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We carefully investigate the gravitational equations of the brane world, in which all the matter forces except
gravity are confined on the 3-brane in a 5-dimensional spacetime withZ2 symmetry. We derive the effective
gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy
limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the
brane with a negative tension is an antigravity world and hence should be excluded from the physical point of
view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity.
In this latter case, if the bulk spacetime is exactly anti–de Sitter spacetime, generically the matter on the brane
is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti–de
Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation
between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective
Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well
defined, such as in the case of the matter dominated by the potential energy of the scalar field.

PACS number~s!: 04.50.1h, 98.80.Cq
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Recent progress in superstring theory tells us that we
living in 11 dimensions@1#, and different string theories ar
connected with each other via dualities. Among string th
ries, the 10-dimensionalE83E8 heterotic string theory is a
strong candidate for our real world because the theory m
contain the standard model. Recently Horava and Wit
showed that the 10-dimensionalE83E8 heterotic string is
related to an 11-dimensional theory on the orbifo
R103S1/Z2 @2#. Therein the standard model particles a
confined to 4-dimensional spacetime. On the other ha
gravitons propagate in full spacetime.

This situation can be simplified to a 5-dimensional pro
lem where matter fields are confined to 4-dimensional spa
time while gravity acts in 5 dimensions. In this catego
much work has been done. Among them, the pionee
work in a spacetime with one extra dimension was done
Randall and Sundrum@3–5# where our brane is identical to
domain wall in 5-dimensional anti–de Sitter spacetime.
their first paper~RS1! @3#, they proposed a mechanism
solve the hierarchy problem by a small extra dimension
their second paper~RS2! @4#, the brane world with a positive
tension was investigated. Then a nonperturbative aspec
the theory was investigated@6#. The final fate of gravitationa
collapse was discussed in the brane world picture@7#. The
inflation solution has been discovered@8–10#. In these treat-
ments, however, the contribution from matter excitations
0556-2821/2000/62~2!/024012~6!/$15.00 62 0240
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not been seriously considered. Such work is partially p
formed in a cosmological context linked to the convention
Friedman equation@11–14#. The cosmological solution asso
ciated with the heterotic string theory also has been c
structed@15#. We mention work on the brane world mot
vated by the hierarchy problem. Before the work of Rand
and Sundrum, large extra dimensions were proposed to s
the hierarchy problem@16#. The related cosmology also ha
been actively investigated@17#.

In this paper, we derive the effective Einstein equatio
on the 3-brane. For simplicity the bulk spacetime is assum
to have 5 dimensions. In the beginning we do not assu
any conditions on the bulk spacetime. Later, we assume
Z2 symmetry and confinement of the matter energy mom
tum tensor on the brane, in accordance with the brane w
scenario based on the Horava and Witten theory@2#. The
notation basically follows Wald’s text@18#.

In the brane world scenario, our 4-dimensional world
described by a domain wall~3-brane! (M ,qmn) in
5-dimensional spacetime (V,gmn). We denote the vector uni
normal to M by na and the induced metric onM by qmn

5gmn2nmnn . We start with the Gauss equation

(4)Ra
bgd5 (5)Rm

nrsqm
aqb

nqg
rqd

s1Ka
gKbd2Ka

dKbg ,
~1!

and the Codacci equation
©2000 The American Physical Society12-1
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DnKm
n2DmK5 (5)Rrsnsqm

r , ~2!

where the extrinsic curvature ofM is denoted byKmn

5qm
aqn

b¹anb , K5Km
m is its trace, andDm is the covari-

ant differentiation with respect toqmn . Contracting the
Gauss equation~1! on a andg, we find

(4)Rmn5 (5)Rrsqm
rqn

s2 (5)Ra
bgdnaqm

bngqn
d1KKmn

2Km
aKna . ~3!

This readily gives

(4)Gmn5F (5)Rrs2
1

2
grs

(5)RGqm
rqn

s1 (5)Rrsnrnsqmn

1KKmn2Km
rKnr2

1

2
qmn~K22KabKab!2Ẽmn ,

~4!

where

Ẽmn[ (5)Ra
brsnanrqm

bqn
s . ~5!

Using the 5-dimensional Einstein equations,

(5)Rab2
1

2
gab

(5)R5k5
2 Tab , ~6!

where Tmn is the 5-dimensional energy-momentum tens
together with the decomposition of the Riemann tensor i
the Weyl curvature, the Ricci tensor, and the scalar cur
ture,

(5)Rmanb5
2

3
~gm[n

(5)Rb]a2ga[n
(5)Rb]m!2

1

6
gm[ngb]a

(5)R

1 (5)Cmanb , ~7!

we obtain the 4-dimensional equations as

(4)Gmn5
2k5

2

3 FTrsqm
rqn

s1S Trsnrns2
1

4
Tr

rDqmnG1KKmn

2Km
sKns2

1

2
qmn~K22KabKab!2Emn , ~8!

where

Emn[ (5)Ca
brsnanrqm

bqn
s . ~9!

Note thatEmn is traceless. From the Codacci equation~2!
and the 5-dimensional Einstein equations~6!, we find

DnKm
n2DmK5k5

2 Trsnsqm
r . ~10!

So far we have not assumed any particular symmetry
particular form of the energy momentum tensor. From n
on, we take a brane world scenario. For convenience,
choose a coordinatex such that the hypersurfacex50 coin-
cides with the brane world andnmdxm5dx, which implies
02401
,
o
-

or

e

am5nn¹nnm50. ~11!

This is a condition on the coordinate in the direction of t
extra dimension. We assume this choice is possible at lea
the neighborhood of the brane (M ,qmn). In more explicit
terms, we assume the 5-dimensional metric to have the f

ds25dx21qmn dxm dxn. ~12!

Bearing brane world spirit in mind, we assume that t
5-dimensional energy-momentum tensor has the form

Tmn52Lgmn1Smnd~x!, ~13!

where

Smn52lqmn1tmn , ~14!

with tmnnn50. L is the cosmological constant of the bu
spacetime.l andtmn are the vacuum energy and the energ
momentum tensor, respectively, in the brane world. Note t
l is the tension of the brane in 5 dimensions. Properly spe
ing Smn should be evaluated by the variational principle
the 4-dimensional Lagrangian for matter fields because
normal matter except for gravity is assumed to be living o
in thex50 brane. It should be noted that the decomposit
of Smn into lqmn andtmn can be ambiguous, particularly i
cosmological contexts.

The singular behavior in the energy-momentum ten
leads us to the so-called Israel’s junction condition@19#,

@qmn#50,

@Kmn#52k5
2S Smn2

1

3
qmnSD , ~15!

where@X#ª limx→10 X2 limx→20 X5X12X2.
Now we impose theZ2 symmetry on this spacetime, wit

the brane as the fixed point. Interestingly the symme
uniquely determines the extrinsic curvature of the brane
terms of the energy-momentum tensor,

Kmn
1 52Kmn

2 52
1

2
k5

2S Smn2
1

3
qmnSD . ~16!

Hereafter we focus our attention on quantities evaluated
the brane. Because of theZ2 symmetry, we may evaluate
quantities either on the1 or 2 side of the brane. Hence w
omit the indices6 below for brevity.

Substituting Eq.~16! into Eq. ~8!, we obtain the gravita-
tional equations on the 3-brane in the form

(4)Gmn52L4qmn18pGNtmn1k5
4 pmn2Emn , ~17!

where

L45
1

2
k5

2S L1
1

6
k5

2 l2D , ~18!

GN5
k5

4 l

48p
, ~19!
2-2
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THE EINSTEIN EQUATIONS ON THE 3-BRANE WORLD PHYSICAL REVIEW D62 024012
pmn52
1

4
tmatn

a1
1

12
ttmn1

1

8
qmntabtab2

1

24
qmnt2,

~20!

andEmn is the part of the 5-dimensional Weyl tensor defin
in Eq. ~9!. It should be noted thatEmn in the above is the
limiting value atx510 or 20 but not the value exactly on
the brane. This is our main result. It resembles the conv
tional Einstein equations in 4 dimensions. In fact, the E
stein equations can be recovered by taking the limitk5→0
while keepingGN finite. Nevertheless there are some impo
tant differences. As can be easily seen, the existence of N
ton’s gravitational constantGN strongly relies on the pres
ence of the vacuum energyl. In other words, it become
impossible to define Newton’s gravitational constant dur
an era when the distinction between the vacuum energy
the normal matter energy is ambiguous. Furthermore,
would have the wrong sign ofGN if l,0 @12#. The pmn

term, which is quadratic intmn could play a very importan
role, especially in the early universe when the matter ene
scale is high@11–13#.

In addition to these features that have been pointed
previously, Eq.~17! contains a new term,Emn . It is a part of
the 5-dimensional Weyl tensor and carries information of
gravitational field outside the brane. It is nonvanishing if t
bulk spacetime is not purely an anti–de Sitter spacetime
the same time, it is not freely specifiable but is constrain
by the motion of the matter on the brane. Let us show t
feature now. Together with Eq.~16!, Eq. ~10! implies the
conservation law for the matter,

DnKm
n2DmK}Dntm

n50. ~21!

Therefore the contracted Bianchi identitiesDm (4)Gmn50
imply the relation betweenEmn andtmn as

DmEmn5Kab~DnKab2DbKna!

5 1
4 k5

4@tab~Dntab2Dbtna!

1 1
3 ~tmn2qmnt!Dmt#. ~22!

ThusEmn is not freely specifiable but its divergence is co
strained by the matter term. If one further decomposesEmn

into the transverse-traceless part,Emn
TT , and the longitudinal

part,Emn
L , the latter is determined completely by the matt

Hence if theEmn
TT part is absent, the equations will be clos

solely with quantities that reside in the brane. However,
usually the case in the conventional gravity, theEmn

TT part
corresponds to gravitational waves or gravitons in 5 dim
sions, and they will be inevitably excited by matter motio
and their excitations affect matter motions in return. T
implies the effective gravitational equations on the brane
not closed but one must solve the gravitational field in
bulk at the same time in general. Since the derivation
equations that govern the evolution ofEmn

TT is technically
complicated, we defer it to the Appendix.

Let us now estimate the effect of each term on the rig
hand side of Eq.~17!. We setk5

225MG
3 and l5Ml

4 , and
02401
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assumeL5O(k5
2 l2). It should be noted that these do n

have to be Planck scale quantities. One can scale them
MG→ f 2MG and Ml→ f 3Ml , where f is an arbitrary con-
stant, while keeping the gravitational constantGN un-
changed. Nevertheless, here we assumeMG and Ml to be
sufficiently large compared to the characteristic energy sc
of the matter which we denote byM.

The first term on the right-hand side of Eq.~17! is the net
cosmological constant in 4 dimensions. It is assumed
L,0. HenceL4 may take arbitrary value as one may wis
by appropriately specifying the values ofL andl. The sec-
ond term is the contribution from normal matters whi
should satisfy the local energy condition~assuming the de-
composition ofSmn into l andtmn is well defined!. Thepmn

term which is quadratic intmn is expected to be negligible in
the low energy limit. In fact, the ratio of these terms to t
third term is approximately given by

k5
4 upmnu

GNutmnu
;

k5
4 utmatn

a1•••u
GNutmnu

;
M4

Ml
4

. ~23!

We now turn to the Weyl tensor part. First let us consid
the longitudinal partEmn

L . Since it is determined bytmn

through Eq.~22!, we have

uEmn
L u

GNutmnu
;

k5
4 utmatn

a1•••u
GNutmnu

;
M4

Ml
4

. ~24!

This is the same order of magnitude as thepmn term. Sec-
ond, we consider theEmn

TT part. We focus on the effect due t
matter excitations on the brane. Here we borrow the disc
sion of @4# to evaluate the leading order of magnitude of
effect. The gravitational potential between two bodies on
brane is modified via exchange of gravitons living in 5 d
mensions as@4#

V~r !;
GNm1m2

r S 11
1

r 2k2D , ~25!

where r is the distance between the two bodies andk
5k5

2 l/6. Since this effect must be contained in Eq.~17!, it
should appear in theEmn term. Therefore as a conservativ
estimate, we obtain

uEmnu
GNutmnu

;
M2

k2
;

MG
6 M2

Ml
8 . ~26!

Thus Emn is also negligible in the low energy world. It is
however, worth noting that this term is larger than the ter
quadratic intmn . The deviation from the ordinary Einstei
equations in 4 dimensions first appears from gravitatio
excitations in the bulk spacetime. From the above estim
tions we conclude that the effective gravitational equat
~17! on the brane reduce to the 4-dimensional conventio
Einstein gravity,(4)Gmn.2L4qmn18pGNtmn , in the low
2-3
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TETSUYA SHIROMIZU, KEI-ICHI MAEDA, AND MISAO SASAKI PHYSICAL REVIEW D 62 024012
energy limit. The presence of a well-defined cosmologi
constantl is obviously essential here.1

Finally, we note an outcome of the constraint~22!. We
consider the case when the bulk spacetime is pure ant
Sitter spacetime withEmn50 and investigate the conditio
on the matter on the brane. For simplicity, we assume
perfect fluid form for the energy momentum tensor:

tmn5r tmtn1Phmn, ~27!

where hmn5qmn1tmtn. The quadratic termpmn in the
4-dimensional effective gravitational equations~17! then be-
comes

pmn5
1

12
r@r tmtn1~r12P!hmn#. ~28!

The normal conservation lawDntmn50 implies

tmDmr1~r1P!Dmtm50,

~r1P!tnDntm1hmnDnP50. ~29!

If Emn50, the 4-dimensional Bianchi identities impl
Dnpmn50, which gives

Dnpmn5
1

6
~r1P!hmnDnr50. ~30!

This means] ir50. Hence an inhomogeneous perfect fluid
rejected.

We briefly summarize the present work. We first deriv
the effective 4-dimensional gravitational equations in 5
mensions, Eq.~8!, without any particular assumptions sp
cific to the brane world scenario. Then based on the br
world scenario, we introduced theZ2 symmetry and assume
that the matter lives only on the brane, and derived
4-dimensional effective gravitational equations on the bra
Eq. ~17!. The equation tells us that a normal gravitation
theory can be obtained on the brane only if the tension
positive, while an RS1-type theory@3# in which the brane has
negative tension is rejected from the physical point of vi
~see also@12# for Friedman cases!. In the case of the bran
with positive tension, the Einstein gravity is recovered in t
low energy limit. Placing the brane in the 5-dimensional e
act anti–de Sitter spacetime imposes a strong condition
the matter in 4 dimensions. In particular, if the mat
energy-momentum tensor has the perfect fluid form, o
spatially homogeneous universes are allowed. Convers
this means that the deviation of the bulk spacetime from
exact anti–de Sitter spacetime is essential to describe
real world with matter fields.

Note added in proof.On the negative tension brane in th
case of two 3-branes, the local description of gravity may
be adequate. For example, it was shown by Garriga

1As we can see from the first term in Eq.~8!, the reduction to the
normal Einstein gravity is also possible with the introduction
nontrivial bulk energy-momentum tensor@20#.
02401
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Tanaka@21# that the antigravity aspect disappears in the l
earized theory of the RS 1 model, though there is a remi
cence of antigravity that the theory is Brans-Dicke theo
with a negative Brans-Dicke parameter (v,23/2). This
apparent discrepancy with our conclusion comes from
Emn term. In the present paper, we assumedEmn is negli-
gible. However, this assumption may be justified or inva
dated if and only if we understand the global~5-dimensional!
behavior ofEmn.
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APPENDIX

We derive the evolution equation ofEmn to make our
system of equations closed. First, we write down the W
tensor formulas. Then-dimensional Riemann tensor is wri
ten in terms of the Weyl and Ricci tensors as

(n)Rabmn5 (n)Cabmn1
2

n22
~ (n)Ra[mgn]b2 (n)Rb[mgn]a!

2
2

~n21!~n22!
(n)R ga[mgn]b . ~A1!

We decompose the Weyl tensor into the ‘‘electric’’ an
‘‘magnetic’’ parts:

Emn[ (n)Cmanbnanb, ~A2!

and

Bmna[qm
r qn

s (n)Crsabnb. ~A3!

Bmna andEmn have the symmetry,

Babm52Bbam , B[abm]50, Ba
ba50.

Eab5Eba , Ea
a50. ~A4!

The algebraic degrees of freedom are

(n)Rabmn•••
n2~n221!

12
,

(n)Cabmn•••
~n23!n~n11!~n12!

12
,f
2-4
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(n)Rmn•••
n~n11!

2
,

(n21)Cabmn•••
~n24!~n21!n~n11!

12
,

Babm•••
~n23!~n21!~n11!

3
, Eab•••

~n22!~n11!

2
.

~A5!

The n-dimensional Weyl tensor can be written in term
of (n21)Cabmn , Eab , Bmna , and the extrinsic curvature
Kmn ,

(n)Cabmn5 (n21)Cabmn12Bab[mnn]12Bmn[anb]

1~2Ea[mnn]nb22Eb[mnn]na!

2
1

n23
~2Ea[mqn]b22Eb[mqn]a!2 f abmn

1
2

n23
~qa[m f n]b2qb[m f n]a!

2
2

~n22!~n23!
f s

sqa[mqn]b , ~A6!

whereqmn5gmn2nmnn and

f abmn[KamKbn2KanKbm ,

f mn[ f m
s

ns5 f s
msn5KKmn2KmsKs

n

5 f nm ,

f m
m5 f mn

mn5K22KmnKmn . ~A7!

From now on we setn55 and derive the evolution equa
tions of Emn from the 5-dimensional Bianchi identities. W
assumeam5na¹anm50. For convenience, we defineẼmn

and B̃mna from the Riemann tensor:

Ẽmn[ (5)Rmanbnanb52£nKmn1KmaKn
a , ~A8!

B̃mna[qm
bqn

s (5)Rbsarnr52D [mKn]a . ~A9!

These are related toEmn andBmna as

Emn5Ẽmn2
1

3
qmn

(5)Rabnanb2
1

3
qm

aqn
b (5)Rab1

1

12
qmn

(5)R

52
1

3 S (4)Rmn2
1

4
qmn

(4)RD2
2

3
£nS Kmn2

1

4
qmnK D

1
1

3
KmaKn

a1
1

4
qmnS KabKab2

1

3
K2D , ~A10!
02401
Bmna5B̃mna1
2

3
~DbK [m

b 2D [mK !qn]
a

52D [mKn]a1
2

3
~DbK [m

b 2D [mK !qn]
a . ~A11!

The 5-dimensional Bianchi identities are

¹ [m
(5)Rna]bs50, ~A12!

from which we obtain the following four sets of identities

D [mB̃na]
b1K [m

s (4)Rna]s
b50, ~A13!

£nB̃mna12D [mẼn]a2Ka
sB̃mns12B̃as[mKn]

s 50, ~A14!

£n
(4)Rmnab12 (4)Rmns[aKb]

s 12D [mB̃uabun]50, ~A15!

D [m
(4)Rna]bs50. ~A16!

From Eq. ~A11! and the Israel’s junction condition, w
obtain

@B̃mna#52D [m@Kn]a#522k5
2D [mS tn]a2

1

3
qn]at D .

~A17!

Thus theZ2 symmetry uniquely determines the value
Bmna on the brane as

B̃mna
1 52B̃mna

2 52k5
2D [mS tn]a2

1

3
qn]rt D ,

Bmna
1 52D [mKn]a

1 1
2

3
~DbK [m

1b2D [mK1!qn]a

5B̃mna
1 . ~A18!

These equations give the boundary conditions on the br
when one solves the evolution ofEmn in 5 dimensions.

The equations that govern the evolution ofEmn in the bulk
~i.e., in the spacetime region away from the brane! are ob-
tained as follows. Using the 5-dimensional Einstein eq
tions ~6!, Eq. ~A14! yields

£nBmna522D [mEn]a1Ka
sBmns22Bas[mKn]

s ,
~A19!

in the bulk. Also, using Eqs.~6! and ~8!, Eq. ~A15! gives

£nEab5DmBm(ab)1
1

6
k5

2L~Kab2qabK !1Kmn (4)Rmanb

13K (a
m Eb)m2KEab1~KamKbn2KabKmn!Kmn,

~A20!

in the bulk. Together with the 4-dimensional Einstein equ
tions ~8! in the bulk, Eqs.~A19! and ~A20! form a closed
system of equations. In particular, one may easily recogn
the wavelike character of the transverse part ofEmn , which
propagates as gravitons in 5 dimensions.
2-5
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