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We carefully investigate the gravitational equations of the brane world, in which all the matter forces except
gravity are confined on the 3-brane in a 5-dimensional spacetimeZyigymmetry. We derive the effective
gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy
limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the
brane with a negative tension is an antigravity world and hence should be excluded from the physical point of
view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity.
In this latter case, if the bulk spacetime is exactly anti—de Sitter spacetime, generically the matter on the brane
is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti—de
Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation
between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective
Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well
defined, such as in the case of the matter dominated by the potential energy of the scalar field.

PACS numbes): 04.50+h, 98.80.Cq

Recent progress in superstring theory tells us that we areot been seriously considered. Such work is partially per-
living in 11 dimensiong 1], and different string theories are formed in a cosmological context linked to the conventional
connected with each other via dualities. Among string theoFriedman equatiofil1-14. The cosmological solution asso-
ries, the 10-dimensiondig X Eg heterotic string theory is a ciated with the heterotic string theory also has been con-
strong candidate for our real world because the theory magtructed[15]. We mention work on the brane world moti-
contain the standard model. Recently Horava and Witteryated by the hierarchy problem. Before the work of Randall
showed that the 10-dimensionBkLx Eg heterotic string is @nd Sundrum, large extra dimensions were proposed to solve
related to an 11-dimensional theory on the orbifolgthe hierarchy probleni16]. The related cosmology also has

R1%% SY/Z, [2]. Therein the standard model particles areP€en actively investigated7].

confined to 4-dimensional spacetime. On the other handdn I&éhéfbfgﬁgr'Fvgres?gn}fgnthteh:ftf,iﬁ'\f aEclgtsiﬁclanisegg;tJ%nesd
gravitons propagate in full spacetime. ) phicity P

N L : . to have 5 dimensions. In the beginning we do not assume
This situation can be simplified to a 5-dimensional prob-any conditions on the bulk spacetime. Later, we assume the
lem where matter fields are confined to 4-dimensional spacez-2 symmetry and confinement of the r.natter ’energy momen-
time while gravity acts in 5 dimensions. In this catedory yym tensor on the brane, in accordance with the brane world
much work has been done. Among them, the pioneering.onario based on the Horava and Witten thd@ly The
work in a spacetime with one extra dimension was done by, iation basically follows Wald’s textL8].

Randall and Sundruri8—5] where our brane is identical toa | the brane world scenario, our 4-dimensional world is
domain wall in 5-dimensional anti—de Sitter spacetime. INgescribed by a domain wall(3-brane (M,q,,) in
their first paper(RSD [3], they proposed a mechanism 10 5.dimensional spacetime/(g,,,). We denote the vector unit
solve the hierarchy problem by a small extra dimension. Imormal toM by n® and the induced metric oM by Uy
their second papdRS2 [4], the brane world with a positive =g,,—N,n,. We start with the Gauss equation

tension was investigated. Then a nonperturbative aspect of

the theory was investigat¢@]. The final fate of gravitational (YR, =GR, q,%q,"0, q,"+K* K g5— K K.,
collapse was discussed in the brane world pic{aie The (1)
inflation solution has been discovergg+10Q. In these treat-

ments, however, the contribution from matter excitations hagnd the Codacci equation
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v _ (5 o
D,K,’-D,K=0®R,n"q,", 2)

where the extrinsic curvature dfl is denoted byK,,
=qH“qVBVanﬁ, K=K, " is its trace, and , is the covari-
ant differentiation with respect ta,,. Contracting the
Gauss equatiofil) on « and vy, we find

(4)RMV: (S)Rpoqp,pqvg_ (S)Raﬁyﬁnaq,u,ﬁn’yqvg_{— KKMV
—K, K, . ()]

This readily gives

1
(4)G/.LV: { (S)Rpo_ing(S)R} ququ_l_ (S)Rponpna—qﬂv

+KK,, =K, K= 50, (K2=KPK ) —E ..,
(4)
where
E,.=©R,,n00,%q,". (5
Using the 5-dimensional Einstein equations,
(S)Raﬁ_ EQQB(S)R: K% Ta;;, (6)
2
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a*=n"V n*=0. (11

This is a condition on the coordinate in the direction of the
extra dimension. We assume this choice is possible at least in
the neighborhood of the branev(q,,). In more explicit
terms, we assume the 5-dimensional metric to have the form

ds?=dx?+q,, dx* dx". (12)

Bearing brane world spirit in mind, we assume that the
5-dimensional energy-momentum tensor has the form

TMV:_AgMV+S/.LV5(X)1 (13)

where

SMV:_)\qMV+TMV’ (14)

with 7,,n"=0. A is the cosmological constant of the bulk
spacetime\ andr,, are the vacuum energy and the energy-
momentum tensor, respectively, in the brane world. Note that
\ is the tension of the brane in 5 dimensions. Properly speak-
ing S,, should be evaluated by the variational principle of
the 4-dimensional Lagrangian for matter fields because the
normal matter except for gravity is assumed to be living only
in the y=0 brane. It should be noted that the decomposition
of S,, into Aq,, and 7,, can be ambiguous, particularly in
cosmological contexts.

The singular behavior in the energy-momentum tensor
leads us to the so-called Israel’s junction conditi@@],

whereT,, is the 5-dimensional energy-momentum tensor,

together with the decomposition of the Riemann tensor into

[d.,]=0,

the Weyl curvature, the Ricci tensor, and the scalar curva-

ture,

2 1

5 _ 5 5 5

( )RMaVﬁ_§(gM[V( Rgja—Gaps! )Rﬁ]M)_ggM[VgB]a( R
+ (S)C,uavﬁn (7)

we obtain the 4-dimensional equations as

(4) _2K§ Py O PR 1 p
G,.= 3 T,00,d," +| Ty _ZT o] Aur| TKK,,
o 1 2 ap
_KM KV(r_quu/(K —K KC(B)_E/LV' (8)
where

E,qu (S)Caﬁprrnanpq/LBQV‘T . (9)

Note thatE,, is traceless. From the Codacci equati@
and the 5-dimensional Einstein equatigfg we find

DK, —D,K=«&T,,n"q,”. (10)

So far we have not assumed any particular symmetry nor
particular form of the energy momentum tensor. From now
on, we take a brane world scenario. For convenience, we

choose a coordinate such that the hypersurfage=0 coin-
cides with the brane world and,dx*=dy, which implies

1
[K,U,I/]:_Ké< S,uv_ §q,uvs)v (15)
where[X]:=lim, _ o X—lim _ _oX=X"—X".

Now we impose th&, symmetry on this spacetime, with
the brane as the fixed point. Interestingly the symmetry
uniquely determines the extrinsic curvature of the brane in
terms of the energy-momentum tensor,

N _ 1, 1
KMV:—KMV:—EKS Suv— §qMS . (16)
Hereafter we focus our attention on quantities evaluated on
the brane. Because of th®, symmetry, we may evaluate
quantities either on the- or — side of the brane. Hence we
omit the indices= below for brevity.

Substituting Eq(16) into Eq. (8), we obtain the gravita-
tional equations on the 3-brane in the form

*G,,=—A0,,+87G\7,,+ kg 7,,—E,,, (17
where
1 1
A4=§K§ A+ gké)\z), (18
Kg)\
NT gy (19
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assumeAzO(Ké)\z). It should be noted that these do not
have to be Planck scale quantities. One can scale them as
Mg—f2Mg and M, —f3M, , wheref is an arbitrary con-
stant, while keeping the gravitational consta@f, un-

andE ,, is the part of the 5-dimensional Weyl tensor definedchanged. Nevertheless, here we assihg and M, to be

in Eq. (9). It should be noted thaE,,, in the above is the sufficiently large compared to the characteristic energy scale
limiting value aty=+0 or —0 but not the value exactly on of the matter which we denote by.

the brane. This is our main result. It resembles the conven- The first term on the right-hand side of H4.7) is the net
tional Einstein equations in 4 dimensions. In fact, the Ein-cosmological constant in 4 dimensions. It is assumed that
stein equations can be recovered by taking the ligit-0 A <0. HenceA, may take arbitrary value as one may wish
while keepingGy, finite. Nevertheless there are some impor-by appropriately specifying the values Afand\. The sec-
tant differences. As can be easily seen, the existence of Nevend term is the contribution from normal matters which
ton’s gravitational constar®, strongly relies on the pres- should satisfy the local energy conditi¢assuming the de-
ence of the vacuum energy. In other words, it becomes composition ofS,, into X andr,, is well defined. Thew,,,
impossible to define Newton’s gravitational constant duringterm which is quadratic im,,, is expected to be negligible in
an era when the distinction between the vacuum energy aritte low energy limit. In fact, the ratio of these terms to the
the normal matter energy is ambiguous. Furthermore, wéhird term is approximately given by

would have the wrong sign oy if A<<0 [12]. The 7,

1
- =T

1 1
2 T

a af 1 2
waTy +1_ZTTMV+ ngVTaﬁT _ﬁql-“’T ,
(20)

wr=

term, which is quadratic irr,,, could play a very important K‘S" E K‘5‘|TWT§+ NV
role, especially in the early universe when the matter energy Gul 7, ~ Gnl 7| ~ - (23
scale is higH11-13. N wr NI py M

In addition to these features that have been pointed out . .
previous|y, Eq(l?) contains a hew ternEluV Cltis a part of We an t.urn to the I}Neyl _tenSO_I‘ Part. First Iet us consider
the 5-dimensional Weyl tensor and carries information of thehe longitudinal partE,,. Since it is determined by,
gravitational field outside the brane. It is nonvanishing if thethrough Eq.(22), we have
bulk spacetime is not purely an anti—de Sitter spacetime. At

the same time, it is not freely specifiable but is constrained |E|Zw Ké‘l%fﬁ ol M4
by the motion of the matter on the brane. Let us show this Gl 7. TG Em ~ - (24)
feature now. Together with Eq16), Eq. (10) implies the NIy NI Mi

conservation law for the matter,
This is the same order of magnitude as thg, term. Sec-

ond, we consider thELI part. We focus on the effect due to
matter excitations on the brane. Here we borrow the discus-
sion of[4] to evaluate the leading order of magnitude of its
effect. The gravitational potential between two bodies on the
brane is modified via exchange of gravitons living in 5 di-

mensions a$4]
1
+ r2k2 !

where r is the distance between the two bodies &nd
= k2 \/6. Since this effect must be contained in Efj7), it
should appear in thg,, term. Therefore as a conservative
estimate, we obtain

D,K,"~D,KxD,r,"=0. (21)

Therefore the contracted Bianchi identiti&"“(*)G,,=0
imply the relation betweek ,, and 7, as

DXE,,=K*(D K,z DsK,,)

4
= %KS[TQB(DVTaﬁ_ D,BTva) Glemz

V(r)~ (29

+%(TMV_qIU,VT)DMT:I' (22)
ThusE,,, is not freely specifiable but its divergence is con-
strained by the matter term. If one further decompdsgs
into the transverse-traceless pzﬁﬂ, and the longitudinal
part, E';“,, the latter is determined completely by the matter.
Hence if theETI part is absent, the equations will be closed
solely with quantities that reside in the brane. However, as
usually the case in the conventional gravity, 6] part
corresponds to gravitational waves or gravitons in 5 dimen-
sions, and they will be inevitably excited by matter motions
and their excitations affect matter motions in return. ThiSThus E,., is also negligible in the low energy world. It is,
implies the effective gravitational equations on the brane ar@owever, worth noting that this term is larger than the terms
not closed but one must solve the gravitational field in thequadratic in7,,. The deviation from the ordinary Einstein
bulk at the same time in general. Since the derivation okquations in 4 dimensions first appears from gravitational

|E,,l M2 MEM?
Kk M

26
GN|T,uv| ( )

equations that govern the evolution &f,) is technically
complicated, we defer it to the Appendix.

excitations in the bulk spacetime. From the above estima-
tions we conclude that the effective gravitational equation

Let us now estimate the effect of each term on the right{17) on the brane reduce to the 4-dimensional conventional

hand side of Eq(17). We setxkg 2=M2 and =M}, and

Einstein gravity!YG,,,~—A,q,,+87Gy7,,, in the low

v
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energy limit. The presence of a well-defined cosmologicalTanaka[21] that the antigravity aspect disappears in the lin-
constanth is obviously essential hefe. earized theory of the RS 1 model, though there is a reminis-

Finally, we note an outcome of the constrai@®). We  cence of antigravity that the theory is Brans-Dicke theory
consider the case when the bulk spacetime is pure anti—deith a negative Brans-Dicke parameten< —3/2). This
Sitter spacetime witle,,,=0 and investigate the condition apparent discrepancy with our conclusion comes from the
on the matter on the brane. For simplicity, we assume th&,, term. In the present paper, we assuntgg, is negli-

perfect fluid form for the energy momentum tensor: gible. However, this assumption may be justified or invali-
dated if and only if we understand the glo§aidimensional

= p T PR, (27) pehavior ofE,,.

where h*”=qg*”+t#t”. The quadratic termz*” in the

4-dimensional effective gravitational equatidi¥) then be- ACKNOWLEDGMENTS
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If E,,=0, the 4-dimensional Bianchi identities imply NO. 09640355M.S.).
D,##"=0, which gives
APPENDIX

1
D,m*"=5(p+P)h*'D,p=0. (30) We derive the evolution equation @&,, to make our
system of equations closed. First, we write down the Weyl
This means?ipzo_ Hence an inhomogeneous perfect fluid istensor formulas. Tha-dimensional Riemann tensor is writ-
rejected. ten in terms of the Weyl and Ricci tensors as
We briefly summarize the present work. We first derived
the effective 4-dimensional gravitational equations in 5 di-
mensions, Eq(8), without any particular assumptions spe-
cific to the brane world scenario. Then based on the brane
world scenario, we introduced tlZ&® symmetry and assumed _ 2 (MR g0
that the matter lives only on the brane, and derived the (n=1)(n=2) olu=nf:
4-dimensional effective gravitational equations on the brane,
Eqg. (17). The equation tells us that a normal gravitational\We decompose the Weyl tensor into the “electric” and
theory can be obtained on the brane only if the tension ismagnetic” parts:
positive, while an RS1-type theofg] in which the brane has
negative tension is rejected from the physical point of view En= (n)cﬂavﬁnanﬁi (A2)
(see alsd12] for Friedman casesIn the case of the brane
with positive tension, the Einstein gravity is recovered in theand
low energy limit. Placing the brane in the 5-dimensional ex- o) P
act anti—de Sitter spacetime imposes a strong condition on Buva=a.9, " Cpoapn”. (A3)
the matter in 4 dimensions. In particular, if the matter
energy-momentum tensor has the perfect fluid form, onlyBuve @NAE,, have the symmetry,
spatially homogeneous universes are allowed. Conversely,

2
(n)Raﬁ/Lv: (n)caﬁuv+ ﬁ( (n)Ra[ugV]ﬂ_ (n)RB[#gV]a)

(A1)

this means that the deviation of the bulk spacetime from the Bapu="Bpap: Blapu=0, B =0.
exact anti—de Sitter spacetime is essential to describe our N
real world with matter fields. Eup=Epar E%=0. (A4)

Note added in proofOn the negative tension brane in the
case of two 3-branes, the local description of gravity may no
be adequate. For example, it was shown by Garriga and

fhe algebraic degrees of freedom are

- n?(n°-1)
aBuv’ "’ 12 1
1As we can see from the first term in E@®), the reduction to the
normal Einstein gravity is also possible with the introduction of (mc . (n=3)n(n+1)(n+2)
nontrivial bulk energy-momentum tensi@0]. appy 12 ’
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N nn+1)
( )R;w"' 3 ,
. (n=4)(n=1)n(n+1)
( l)CaB,uV' .. T ,
(n=3)(n—=1)(n+1) (n—=2)(n+1)
Bugu " 3  Eap
(AS)

The n-dimensional Weyl tensor can be written in terms

Ef (""DCopuvs Eaps Buve, and the extrinsic curvature

v

(n)CaﬁM =((-1)¢c

+2B,4,N,)+ 2B

afuv ,uv[anﬁ]

+ (2B Nyng—2Eg,N,1N,)

1
~ 3 (2Baulhp~ 2Ep1u0iya) ~ Fapus

+ 73 Aaruf s~ Aprufia)

- mf”gqam%m (AB)
whereq,,=g,,—n,n, and
Fapur=KauKpr=KarKpu,
fu=1."00=17 00 =KK,, =K, K7,
fou
fu, =frr,,=K2=K*K,, (A7)

From now on we seh=5 and derive the evolution equa-
tions of E

assumea*=n“V _n*=0. For convenience, we defirﬁw

andEMw from the Riemann tensor:
E,.=OR,,,mnnf=—£K,, +K, K,  (A8)
q,u,qv(S)RBU'ap =2D[,U.Kv]a' (Ag)
These are related t&,, andB,,,, as
E =E _1 R anpf_ agBOR + (©]=}
puv— Euv §q,uv aﬁn n _quv af _q,uv
1 1
_ 4 4
- ( ( )R v unv( )R) - §£n< K/.LV Zq/.LVK)
1 af 2
+§KWK +4qW KogK*”— K (A10)

«v from the 5-dimensional Bianchi identities. We (i.e.,

PHYSICAL REVIEW [®2 024012

Burva=Buvat g(DﬁK[B#_ Dr.K)a3;
2
=2D,K )+ 3(DgKf, ~D,K)qj; (A11)
The 5-dimensional Bianchi identities are
ViuPRya1 5 =0, (A12)

from which we obtain the following four sets of identities:

DB, + K, ¥R, =0, (A13)

£,B et 2D[,E 10— KB o+ 2B 0K =0, (A14)
4 4 o R —

£:YR,,,0p+ 2R, 01K G +2D(,B g = (A15)

Dp“Ryaype=0.  (A16)

From Eg.(A11) and the Israel’s junction condition, we

obtain
1
a §qv]a7 .

(A17)

Thus theZ, symmetry uniquely determines the value of
B ..« ON the brane as
1
a_§qv]p7' ’

[Euva] = 2D[/.L[Kv]a] == 2K§D[,u( Ty)

__RBR _ 2
B;va B/.Lva_ - K5D[,u( Ty

2
+ + +
Buva=2D1uK ot 5 (DK [, = DK )0y,
_ +
=Bva- (A18)

These equations give the boundary conditions on the brane
when one solves the evolution &f,, in 5 dimensions.

The equations that govern the evolutiorEgf, in the bulk
in the spacetime region away from the braaee ob-
tained as follows. Using the 5-dimensional Einstein equa-
tions (6), Eq. (A14) yields

£1B 0= —2D[,E ot KIB,,o— 2B

aZ uvo ao’[p. ]

(A19)
in the bulk. Also, using Eqg6) and(8), Eq. (A15) gives

1
£,E,5=D"B y(up) + g;<§A(|<aﬁ— UupK) + KA DR,

+3K Eﬁ’),u KEaB+(K KﬁV_KaBK/“})KMV,

(A20)

in the bulk. Together with the 4-dimensional Einstein equa-
tions (8) in the bulk, Egs.(A19) and (A20) form a closed
system of equations. In particular, one may easily recognize
the wavelike character of the transverse parEgf,, which
propagates as gravitons in 5 dimensions.
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