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General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory
in (1+2) dimensions
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The solutions of the Einstein-Maxwell-Chern-Simons theory are studied in2()1dimensions with the
self-duality condition imposed on the Maxwell field. We give a closed form of the general solution which is
determined by a single function having the physical meaning of the quasilocal angular momentum of the
solution. This function completely determines the geometry of spacetime, also providing the direct computa-
tion of the conserved total mass and angular momentum of the configurations.

PACS numbgs): 04.50+h, 04.20.Jb, 03.50.Kk

(1+2)-dimensional general relativity has attracted con-Here f,g,h,a andE,B are the functions of the radial coor-
siderable attention recentlysee, e.g.[1] and references dinater.
therein. This is explained by two main reasons. First, since Without any loss of generality it will be convenient to
the discovery of the Batos-Teitelboim-Zanelli(BTZ) absorb the metric functiog(r) by the simple redefinition of
black hole solution§2], three-dimensional gravity became a the radial coordinate:
helpful laboratory for the study of geometrical, statistical,
and thermodynamics properties of black holes. Second, the _ 1_
guantization of these models may give new insight into the p—f g(rydr  (hence & =dp). ®)
general quantum gravity problem.

A number of generalizations of BTZ solution to the caseFrom now on, the derivatives with regard to new coordinate
of nontrivial electromagnetic field source were developede Will be denoted by a prime.
previously[4—7]. The aim of our present paper is to give a After all these preliminaries, the Einstein field equations
new general analysis of the self-dual Einstein-Maxwell soluread explicitly
tions in three dimensions. 1

The Lagrangian 3-form _ 5,3' — By=—EB, &

1 1 M
L=-R*1-\*1—-sFA*F—SAAF (1)
2 2 2 , 1, 1 ., .,
v 4y +Z/3 +)\=—§(E +B9), (8)
contains the Einstein-Hilbert term, the cosmological constant
\, and the standard Maxwell fiel=dA Lagrangian along 3 1
with the Chern-Simons term with the coupling constant a'+a?— — B2+ N==(E2+B?), 9)
[3]. Variation ofL with respect to the coframe field* and 4 2
the electromagnetic potentidl yields the system of field

equations: 1 1
a —ay— Z,BZ—)\=§(E2—BZ), (10
Grp0P+\*9,=3,, 2
and this system is supplemented by theodified Maxwell
d*F+uF=0. () equations
Heres =3[ (e,JF)/\*F—F/\e,|*F] is the Maxwell field ~B'—aB+BE+uE=0 (11)
energy-momentum 2-form, ar@d,; is the Einstein tensor. ’
In the study of the “spherically” symmetric solutions, we —E'—yE+ uB=0, (12)
choose the local coordinates, i, ) and make the general
ansatz for the coframe 1-form, Here we introduced the functions
90=fdt, 9'=gdr, I*=h(dg+adt), (4 £ a'h hY
==, B=—F, y=—. 13
and, for the Maxwell field, Tt P [ (13
F=E3°A 31+ BI N2 (5)  which actually describe the Levi-Civita connection coeffi-

cients. The remarkable feature is that the complete Einstein-
Maxwell system(7)—(12) involves no metric functions§i.e.,
*On leave from Department of Theoretical Physics, Moscow Statef,g,h,a), but only the connection combinationsg, vy.
University, 117234 Moscow, Russia Let us assume “self-duality” of the electromagnetic field:
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E=kB, with  k?=1. (14) treat the cases of standard Maxwell theory with-0, and
the Maxwell-Chern-Simons witlx# 0 simultaneously.
Substituting this into Eq€11) (12) and(10), we find that the It remains to integrate the equations for the metric func-
two unknown functions are expressed in terms of the thirdtions (13). This is straightforward, and using E@1) in Eq.
provided thatE #0: (15), we find
—_f o712
a:;BH’l, f=fge' Q774 (29
h=he' *Q2 (25)
k -1
a= h—OQ —ap. (26)

Here we denoté™1:=+/—\. L
Taking into account the algebraic relatiofis}) and(15), ~ For completeness, the magnetic field reads
we are left with two essential equations for determining the ,

functions 8 and B. Explicitly, the Eqs.(7) and (12) are re- 52:(’;(9—2"109—1. (27)
duced to 2
B’ —kB2+21~13=2kB?, (16) Heref,,hy,ay are integration constants.
The first main result which we learned in our study, is that
(B?)’ —kBB2+ 2| ~1B2=2kuB2. (17) a general “spherically” symmetrigrotating, for nontrivial
a) solution

This system of nonlinear coupled equations is simplified
with the help of the substitution ds®= = (9% + (917 + (9 (28)
K o of the Einstein-Maxwell(with or without Chern-Simons
_ﬂ' (18  term) field equations is always represented solely in terms
20 ¢ the functione.
Because of such an important role playeddayit would
be interesting to find out its physical meaning. The latter is
revealed in the analysis of the quasilocal mass and angular
(19) momentum which characterize our general solution.
We refer the reader 18] for a comprehensive discussion
p of the conserved quantities for gravitating systems within the
Y +(¢;_2| —1) w+k=0. (200  framework of Hamiltonian formulation of general relativity
¢ theory. As a first step, let us use the coordinate freedom and
replacep by a new radial coordinate defined by

p=r. B=

which yields for the new functiong and w the linear equa-
tions

(,D”:Zk/.b QD/,

Multiplying Eq. (20) by ¢e—2l"p, we easily obtain the

general solution r=h(p). (29
kO o - Then a nontrivial metric functiorg will reappear in the
w=——7 with Q==c0—j dpe(p)e 2 7. coframe(4) [and hence in the metric E§28)]. Using Eq.
ve 21) (25) we find explicitly
. . . d hg \7*
Note that in fact it is not necessary to know the explicit form g= d_[r): ( [~y —2—?(p (30

of ¢ when solving Eq(20). At the same time, of course, Eq.
(19) is straightforwardly integrated. Depending an it ad-

) . Now we can write the quasilocal angular momentum at a
mits two solutions

distancer, which reads

¢=p+tpo when u=0, (22 ] g*1r3da
j(r)= fodr’ (31

e=1+uye?** when u#0. (23
. . . . in our notations. Using Eq¥24)—(26) and (29), (30), we
Herecg,po,Uo are integration constants. It is worthwhile to ¢4
note that an overall constant factor is irrelevant {orbe-
cause this function appears everywhere only through the ra- j(r):khg ®. (32
tio (18).
Quite remarkably, however, we will not need the explicit Clearly, one should invert Eq29) and usep=p(r) in Eq.
form of ¢ untill the very end of our analysis. Such a formu- (32), or alternatively, one can consider the angular momen-
lation is extremely convenient since it makes it possible taum j as a function of.
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The quasilocal energy is given, in our notations, by the In particular, one can immediately verify that the limiting
difference valueQ|,_... is equal either infinity orc,, depending on the
values ofu andl. Consequently, the integration constagt
E(N=go'~97 "% (83)  should be equal either 0, &rff,/hyc,, providing the required
i ) o asymptotic vanishing of the metric functios(r). Corre-
where the first term describes the contribution of the baCkSpondineg, one finds that the quasilocal masganishes for
ground “empty” spacetime. The latter, as usually, is givenmany configurations.
by go *=1""r. Making use of Eq(30), we obtain explicitly The quasilocal angular momentujtr) [or the function
5 ¢(r)] diverges, in general, for—~. However, the direct
E(r)= _0902 Lj(r) (34) analysis of Eqs(19)—(21) shows that] is finite for all the
2r 2r ' solutions withku<0. Actually, there are two large classes
) ) ) ) _ of such configurationskx.<0,1 =0, thenJ=kh§ and M
Finally, the quasilocal mass is determined by the eXPression g andk . <0,1>0, thenJ=kh§ andM = f4h /. IMpos-

m(r)=2fE(r)—ja. (35 ing the standard asymptotic conditioifg?, ...=1, one
finds ap=kl %, and thus the solutions of the class are all
Substituting Eqs(24), (26), (32), and(34), we arrive at the characterized(irrespectively of the value of the Chern-
result Simons coupling constapt) by M?=172J2. This class also
contains the extremal BTZ solution, as a particular case
m(r)=aoj(r). (36)  when the electromagnetic field is absefithe general non-
extremal BTZ solution cannot be recovered because of the

We thus have demonstrated that the functipnwhich 5 sepraic relationg15) which necessarily hold for the self-

determines the spacetime geometry via Eg84) and (24)— dual electromagnetic fielt.

(26), is also determiningill the quasilocal quantities of the g\, marizing, we have obtained a general solution of the
gravitating system: its energy, mass, and angular rnO”.1e,munf£'instein-MaxweII-Chern-Simons theory in €12) dimen-
They turn out to be proportional to each other, describing gjqng \which covers all the particular cases studied previ-
sort of extremal configuration. Becausc_a of the relgﬂﬁﬁ), ously. The form of the solutiof24)—(27), (21) is transparent
one can say that the angglar m°memm“) unde_rlles th.e and easy to analyze: everything is determined by a single
construction of self-dual Einstein-Maxwell equations: giveng,«tion o(p) which has a clear physical meaning as the
thls_bfu(;ugnon, the metric an?_elegtromagdnetlc field are Ole'quasilocal angular momentum of the gravitational field con-
scr he y IEqs(24|1)—(27) with j(r) inserted. . Hfiguration. The computation of the total mass and angular
The total angular momentum and mass are defined by t fomentum is straightforward and it involves only the analy-

limits J:=j|,_.. and M:=m|,_.., respectively. In order to ; - :
. - < - . . sis of the asymptotic behavior af.
find these quantities, one does not need to obtain the explicit ymp of

exact form of the inverse coordinate transformatiofr) The authors are grateful to TUBITAK for the support of

from Eqg.(29). It is sufficient to investigate the approximate this research. Y.N.O. is also grateful to the Department of
behavior ofp(r) and Q(r) for large values ofr, which is  Physics, Middle East Technical University, for the warm

always clear directly from the inspection of Eq$9)—(21). hospitality.
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