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Innermost stable circular orbit of binary black holes
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Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

~Received 14 April 2000; published 23 June 2000!

We introduce a new method to construct solutions to the constraint equations of general relativity describing
binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a
simple method recently suggested by Brandt and Bru¨gmann, and quasicircular orbits can then be found by
locating a minimum in the binding energy along sequences of constant horizon area. This approach produces
binary black holes in a ‘‘three-sheeted’’ manifold structure, as opposed to the ‘‘two-sheeted’’ structure in the
conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit
and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying
manifold structure has a very small effect on the location of the innermost stable circular orbit.

PACS number~s!: 04.25.Dm, 04.70.Bw, 97.60.Lf, 97.80.Fk
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I. INTRODUCTION

Binary black holes are among the most promising sour
of gravitational radiation for the new generation of gravi
tional wave detectors such as the Laser Interferome
Gravitational Wave Observatory~LIGO!, VIRGO, GEO and
TAMA. This has motivated an intense theoretical effort
predict the gravitational wave form emitted during the
spiral and coalescence of two black holes@1#.

Because of the circularizing effects of gravitational rad
tion damping, we expect the orbits of close binary system
have small eccentricities. The inspiral of a binary black h
system then proceeds adiabatically along a sequence of
sicircular orbits up to the innermost stable circular or
~hereafter ISCO!, where the evolution is expected to chan
into a rapid plunge and coalescence@2#. The ISCO therefore
leaves a characteristic signature in the gravitational wave
nal, and knowledge of its location and frequency is thus v
important for the prospect of future observations.

While various approximations may be adequate to mo
the adiabatic inspiral up to the ISCO, it is generally expec
that only numerical simulations in full general relativity ca
accurately model the dynamical plunge and merger and
dict the gravitational signal from that phase. It is therefo
desirable to construct initial data for numerical evolution c
culations describing binary black hole pairs at the ISC
which adds another motivation for determining the locat
of the ISCO.

Various approaches have been adopted to locate the I
in compact binaries, including first order post-Newtonian a
proximations @5#, variational principles@6#, second order
post-Newtonian methods combined with a ‘‘hybrid’’ ap
proach@7#, a Pade´ approximation@8# and an effective-one
body approach@9,3#, and numerical solutions to the con
straint equations of general relativity@10,11#. Unfortunately,
however, the results differ significantly and yet have to sh
any sign of convergence~see Table II below!. It would
clearly be desirable to understand the origin of these dif
ences. In this paper, we revisit binary black hole solutions
the constraint equations, and evaluate how some of
choices which have to be made in this approach affect
location of the ISCO.
0556-2821/2000/62~2!/024018~8!/$15.00 62 0240
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Before the constraint equations of general relativity c
be solved, a background geometry and topology have to
chosen. In the conformal-imaging approach adopted by C
@10#, a conformally flat~spatial! background metric is chose
together with a two-sheeted manifold structure~see Sec.
II A !. It has been suggested that these choices may affec
location of the ISCO, and may explain the difference b
tween these and the more recent post-Newtonian results

In this paper, we combine the methods of Cook@10# and
Brandt and Bru¨gmann@12# to introduce a new approach t
constructing binary black holes in quasicircular orbit. W
follow Cook @10# and choose a conformally flat backgroun
metric, but do not assume an inversion-symmetry as is d
in the conformal-imaging approach. This considerably si
plifies the solution of the momentum constraint~see Sec.
II B !, and produces binary black holes in a three-shee
manifold structure as opposed to the two-sheeted structu
the conformal-imaging approach. Moreover, adopting
‘‘puncture’’ approach of Brandt and Bru¨gmann @12#, the
Hamiltonian constraint can be solved very easily numerica
on R3 without having to impose boundary conditions on i
terior boundaries~see Sec. II C!. We locate the ISCO, and
find that its physical parameters agree very well with tho
found with the conformal-imaging approach of Cook@10#.
We therefore conclude that the choice of the underly
manifold structure has a very small effect on the location
the ISCO. Our new approach, which is significantly simp
than the conformal-imaging approach, may also provid
framework in which the conformal-flatness assumption m
be relaxed, and its effect on the ISCO be evaluated.

The paper is organized as follows. In Sec. II, we introdu
the basic equations and explain how binary black holes
quasicircular orbit can be constructed. We discuss our
merical implementation in Sec. III. In Sec. IV we present o
results and compare with those from other approaches.
briefly summarize in Sec. V.

II. SETUP OF THE PROBLEM

A. The initial value problem

A framework for constructing initial data describing b
nary black holes has been provided by Arnowitt, Deser a
©2000 The American Physical Society18-1
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THOMAS W. BAUMGARTE PHYSICAL REVIEW D62 024018
Misner’s 311 ~ADM ! decomposition of Einstein’s equa
tions @13# and York’s conformal decomposition@14,15#.

The 311 decomposition splits Einstein’s equations in
evolution and constraint equations for the metricg i j of a
spatial hypersurfaceS, and the extrinsinc curvatureKi j ,
which describes the embedding of the hypersurfaceS in the
full spacetime. The physical metricg i j can now be decom
posed into a conformal factorc and a conformal backgroun
metric ĝ i j ,

g i j 5c4ĝ i j . ~1!

It is also convenient to decompose the extrinsic curvatureKi j
into its traceK and a trace-free conformal background e
trinsic cruvatureÂi j according to

Ki j 5c22Âi j 1
1

3
g i j K. ~2!

The Hamiltonian constraint then reduces to an equation
the conformal factorc,

8¹̂2c2cR̂2
2

3
c5K21c27Âi j Â

i j 50, ~3!

and the momentum constraint can be written

D̂ j Â
i j 2

2

3
c6ĝ i j D̂ jK50. ~4!

HereD̂ i is the covariant derivative compatible with the co
formal background metric,¹̂2 the Laplacian, andR̂ is the
Ricci scalar.

Binary black hole initial data cannot be construct
uniquely, because the constraint equations of general rel
ity determine neither the backgroundgeometrynor thetopol-
ogyof the spacetime, both of which have to be chosen be
the constraint equations can be solved. Loosely speak
these ambiguities correspond to different amounts of gr
tational radiation in the initial data sets. In this paper, we w
follow Cook et al. @10,16,17# and choose a flat backgroun
geometry, but we will choose a three-sheeted topology
opposed to the two-sheeted topology of Cook.

Choosing the backgroundgeometryamounts to choosing
the conformal background metricĝ i j . Following Cooket al.
@10,16,17#, we choose the conformal background geome
to be flat so thatĝ i j 5 f i j , wheref i j is the flat metric in a so
far arbitrary coordinate system. The covariant derivativeD̂ i
then becomes the flat-space covariant derivative, and
Ricci scalarR̂ vanishes. We will later specialize to cartesi
coordinates,ĝ i j 5d i j , for which D̂ i reduces to a partial de
rivative. We also take the hypersurfaceS to be maximally
embedded in the spacetime so thatK50. With these choices
the constraint equations simplify to

¹̂2c52
1

8
c27Âi j Â

i j ~5!
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D̂ j Â
i j 50. ~6!

Note that maximal slicingK50 automatically decouples th
momentum constraint from the Hamiltonian constraint.

Choosing thetopologyof the spacetime is less straigh
forward ~compare the discussion in@16#!. Since we are in-
terested in isolated black-holes systems, it is natural to
sume the hypersurfaceS to be asymptotically flat.
Constructing black hole data in vacuum, however, neces
ily involves non-trivial topologies. This can be illustrated b
a t5const slice of the Schwarzschild geometry in isotrop
coordinates, where every point inside the black hole’s thr
can be mapped into a point outside the throat and vice ve
Moreover, such a mapping can be accomplished with
isometry, which maps the metric into itself, implying that th
physical fields at a point inside the throat are identical
those at a point outside the throat. In particular, the geom
near the center is identical to the geometry near infinity. W
can therefore think of this solution as describing two iden
cal, asymptotically flat ‘‘universes’’ or ‘‘sheets,’’ which ar
connected by a throat or Einstein-Rosen bridge@18#.

There is no unique generalization of this topology to t
case of multiple black holes@19#. For two black holes, the
two throats could either connect to the same asymptotic
flat sheet, or else to two separate asymptotically flat she
The former approach results in a two-sheeted topology,
latter in a three-sheeted topology.

Cook et al. @10,16,17# implemented a ‘‘conformal-
imaging’’ formalism, which adopts a two-sheeted topolo
together with the additional demand that the two sheets
related by an isometry so that their physical fields are id
tical ~cf. @20,21#!. It has been argued that this choice is t
‘‘most faithful generalization of the Schwarzschild geome
to the case of multiple holes’’@16#. Moreover, the isometry
conditions on the throats can be used as boundary condit
in numerical implementations, so that singularities inside
throats can be eliminated from the numerical grid. The co
putational disadvantage of this method is that boundary c
ditions have to be imposed on fairly complicated surfaces
finite difference algorithms, this can be accomplished eit
with bispherical or Cˇ adežcoordinates@22#, designed such
that a constant coordinate surface coincides with the thr
or else with fairly complicated algorithms in cartesian coo
dinates. Both approaches, together with a spectral met
have been compared in@17#.

In this paper, we choose instead a three-sheeted topo
and do not assume an inversion-symmetry across the thr
which simplifies the problem in two respects. The analyti
solution to the momentum constraint becomes very sim
since we no longer need to construct inversion-symme
solutions~see Sec. II B!. Moreover, the singularities insid
the black holes can be removed analytically using a ‘‘pu
ture’’ method recently suggested by Brandt and Bru¨gmann
@12# ~see Sec. II C!. The problem can then be solved qui
easily on R3 in cartesian coordinates, without having to im
pose interior boundary conditions. The only added compli
8-2
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INNERMOST STABLE CIRCULAR ORBIT OF BINARY . . . PHYSICAL REVIEW D62 024018
tion is that one now has to locate apparent horizons in
numerically constructed hypersurface.

B. Solving the momentum constraint for binary black holes

For maximally sliced hypersurfaces, the momentum c
straint decouples from the conformal factor, and analyti
solutions to Eq.~6! can be given. Moreover, for conformall
and asymptotically flat data, the total~physical! linear mo-
mentum@23#

Pi5
1

8p R̀ Âi j d2Sj ~7!

and the total~physical! angular momentum

Ji5
e i jk

8p R̀ xj Âkld2Sl ~8!

can be determined fromÂi j without having to solve the
Hamiltonian constraint~5! ~see@24#!.

Analytical solutions to the momentum constraint~6! de-
scribing single boosted or spinning black holes have b
given by Bowen and York@24–26#. A solution Âi j , describ-
ing a single black hole at the coordinate locationC with
linear momentumP is given by

ÂCP
i j 5

3

2r C
2 @PinC

j 1PjnC
i 1~ f i j 1nC

i nC
j !PknC

k #. ~9!

Herer C5ixi2Ci i is the coordinate distance to the center
the black hole andnC

i 5(xi2Ci)/r is the normal vector
pointing away from that center. Additional terms have to
added in the conformal-imagine approach for an isome
condition to hold across the throat. Note that we have o
included linear momentum terms in this expression, and
we are therefore restricting our analysis to non-spinn
black holes.

Since the momentum constraint~6! is linear, we can con-
struct binary black hole solutions by superposition of sin
solutions

Âi j 5ÂC1P1

i j 1ÂC2P2

i j . ~10!

From Eqs.~7! and ~8! we find the that total momentum o
this solution isP5P11P2, and the angular momentum abo
the origin of the coordinate system

J5C13P11C23P2 . ~11!

Note that constructing inversion-symmetric solutions
multiple black holes in the conformal-imaging approach
fairly complicated. There, the components of the extrin
curvature are expressed in terms of an infinite series of
cursively defined quantities~see @21# and Appendix A of
@10#!. Relaxing the inversion symmetry, so that the extrin
curvature can be written as a simple superposition of
solutions~9!, therefore greatly simplifies the problem.
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C. Solving the Hamiltonian constraint for binary black holes

Solutions to the Hamiltonian constraint~5! can be con-
structed by generalizing the Schwarzschild solution in isot
pic coordinates for a static~i.e. Âi j 50) and spherically sym-
metric black hole at coordinate locationC,

c511
M
2r C

~12!

~note that asymptotic flatness demandsc→1 asr→`). So-
lutions describing multiple static black holes can be co
structed by adding contributionsM/(2r C) for each black
hole. To establish an inversion-symmetry, additional ter
would again have to be added@20#.

In the ‘‘puncture’’ method suggested by Brandt and Bru¨g-
mann @12#, a general nonstatic solution to the Hamiltonia
constraint is written as a sum of the static, analytic contrib
tion plus a term correcting for finiteÂi j . Adopting their
notation, we write

c5u1
1

a
, ~13!

wherea is defined by

1

a
5

M1

2r C1

1
M2

2r C2

. ~14!

The Hamiltonian constraint then becomes an equation for
correction termu

¹̂2u52b ~11au!27, ~15!

where we have abbreviated

b5
1

8
a7 Âi j Â

i j . ~16!

For asymptotic flatness, we impose a Robin boundary co
tion ]„r (u21)…/]r 50 at large distances from the blac
holes. The existence and uniqueness of solutionsu on R3 has
been established in@12#. The beauty of this approach is tha
the poles at the center of the black holes have been abso
into the analytical terms. The correctionsu are regular ev-
erywhere and can be solved for very easily on a simple co
putational domain, without having to impose boundary co
ditions on the throats.

Once the conformal factorc has been determined, th
ADM mass of the solution can be found from

E52
1

2p R̀ ¹̂ ic d2Si

52
1

2p R̀ ¹̂ i S 1

a Dd2Si2
1

2pE ¹̂2u dV

5M11M21
1

2pE b ~11au!27dV. ~17!
8-3
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THOMAS W. BAUMGARTE PHYSICAL REVIEW D62 024018
Note that the integral extends over all space.

D. Constructing equal-mass binary black holes
in quasicircular orbit

We now specialize to equal mass black holes withM
[M15M2. In the center-of-mass frame of the binary sy
tem, we have

P[P152P2 . ~18!

Binaries in quasicircular orbit should furthermore satis
P"C50, where we have defined

C[C12C2 . ~19!

Without loss of generality, we can then takeC to be aligned
with thez-axis,P to be aligned with thex-axis, and place the
origin of the Cartesian coordinate system at the center
tween the two black holes.

The problem has now been reduced to a thr
dimensional parameter space with the free parametersM,
C[iCi and P[iPi . For every configuration, we comput
several physical quantities. We determine the total AD
massE from Eq. ~17! and the total angular momentumJ
[Jy5PC from Eq.~11!. Since we have restricted our anal
sis to non-spinning black holes, the mass of each individ
black hole can be identified with the irreducible mass

M5M irr'S A

16p D 1/2

, ~20!

whereA the proper area of the black hole’s apparent horiz
@27#. We now define the effective potential as the bindi
energy

Eb5E22M . ~21!

Lastly, we compute the proper separationl between the two
horizons along the line connecting the centers of the
apparent horizons, which is a very good approximation to
shortest proper separation between the two horizons.

Quasicircular orbits can then be found quite easily~see
@10#! by computing the effective potentialEb as a function of
separationl along a sequence of constant black hole masM
and angular momentumJ and locating turning points

]Eb

] l U
M ,J

50. ~22!

A mimimum corresponds to a stable quasicircular orb
while a maximum corresponds to an unstable orbit. Fo
quasicircular orbit, the binary’s orbital angular velocityV as
measured at infinity can then be determined from

V5
]Eb

]J U
M ,l

~23!

~see@28# for a Newtonian illustration!.
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III. NUMERICAL IMPLEMENTATION

We adopt a finite difference approach to solve Eq.~15! in
Cartesian coordinates. The numerical code is implemente
a parallel, distributed memory environment using DAG
software @29#, and the Laplace operator in Eq.~15! is in-
verted usingPETSCsoftware@30#. We linearize Eq.~15! and
iteratively solve for corrections to approximate solutions u
til convergence to a desired accuracy has been achie
Since the components of the extrinsic curvature~10! are ei-
ther symmetric or antisymmetric across the coordinate pla
x50, y50 andz50, it is sufficient to solve the Hamiltonian
constraint in only one octant.

In addition to verifying second order convergence of o
code, we have performed tests in the linear regime by co
paring with the linear analytic solution for black hole
boosted towards each other@Eq. ~16! in @12# #, and in the
nonlinear regime by comparing with the ‘‘A2B8’’ datase
@17#, for which values of the ADM mass in a three-sheet
manifold structure have been given in Table I of@12#. Note,
however, that those masses have erroneously been calcu
for black hole spins with signs opposite to those given in t
table, ‘‘S1,252S1,2’’ @31#.

Given a solutionc for a set of parametersM, C andP,
we can locate an apparent horizon and determine the b
hole massM from the horizon’s proper area using the alg
rithm described in@32#. This algorithm expresses the loca
tion of a closed surface in terms of symmetric trace-fr
tensors, and varies the expansion coefficients until an ou
most trapped surface has been found. We found that for
horizons in this problem, which are fairly spherical and on
very mildly deformed, an expansion up to orderl 54 is ad-
equate.

Before constructing sequences of constant black h
massM, it is convenient to rescale all variables with respe
to that desired value of the black hole massM. We introduce
the sum of the black hole masses

m[M11M252M ~24!

and the reduced mass

m[
M1M2

M11M2
5

M

2
, ~25!

and define the dimensionless parametersM̄[M/m, C̄

[C/m andP̄[P/m. We also rescale the angular momentu
and angular velocity asJ̄[J/mm andV̄[mV, and identify
the dimensionless effective potential with the rescaled bi
ing energyĒb[Eb /m.

Sequences of constantJ̄ can now be constructed by se
ting P̄5 J̄/C̄ for a set of different values ofC̄, and by iter-
ating overM̄ until the ~dimensionless! numerical value of
the black hole massM̄[Mnum/M has converged to unity
within a desired accuracy for eachC̄ @33#.

For typical cases of interest, the difference between
ADM mass E and the sum of the black hole massesm is
quite small. According to Eq.~21!, the binding energy is
8-4
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INNERMOST STABLE CIRCULAR ORBIT OF BINARY . . . PHYSICAL REVIEW D62 024018
therefore much smaller than those masses, and its rela
numerical error much larger. In order to reliably locate
minimum in the binding energy, we therefore have to det
mine the masses to very high accuracy~cf. @10#!. Moreover,
numerous models have to be calculated to construct a s
cient number of sequences over a sufficient range of sep
tions, which is only affordable for a fairly moderate max
mum grid size. For a uniform, cartesian grid of a given si
a compromise then has to be found between extending
computational grid to large enough distances and sufficie
resolving the individual black holes.

The location of the outer boundary of the computatio
grid affects the results through the Robin boundary condit
on u, which is correct only asymptotically, and the ener
integral ~17!, which should extend over all space. The lat
effect can be improved by extending the energy integral
yond the numerical grid, wherea and b can be evaluated
analytically, and whereu can be estimated from its value o
the surface of the computational grid and its 1/r falloff. In
the top panel of Fig. 1, we show the binding energy
different locations of the outer boundaryZ̄out[Zout/m for a
typical configuration of interest (C̄52.5, J̄53.0) with a
fixed grid resolutionh̄[h/m50.03125. For all calculations
presented in this paper we useX̄out5Ȳout5Z̄out/2. For the
dashed line, only contributions to the ADM mass from insi
the computational grid have been taken into account, and
the solid line we have expanded the volume for the ene
integral by a factor of six in each dimension. Obviously, t
latter converges much more rapidly and yields a more ac
rate value for all locations of the outer boundary.

The resolution of the individual black holes affects t
accuracy with which their apparent horizons can be loca
and hence the accuracy of their massesM̄ . The effect of the
resolution on the binding energy is demonstrated in the b
tom panel of Fig. 1, where we showĒb for different grid
resolutions for the same configuration, this time with t

FIG. 1. The binding energyĒb for C̄52.5 andJ̄53.0 for dif-

ferent locations of the outer boundaryZ̄out ~at constant grid resolu

tion h̄50.03125, top panel! and different grid resolutionsh̄ ~at con-

stant outer boundaryZ̄out56, bottom panel!. The dashed line only
includes contributions to the ADM mass from inside the compu
tional grid, and the solid line denotes the corrected value~see text!.
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outer boundary fixed atZ̄out56.
From Fig. 1, we find that the binding energyĒb can be

determined to within at most a few percent error forZ̄out

56 and h̄50.03125, corresponding to a numerical grid
size 963963192. The iteration to construct one model th
takes approximately 3 CPU hours on the NCSA Origin20
which makes an extensive survey of parameter space aff
able. We use these grid specifications for all results prese
in the following section.

IV. RESULTS

In Fig. 2, we show contour plots of the conformal factorc

for a configuration close to the ISCO (C̄52.25 and J̄
52.95). The apparent horizons, marked by the thick das
lines, are dragged along by the black holes and lag slig
behind in their counter-clockwise orbit. This effect has be
discussed for single boosted black holes in@34#. Note that we
compute the proper separationl̄ [ l /m between the horizons
along the line connecting the centers of the apparent h
zons. This is a coordinate-dependent quantity, but a v
good approximation to the~coordinate-independent! shortest
proper separation between the horizons.

We now construct sequences of constant angular mom
tum for various values ofJ̄, and plot the effective potentia
Ēb along these sequences as a function ofl̄ in Fig. 3. A
minimum in the effective potential corresponds to a sta
quasicircular orbit. The bold line connecting these minima
Fig. 3 represents a sequence of quasicircular orbits. This
quence terminates at the ISCO, where the adiabatic, quas
cular inspiral of the two black holes is expected to chan
into a rapid plunge and merger@2#. Since this transition
leaves a characteristic signature in the gravitational wave
nal, the knowledge of the location and frequency of t
ISCO are of great importance for future observations w

-

FIG. 2. Contours of the conformal factorc for a configuration

close to the innermost stable circular orbit (C̄52.25 andJ̄52.95).
The contours~solid lines! logarithmically span the intervalc51
and c59.2. Note that the apparent horizons, marked by the th
dashed lines, are not concentric with the contours of the confor
factor. Instead, they are dragged along by the black holes and
slightly behind in their~counter-clockwise! orbit.
8-5
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THOMAS W. BAUMGARTE PHYSICAL REVIEW D62 024018
the new generation of gravitational wave detectors.
In Table I, we list our results for the physical paramete

of the ISCO~top line! and compare with the results of Coo
@10# ~bottom line!. We tabulate the proper separation b
tween the horizonsl̄ , the binding energyĒb , the angular
momentumJ̄, and the angular velocityV̄ as well as the the
linear momentum of each black holeP/a and the coordinate
separationC/a, where a is the ~coordinate! radius of the
black holes. The latter is not well-defined in our calculatio
but since the black holes are nearly spherical it is very r
sonable to estimate an average radius from thel 50 mono-
pole term in the multipole expansion for the horizon.

We conclude that all quantities agree fairly well wi
those of Cook@10# within our estimated numerical error of
few percent. As the most significant deviation, we find th
in our calculation the binary is slightly more tightly bound
the ISCO, and correspondingly has a slightly larger angu
velocity. However, even these quantities differ by less th
;5%, which may be caused by numerical effects. We c
clude that the choice of the underlying manifold structure
a very small effect on the location of the ISCO.

In Table II we compare the binding energy, the angu
momentum and the angular velocity at the ISCO from va
ous different calculations. For a test particle orbiting
Schwarzschild black hole, the ISCO can be located ana
cally, which yields Ēb5A8/921;20.0572, J̄52A3
;3.464, and V̄51/63/2;0.0680. Clark and Eardley@5#

FIG. 3. The effective potentialĒb as a function of proper sepa

ration l̄ for the following values of the angular momentumJ̄: 2.9,
2.92, 2.94, 2.95, 2.96, 2.97, 2.98, 3.00, 3.02, 3.06, 3.10, 3.15, 3
and 3.25~from bottom to top!. Quasicircular orbits correspond t
minima in the effective potential. The bold line connects the
minima and represents a sequence of quasicircular orbits. Thi
quence terminates at the innermost stable circular orbit.

TABLE I. Comparison of our results for the innermost stab
circular orbit ~top line! with those of Cook@10# ~bottom line!.

l̄ Ēb J̄ V̄ P/a C/a

4.8 20.092 2.95 0.18 1.7 5.9
4.880 20.09030 2.976 0.172 1.685 5.91
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adopted a first order post-Newtonian argument to appro
mately estimate the location of the ISCO. We list their valu
for nonrotating neutron stars. Blackburn and Detweiler@6#
adopted a variational principle and assumed a periodic s
tion to Einstein’s equations. At the ISCO, for which the a
proximations of this approach fail, they find extreme
tightly bound binaries. Kidder, Will and Wiseman@7#
adopted a second order post-Newtonian approximation
gether with a ‘‘hybrid’’ approach and found an extreme
weakly bound ISCO. However, several authors have c
doubt on the robustness and consistency of the hybrid
proach@35,8#. Baumgarteet al. @11# constructed fully rela-
tivistic models of corotating binary neutron star in quasieq
librium, albeit assuming conformal flatness, and found t
the ISCO depends on the compaction of the neutron star
Table I we list their results forn51 polytropes of compac-
tion M /R50.2, whereM and R are the mass-energy an
areal radius which the stars would have in isolation. Naiv
extrapolating their results toM /R50.5 yields values which
are very similar to our result for binary black holes. Damo
Iyer and Sathyaprakash@8# combined a second order pos
Newtonian approximation with a Pade´ approximation, which
yields a slightly more tightly bound ISCO than that for
test-particle orbiting a Schwarzschild black hole. A simil
result is found by Buonanno and Damour, who combine
second order post-Newtonian approximation with
effective-one-body method@9,3#.

V. SUMMARY AND DISCUSSION

Since an accurate knowledge of the ISCO is very imp
tant for possible future gravitational wave observations, i
very unsettling that different approaches to computing
ISCO lead to very different results~compare Table II!. One

0,

e
e-

TABLE II. Comparison of the binding energyĒb , the angular

momengumJ̄ and the angular velocityV̄ for the innermost stable
circular orbit from various different calculations: a test particle o
biting a Schwarzschild black hole, Clark and Eardley~CE! @5#,
Blackburn and Detweiler~BD! @6#, Kidder, Will and Wiseman
~KWW! @7#, Cook @10#, Baumgarteet al. ~BCSST! @11#, Damour,
Iyer and Sathyaprakash~DIS! @8#, Buonanno and Damour~BD! @9#,
and the results from this paper. The results of Baumgarteet al. @11#
are for ann51 polytrope binary of compactionM /R50.2. Naively
extrapolating toM /R50.5 yields values very close to our resul
for binary black holes.

Reference Ēb J̄ V̄

Schwarzschild 20.0572 3.464 0.068
CE @5# 20.1 3.3
BD @6# 20.65 0.85 2
KWW @7# 20.0378 3.83 0.0605
Cook @10# 20.09030 2.976 0.172
BCSST@11# 20.048 3.9 0.06
DIS @8# 20.0653 0.0885
BD @9# 20.06005 3.40 0.0734
This work 20.092 2.95 0.18
8-6
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of these approaches, namely constructing binary black h
solutions to the constraint equations of general relativity,
volveschoosingthe background geometry and topology, a
it would be very desirable to know how much the resu
depend on these choices.

In this paper, we introduce a new method to constr
solutions to the constraint equations of general relativity
scribing binary black holes in quasicircular orbit. We com
bine the approaches of Cook@10# and Brandt and Bru¨gmann
@12# to construct binary black holes in a three-sheeted m
fold structure, as opposed to the two-sheeted topology in
conformal-imaging approach adopted by Cook@10#. We lo-
cate the ISCO and find that its physical parameters are
similar to those found by Cook@10#. Our results confirm
those earlier results and imply that the underlying manif
structure only has a very small effect on the ISCO. The la
is perhaps not entirely surprising, since it reflects the fact
the strength of the imaged poles in the conformal-imag
approach is smaller than the strength of the poles themse
@20#.

Our new approach is considerably simpler than
conformal-imaging approach of Cook@10#. The analytic so-
lution to the momentum constraint simplifies because
inversion-symmetric solutions have to be constructed,
the numerical solution to the Hamiltonian constraint simp
fies because we can adopt the ‘‘puncture’’ method of Bra
and Brügmann@12#. In particular, we can solve the Hami
lid
iv-

a
rly

m

.

ro
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tonian constraint in cartesian coordinates onR3 without hav-
ing to impose interior boundary conditions. One disadva
tage of our approach is that the apparent horizons have t
located numerically, which we do with the algorithm deve
oped in@32#.

In this paper, we follow Cook@10# and choose a confor
mally flat background metric. Accordingly, we cannot a
dress the dependence of the ISCO on the choice of the b
ground geometry. However, since our new method
significantly simpler than the conformal-imaging approach
may provide a useful framework to relax the assumption
conformal flatness and to construct binary black holes
quasicircular orbit for more general background geometr
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