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Generality of singularity avoidance in superstring theory: Anisotropic case
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In the one-loop string effective action, we study a generality of nonsingular cosmological solutions found in
the isotropic and homogeneous case. We discuss Bianchi type-I and -IX spacetimes. We find that nonsingular
solutions still exist in the Bianchi type-I model around nonsingular flat Friedmann solutions. On the other hand,
we cannot find any nonsingular solutions in the Bianchi type-IX model. The nonexistence of a nonsingular
Bianchi type-IX universe may be consistent with the analysis of Kawai, Sakagami, and Soda; i.e., the tensor-
mode perturbations against a nonsingular flat Friedmann universe are unstable, because the Bianchi type-IX
model is regarded as a closed Friedmann universe with a single gravitational wave. With the stability analysis
of Kawai, Sakagami, and Soda, the nonsingular universe found in the isotropic case is unstable, and a singu-
larity avoidance may not work in generic spacetimes.

PACS number~s!: 04.70.2s, 04.50.1h, 95.30.Tg. 97.60.Lf
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I. INTRODUCTION

The initial singularity is one of the most serious problem
in the big bang universe. Even the inflationary unive
model, which resolves many difficulties in the early un
verse, cannot avoid are initial singularity. The quantum
fect might resolve it as a scenario in quantum cosmology,
quantum gravity is not yet completed. To construct a the
of quantum gravity, a unification of fundamental interactio
may be one of the most promising ways. Among the ma
attempts at such a unification, the superstring model wo
be the best candidate@1#. In fact, the origin of black hole
entropy may be understood by string theory. Hence, the
tial singularity problem might also be solved in the conte
of string theory, which may allow us to manage the phys
at the Planck scale. However, a full theory has not yet b
developed. We have so far been unable to discuss the e
universe in string theory as it is, except for some restric
models@2#. Therefore, many attempts to find a nonsingu
universe are mainly based on a low-energy effective fi
theory of superstring model. Such an effective field the
will be invalid beyond the Planck energy scale. However
a superstring theory is truly the theory of everything, its
fective theory may reveal some important aspects ab
gravity. In particular, if it has a property of singularity avoid
ance, it would be good evidence for a superstring.

Based on an effective theory, there is one interesting
proach called the pre-big-bang universe model@3#. This
model is based onT duality, which gives some relation be
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tween large and small scales. Assuming that the Universe
such a duality@4#, we find a cosmological solution which
consists of two distinct and disconnected branches. On
the branches (t.0) corresponds to the expanding Friedma
universe, and other branch (t,0) gives another expandin
universe, ending up with a singularity att50. In the pre-big-
bang scenario, however, those two disconnected branche
assumed that be connected without a singularity on acco
of some unknown stringy effect, which is not included in t
lowest effective action.

There are several works that study whether two branc
can be connected without a singularity. At the tree-level i
superstring action, however, a possibility of classical bran
changing solutions is excluded@5#. Only a quantum effect
may be a method to connect two branches. In fact, tak
into consideration one-loop contributions to a superstring
fective action with dilaton and modulus fields@6#, Antonia-
dis, Rizos, and Tamvakis found a nonsingular solution wit
spatially flat background. Then, with the same actio
Easther and one of the present authors also showed a
singular closed universe@7#. Although those solutions do no
help the pre-big-bang scenario, they may still be interest
because of singularity avoidance.

A question about such nonsingular solutions, however
whether or not they are generic. Although we find nonsing
lar solutions for some finite range of initial data, the spa
time is assumed to be isotropic and homogeneous@7#. The
universe, however, may begin with an anisotropic and/or
homogeneous geometry. Therefore, we have to st
whether or not the present nonsingular solution is generic
is stable or unstable. Recently, Kawai, Sakagami, and S
analyzed the stability of the flat nonsingular solution agai
perturbations, and found that a tensor mode is unsta
However, since a closed nonsingular universe bounces
©2000 The American Physical Society20-1
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FIG. 1. We show the fate of the flat Friedmann universe in ter

of initial valuesf0 and ḟ0, in the cases of the flat Universe.s

means regular solutions, while3 means that the Universe evolve
into a singularity. Forn, the solution seems to be singular, a
though we could not confirm it because we need more CPU tim
02402
finite time, it is not clear whether it is unstable against ten
mode perturbations. In order to clarify such a problem and
study the generality of nonsingular solutions, in this pap
we will analyze two types of Bianchi models; Bianchi type
and type-IX models.

This paper is organized as follows. In the next section,
introduce the basic equations for Bianchi type-I and type
models. The numerical results are presented in Sec. III,
conclusions and discussions follow. We adopt the metric s
nature (2,1,1,1) and units ofc58pG51.

II. BASIC EQUATIONS

We take the following one-loop effective action@6–11#:

S5E d4xA2gF1

2
R2

1

4
¹mf¹mf2
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4
¹ms¹ms
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HmnlHmnl1

1

16
@lef2dj~s!#RGB

2

1~higher curvature terms!G , ~2.1!

s

.

scale
FIG. 2. We show one nonsingular solution. We choose a negative value ofd̄ as d̄5248/p. We have setV̇0520.1, f05ḟ050, s0

50, andḃ1050.05, ḃ2050.0. ṡ050.173 205 has been determined by the constraint equation (ṡ050.200 for the isotropic case!. We show
the scale factora in (a), the dilaton fieldf in (b), the modulus fields in (c), and I 5RmnabRmnab in (d), respectively. The solid line,
dashed line, and dotted line represent scale factorsa, b, andc in the anisotropic case, respectively. The dash-dotted line represents a
factor in the isotropic case.
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FIG. 3. We show one singular solution. We choose a negative value ofd̄ as d̄5248/p. We have setV̇0520.1, f05ḟ050, s050,

and ḃ1050.1, ḃ2050.0. ṡ050.00 has been determined by the constraint equation (ṡ050.200 for the isotropic case!. We show the scale
factor a in (a), the dilaton fieldf in (b), the modulus fields in (c), andI 5RmnabRmnab in (d), respectively. The solid line, dashed lin
and dotted line represent scale factorsa, b, andc in the anisotropic case, respectively. The dash-dotted line represents a scale factor
isotropic case.
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whereR, f, ands are the scalar curvature, the dilaton, a
the modulus field, respectively,

RGB
2 5R224RmnRmn1RmnabRmnab ~2.2!

is the Gauss-Bonnet term, andH is the antisymmetric tenso
field. The coefficientl is positive definite and determined b
the inverse string tensiona8. The coefficientd, which de-
pends on the relative numbers of chiral, vector, and spi3

2

massless supermultiplets, is proportional to the fo
dimensional trace anomaly of theN52 sector. Thed would
be either positive or negative. The functionj(s) is given by

j~s!5 ln@2esh4~ ies!# ~2.3!

with the Dedekindh function @12#, defined by

h~t!5q1/12)
n51

`

~12q2n!, q5eipt. ~2.4!

The first derivative ofj with respect tos is
02402
-

js~s!512
pes

3
18pes (

n51

`
ne22npes

12e22npes , ~2.5!

which is approximated very well by sinhs as

js~s!'2
2p

3
sinhs, ~2.6!

as was shown in@7#. Then we will use Eq.~2.6! in our
analysis just for simplicity, although we have also check
our results by use of the exact function~2.5!. We also intro-
duce the following functionf (f,s) for convenience:

f ~f,s!5
1

16
@ef2 d̄j~s!#, ~2.7!

where d̄[d/l. We setH[0 and ignore higher curvatur
terms than second order. It is convenient to rescale time
spatial coordinates byl as t̄ 5t/Al, xī5xi /Al. Hereafter
we drop a bar for brevity.
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FIG. 4. Changing the anisotropic parametersḃ10 and ḃ20, we

search nonsingular solutions. Ford̄5248/p, V̇0520.1, ands0

50, we show the boundary on theḃ10 and ḃ20 plane, beyond
which no nonsingular solution is found. The boundary is almos
circle. The solid line, dashed line, and dotted line represent

boundary in the cases off05ḟ050, of f051.5, ḟ050.20, and of

f053.0, ḟ050.40, respectively.
02402
With the present model, cosmological solutions have b
studied from a view point of the initial singularity problem
Antoniadis, Rizos, and Tamvakis analyzed a spatially
Friedmann model and found a nonsingular solution@6#. Eas-
ther and Maeda extended their analysis to a closed Fr
mann model and also showed a nonsingular solution@7#.
Since we are interested in the generality of those nonsing
solutions, we extend their works to anisotropic spacetim
Here we study only Bianchi type-I and type-IX models b
cause those spacetimes include a flat and a closed Friedm
models.

Taking a variation of the action, we obtain the basic eq
tions. With those basic equations, for Bianchi type-I a
type-IX models, we can assume the following diagonal m
ric form:

ds252dt21e22Ve2b i j v iv j , ~2.8!

where

b i j 5F b11A3b2 0 0

0 b12A3b2 0

0 0 22b1

G
a
e

FIG. 5. We show a nonsingular solution in a closed Friedmann universe. We choose a negative value ofd̄ as d̄5248/p. We seta0

5e3.2511380746580628, V̇0520.01, f0523, ḟ052531024, s050. We show the scale factora in (a), the dilaton fieldf in (b), the
modulus fields in (c), andI 5RmnabRmnab in (d), respectively.
0-4
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FIG. 6. We show a singular solution in the Bianchi type-IX model. We set the same initial values in Fig. 5,d̄5248/p, a05b05c0

5e3.2511380746580628, V̇0520.01,f0523, ḟ052531024, s050, except for anisotropy, which is chosen asb1050.01 andḃ2050.0. We
show the scale factorsa, b, andc in (a), the dilaton fieldf in (b), the modulus fields in (c), andI 5RmnabRmnab in (d), respectively. We
find that I grows almost exponentially.
n-

p

and

v i5dxi ,

for the Bianchi type-I model and

v152 sinx3dx11sinx1cosx3dx2,

v25 cosx3dx11sinx1sinx3dx2,

v35 cosx1dx11dx3,

for the Bianchi type-IX model. In both models, we also i
troducep(t), q(t), andr (t) as

ep(t)5e2V1b11A3b2, eq(t)5e2V1b12A3b2,

er (t)5e2V22b1. ~2.9!

We can calculate volume elementV as follows@13#:

V5ep(t)eq(t)er (t)5e23V(t). ~2.10!

The basic equations obtained are divided into two grou
~1! The dynamical equations for the metricp, q, and r,

the dilaton fieldf, and the modulus fields:
02402
s.

~118ṙ ḟ !~ q̈1q̇2!1~118q̇ ḟ !~ r̈ 1 ṙ 2!1~118 f̈ !F q̇ṙ 1
1

2
U1G

1
1

4
ḟ21

3

4
ṡ250, ~2.11!

~118ṙ ḟ !~ p̈1 ṗ2!1~118ṗ ḟ !~ r̈ 1 ṙ 2!1~118 f̈ !F ṙ ṗ1
1

2
U2G

1
1

4
ḟ21

3

4
ṡ250, ~2.12!

~118q̇ ḟ !~ p̈1 ṗ2!1~118ṗ ḟ !~ q̈1q̇2!

1~118 f̈ !F ṗq̇1
1

2
U3G1

1

4
ḟ21

3

4
ṡ250,

~2.13!

f̈1~ ṗ1q̇1 ṙ !ḟ52
] f

]f
RGB

2 , ~2.14!
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s̈1~ ṗ1q̇1 ṙ !ṡ5
2

3

] f

]s
RGB

2 , ~2.15!

where an overdot denotes a differentiation with respect tot, and the Gauss-Bonnet termRGB
2 is given as

RGB
2 58H @ p̈1 ṗ2#F q̇ṙ 1

1

2
U1G1@ q̈1q̇2#F ṙ ṗ1

1

2
U2G1@ r̈ 1 ṙ 2#F ṗq̇1

1

2
U3G1

1

2
ṗ2

]U1

]p
1

1

2
q̇2

]U2

]q
1

1

2
ṙ 2

]U3

]r

2
1

2
ṗq̇F]U1

]p
1

]U2

]q
2

]U3

]r G2
1

2
q̇ṙ F]U2

]q
1

]U3

]r
2

]U1
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1

2
ṙ ṗF]U3

]r
1

]U1

]p
2

]U2

]q G J . ~2.16!
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~2! The constraint equation

ṗq̇1q̇ṙ 1 ṙ ṗ124ṗq̇ṙ ḟ 14ṗ ḟ U114q̇ ḟ U214ṙ ḟ U32
1

4
ḟ2

2
3

4
ṡ21

1

2
~U11U21U3!50. ~2.17!

Here the functions U1 ,U2 ,U3 are defined by
~A! the Bianchi type-I model:

U15U25U350 ~2.18!

~B! the Bianchi type-IX model:

U15e22q1e22r2e22p1
1

2
~e2(q2r 2p)1e2(r 2p2q)

23e2(p2q2r )!,

U25e22r1e22p2e22q1
1

2
~e2(r 2p2q)1e2(p2q2r )

23e2(q2r 2p)!,

U35e22p1e22q2e22r1
1

2
~e2(p2q2r )1e2(q2r 2p)

23e2(r 2p2q)!. ~2.19!

The basic equations above are the five second-order
ferential equations with one constraint equation. Forp(t)
5q(t)5r (t), i.e., the case of the isotropic and homogene
model, the equations are reduced to the cases of a flat
verse studied by Antoniadis, Rizos, and Tamvakis@6#, and of
a close universe by Easther and Maeda@7#.

III. NUMERICAL RESULTS

We have examined the case ofd,0 because in the iso
tropic and homogeneous case, nonsingular cosmologica
lutions are found only ford,0 @6,7#. We solve the basic
equations numerically.

Since five second-order derivativesp̈,q̈, r̈ ,f̈,s̈ in the ba-
sic equations~2.11!–~2.15! are coupled, we have to make a
inverse transformation as follows: Defining a vectorx
02402
if-

s
ni-

o-

5( p̈,q̈, r̈ ,f̈,s̈), the basic equations~2.11!–~2.15! are written
in the matrix form as

Zx5y, ~3.1!

where 535 matrixZ5Z(p,q,r ,f,s,ṗ,q̇, ṙ ,ḟ,ṡ) and vector
y5y(p,q,r ,f,s,ṗ,q̇, ṙ ,ḟ,ṡ) are known explicitly from the
basic equations.

UnlessD[detZ vanishes, we have

x5Z21y, ~3.2!

then we can solve the basic equations~3.2!, with the initial
data ofp,q,r ,f,s,ṗ,q̇, ṙ ,ḟ,ṡ. However, whenD vanishes,
then we cannot proceed further with our numerical calcu
tions. Such an end point, which may appear in the evolut
of the Universe, seems to be a spacetime singularity, h
ever, more detailed analysis will be required as we will sh
later.

Although we have used scale factorsp, q, andr for the
basic equations, we shall describe our results by two ani
ropy variablesb1 andb2 .

A. Bianchi type-I case

First we will show the results in the Bianchi type-I mode
We choosed̄5248/p. We introduce scale factors as

a~ t !5ep(t)5e2V1b11A3b2,

b~ t !5eq(t)5e2V1b12A3b2,

c~ t !5er (t)5e2V22b1. ~3.3!

Without a loss of generality, we can setV05b650, i.e.,
a05b05c051. Here the subscript 0 denotes the initial val
of the variables. We set the initial timet5t050. We have to

give the initial data ofV̇0 , ḃ60 , f0 , ḟ0 , s0, andṡ0, which
must satisfy one constraint equation~2.17!. Then we have
five independent initial values. Since we are interested
whether or not nonsingular solutions found in the isotro
case are generic, we shall set up the initial data in the an
tropic case around the isotropic ones.

In the isotropic and homogeneous case, we find non
gular solutions for some finite parameter range of initial da
0-6
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In Fig. 1, settingV̇0520.1, s050 we show the range o
initial data off0 and ḟ0, which gives for nonsingular solu
tions ~shown by a circle!. ṡ0 is fixed by the constraint equa
tion ~2.17!. If ḟ0 is efficiently small, then in the case o
f0,0 there always exist nonsingular solutions. This is b
cause iff,0 andufu@1, ef'0 and then singularity avoid
ance is almost independent off.

To give initial data for anisotropic spacetime giving th

same value ofV̇0 ands0, and changing some values off0 ,
ḟ0 in Fig. 1, we include anisotropy, i.e.,ḃ10 ,ḃ20(Þ0), and
02402
-

solve the constraint forṡ0.
We find nonsingular solutions in the Bianchi type-I mod

near the isotropic nonsingular solution. We show one

ample in Fig. 2, where we have setV̇0520.1, f05ḟ0

50, s050, andḃ1050.05, ḃ2050.0, ṡ050.173205. Note

that ṡ050.200 for the isotropic case. We also show a sing

lar solution in Fig. 3. We have setV̇0520.1, f05ḟ050,

s050, andḃ1050.1, ḃ2050.0. ṡ050.00 has been deter

mined by the constraint equation (ṡ050.200 for the isotro-
sotropy,
FIG. 7. We show a singular solution in Bianchi type-IX model. We set the same initial values as those in Fig. 6, except for ani

i.e., ḃ10510214 and ḃ2050. We show scale factorsa, b, and c in ~a! and (b), dilaton field f in (c), modulus fields in (d), and I
5RmnabRmnab in (e), respectively. We find thatI grows almost exponentially.
0-7
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pic case!. The volumeeV vanishes both att'24.98 andt
'8.35, resulting in a big-bang-type singularity.

Changing the anisotropic parametersḃ10 , ḃ20, we
search for nonsingular solutions in order to find how lar
anisotropy is possible~to allow nonsingular solutions!. The

result is shown in Fig. 4 forV̇0520.1, f05ḟ050, s0
50. We find that if anisotropy is large enough at the init
stage, then the spacetime evolves into a singularity.
boundary between nonsingular and singular solutions in
(ḃ10 ,ḃ20) plane is almost a circle@the deviation of the
magnitude of a shears, which }(ḃ121ḃ22), is within
1022]. Whether spacetime will evolve into a singularity o
avoid it, of course, strongly depends on the initial parame

(V̇0 , f0 , ḟ0 , s0). As we shift these initial parameters t
the critical values in the isotropic case beyond which
nonsingular solution is found, the radius of the boundary
the (ḃ10 ,ḃ20) plane decreases, and if we set the initial p
rameters fairly close to the boundary values, then the ra
for nonsingular solutions eventually disappears. Then in
case, the singularity avoidance no longer works.

We can conclude that for Bianchi type-I anisotropy, s
gularity avoidance is still generic@14#. Because the range o
nonsingular solutions is finite and not small.

However, we have the stability analysis done by Kaw
Sakagami, and Soda@15–17#. Their analysis is based on th
same action~but only a modulus field! and the flat Fried-
mann background case. They found that there exists inst
ity in the tensor mode. Then the flat Friedmann mode
unstable. This result may not change even in a Bianchi typ
background universe.

B. Bianchi type-IX case

In the same way as the Bianchi type-I case, we anal
the Bianchi type-IX model . We introduce scale factors a

a~ t !52ep(t), b~ t !52eq(t), c52er (t). ~3.4!

The factor comes from definitions with invariant basisv i

and the scale factor in a closed Friedmann model. Simila
the Bianchi type-I model, we first search for nonsingu
closed Friedmann solutions, and then search for nonsing
Bianchi type-IX solutions, by setting up the initial anis
tropic data around those in a closed nonsingular solution

We show an isotropic nonsingular solution in Fig. 5. W
choose a negative value ofd̄ as d̄5248/p, and seta(0)

5b(0)5c(0)5e3.2511380746580628, V̇0520.01, f0523,
ḟ052531024 ands050, which initial values were found
by Easther and Maeda. An anisotropy is added just as
same as the Bianchi type-I model. We show our numer
results in Figs. 6 and 7. In both cases, we take the s
initial values as the isotropic case except for anisotro
(b10, andb20, andṡ0, which is determined by a constrain
equation!. As for anisotropy we setḃ1050.01 and ḃ20

50.0 for Fig. 6, andḃ10510214 and ḃ2050 for Fig. 7,
respectively.
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In our numerical calculation,D(5detZ) eventually van-
ishes during the evolution of the universe. We always fin
singularity at a certain finite time, so our numerical analy
has to break down. This type of breakdown appears eve
an initial anisotropy is quite small, that is, bothḃ10 andḃ20
are less than 10214. Is this singularity just a numerical diver
gence, or an inappropriate gauge choice? To answer for
question, we show gauge-invariant variables.

In Figs. 6 and 7, we showI 5RmnabRmnab , in which
suddenly diverges near the breakdown point. We show
time evolution ofb1 and ḃ1 in Figs. 8 and 9, in which
initial values are the same as Figs. 6 and 7, respectively.b1 ,
b2 or both will also increase very rapidly near the brea
down point. Because of the exponential growth of a cur
ture invariant I 5RmnabRmnab and a shears @s}(ḃ1

2

1ḃ2
2 )#, we believe that it is a curvature singularity. Sin

the volume factoreV does not vanish there, it is not a big
bang-type singularity. The Universe finds a singularity with
finite volume@18#.

We have searched the wide range of parameters w
Easther and Maeda found nonsingular closed universe s
tions, but we could not find any nonsingular solution even
the anisotropy was extremely small. In all cases we h
examinedI 5RmnabRmnab ands which always show a sharp
increase near the point whereD vanishes. Then we con

FIG. 8. We show the time evolution ofb1 andḃ1. We set the
initial parameters as those in Fig. 6. The anisotropyb1 also grows
exponentially, asI diverges.
0-8
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GENERALITY OF SINGULARITY AVOIDANCE IN . . . PHYSICAL REVIEW D 62 024020
cluded that there is no nonsingular solution in anisotro
Bianchi type-IX type models and all solutions except for t
exact isotropic case eventually evolve into a curvature
gularity.

Our results may be consistent with the stability analy
by Kawai, Sakagami, and Soda@15–17#. King showed that
the Bianchi type-IX type model can be regarded as a clo
Friedmann background with a single gravitational wave o
fixed wave numberk5A6/S, whereS is the radius of the
three sphere@19#. This means that Bianchi type-IX model
the same as the closed Universe with a nonlinear tensor
turbation. Then, if the tensor mode is unstable even fo
closed universe we can understand our results. From
wave numberk, we can estimate the as the timescale of
tensor-mode instability from their analysis and compare
with our numerical results. We find that our breakdown tim
is the same order of instability as the timescale, i.e., the o

FIG. 9. We show the time evolution ofb1 and ḃ1 for the
solution given in Fig. 7. The anisotropyb1 also grows exponen
tially, as I diverges.
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of our breakdown timescale is almost (0.1;1)Audu, which
depends on initial parameters, while the instability timesc
is ;1Audu.

IV. CONCLUSION REMARKS AND DISCUSSIONS

In this paper we have examined the generality of pre
ously found cosmological nonsingular solutions in the h
erotic superstring effective action in orbifold compactific
tions with one-loop correction.

In the Bianchi type-I case, many nonsingular solutions
found around nonsingular flat Friedmann solutions witho
fine-tuned initial conditions. On the other hand, in the Bia
chi type-IX case, we cannot find any nonsingular soluti
even if anisotropy is quite small. In this case, anisotro
grows, and our numerical analysis breaks down at a cer
point where anisotropy will diverge. At this point, bothḃ6 ,
which represents the anisotropy, andI 5RmnabRmnab seems
to diverge, then the universe may evolve into a curvat
singularity. The volume factor remains a finite value, whi
suggests that it is not a big-bang-type singularity.

Our result is consistent with the stability analysis
Kawai, Sakagami, and Soda, who found tensor mode in
bility in a flat Friedmann background. The Bianchi type-I
model can be regarded as a closed Friedmann backgro
with a single gravitational wave of a fixed wave number.

It is also expected that nonsingular Bianchi type-I mod
are not generic as well, since the nonsingular flat Friedm
models are unstable against tensor perturbations. There
we may conclude that the nonsingular universes found in
isotropic cases are not generic and singularity avoidance
not work even in the present model.

We have argued only a first-order expansion term of
verse string tensiona8 and one-loop correction and ignore
the antisymmetric tensor~an axion field! which might exist
in the early universe. For more rigid consideration we m
need to further research a full superstring theory, thou
such a full theory has not yet been developed to the p
where we can deal with cosmology. However, we hope
find a new effect of a superstring theory by which the no
singular universe becomes generic. It might be given
higher curvature terms in the effective action.
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