsingular solution in a closed Friedmann universe. We choose a negative vahmsef — 48/m. We seta,
= g32511380746580628() \— _ 0 01, o= —3, Ppo=—5X10"% o,=0. We show the scale factar in (a), the dilaton field¢ in (b), the

modulus fields in (c), andl =R*"%fR

uva

g in (d), respectively.
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FIG. 6. We show a singular solution in the Bianchi type-IX model. We set the same initial values in 53.548/77, ap,=bg=cy
= g32511380746580628() ' — _ ) 01, po= — 3, po=—5X 10" %, 0,=0, except for anisotropy, which is chosen@s,=0.01 and3_,=0.0. We
show the scale factos b, andc in (a), the dilaton fieldg in (b), the modulus fieldr in (c), andl =R“”“BRMWB in (d), respectively. We
find thatl grows almost exponentially.

and e . I
_ _ (1+8rf)(q+q?) +(1+8qf)(r+r?)+(1+8f) qr+U1}

w'=dx, 2

for th . hi | 1. ) 3. )
or the Bianchi type-l model and + Z¢ + 27 =0, (2.1
wl=— sinx3dx!+ sinxtcosx3d x?,

w?= cosx3dxt + sinxtsinx3d x?, e . L1

(1+8rf)(p+p?) +(1+8pf)(r+r?)+(1+8f) rp+5Us,
3= cosxtdxt+dx’,
1. .

for the Bianchi type-IX model. In both models, we also in- + Z¢2+ 102:0, (2.12

troducep(t), q(t), andr(t) as

ep(t):e*(2+,8++\e“§ﬁ,l equ):efg+:3+*\’§ﬁ—

’ (1+8qf)(p+p?) +(1+8pf)(q+0?)
=g Q-28, (2.9 1 3

i i N
+4¢> +40' 0,

N
+(1+8f)| pg+ §U3

We can calculate volume elemevitas follows[13]:
V=ePed® gl (t) = g =321 (2.10 (2.13
The basic equations obtained are divided into two groups.

(1) The dynamical equations for the metpe g, andr, (N if 2
the dilaton fields, and the modulus field: ¢+ (pHa+tr¢=277Ree, (.19
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L 20
0+(p+q+r)o=§%RGB, (2.19

where an overdot denotes a differentiation with respet¢t &md the Gauss-Bonnet terlRéB is given as

o alie ol L e ol 1] e o ] 10U 10U, 1,dU;
ce=8j[p+p7llar+ Uy +[a+a7]jrp+5Uz +[r+r7] pa+5Us P o T2 g T
1..|0U Ju oU 1../9U ouU U 1..|/9U oU oU
2 ap aq ar 2 dq ar ap 2 or ap Jq
|
(2) The constraint equation =(p,q,r,$,o), the basic equation®.11)—(2.15 are written
1 in the matrix form as
o o . oL,
pg+qr+rp+24pgrf+4pfU,;+4qfU,+4rfUs 4¢ Zx=y, 3.1)
_ Z&2+ %(U1+U2+U3)=0. (217  Where 55 matrixZ=Z(p.q.r,$,o,p.q.r,¢,o) and vector

y=¥(p,q.,r,d,0,p,q.r,¢,0) are known explicitly from the
basic equations.

Here the functions U;,U,,U; are defined by UnlessA = detZ vanishes. we have

(A) the Bianchi type-I model:

_ -1
Uy=U,=Us=0 (2.18 X=27Y, 3.2

then we can solve the basic equatid8<?), with the initial

B) the Bianchi type-IX model:
(B) the Bianchi type-IX mode data ofp,q,r,¢,0,p,q,r,¢,o. However, whemA vanishes,

1 then we cannot proceed further with our numerical calcula-
Uj=e 29+e 2'—g 2P+ E(ez(q’r’p)Jrez(r’p"‘) tions. Such an end point, which may appear in the evolution
of the Universe, seems to be a spacetime singularity, how-
—3e2(P—a-n)y, ever, more detailed analysis will be required as we will show
later.
1 Although we have used scale factgrs g, andr for the
U,=e ¥ +e P—g 204 E(ez(r*p*qﬂez(p’q”) basic equations, we shall describe our results by two anisot-
ropy variablesg, andg_ .
—3e2@=r=p)y),
A. Bianchi type-l case
Us=e P+e 20— 21y E(GZ(FHkr)Jr e2(@-r—p) First we will show the results in the Bianchi type-I model.
2 We chooses= —48/w. We introduce scale factors as
—3e2(-P-a), (2.19

a(t):ep(t):efﬂwﬁ\@ﬁ,’
The basic equations above are the five second-order dif-

ferential equations with one constraint equation. B¢t) b(t)=ei=g A+ V3p-
=q(t)=r(t), i.e., the case of the isotropic and homogeneous
model, the equations are reduced to the cases of a flat uni- c(t)=eW=e 0728+, (3.3
verse studied by Antoniadis, Rizos, and Tamvégis and of
a close universe by Easther and Ma¢dh Without a loss of generality, we can s@f,=pg.=0, i.e.,
ap,=bo=cy=1. Here the subscript 0 denotes the initial value
Il NUMERICAL RESULTS of the variables. We set the initial time=t,=0. We have to

_ _ ~ give the initial data of)q, B¢, ¢, bo. 0o, andag, which

We have examined the case &0 because in the iso- muyst satisfy one constraint equati¢®17). Then we have
tropic and homogeneous case, nonsingular cosmological sgye independent initial values. Since we are interested in
lutions are found only fors<0 [6,7]. We solve the basic whether or not nonsingular solutions found in the isotropic
equations numerically. o case are generic, we shall set up the initial data in the aniso-

Since five second-order derivativpsq,r,¢,o in the ba-  tropic case around the isotropic ones.
sic equation$2.11)—(2.15 are coupled, we have to make an  In the isotropic and homogeneous case, we find nonsin-
inverse transformation as follows: Defining a vector gular solutions for some finite parameter range of initial data.
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In Fig. 1, settingQ(,: —0.1, 6o=0 we show the range of solve the constraint fourg.
initial data of ¢y and ¢, Which gives for nonsingular solu- We flnd_ nonsmgular spluuons in th.e Bianchi type-1 model
tions (shown by a circlg & is fixed by the constraint equa- near the isotropic nonsingular squU_on. We show one ex-

tion (2.17). If ¢, is efficiently small, then in the case of ample in Fig. 2, where we have Sé_loz_o-l’ $ho= o
$o<0 there always exist nonsingular solutions. This is be-=0, oy=0, andB,¢=0.05,8_,=0.0, 0(=0.173205. Note

cause if¢)<0 and|¢[>1, e*~0 and then singularity avoid- thaty=0.200 for the isotropic case. We also show a singu-

ance is almost independent ¢f - oo o
To give initial data for anisotropic spacetime giving the lar solution in Fig. 3. We have S.ﬂof 0.1, bo= =0,
: 09=0, andB,,=0.1, B_;=0.0. 0x=0.00 has been deter-

same value of)y and o, and changing some values ¢§, : i o )
% in Fig. 1, we include anisotropy i-$+o B*O(qﬁo) and mined by the constraint equatior{=0.200 for the isotro-
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FIG. 7. We show a singular solution in Bianchi type-IX model. We set the same initial values as those in Fig. 6, except for anisotropy,

ie., ,B+0=10’14 and /3,0=0. We show scale factors, b, andc in (a) and (b), dilaton field ¢ in (c), modulus fieldo in (d), and|
=R“”“BRMW5 in (e), respectively. We find thdtgrows almost exponentially.
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pic cas¢. The volumee® vanishes both at~—4.98 andt 0.3
~8.35, resulting in a big-bang-type singularity.

Changing the anisotropic parametefs.,, B_o We 0.z |
search for nonsingular solutions in order to find how large
anisotropy is possibléto allow nonsingular solutions The 0.1 |
result is shown in Fig. 4 foQy=—0.1, ¢o= =0, o¢ ot
=0. We find that if anisotropy is large enough at the initial o
stage, then the spacetime evolves into a singularity. The
boundary between nonsingular and singular solutions in the oul
(B+0.B-0) plane is almost a circlg¢the deviation of the
magnitude of a sheaw, which «(B8,,+8_5), is within 0.2
10 2]. Whether spacetime will evolve into a singularity or 15
avoid it, of course, strongly depends on the initial parameters (a)
(Qg, ¢, éﬁo, o). As we shift these initial parameters to 0.1

the critical values in the isotropic case beyond which no
nonsingular solution is found, the radius of the boundary in
the (B.o,B_p) plane decreases, and if we set the initial pa-
rameters fairly close to the boundary values, then the range
for nonsingular solutions eventually disappears. Then in this ©
case, the singularity avoidance no longer works. ;+
We can conclude that for Bianchi type-I anisotropy, sin- ©
gularity avoidance is still generid4]. Because the range of
nonsingular solutions is finite and not small. 0.02 |
However, we have the stability analysis done by Kawai,
Sakagami, and Sodd5-17. Their analysis is based on the ‘ , ‘ ‘ ‘ ,
same actionbut only a modulus fieldand the flat Fried- -5 -10 - 0 s 10 15 20
mann background case. They found that there exists instabil-(b) t
ity in the tensor mode. Then the flat Friedmann model is .
unstable. This result may not change even in a Bianchi type-l FIG. 8. We show the time evolution ¢, andB.,. We set the
background universe. initial parameters as those in Fig. 6. The anisotrgpyalso grows
exponentially, as diverges.

0.04 |

B. Bianchi type-IX case In our numerical calculationA(=defZ) eventually van-

In the same way as the Bianchi type-l case, we analyzéshes during the evolution of the universe. We always find a
the Bianchi type-IX model . We introduce scale factors as singularity at a certain finite time, so our numerical analysis
has to break down. This type of breakdown appears even if
a(t)=2eP0,  p(t)=2e90, ¢c=2e'®. (3.4  aninitial anisotropy is quite small, that is, bgeh o andB_,
are less than 10" Is this singularity just a numerical diver-

The factor comes from definitions with invariant baﬁls gence, or an inappropriate gauge choice? To answer for this

and the scale factor in a closed Friedmann model. Similar th(IEStII(:).n, WZ shoc;/v7gauge-lﬂvalrl_agtﬂ\vlgggbles. in which
the Bianchi type-l model, we first search for nonsingular drc]i 'lgs'd. and /, Weﬂf’ % _kd /““Yﬁt’ {/r\]/ w r'lc th
closed Friedmann solutions, and then search for nonsinguléiu enly diverges near the breakdown point. vve show the

Bianchi type-IX solutions, by setting up the initial aniso- time evolution of 3, and 8, in Figs. 8 and 9, in which
tropic data around those in a closed nonsingular solution. initial values are the same as Figs. 6 and 7, respectiyly.
We show an isotropic nonsingular solution in Fig. 5. We 8- or both will also increase very rapidly near the break-

choose a negative value & as 6= — 48/, and seta(0) down.poin't. Because of the exponential growth of a (;urva-
—b(0)=c(0)=e32511380746580628 () _ (01 gh= 3, ture invariant |=R***R ., and a shears [oo(B%

$o=—5%x10"* ando,=0, which initial values were found 5], we beIiev% that it is a curvature singglarity. Since
by Easther and Maeda. An anisotropy is added just as thTEI:‘e volume _factone' does not' vamsh' there, .'t IS nqt a b.'g'
same as the Bianchi type-I model. We show our numericaFang-type singularity. The Universe finds a singularity with a

results in Figs. 6 and 7. In both cases, we take the samén';[/\e/ V(;]Iume[18]. hed the wid f i h
initial values as the isotropic case except for anisotropy € have searcne € wide range of parameters where

- S . .. "Easther and Maeda found nonsingular closed universe solu-
(B+o, @andB o, anda, which is determined by a constraint yjons byt we could not find any nonsingular solution even if
equation. As for anisotropy we sef3.,=0.01 andB_o  the anisotropy was extremely small. In all cases we have
=0.0 for Fig. 6, andB.,=10"1* and B_,=0 for Fig. 7, examined = R’”“BRM,,QB ando which always show a sharp
respectively. increase near the point where vanishes. Then we con-
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110" ‘ ‘ ‘ ‘ ‘ of our breakdown timescale is almost (6.1)+/] 4|, which
depends on initial parameters, while the instability timescale
5100 | is ~1v|4).
o 10° IV. CONCLUSION REMARKS AND DISCUSSIONS
= In this paper we have examined the generality of previ-
-5 107 | ] ously found cosmological nonsingular solutions in the het-

erotic superstring effective action in orbifold compactifica-
tions with one-loop correction.

In the Bianchi type-I case, many nonsingular solutions are
found around nonsingular flat Friedmann solutions without

-1-5 107 L wn o 5 > m 0 fine-tuned initial conditions. On the other hand, in the Bian-

chi type-IX case, we cannot find any nonsingular solution

@ t even if anisotropy is quite small. In this case, anisotropy

610 ‘ ‘ : ‘ ‘ grows, and our numerical analysis breaks down at a certain
point where anisotropy will diverge. At this point, bogh. ,
which represents the anisotropy, and R’”“ﬁRMmﬁ seems
a0° b to diverge, then the universe may evolve into a curvature
singularity. The volume factor remains a finite value, which
310° | suggests that it is not a big-bang-type singularity.

Our result is consistent with the stability analysis by
Kawai, Sakagami, and Soda, who found tensor mode insta-
Lo’ b ] bility in a flat Friedmann background. The Bianchi type-IX
model can be regarded as a closed Friedmann background
o ] with a single gravitational wave of a fixed wave number.

‘ ‘ . ‘ ‘ It is also expected that nonsingular Bianchi type-l models

60 20 20 0 20 40 6 are not generic as well, since the nonsingular flat Friedmann
models are unstable against tensor perturbations. Therefore,
we may conclude that the nonsingular universes found in the

FIG. 9. We show the time evolution g8, and B+ for the isotropic cases are not generic and singularity avoidance may
solution given in Fig. 7. The anisotrop§, also grows exponen- Nnot work even in the present model.
tially, as| diverges. We have argued only a first-order expansion term of in-

verse string tensiom’ and one-loop correction and ignored

the antisymmetric tensdian axion field which might exist
cluded that there is no nonsingular solution in anisotropidn the early universe. For more rigid consideration we may
Bianchi type-1X type models and all solutions except for theneed to further research a full superstring theory, though
exact isotropic case eventually evolve into a curvature sinsuch a full theory has not yet been developed to the point
gularity. where we can deal with cosmology. However, we hope to

Our results may be consistent with the stability analysidfind a new effect of a superstring theory by which the non-
by Kawai, Sakagami, and Sodla5—-17. King showed that singular universe becomes generic. It might be given by
the Bianchi type-1X type model can be regarded as a closeligher curvature terms in the effective action.

Friedmann background with a single gravitational wave of a

fixed wave numbek= \J61S, Where_S is the radius of the_ ACKNOWLEDGMENTS
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