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We introduce a new method to construct solutions to the constraint equations of general relativity describing
binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a
simple method recently suggested by Brandt andgBrann, and quasicircular orbits can then be found by
locating a minimum in the binding energy along sequences of constant horizon area. This approach produces
binary black holes in a “three-sheeted” manifold structure, as opposed to the “two-sheeted” structure in the
conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit
and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying
manifold structure has a very small effect on the location of the innermost stable circular orbit.

PACS numbgs): 04.25.Dm, 04.70.Bw, 97.60.Lf, 97.80.Fk

[. INTRODUCTION Before the constraint equations of general relativity can
. - be solved, a background geometry and topology have to be
Bma.ry t_)lack holgs are among the most Promising SOUrCery, ,san_ |n the conformal-imaging approach adopted by Cook
o_f gravitational radiation for the new generation of grawta-l[lo], a conformally flat(spatia) background metric is chosen
tlona! wave detectors such as the Laser Interferometn(&jgether with a two-sheeted manifold structusee Sec.
Gravitational Wave Observatofy.IGO), VIRGO, GEO and || a)_ |t has been suggested that these choices may affect the
TAMA. This has motivated an intense theoretical effort t0|gcation of the 1ISCO, and may explain the difference be-
predict the gravitational wave form emitted during the in-tween these and the more recent post-Newtonian results.
spiral and coalescence of two black hofes In this paper, we combine the methods of C¢@R] and
Because of the circularizing effects of gravitational radia-Brandt and Brgmann[12] to introduce a new approach to
tion damping, we expect the orbits of close binary systems tgonstructing binary black holes in quasicircular orbit. We
have small eccentricities. The inspiral of a binary black holefollow Cook[10] and choose a conformally flat background
system then proceeds adiabatically along a sequence of quaretric, but do not assume an inversion-symmetry as is done
sicircular orbits up to the innermost stable circular orbitin the conformal-imaging approach. This considerably sim-
(hereafter ISCQ where the evolution is expected to changeplifies the solution of the momentum constraiisee Sec.
into a rapid plunge and coalescerj@é The ISCO therefore |1 B), and produces binary black holes in a three-sheeted
leaves a characteristic signature in the gravitational wave sighanifold structure as opposed to the two-sheeted structure in
nal, and knowledge of its location and frequency is thus venjhe conformal-imaging approach. Moreover, adopting the
important for the prospect of future observations. “puncture” approach of Brandt and Bgmann[12], the
While various approximations may be adequate to modelHamiltonian constraint can be solved very easily numerically
the adiabatic inspiral up to the ISCO, it is generally expecte®n R without having to impose boundary conditions on in-
that only numerical simulations in full general relativity can terior boundariegsee Sec. Il & We locate the ISCO, and
accurately model the dynamical plunge and merger and prdind that its physical parameters agree very well with those
dict the gravitational signal from that phase. It is thereforefound with the conformal-imaging approach of Cofd0].
desirable to construct initial data for numerical evolution cal-We therefore conclude that the choice of the underlying
culations describing binary black hole pairs at the IScomanifold structure has a very small effect on the location of
which adds another motivation for determining the locationthe ISCO. Our new approach, which is significantly simpler
of the 1SCO. than the conformal-imaging approach, may also provide a
Various approaches have been adopted to locate the ISCtgmework in which the conformal-flatness assumption may
in compact binaries, including first order post-Newtonian ap-Pe relaxed, and its effect on the ISCO be evaluated.
proximations[5], variational principles[6], second order The paper is organized as follows. In Sec. II, we introduce
post-Newtonian methods combined with a “hybrid” ap- the basic equations and explain how binary black holes in
proach[7], a Padeapproximation[8] and an effective-one- quasicircular orbit can be constructed. We discuss our nu-
body approac}"[g,?,]' and numerical solutions to the con- merical implementation in Sec. lll. In Sec. IV we present our
straint equations of general relativitg0,11). Unfortunately, —results and compare with those from other approaches. We
however, the results differ significantly and yet have to showPriefly summarize in Sec. V.
any sign of convergencé¢see Table Il below It would
clearly be desirable to understand the origin of these differ- Il. SETUP OF THE PROBLEM
ences. In this paper, we revisit binary black hole solutions to
the constraint equations, and evaluate how some of the
choices which have to be made in this approach affect the A framework for constructing initial data describing bi-
location of the ISCO. nary black holes has been provided by Arnowitt, Deser and

A. The initial value problem

0556-2821/2000/62)/0240188)/$15.00 62 024018-1 ©2000 The American Physical Society



THOMAS W. BAUMGARTE PHYSICAL REVIEW D62 024018

Misner's 3+1 (ADM) decomposition of Einstein’'s equa- and
tions[13] and York’s conformal decompositidri4,15.
The 3+1 decomposition splits Einstein’s equations into .~
evolution and constraint equations for the metyig of a D;A”=0. (6)
spatial hypersurface., and the extrinsinc curvaturk;

which describes the embedding of the hypersurada the  Note that maximal slicindK =0 automatically decouples the
full spacetime. The physical metrig;; can now be decom- momentum constraint from the Hamiltonian constraint.
posed into a conformal fact@¥ and a conformal background Choosing thetopology of the spacetime is less straight-
metric 3’” , forward (compare the discussion [i6]). Since we are in-
R terested in isolated black-holes systems, it is natural to as-
v =i - (1)  sume the hypersurface® to be asymptotically flat.
Constructing black hole data in vacuum, however, necessar-
Itis also convenient to decompose the extrinsic curvaye ily involves non-trivial topologies. This can be illustrated by
into its traceK and a trace-free conformal background ex-a t=const slice of the Schwarzschild geometry in isotropic
trinsic cruvatureA, j according to coordinates, where every point inside the black hole’s throat
can be mapped into a point outside the throat and vice versa.
Moreover, such a mapping can be accomplished with an
isometry, which maps the metric into itself, implying that the
physical fields at a point inside the throat are identical to
The Hamiltonian constraint then reduces to an equation fothose at a point outside the throat. In particular, the geometry
the conformal factowy, near the center is identical to the geometry near infinity. We
can therefore think of this solution as describing two identi-

—2A 1
Kij=4¢ “Aij+ 3 7K. 2

. A2 s Al cal, asymptotically flat “universes” or “sheets,” which are
8V7Y—yR- §¢’ Ko+ 4 "AjAT=0, ©) connected by a throat or Einstein-Rosen brifigg].
There is no unique generalization of this topology to the
and the momentum constraint can be written case of mU|t|p|e black hOleSl.g] For two black hOIeS, the

two throats could either connect to the same asymptotically
i 2 A flat sheet, or else to two separate asymptotically flat sheets.
AT — 51//67"DJK=0- (4 The former approach results in a two-sheeted topology, the
latter in a three-sheeted topology.

A . - . ) Cook etal. [10,16,17 implemented a *“conformal-
HereD; is the covariant QeArlglat|ve compfitlble W|Eh.the con- imaging” formalism, which adopts a two-sheeted topology
formal background metricy < the Laplacian, and is the  together with the additional demand that the two sheets are
Ricci scalar. o related by an isometry so that their physical fields are iden-

Binary black hole initial data cannot be constructedtica| (cf. [20,21)). It has been argued that this choice is the
uniquely, because the constraint equations of general relativimost faithful generalization of the Schwarzschild geometry
ity determine neither the backgrougeéometrynor thetopol- g the case of multiple holes['16]. Moreover, the isometry
ogy of the spacetime, both of which have to be chosen beforgonditions on the throats can be used as boundary conditions
the constraint equations can be solved. Loosely speakingy numerical implementations, so that singularities inside the
these ambiguities correspond to different amounts of gravithroats can be eliminated from the numerical grid. The com-
tational radiation in the initial data sets. In this paper, we Wi”putational disadvantage of this method is that boundary con-
follow Cook et al. [10,16,17 and choose a flat background gitions have to be imposed on fairly complicated surfaces. In
geometry, but we will choose a three-sheeted topology afnite difference algorithms, this can be accomplished either
opposed to the two-sheeted topology of Cook. ~ with bispherical or @dezcoordinateg22], designed such

Choosing the backgroungeometryamounts to choosing  that a constant coordinate surface coincides with the throat,
the conformal background metrig; . Following Cooket al.  or else with fairly complicated algorithms in cartesian coor-
[10,16,17, we choose the conformal background geometrydinates. Both approaches, together with a spectral method,

to be flat so thaty;;=f;;, wheref;; is the flat metric in a so have been compared ji7].

far arbitrary coordinate system. The covariant derivafiye In this paper, we choose instead a three-sheeted topology

then becomes the flat-space covariant derivative, and tH@"d d0 not assume an inversion-symmetry across the throats,

Ricci larR ishes. We will lat ialize t tesi which simplifies the problem in two respects. The analytical
IcCl Scalafit vanishes. Yve will 1ater specialize to cartesian o) tion to the momentum constraint becomes very simple,

coordinatesy;; = g;; , for which D; reduces to a partial de- since we no longer need to construct inversion-symmetric
rivative. We also take the hypersurfabeto be maximally  solutions(see Sec. Il B Moreover, the singularities inside
embedded in the Spacetime so tat 0. With these choices, the black holes can be removed ana|ytica||y using a “punc-

O

the constraint equations simplify to ture” method recently suggested by Brandt and d@nann
[12] (see Sec. Il € The problem can then be solved quite
$2y=— }qu_Aij 5) easily on R in cartesian coordinates, without having to im-
8 g pose interior boundary conditions. The only added complica-
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tion is that one now has to locate apparent horizons in theC. Solving the Hamiltonian constraint for binary black holes
numerically constructed hypersurface. Solutions to the Hamiltonian constrait) can be con-
structed by generalizing the Schwarzschild solution in isotro-
B. Solving the momentum constraint for binary black holes pic coordinates for a static.e. /‘_\ij =0) and spherically sym-

For maximally sliced hypersurfaces, the momentum conmetric black hole at coordinate locatid)
straint decouples from the conformal factor, and analytical

solutions to Eq(6) can be given. Moreover, for conformally p=1+ ﬂ (12)
and asymptotically flat data, the tot@dhysica) linear mo- 2r¢
mentum[23]

(note that asymptotic flatness demangs: 1 asr—«). So-
lutions describing multiple static black holes can be con-
structed by adding contributions1/(2rc) for each black
hole. To establish an inversion-symmetry, additional terms
and the totalphysica) angular momentum would again have to be add¢20]. _
In the “puncture” method suggested by Brandt and @ru

il o mann[12], a general nonstatic solution to the Hamiltonian

Ji -y ﬁX'A d’s, (8)  constraint is written as a sum of the static, analytic contribu-

tion plus a term correcting for finité\ij. Adopting their
notation, we write

pi— = ¢ Ailg?s )
87 Jx !

can be determined fromA! without having to solve the
Hamiltonian constraints) (see[24]).

Analytical solutions to the momentum constra{} de- Yy=u+—, (13
scribing single boosted or spinning black holes have been @

given by Bowen and York24—26. A solutionA'), describ-  \yhere is defined by
ing a single black hole at the coordinate locatiGnwith

linear momentun® is given by 1 M; M,
—= . (14
3 o 2rC1 ZrC2
Al —_° rpini ini ij i i k
Ace Zr%[P NetPine+ (i nenoPincl. (9 The Hamiltonian constraint then becomes an equation for the
correction termu
Hererc=||x' - C'|| is the coordinate distance to the center of A
the black hole andh.=(x'—C')/r is the normal vector Viu=-B8(1+au) ', (15)
pointing away from that center. Additional terms have to be
added in the conformal-imagine approach for an isometryvhere we have abbreviated
condition to hold across the throat. Note that we have only
included linear momentum terms in this expression, and that B=
we are therefore restricting our analysis to non-spinning
black holes.

Since the momentum constraif) is linear, we can con- For asymptotic flatness, we impose a Robin boundary condi-
struct binary black hole solutions by superposition of singletion d(r (u—1))/dr=0 at large distances from the black
solutions holes. The existence and uniqueness of solutioos R has

been established if12]. The beauty of this approach is that
Al :Aié o +AE o (100  the poles at the center of the black holes have been absorbed
v z2 into the analytical terms. The correctionsare regular ev-
erywhere and can be solved for very easily on a simple com-
t putational domain, without having to impose boundary con-
ditions on the throats.
Once the conformal factogy has been determined, the

a7 A”AIJ (16)

| =

From Egs.(7) and (8) we find the that total momentum of
this solution isP= P, + P,, and the angular momentum abou
the origin of the coordinate system

J=CyXPy+C,XP,. (12) ADM mass of the solution can be found from

Note that constructing inversion-symmetric solutions for E=— i @iwdzsi
multiple black holes in the conformal-imaging approach is 27 J
fairly complicated. There, the components of the extrinsic
curvature are expressed in terms of an infinite series of re- — i @i(l)dzsi_ if 24 dv
cursively defined quantitiessee[21] and Appendix A of 27 Jo \a 2w
[10]). Relaxing the inversion symmetry, so that the extrinsic 1
curvature can be written as a simple superposition of two _ n n _j 1+ ~7dv 1
solutions(9), therefore greatly simplifies the problem. Mat M, 2 B(1+au) ' (17
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Note that the integral extends over all space. [ll. NUMERICAL IMPLEMENTATION
_ _ We adopt a finite difference approach to solve @d) in
D. Constructing equal-mass binary black holes Cartesian coordinates. The numerical code is implemented in
in quasicircular orbit a parallel, distributed memory environment using DAGH

We now specialize to equal mass black holes with ~ software[29], and the Laplace operator in E(L5) is in-

= M;=M,. In the center-of-mass frame of the binary sys-Verted usingETscsoftware[30]. We linearize Eq(15) and
tem, we have iteratively solve for corrections to approximate solutions un-

til convergence to a desired accuracy has been achieved.
P=P;=—-P,. (18  Since the components of the extrinsic curvat(ir@) are ei-
ther symmetric or antisymmetric across the coordinate planes
Binaries in quasicircular orbit should furthermore satisfyx=0, y=0 andz=0, it is sufficient to solve the Hamiltonian

P-C=0, where we have defined constraint in only one octant.
In addition to verifying second order convergence of our
C=C;—C,. (19 code, we have performed tests in the linear regime by com-

) ) _ paring with the linear analytic solution for black holes
Without loss of generality, we can then taketo be aligned  poosted towards each othEEq. (16) in [12]], and in the
with the z-axis, P to be aligned with the-axis, and place the ponlinear regime by comparing with the “A2B8” dataset
origin of the Cartesian coordinate system at the center bg47] for which values of the ADM mass in a three-sheeted
tween the two black holes. manifold structure have been given in Table I[2]. Note,

~The problem has now been reduced to a threenhowever, that those masses have erroneously been calculated
dimensional parameter space with the free parametdrs  for black hole spins with signs opposite to those given in that
C=|C|| and P=||P|. For every configuration, we compute taple, “S, ,= — S, ,” [31].
several physical quantities. We determine the total ADM  Given a solutibnc// for a set of parameterst, C andP,
massE from Eq. (17) and the total angular momentuth e can locate an apparent horizon and determine the black
=Jy=PC from Eq.(11). Since we have restricted our analy- hole massvl from the horizon’s proper area using the algo-
sis to non-spinning black holes, the mass of each individualithm described i32]. This algorithm expresses the loca-
black hole can be identified with the irreducible mass tion of a closed surface in terms of Symmetric trace-free

tensors, and varies the expansion coefficients until an outer-
(20) most trapped surface has been found. We found that for the
horizons in this problem, which are fairly spherical and only
very mildly deformed, an expansion up to ordet4 is ad-
whereA the proper area of the black hole’s apparent horizorequate.
[27]. We now define the effective potential as the binding Before constructing sequences of constant black hole

1/2
M =M~

16m

energy massM, it is convenient to rescale all variables with respect
to that desired value of the black hole ma&ssWe introduce
Ep=E—-2M. (2)  the sum of the black hole masses
Lastly, we compute the proper separatldmetween the two m=M,+M,=2M (24)

horizons along the line connecting the centers of the two
apparent horizons, which is a very good approximation to thend the reduced mass
shortest proper separation between the two horizons.

Quasicircular orbits can then be found quite easilge ~ MM M
) ) . . u=——"—=— (25)
[10]) by computing the effective potentil, as a function of M;+M, 2
separatiorl along a sequence of constant black hole nidss
and angular momentudhand locating turning points and define the dimensionless parametev$=M/m, C
JE =C/mandP=P/u. Wgalso rescaleihe angular momentum
—Ib =0. (22 and angular velocity a3=J/um andQ=m(}, and identify
J M,J the dimensionless effective potential with the rescaled bind-

A mimimum corresponds to a stable quasicircular orbit," > energyE,=Ep/p.

while a maximum corresponds to an unstable orbit. For a S€duences of constadtcan now be constructed by set-
quasicircular orbit, the binary’s orbital angular velocityas ~ ting P=J/C for a set of different values o, and by iter-
measured at infinity can then be determined from ating over M until the (dimensionlessnumerical value of

the black hole maSQWEMnum/M has converged to unity

_ % (23)  Within a desired accuracy for each[33].
dJ M.I For typical cases of interest, the difference between the
ADM massE and the sum of the black hole massass
(see[28] for a Newtonian illustration quite small. According to Eq(21), the binding energy is
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FIG. 1. The binding energE_b for C=2.5 andJ=3.0 for dif- FIG. 2. Contours of the conformal factgr for a configuration

ferent locations of the outer boundagy,, (at constant grid resolu-  close to the innermost stable circular orb@=2.25 and)=2.95).

tion h=0.03125, top panghnd different grid resolutions (at con- ;r:s CgrgOZUril(z?elic:hg:etaelOagariatltlerrrl]ifﬁlcl));i ;(?r?sn mgrli(r:;rgaz;elthick
stant outer boundar¥, =6, bottom panel The dashed line only y=9.2. bp ' Y

. o . dashed lines, are not concentric with the contours of the conformal
includes contributions to the ADM mass from inside the computa-,

tional grid, and the solid line denotes the corrected vébee texk fszliiztr?trl'ylg:tﬁ:g’i?&iﬁﬁ)gﬁgfg‘i c&;!\?v?gbgrb:th e black holes and lag

therefore much smaller than those masses, and its relativet boundary fixed 4. — 6
numerical error much larger. In order to reliably locate a®!*" our? ary fixe out H o —

minimum in the binding energy, we therefore have to deter- From Fig. 1, we find that the binding ener, can be
mine the masses to very high accurdcf [10]). Moreover, determined to within at most a few percent error &y,
numerous models have to be calculated to construct a suffi=6 andh=0.03125, corresponding to a numerical grid of

cient number of sequences over a sufficient range of separgize 96< 96x 192. The iteration to construct one model then
tions, which is only affordable for a fairly moderate maxi- takes approximately 3 CPU hours on the NCSA Origin2000,
mum grid size. For a uniform, cartesian grid of a given size,yhich makes an extensive survey of parameter space afford-

a compromise then has to be found between extending theple. We use these grid specifications for all results presented
computational grid to large enough distances and sufficiently the following section.

resolving the individual black holes.
The location of the outer boundary of the computational
grid affects the results through the Robin boundary condition IV. RESULTS
on u, which is correct only asymptotically, and the energy .
integral (17), which should extend over all space. The latter In Fig. 2’_ we S_hOW contour plots of theg)nformal faC@r
for a configuration close to the ISCOCE2.25 andJ

effect can be improved by extending the energy integral be* . §
yond the numerical grid, where and 8 can be evaluated =2.95). The apparent horizons, marked by the thick dashed

analytically, and where can be estimated from its value on lin€S, are dragged along by the black holes and lag slightly
the surface of the computational grid and its flloff. In behind in their counter-clockwise orbit. This effect has been
the top panel of Fig. 1, we show the binding energy fordiscussed for single boosted black holeg34]. Note that we

different locations of the outer boundaﬂgutzzout/m fora compute the proper separatiE&l/m between the horizons

. . . : — - . along the line connecting the centers of the apparent hori-
typical conf|gurat|0n_of interest@=2.5, J=3.0) with a zons. This is a coordinate-dependent quantity, but a very

fixed grid resolutionh=h/m=0.03125. For all calculations good approximation to thécoordinate-independenshortest
presented in this paper we u3g,—= Y u=Zo/2. For the  proper separation between the horizons.

dashed line, only contributions to the ADM mass from inside  We now construct sequences of constant angular momen-
the computational grid have been taken into account, and fagm for various values of, and plot the effective potential
fche solid line we have _ex_panded the voI_ume for _the energ%—b along these sequences as a functionl oh Fig. 3. A
integral by a factor of six in each d|menS|qn. Obviously, theminimum in the effective potential corresponds to a stable
latter converges much more rapidly and yields a more accuciuasicircular orbit. The bold line connecting these minima in

rat(_T_r\]/alue folrtall Iocica':;:)ns %f t_f(lje olu'l[)elr bko%ncliary. fects th Fig. 3 represents a sequence of quasicircular orbits. This se-
€ resolution ot the individual black noles attects e, o cq terminates at the ISCO, where the adiabatic, quasicir-

accuracy with which their apparent horizons can be Iocatedgular inspiral of the two black holes is expected to change
and hence the accuracy of their masbksThe effect of the  jnto a rapid plunge and mergée]. Since this transition

resolution on the binding energy is demonstrated in the botteayes a characteristic signature in the gravitational wave sig-
tom panel of Fig. 1, where we shof, for different grid nal, the knowledge of the location and frequency of the
resolutions for the same configuration, this time with thelSCO are of great importance for future observations with
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TABLE Il. Comparison of the binding energﬁ,, the angular

-0.06
momengum] and the angular velocity) for the innermost stable
circular orbit from various different calculations: a test particle or-

-0.07 ] biting a Schwarzschild black hole, Clark and Eardi&E) [5],
Blackburn and DetweileBD) [6], Kidder, Will and Wiseman

R g (KWW) [7], Cook[10], Baumgarteet al. (BCSST) [11], Damour,
k1 —0.08 % lyer and SathyaprakagbIS) [8], Buonanno and DamouBD) [9],
2 and the results from this paper. The results of Baumgstrad. [11]
~0.09 i are for ann=1 polytrope binary of compactiol/R=0.2. Naively
] extrapolating toM/R=0.5 yields values very close to our results
] for binary black holes.
-0.1 —
Cle v b by — — —
4 5 6 - 8 Reference Ep J ")
1
- Schwarzschild —0.0572 3.464 0.068
FIG. 3. The effective potentidt,, as a function of proper sepa- CE[5] -0.1 3.3
ration | for the following values of the angular momentum2.9,  BD [6] -0.65 0.85 2
2.92,2.94, 2.95, 2.96, 2.97, 2.98, 3.00, 3.02, 3.06, 3.10, 3.15, 3.2KWW [7] —0.0378 3.83 0.0605
and 3.25(from bottom to top. Quasicircular orbits correspond to  Cook[10] —0.09030 2.976 0.172
minima in the effective potential. The bold line connects thesegcssT[11] —0.048 3.9 0.06
minima and represents a sequence of quasicircular orbits. This sgyg (8] —0.0653 0.0885
quence terminates at the innermost stable circular orbit. BD [9] —0.06005 3.40 0.0734
This work —0.092 2.95 0.18

the new generation of gravitational wave detectors.

In Table I, we list our results for the physical parameters
of the ISCO(tqp line) and compare with the results of Cook adopted a first order post-Newtonian argument to approxi-
[10] (bottom ling. We tabulate the proper separation be-mgately estimate the location of the ISCO. We list their values
tween the horizond, the binding energye,, the angular for nonrotating neutron stars. Blackburn and Detwejlgr
momentumJ, and the angular velocit2 as well as the the adopted a variational principle and assumed a periodic solu-
linear momentum of each black hdR¥a and the coordinate tion to Einstein’s equations. At the ISCO, for which the ap-
separationC/a, wherea is the (coordinaté radius of the Proximations of this approach fail, they find extremely
black holes. The latter is not well-defined in our calculation,tightly bound binaries. Kidder, Will and Wisemafv]
but since the black holes are nearly spherical it is very rea@dopted a second order post-Newtonian approximation to-
sonable to estimate an average radius fromlth® mono-  gether with a “hybrid” approach and found an extremely
pole term in the multipole expansion for the horizon. weakly bound ISCO. However, several authors have cast

We conclude that all quantities agree fairly well with doubt on the robustness and consistency of the hybrid ap-
those of CooK10] within our estimated numerical error of a Proach[35,8]. Baumgarteet al. [11] constructed fully rela-
few percent. As the most significant deviation, we find thattivistic models of corotating binary neutron star in quasiequi-
in our calculation the binary is 5||ght|y more t|ght|y bound at Iibrium, albeit assuming conformal ﬂatness, and found that
the ISCO, and correspondingly has a slightly larger angulathe ISCO depends on the compaction of the neutron stars. In
velocity. However, even these quantities differ by less thanfable | we list their results fon=1 polytropes of compac-
~5%, which may be caused by numerical effects. We confion M/R=0.2, whereM and R are the mass-energy and
clude that the choice of the underlying manifold structure hagreal radius which the stars would have in isolation. Naively
a very small effect on the location of the I1SCO. extrapolating their results tM/R=0.5 yields values which

In Table Il we compare the binding energy, the angularare very similar to our result for binary black holes. Damour,
momentum and the angular velocity at the ISCO from vari-lyer and Sathyaprakadi8] combined a second order post-
ous different calculations. For a test particle orbiting aNewtonian approximation with a Pad@proximation, which
Schwarzschild black hole, the ISCO can be located analytiyields a slightly more tightly bound ISCO than that for a
cally, which yields Eb=\/%—1~—0.0572, J=23 test-pqmcle orbiting a Schwarzschild black hole. A S|m|lar
~3.464, and = 1/6¥2-0.0680. Clark and Eardleys] result is found by Buonanno'and Damour, w.ho comblne a

B : : second order post-Newtonian approximation with an
effective-one-body metho®,3].

TABLE I. Comparison of our results for the innermost stable
circular orbit(top line) with those of CooK 10] (bottom line.

V. SUMMARY AND DISCUSSION

I E, J Q P/a Cla _ ) _
Since an accurate knowledge of the ISCO is very impor-

4.8 —0.092 2.95 0.18 1.7 5.9 tant for possible future gravitational wave observations, it is

4.880 —0.09030 2.976 0.172 1.685 5.91 very unsettling that different approaches to computing the

ISCO lead to very different resul{fsompare Table )| One
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of these approaches, namely constructing binary black holeonian constraint in cartesian coordinatesRsrwithout hav-
solutions to the constraint equations of general relativity, ining to impose interior boundary conditions. One disadvan-
volveschoosingthe background geometry and topology, andtage of our approach is that the apparent horizons have to be
it would be very desirable to know how much the resultsjocated numerically, which we do with the algorithm devel-
depend on these choices. oped in[32].

In this paper, we introduce a new method to construct |n this paper, we follow Cook10] and choose a confor-
solutions to the constraint equations of general relativity dema"y flat background metric. Accordingly, we cannot ad-
scribing binary black holes in quasicircular orbit. We com-dress the dependence of the ISCO on the choice of the back-
bine the approaches of Copk0] and Brandt and Bigmann  ground geometry. However, since our new method is
[12] to construct binary black holes in a three-sheeted manisjgnificantly simpler than the conformal-imaging approach, it
fold structure, as opposed to the two-sheeted topology in thgay provide a useful framework to relax the assumption of
conformal-imaging approach adopted by CddK]. We lo-  conformal flatness and to construct binary black holes in

cate the ISCO and find that its physical parameters are veryuasicircular orbit for more general background geometries.
similar to those found by Cookl0]. Our results confirm

those earlier results and imply that the underlying manifold
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