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Cosmology of the brane world

É. É. Flanagan, S.-H. H. Tye, and I. Wasserman
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~Received 16 September 1999; published 21 June 2000!

We develop a possible cosmology for a universe in which there aren additional spatial dimensions of
variable scale and an associated scalar field, the radion, which is distinct from the field responsible for inflation,
the inflaton. Based on a particular ansatz for the effective potential for the inflaton and radion~which may
emerge in string theory!, we show that the early expansion of the universe may proceed in three stages. During
the earliest phase, the radion field becomes trapped at a value much smaller than the size of the extra
dimensions today. Following this phase, the universe expands exponentially, but with a Planck mass smaller
than its present value. Because the Planck mass during inflation is small, we find that density fluctuations, in
agreement with observations, can arise naturally. When inflation ends, the universe reheats, and the radion
becomes free to expand once more. During the third phase the universe is ‘‘radiation dominated’’ and tends
toward a fixed-point evolutionary model in which the radius of the extra dimension grows, but the temperature
remains unchanged. Ultimately, the radius of the extra dimensions becomes trapped once again at its present
value, and a short period of exponential expansion, which we identify with the electroweak phase transition,
ensues. Once this epoch is over, the universe reheats to a temperature&mEW , the electroweak scale, and the
mature universe evolves according to standard cosmological models. We show that the present day energy
density in radions can be smaller than the closure density of the universe if the second inflationary epoch lasts
;8 e-foldings or more; the present-day radion mass turns out to be small (mradion& eV, depending on
parameters!. We argue that although our model envisages considerable time evolution in the Planck mass,
substantial spatial fluctuations in Newton’s constant are not produced.

PACS number~s!: 04.50.1h, 11.25.Mj, 98.80.Cq
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I. INTRODUCTION

Recently it was suggested that the fundamental scal
gravity may be as low as 1 TeV@1#. According to this idea,
the observed weakness of gravity is associated withn new,
relatively large spatial dimensions~compactified to a size
;r 0) in which only gravity can propagate. In this picture, a
the standard model particles reside in a set of branes
three extended space dimensions~‘‘brane modes’’!, while
gravitons reside in the higher dimensional bulk of spacet
~‘‘bulk modes’’!. This scenario turns out to be quite natur
in ~type I! string theory. In this ‘‘brane world’’ picture@2,3#,
the standard model particles are open strings whose
must end on the branes~e.g., stretched between brane!,
while gravitons are closed string states that can move a
from the branes and into the bulk. The relation between
day’s Planck scaleMPl51.231019 GeV and the fundamenta
string scalems is approximately given by

MPl
2 ;ms

n12r 0
n . ~1.1!

Phenomenological and astrophysical constraints imply
ms may be as low as a few TeV, withn>2 @1,4#. In string
and M theory,n<7, and in the brane world,n52 is a rea-
sonable choice@3#. In any case,r 0 must be fine-tuned to a
very large valuemsr 0;(M pl /ms)

2/n@1; this fine-tuning
problem is known as the radion problem. In this paper,
shall simply assume that the radius atr 0 is a stable mini-
mum. However, as we shall see, this is not the end of
radion problem. One must still find a way for the radius
0556-2821/2000/62~2!/024011~20!/$15.00 62 0240
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get to its final value without violating cosmological bound
Some of the cosmological issues in the brane world h
been discussed already@5–9#.

The main concern of the present paper is the cosmol
in this framework, during the epoch before big bang nucle
synthesis, especially inflation@10#. Obviously, in the brane
world, the standard cosmological picture is altered dram
cally. In this paper, we present a plausible cosmological s
nario where a number of issues in the brane world, such
inflation, density perturbation, reheating, baryogenesis,
well as the radion problem, are addressed. Our scenario
corporates the brane inflation feature@6# and some of its
extensions@7#, as well as some features of the rapid asy
metric inflation@8#. The main goal here is to show that co
mology in the brane world is viable, and highlight some
the issues that we believe to be important.

The reader may view this scenario as a search for via
potentials for the inflaton and the radion. The particular fo
we use has an effective potential for the radion fieldr and
inflaton fieldsc5(c1 , . . . ,cN) such that

V~c,r !5V0~c!@11 f I~r !#1 f 0~r !1V1~c! ~1.2!

in the Jordan frame.~Appendix A gives some stringy justi
fication for such a potential.! Here V0(c);ms

4 while
V1(c);mEW

4 !V0, where mEW is the electroweak scale
Also the function f I(r ) tends to force the radion to som
value r I whenV0(c) is large, whereasf 0(r ) is unimportant
until r→r 0, where r 0 is the value ofr today. Instead of
choosingr 0 to be the only minimum off 0(r ), we choose
f 0(r ) to have multiple minima, withr 0 just one of many
possible minima. Our scenario utilizes an inflaton poten
©2000 The American Physical Society11-1
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V0(c) due to brane separation~see Appendix B!, and incor-
porates a radion potentialf 0(r ) @and f I(r ) as well# with mul-
tiple minima. To simplify the problem, we might assume th
V0(c) depends only on one component ofc andV1(c) on
the others~perhaps only one other!, or c might only have
one component withV0 andV1 both depending on this on
component. The specific choices we examine for these
tentials and functions are given in Eq.~2.27! for V0(c), Eq.
~D1! for f I(r ), and Eqs.~2.68!, ~2.70!, and~2.80! for f 0(r ).
Here is a brief chronological description of the vario
phases of the scenario.

Phase 0: The pre-inflationary phase. The key feature of
this phase is that the radion fieldr is driven to a valuer I at
which it becomes fixed, thus allowing the subsequent st
of standard inflation to take place. The piece of the poten
~1.2! that achieves this trapping is the termV0(c) f I(r ); r I
will be a local minimum off I(r ). The initial conditions for
this phase that we assume are that the radii of the e
dimensions begin at values ‘‘around’’ 1/ms , wherems is the
string scale~say, around 10 TeV!. ~By ‘‘around’’ we mean
that values;1 –100 times larger thanms

21 are not out of the
question.! Such initial conditions are natural since in strin
theory, the only scale is the string scale, and thus all par
eters should typically scale likems unless there are goo
reasons~such as dynamical evolution! for other values. In
Sec. II B we explore conditions under which the radion p
tential f I(r ) achieves the fixing of the radion to some val
r I . A specific choice of functional form off I(r ), which may
or may not correspond to reality, is discussed further in A
pendix D. Generally speaking, we think it likely that iff I(r )
has numerous potential minima separated by some s
;m21, then the radion will become trapped at a minimum
fairly large mr ~i.e. mr* a few!, and that, if the radion
settles to a potential minimum, it does so right away, with
moving away from the potential well it starts in. The reas
is that it is the Einstein-frame radion potential}r 22nf I(r )
that is relevant to the dynamics, not the Jordan-frame po
tial } f I(r ) @see Eqs.~C15! and ~2.10! below, and Appendix
C for a discussion of the Jordan and Einstein frames#. It is
plausible thatf I(r ) might have a fixed amplitude of varia
tion, so that the Einstein-frame potential will decrease}r 22n

at large r. Even under these assumptions aboutf I(r ), the
dual conditions thatr I should be ‘‘around’’ms

21 and that
mrI* ~a few! can be satisfied for values ofm ‘‘around’’ ms .
If f I(r ) increases in amplitude at larger rapidly enough to
overcome the factorr 22n, then it is possible thatr actually
increases somewhat from its original value during this p
inflation era before settling into a minimum atr I .

Phase I: Inflation at small Planck mass. Once the radion
is fixed at the valuer I , slow-roll inflation can take place
The value of the Planck mass during inflationMPl, I is much
smaller than today’s Planck massMPl , as MPl, I

2

5(r I /r 0)nMPl
2 , wherer 0 is the value ofr today. In the brane

world, brane inflation@6# is quite natural.~A brief review is
given in Appendix B.! In the brane inflation scenario, whe
branes are separated by a distanced, an effective potential
V(d) is generated by gravitational and other closed str
exchanges between the branes. The distanced plays the role
02401
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of the inflaton. On the other hand,d is related to the vacuum
expectation value of a brane modec5ms

2d, so V(c) is a
function of a brane mode. In a particularly intriguing sc
nario, the electroweak Higgs field in the standard mo
plays the role of the inflatonc. In then52 case, the inflaton
potential ~schematically shown in Fig. 1! may be taken to
have the following~oversimplified! qualitative form:

V0~c!1V1~c!;ms
4~12e2ucu/mI !1V1~c! ~1.3!

with its minimum atc;mEW;100 GeV.
For larged ~but still much smaller thanr I), V;ms

4 is very
flat, so the inflaton slowly rolls down the potential towar
small d. In standard cosmology, the number ofe-foldings
required to solve the flatness and the horizon problem
around 60, but for brane cosmology, the required numbe
e-foldings is different@see Eqs.~3.10! and ~5.3!#, partly be-
cause the energy scale of inflation isms!mGUT;1012 TeV,
but also because the Planck massMPl, I during inflation is
considerably smaller than today.@Fortuitously, the number of
e-foldings required to solve the horizon and flatness pr
lems may turn out to be about 60; see Eq.~5.3!.#

The amplitude of primordial density perturbations gen
ated by quantum fluctuations in the inflaton field during th
inflationary epoch is;ms

2/mIMPl, I for the inflaton potential,
Eq. ~1.3!. @See Eq. ~2.38! in Sec. II B.# Since MPl, I
;ms(msr I)

n/2, this amplitude is approximately
;ms /mI(msr I)

n/2, and to achieve the measured amplitu
;1025 of primordial perturbations@11#, we must require
(msr I)

n/2;105ms /mI . For mI;ms , this would mean that
msr I@1 ~e.g. ;105 for n52), but largermI is expected
naively ~see Appendix B!, and it is conceivable thatmsr I
;1 –100~i.e. larger than one but not by a factor as large
105).

Phase II: Radion growth and radiation domination. At
the end of inflation, we expect the brane to be heated~since
the inflatonc is a brane mode! while the bulk remains rela-
tively cold. We expect the reheat temperatureTr to be below
the Hagedorn temperature, which is typically lower thanms
~say by a factor of 3–10!. Sincems@mEW , this temperature
Tr should be above the electroweak phase transition crit

FIG. 1. The inflaton effective potential~not drawn to scale!. The
dashed line indicates the finite temperature effective potential a
phase I.
1-2
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COSMOLOGY OF THE BRANE WORLD PHYSICAL REVIEW D62 024011
temperatureTc,1. So the finite temperature effective potent
V(c,Tr) has a minimum at the origin, as indicated by t
dashed line in Fig. 1. The inflaton rolls past the minimum
the T50 potential towardsc50 and is trapped there. Th
rate of cooling to the bulk (;Tn17/ms

n12) is very small,
sinceT/ms is small. In this radiation dominated phase, t
radion potential is negligible~which is not hard to arrange!,
while the inflaton field remains frozen. Under these con
tions, we find that the cosmological model tends towar
fixed point in which the temperature remains nearly const
while the radiusr grows as a power of time@see Eqs.~2.55!
and~2.56!#. While this power law solution holds, the radio
potential energy is unimportant compared with its kine
energy, which, however, decreases with time~and hence
with increasing radius!.

After sufficient time elapses, the kinetic energy of t
radion field drops to a value comparable with the amplitu
of the radion potentialf 0(r ), and the growth of the radion
which is substantial up to this point, is halted. Iff 0(r ) had
only a single minimum, it would be a fantastic coincidence
~a! that minimum were precisely at the valuer 0 and ~b! the
power law growth ofr halted exactly when that minimum
was encountered. Since power law growth ofr during the
radiation dominated phase that follows inflation is generic
our picture, it seems that we must require that the rad
effective potentialf 0(r ) have multiple minima. Since it is
inevitable that the radion kinetic energy becomes sma
than the height of its effective potential after some elap
time, the radion must become trapped at one of the min
of f 0(r ) eventually. As an illustration, we consider a period
radion potential;r 0 is just one of the infinity of minima of
this potential. That the universe settles tor 0 is a cosmologi-
cal accident in our scenario, although it is natural for t
radion to settle to some radius much larger than its va
during inflation~and much larger than the string scalems

21).
Thus, the radion problem is not so severe in our pictu
which accommodates growth of the radius of the extra
mensions to a large, but stable value very simply. What
do not explain is whyr 0 ~and hence Newton’s constant! has
a particular value among the infinity of possibilities. How
ever, we identify what conditions must be satisfied by
underlying physical theory for the universe to settle atr 0 @see
Eqs.~2.75! and ~2.76!#.

Phase III: Second inflationary era and electroweak pha
transition. WhenT drops belowTc,1, the stable minimum of
the inflaton will yield the spontaneous symmetry breaking
the electroweak model. It is reasonable to suppose that
electroweak phase transition is first order.~This should be
easy to arrange in models with multi-Higgs fields, e.g.,
minimal supersymmetric standard model.! In this case, some
supercooling is expected and the actual phase transition
pens during a period some time afterT has dropped below
Tc,1. In the meantime, we expect considerable dilution of
radion energy density as well as the bulk energy dens
Indeed, we show that requiring the radion density at pres
not to exceed the critical density for a flat universe constra
the number ofe-foldings of this inflationary era@see Eqs.
~3.12! and ~5.2!#. @Associated with the radion density toda
02401
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would be small-amplitude oscillations of Newton’s consta
at a high frequency@12,13#; see Eq.~2.88! and Sec. V.# This
can be achieved by a short period of inflation during t
supercooling period, followed by either prompt or delay
reheating. The actual electroweak phase transition then t
place with the presence of nucleation bubbles. This allo
the electroweak phase transition to complete and baryog
esis during this period can happen more or less as in
standard scenario@14#. Alternatively, baryogenesis can hap
pen via the Affleck-Dine mechanism or some other mec
nism @15#. In fact, it may take place before the end of th
second inflationary era.

The final reheat temperature can be around a few G
maybe even close to the electroweak scalemEW , if ms is
large enough, and still avoid excessive cooling to the bu
which would overproduce Kaluza-Klein~KK ! modes, whose
energy density could overclose the universe and ruin the
cess of big bang nucleosynthesis. It is also high enough
provide the ‘‘initial conditions’’ of the hot big bang befor
big bang nucleosynthesis.

The scenario is summarized in Fig. 2.
The basic plan of this paper is the following. In Sec.

we present our cosmological scenario; Sec. II A gives so
useful background~some of which is also found in Appendi
C!, Sec. II B treats the pre-inflationary phase, Sec. II C tre
inflation at small Planck mass, and Sec. II D treats the ph
during which the radius of the extra dimensions grows fro
r I to r 0. Some constraints on our model are gathered in S
III. Density fluctuations during the epoch when the radi

FIG. 2. Numerical solutions for the cosmological model duri
Phase II for two different sets of parameters. The long-dashed

is z( t̂ ), the solid line isâ( t̂ ), the dot-dashed line isa( t̂ ), and the

dotted line ist( t̂ ). Both solutions are characterized by an initi
adjustment period during which the radiation energy density, wh
is proportional toaJ

24 , drops, followed by a protracted period o
power law growth of the radius of the extra dimensions~at fixed
temperature!, which terminates when the radion potential traps t
field at a minimum. Exponential inflation begins once the rad
becomes trapped.
1-3
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grows are discussed briefly in Sec. IV. The results are
cussed in Sec. V. Some additional details about our cos
logical model are contained in various Appendixes.

II. MATCHING PHASES

A. Setup

The starting point for our analysis is the following lo
energy action, which is valid when the length scales o
which all fields vary are much larger than the size of t
extra dimensions:

S5E d4xA2ĝF R̂

16pG
2

1

2
~¹̂F!2

2
1

2
e2F/m~¹̂c!22e22F/m V~c,F!G

1Srest@e2F/mĝab ,x rest#. ~2.1!

This action is derived from the higher dimensional descr
tion in Appendix C. The action is written in the Einste
frame,ĝab is the Einstein frame metric, and

gab5e2F/mĝab ~2.2!

is the physical, Jordan frame metric. The quantityG is the
usual three-dimensional Newton’s constant, andm is a mass
of order the Planck massMPl5Ac\/G51.2231019 GeV
given by

m5MPlAn12

32pn
, ~2.3!

wheren is the number of extra dimensions. The fieldF is the
canonically normalized radion field, related to the radiusr of
the extra dimensions by

r 5r 0expF F

nm G , ~2.4!

where r 0 is the equilibrium radius of the extra dimensio
today. The fieldsc5(c1 , . . . ,cN) are inflaton fields. The
quantityV(c,F) is the Jordan-frame potential for the radio
and inflaton discussed in the Introduction and in Appendix
below. Finally the actionSrest@gab ,x rest# is the action of the
remaining matter fieldsx rest, which in our analysis below we
will treat as a fluid.

As discussed above, we assume that the Jordan-fram
fective potentialV(c,F)5V(c,r ) is of the form @cf. Eq.
~1.2!#

V~c,r !5V0~c!@11 f I~r !#1 f 0~r !1V1~c!. ~2.5!

Here we might assume thatV0 depends only on one compo
nent ofc andV1 on the other components~perhaps only one
other!. The functionf I(r ) tends to force the radion to som
valuer I while V0 is large, whereasf 0(r ) is unimportant until
r→r 0, its value today. Following Ref.@6#, we assume tha
V0(c)→0 asc→0 and thatV0(c) asymptotes to a constan
02401
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value, V̂0, exponentially with some mass scale~s! mI . The
potentialV1(c) is assumed to have a minimum at nonze
c, and a valueV̂1[V1(0) at c50 which satisfiesV̂1!V̂0.

We will do all our calculations in the Einstein frame
Assuming zero spatial curvature, the metric of the cosm
logical background in the Jordan frame can be written in
form

ds252dt21a2~ t !dx•dx, ~2.6!

and the corresponding metric in the Einstein frame is

dŝ25eF/m@2dt21a2~ t !dx•dx#

52d t̂21â2~ t̂ !dx•dx, ~2.7!

where

d t̂5exp~F/2m!dt, â~ t̂ !5exp~F/2m!a~ t !. ~2.8!

It is important to keep the relations~2.8! in mind, since
proper time is not the same in the Einstein and Jord
frames, nor is the scale factor. In terms ofr, the scalings are

d t̂5~r /r 0!n/2dt, â~ t̂ !5~r /r 0!n/2a~ t !. ~2.9!

Thus, asr changes, the relative rates of advance of time a
scale factor differ in the two frames.

We treat the last term in the action~2.1! as a fluid with
Jordan-frame densityr and pressurep. Then, the cosmologi-
cal equations of motion that follow from the action~2.1!
follow from the general equations of motion given in Appe
dix C, and are given by1

Ĥ25
8p

3MPl
2 F1

2
F821

1

2
e2F/mc821e22F/mV~c,F!

1e22F/mrG , ~2.10!

F913ĤF81
]

]F
@e22F/mV~c,F!#1

1

2m
e2F/mc82

5
r23p

2m
e22F/m, ~2.11!

c91c8F3Ĥ2
F8

m G1e2F/m
]

]c
V~c,F!50 ~2.12!

1These evolution equations do not include any coupling betw
the inflaton and the radiation, which would be necessary to desc
reheating. If we add the standard type of phenomenological term
achieve this in the Jordan frame, we obtain after transforming to
Einstein frame that one should add a term2F(c)c8e2F/(2m) to the
right hand side of the inflaton equation~2.12! and a term
F(c)c82eF/(2m) to the right hand side of Eq.~2.13!, whereF(c)
can be any function.
1-4
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and

r813~r1p!F Ĥ2
1

2m
F8G50. ~2.13!

In these equations primes denote derivatives with respe
Einstein-frame proper timet̂ @Eq. ~2.6! above#, andĤ is the
Einstein-frame Hubble parameterĤ5â8/â.

In the next few subsections, we shall substitute the po
tial ~1.2! into the evolution equations~2.10!–~2.13!, and
solve for approximate solutions in the four different phas
of cosmological evolution discussed in the Introduction.

B. Phase 0: Radion to its first equilibrium

During phase 0, the radion evolves to some sizer I where
it remains pinned during inflation~phase I!. This pinning
happens by some timet̂0 when the scale factor isâ0. The
end of phase 0 signals the onset of the first inflation
phase, phase I.

To see how the pinning might come about, let us assu
that we can neglect the termsf 0(r ) and V1(c), and that
there is no energy density except what is due toc and the
radion. Furthermore, let us assume that the kinetic energ
the inflaton is negligible, and thatV0(c)'V̂0. Then the
Friedmann equations~2.10! and~2.11! together with the po-
tential ~1.2! simplify to

Ĥ25
8p

3MPl
2 H V̂0exp~22F/m!@11 f I~r !#1

1

2
~F8!2J

F913ĤF85
2V̂0exp~22F/m!

m F11 f I~r !2
r

2n

d f I~r !

dr G .
~2.14!

We can render these equations non-dimensional by lettin

z5exp@2~F2F i !/m# ~2.15!

and defining a new time variablet by

dt̂5S 8pV̂0

3MPl
2 D 1/2

exp~2F i /m!d t̂, ~2.16!

whereF i is the initial value ofF, at the beginning of phas
0. In terms of these new variables, we find (f 85d f /dt̂ in
these equations!

S y8

y D 2

5
11 f I~r !

z
1

1

2n S z8

z D 2

z91S 3y8

y
2

z8

z D z85nF11 f I~r !2
r

2n

d f I~r !

dr G .
~2.17!

Herey5â/âi , with âi the initial value of the Einstein frame
scale factor,r 5r iz

1/2n, with r i the initial value of the radius
of the extra dimensions, and
02401
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48n

n12
. ~2.18!

It is easy to see that iff I(r )50, the solution of Eq.~2.17!
tends to

y}t̂1/3, z}t̂A2n/3, ~2.19!

according to whichr grows without bound, and the radio
kinetic energy dominates the energy density of the unive
but there is no inflation@16#. The approach to this asymptoti
solution may be very slow: for example, forn52 we have
z}t̂4/A3, so the vacuum energy density declines}t̂4/A3,
which is only a bit faster than the rate of decline of t
radion kinetic energy, 1/t̂2. Nevertheless, it is noteworth
that without the radion potential,r would grow to infinity in
this phase.

To halt the growth ofr, the radion potential must be ca
pable of trapping the radion field. From Eq.~2.17!, we see
that this is only possible if the condition

11 f I~r !2
r

2n

d f I~r !

dr
50 ~2.20!

can be satisfied. If we consider the choicef I(r )5(mr)k for
example, wherem is a mass parameter andk.0, then it is
clear that Eq.~2.20! will only have real solutions fork
.2n in which case the radion could settle to a valuemr
5(k/2n21)21. ~Analogously shifted minima have been di
cussed by e.g. Steinhardt and Will@13#.! However, such
steeply growing functionsf (r ) could preventr from growing
to a large value later on.

Instead, we shall consider the possibility that

f I~r !5aF~r !, ~2.21!

wherea is a dimensionless amplitude factor, andF(r ) has
multiple minima, separated by a characteristic scale;m21,
with ‘‘potential barriers’’uF(r )u;1. A specific example~but
not unique or required! is F(r )512cosmr, for which Eq.
~2.20! becomes

11a~12cosmr!2
amr sinmr

2n
50. ~2.22!

Since cosmr<1 and sinmr<1, there are no solutions to thi
equation unlessamr/2n.1 or mr.2n/a. Thus, unlessa is
large ~which we consider unlikely!, the radion will only
settle into minima at relatively large values ofmr, if at all.
This conclusion ought to hold for other choices ofF(r ) with
similar qualitative properties. If, for example,m;ms , then
we conclude that the radion will only settle on values larg
than the string scale, which, in fact, is required for cons
tency of our entire picture.~Remember that, for example,r
must exceed the brane separation.!

For f I(r ) of this general type, it seems likely that th
radion must settle into its first minimum, the one nearest
value at the onset of phase 0, if it settles to a minimum at
The reason is that the height of the Einstein frame effec
1-5
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potential decreases with increasingr, so that if the radion
acquires sufficient kinetic energy to roll over the first barr
it encounters, it should be able to overcome all subsequ
barriers.@Remember that in the asymptotic solutions to E
~2.17! the energy density of the universe becomes domina
by radion kinetic energy as time progresses.# We explore the
particular exampleF(r )512cosmr in some detail in Ap-
pendix D. It is also important to note, though, that it is po
sible to imagine choices forf I(r ) that undo the decreas
factor in amplitude}r 22n in Eq. ~2.14! at larger. For such
potentials, it might be possible forr to evolve considerably
before settling to a potential minimum.

C. Phase I: Inflation at small Planck mass

During phase I, the universe inflates at a fixed rad
radius,r I . This fixes the Planck mass to be

MPl, I
2 5~r I /r 0!nMPl

2 , ~2.23!

and the expansion rate is

Ĥ I
25S â8

â
D 2

5
8pr 0

2nV̂0

3MPl
2 r I

2n
5

8pr 0
nV̂0

3MPl, I
2 r I

n
~2.24!

in the Einstein frame, where prime denotes differentiat
with respect tot̂ . The Jordan frame expansion rate is simp

H I
25S ȧ

aD 2

5
8pV̂0

3MPl, I
2

, ~2.25!

where the overdot denotes differentiation with respect tt;
this is just as in the usual general relativity but with a diffe
ent Planck mass. The scale factor in this phase is

â

â0

5exp@ĤI~ t̂2 t̂0!#5
a

a0
5exp@H I~ t2t0!#. ~2.26!

Since the radius of the extra dimensions is frozen in phas
it is equally easy to use the Jordan or Einstein frame desc
tions. ~The same will not be true for subsequent phases.!

Presuming that a single inflaton field is important in th
phase, with an effective potential

V0~c!5V̂0@12exp~2c/mI!#, ~2.27!

the inflaton equation of motion is

c̈13H Iċ52
V̂0

mI
exp~2c/mI!. ~2.28!

The evolution of the inflaton proceeds in two subphas
During the first subphase, we have the usual slow-roll
approximation,

ċ'2
V̂0exp~2c/mI!

3H ImI
, ~2.29!

whose solution is
02401
r
nt
.
d

-

n

n

I,
p-

s.
g

exp~c/mI!5exp~c0 /mI!2
V̂0~ t2t0!

3mI
2H I

5exp~c0 /mI!2
MPl, I

2

8pmI
2

H I~ t2t0!. ~2.30!

This approximate solution holds as long as the two con
tions

U c̈

3H Iċ
U' MPl, I

2 exp~2c/mI!

24pmI
2

!1,

ċ2

2V̂0

'
MPl, I

2 exp~22c/mI!

48pmI
2

!1 ~2.31!

are satisfied. Assuming thatMPl, I@mI , which emerges natu
rally later, the first of these two conditions fails first, whe

exp~c/mI!;
MPl, I

2

24pmI
2

. ~2.32!

If the initial value exp(c0 /mI) of exp(c/mI) is far larger than
the limit ~2.32!, then the time required for the inflaton field t
reach this magnitude is extremely large, given by2

H I~ tsr2t0!'
8pmI

2

MPl, I
2

exp~c0 /mI!, ~2.33!

where tsr is the time at the end of slow roll, which implie
manye-foldings during inflation. When slow rolling ends,
second subphase of inflaton evolution begins. Since the
netic energy of the inflaton at the beginning of this subph
is only ;(12pmI

2/MPl, I
2 )V̂0!V̂0, the inflaton moves on ap

proximately a ‘‘zero energy solution with negligible dam
ing.’’ That is, it satisfies the equation

ċ'2A2V̂0exp~2c/2mI!, ~2.34!

which has the solution

exp~c/2mI!5exp~csr/2mI!2A V̂0

2mI
2~ t2tsr!5exp~csr/2mI!

2A 3

16p

MPl, I

mI
H I~ t2tsr!, ~2.35!

where exp(csr/2mI);MPl, I /mIA24p. The time remaining
for c→0 is not large:H I(tend2tsr);1, wheretend signifies
the end of this inflationary epoch, and henceforth we do
distinguish between the two timestsr and tend.

Using our approximate expression forH I(tsr2t0)
'H I(tend2t0), we rewrite the slow rolling solution as

2The subscript ‘‘sr’’ stands for the end of slow rolling.
1-6
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exp~c/mI!'
MPl, I

2

8pmI
2

H I~ tend2t !. ~2.36!

From this and the slow rolling approximation it follows th

ċ'2
mI

tend2t
. ~2.37!

The primordial density perturbation amplitude is then@17#

dr

r
;

H I
2

ċ
'

A8pV̂0/3

mIMPl, I
Nk , ~2.38!

whereNk is the number ofe-foldings that remain betwee
horizon crossing for a scale of comoving length;k21 and
the end of phase I. We note that the spectrum of inhomo
neities implied by Eq.~2.38! is insensitive tok, in agreement
with observations@11#. If the effective potential as a functio
of interbrane separationd is proportional to 12exp(2mdd),
and we setc5ms

2d, then mdd5mdc/ms
2 , which implies

mI5ms
2/md . Then the amplitude of the density fluctuatio

is proportional toAV̂0md /ms
2MPl, I , which, for V̂0;ms

4 , is
;md /MPl, I . Note also that since the radion is trapped, flu
tuations inr are suppressed@see Eq.~D9! of Appendix D#.

D. Phase II: Radiation domination

At the end of inflation,t̂5 t̂1 and â5â1; the universe
reheats to a temperatureeV̂0

1/4 wheree,1 depends on how
efficiently the kinetic energy of the inflaton is thermalize
oncec→0.

Reheating will alter the effective potential so that there
a minimum atc50, provided that the critical temperatur
Tc,1 for the phase transition~presumed first order! connected
with the potentialV1(c) is small compared with the rehea
ing temperature. In this case, there will be a nonzero vacu
energy V̂1, but as long as the temperature remains ab
Tc,1, the universe remains radiation dominated, andc is
pinned at zero.

We assume that the radion potential becomes neglig
when this happens. Let us explore the growth in the rad
field that ensues.

It is most convenient to work in the Einstein frame. Th
phase of evolution will divide into three subphases. Dur
the first subphase, when radiation dominates, the Friedm
equations are@cf. Eqs. ~2.10! and ~2.13! above with p
5r/3]

Ĥ25
8p

3MPl
2

rexp~22F/m!, râ4exp~22F/m!5const,

~2.39!

where we recall thatr is the Jordan frame energy density
i.e. r;T4. Thus, the scale factor in Einstein frame is simp

â5â1S t̂

t̂1
D 1/2

, ~2.40!
02401
e-

-

s

m
e

le
n

g
nn

just as it would be in constant-MPl cosmology. However, to
find out how fast the temperature decreases, we also nee
know how the radion field evolves.

Under the assumption that the radion potential is ne
gible, we find from Eqs.~1.2!, ~2.11! and ~2.27! the evolu-
tion equation

F913ĤF85
2V̂1

m
exp~22F/m!. ~2.41!

We make the change of variables

u5exp~2F/m!. ~2.42!

Then Eq.~2.41! is equivalent to

u91S 3Ĥ2
u8

u Du85u91S 3

2 t̂
2

u8

u D u85
4V̂1

m2
,

~2.43!

whereĤ51/2t̂ , appropriate for this subphase, has been us
During the first subphase,

3

2 t̂
@

u8

u
. ~2.44!

In that case, under the assumption thatu850 andu5u1 at
t̂5 t̂1, we find

u85
8V̂1

5m2 S t̂2
t̂1
5/2

t̂3/2D , ~2.45!

which can be integrated to yield

u5u11
4V̂1

5m2 S t̂225 t̂1
21

4 t̂1
5/2

t̂1/2 D . ~2.46!

This solution holds as long as Eq.~2.44! is true, a condition
that fails when

2 t̂ u8

3u
'

16V̂1 t̂2/15m2

u114V̂1 t̂2/5m2
;1 ~2.47!

or

u1;
V̂1 t̂2

m2
. ~2.48!

~In getting this condition, we have assumed that the fi
subphase ends at a time@ t̂1.! Sinceu5exp(2F/m) is still
only a factor of 2 or so different fromu1, it follows that

r5
r1â1

4exp~2F/m!

â4exp~2F1 /m!
5

r1V̂1 t̂1
2u

m2u1
2

;
r1V̂1 t̂1

2

m2u1

, ~2.49!
1-7
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where in the first equality we used Eqs.~2.40!, ~2.42! and
~2.48!. Using3

t1
2;

3MPl, I
2

8pr1
;MPl

2Au1

r1
, ~2.50!

and t̂1
25Au1t1

2 , we find

r;V̂1 ~2.51!

sincem;MPl . Thus, the first subphase ends when the
ergy density in radiation becomes comparable to the vacu
energy in the inflaton. The value of the Planck mass o
changes by a factor of order unity during this regime.

During the second subphase, the radion potential is
unimportant, but the radion kinetic energy is not. Thus,
radion evolves according to Eq.~2.43!, but the expansion
rate in the Einstein frame is given by

Ĥ25
8p

3MPl
2 Fr

u
1

V1~c!

u
1

m2

8 S u8

u D 2

1
~c8!2

2Au
G . ~2.52!

The evolution of the inflaton field is governed by the equ
tion

c913Ĥc852u21/2
dV1~c!

dc
. ~2.53!

We assume that the universe remains hot enough tha
inflaton is trapped in a symmetric phase, at fixed vacu
energy densityV̂1 during this subphase. At least at first, th
kinetic energy of the inflaton field will be unimportant, an
we can approximate the expansion rate by

Ĥ25
8p

3MPl
2 Fr

u
1

V̂1

u
1

m2~u8!2

8u2 G . ~2.54!

It is easy to see that at the start of this subphase, the t
contributions to the energy density are comparable to
another. Moreover, there is a simple, power law solution
the fully nonlinear problem defined by Eqs.~2.43! and

~2.54!. For this solution,â}At̂ , and

u5
4V̂1 t̂2

m2
,

u8

u
5

2

t̂
; ~2.55!

since râ4/u5const, r5const. From Eq.~2.54! we find a
consistency condition

r

V̂1

5
9n26

n12
, ~2.56!

which givesr/V̂153 for n52, for example; thus, the tem
perature remains;V̂1

1/4, and could be comfortably above th

3Recall thatMPl, I
2 5MPl

2 (r I /r 0)n5MPl
2 Au1.
02401
-
m
y

ill
e

-

he

ee
e

o

critical temperature for the inflaton in this regime.4 Within
this solution, it also follows that, up to a possible additi
constant,

t5
A2m t̂

V̂1
1/4

, ~2.57!

and therefore, as a function oft, the radion expands accord
ing to

u5
V̂1

4t4

m4
, ~2.58!

and grows without any expansion of the universe at all in
Jordan frame.

It is worth investigating the meaning of this power la
solution further. Clearly, a solution in which the temperatu
remains constant is not expanding in the Jordan frame at
Such a solution ought to apply only in a limiting sense. Th
is, the correct solution might approach this one asympt
cally, at late times. To see if this happens, we consider
numerical solution, Eqs.~2.43! and ~2.54!, with the energy-
conservation conditionrâ4/u5const. We arbitrarily choose
u5ui andr5r i at some initial timet̂ i , whenâ[âi . If we
define

y[
â

âi

and z[
u

ui
, ~2.59!

and define a dimensionless Einstein-frame time variable

dt̂5~8pr i /3MPl
2 ui !

1/2d t̂, ~2.60!

then we find the two coupled equations

S y8

y D 2

5
1

2n S z8

z D 2

1
v
z

1
1

y4z91S 3y8

y
2

z8

z D z85nv,

~2.61!

where

4If we let â(t)5â0(t)@11a( t̂ )# and u( t̂ )5u0( t̂ )@11h( t̂ )#,

where â0( t̂ ) and u0( t̂ ) are the power law solution of Eqs.~2.43!
and ~2.54!, it is easy to show that

h91
3h8

2t̂
1

h

t̂2
1

6a8

t̂
50

a81
a

t S3n22

4n D5Sn12

24n D S h82
h

2 t̂
D ;

these coupled perturbation equations have power law solutions} t̂ s

where

~s11!Ss21
s

2
1

3n22

4n D50.

Thus, there are no growing perturbations, and the power law, fi
point solution to Eqs.~2.43! and ~2.54! is stable.
1-8
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n[
48n

n12
and v[

V̂1

r i
. ~2.62!

We can also evaluate the Jordan frame scale factor from

â5u1/4a, ~2.63!

and can find the time elapsed in the Jordan frame using

d t̂5u1/4dt, ~2.64!

which we rescale by definingtJ5(8pr i /3MPl
2 Aui)

1/2t, to get
tJ85z21/4. Equations~2.61! are to be solved with initial con

ditions z5y51 at t̂5 t̂ i ; we can chooset̂ i arbitrarily ~al-
though we expect it to be'0.5 if we want a solution that ha
y→0 at t̂→0). The solutions depend only on the two p
rameters,n andv; in terms of these, the power law solutio
found previously becomes

z5nv t̂25
48nv t̂2

n12
,

y5S 1

4
2

3

n D 21/4

t̂1/25S 16n

3n22D 1/4

t̂1/2. ~2.65!

Numerical evaluations forn52 show that, although the so
lutions oscillate slightly at late times, they approach t
simple solution found above to high accuracy. From exa
ining the output, it appears that the Jordan frame scale fa
actually does not remain precisely constant at late times,
increases and even decreases slightly~by less than 10%! as
time progresses.

In the asymptotic regime of the second subphase, the
dion grows according to

u5~r /r 0!2n5
4V̂1 t̂2

m2
, ~2.66!

so u→1, or r→r 0, at a time

t̂ r→r 0
5

m

2AV̂1

~2.67!

if this solution continues to hold. Note thatt̂ r→r 0
;u1

21/2t̂ i ,

where t̂ i marks the onset of this subphase@or the end of the
02401
e
-
or
ut

a-

first subphase; e.g. Eq.~2.48!#; sinceu1!1, t̂ r→r 0
@ t̂ i .5

In order for the radion to become pinned atr 5r 0 we need
a coincidence to happen: near the timet̂ r→r 0

, the radion
potential itself must begin to play a central role in the ev
lution of the field. Only the radion’s potential can make
settle into a minimum, rather than rolling forever to ev
increasing radius. Indeed, what we want is for the effect
potential of the radion to have many possible minima, so t
the value it settles into eventually is determined by this
incidence.

To understand the settling process better, we need to
corporate the radion potential termf 0(r ) of the Jordan-frame
potential~1.2! in our analyses. IfVbulk(r ) is the radion po-
tential in 41n dimensions, then, after integrating over then
extra dimensions, the corresponding Jordan frame pote
is

f 0~r !5r nVbulk~r ! ~2.68!

~see Appendix C!, and the Einstein frame potentialVE ob-
tained after conformal transformation is

VE5r 0
2nr 2nVbulk~r !5r 0

nexp~2F/m!Vbulk~r !5
r 0

nVbulk~r !

Au
.

~2.69!

Suppose that

Vbulk~r !5UbulkF~r !, ~2.70!

where Ubulk is a constant andF(r ) is dimensionless. We
assume thatF(r ) may undulate up and down, but with
characteristic amplitudeuF(r )u;1; thus the scale of the ra
dion potential is determined byUbulk . SinceF(r ) is dimen-
sionless, it must contain mass scales; these are reflecte
the magnitude~s! of the derivative~s! of the potential. We
assume thatF(r ) may have multiple minima~an infinite
number in the model considered below!.

5As this is a pretty odd solution, let us also consider an alternat
that the radion evolves like a free field after the second subph
begins, and its kinetic energy dominates the energy density of
universe. In this caseF85F i8âi

3/â3, and

Ĥ25
4p~Fi8!

2

MPl
2 ~ â/âi !

6
,

which implies the solution (â/âi)
35 t̂A12pF i8/MPl . Using this so-

lution, we find thatF85MPl / t̂A12p and consequently

r5riS t̂

t̂i
DA8/3n(n12)

,

or r} t̂1/A3}âA3 for n52. For this solution to hold true, all othe
contributions to the energy density must decline more rapidly t

(F8)2/2} t̂22. But it is easy to see thatrexp(22F/m)}â24

}t̂24/3 according to this solution, so it must not be valid.
1-9
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One condition for the radion to be able to settle into o
of the minima of its potential is that the Einstein frame k
netic energy density fall below the Einstein frame poten
energy amplitude. Since the kinetic energy is

m2

8 S u8

u D 2

5
m2

2 t̂2
~2.71!

and the potential energy amplitude is

r 0
nUbulk

Au
5

r 0
nUbulkm

2 t̂AV̂1

, ~2.72!

during the power law regime, the two become comparabl
an Einstein frame time

t̂5
mAV̂1

r 0
nUbulk

. ~2.73!

This time ought to be smaller than or comparable to the t
at whichu→1; i.e., we must require

mAV̂1

r 0
nUbulk

;
m

2AV̂1

, ~2.74!

which implies

r 0
nUbulk;2V̂1 . ~2.75!

Since, presumably,Ubulk and V̂1 are determined by funda
mental physics, this relationship may be taken to determ
r 0

n . Moreover, since we know thatMPl
2 ;ms

21nr 0
n , we find

MPl
2 ;

2V̂1ms
21n

Ubulk
or Ubulk;

2V̂1ms
21n

MPl
2

. ~2.76!

If we assume that Vˆ
1;mEW

4 , wheremEW is the electroweak
unification scale, andms.mEW , then it is clear that
Ubulk /ms

41n;mEW
4 /MPl

2 ms
2!1. In getting these estimate

we have presumed thatF(r ) takes on a typical value forr
;r 0; i.e., we are excluding the possibility that, for examp
uF(r;r 0)u!1, which would alter the above estimates. Th
amounts to assuming that whatever mass scales appe
F(r ) are generally of orderr 0

21 or larger.
To investigate the settling process in more detail, we n

the equations of motion, which can be obtained from E
~2.10! and ~2.11!. The resulting equations are

Ĥ25
8p

3MPl
2 Fr

u
1

V̂1

u
1

m2~u8!2

8u2 1
YV̂1

Au
F~r 0u1/2n!Gu9

1S 3Ĥ2
u8

u Du8

u

5
4V̂1

m2
2

2YV̂1Au

m2 F r

n

dF~r !

dr
2F~r !G

r 5r 0u1/2n

. ~2.77!
02401
e

l

at

e

e

in

d
.

These equations are augmented by the conservation co
tion râ4/u5const. Also we have defined

Y[
r 0

nUbulk

V̂1

, ~2.78!

which we expect to be;2. If we nondimensionalize as be
fore we find

S y8

y D 2

5
1

2n S z8

z D 2

1
v
z

1
1

y41
vYAui

z1/2 F~r iz
1/2n!z9

1S 3y8

y
2

z8

z D z8

5nv2
nvYAui

2
z1/2F r

n

dF~r !

dr
2F~r !G

r 5r iz
1/2n

.

~2.79!

Notice that in this form of the equations,Y only appears in
the combinationY i[YAui , and since we expectui!1, this
parameter is small, implying that deviations from the pow
law solution only appear at late times, as we have alre
concluded.

These equations contain three parameters explicitly:n ~or
n), v5V̂1 /r i , and Y i . In addition, they contain one~or
more! parameters implicitly, because of the mass scales
plicit in F(r ). For example, if

F~r !512cos~mrr !, ~2.80!

so that there is only one mass scale,mr , there is an addi-
tional nondimensional parameterm i[mrr i . For this form of
F(r ), the evolution equations are

S y8

y D 2

5
1

2n S z8

z D 2

1
v
z

1
1

y41
vY i

z1/2
@12cos~m iz

1/2n!#z9

1S 3y8

y
2

z8

z D z8

5nv2
nvY i

2
z1/2Fm iz

1/2nsin~m iz
1/2n!

n
21

1cos~m iz
1/2n!G . ~2.81!

In these units, substantial deviations from the scaling eq
tions are expected after

t̂5Y i
21An12

12nv
, ~2.82!

at which timez54/Y i
2 , provided thatm i*(Y i /2)1/n.

Figure 2 shows the results of numerically integrating t
dimensionless evolution equations, Eqs.~2.81!, for
(v,Y i ,m i)5(1026,1028,1023) @Fig. 2~a!# and (v,Y i ,m i)
5(1024,1026,1022) @Fig. 2~b!#, respectively, withn52 in
both cases. The numerical results show clearly that afte
long period of power law expansion~in close agreement with
1-10
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the fixed point solution found above!, z levels off, although
in both cases, the time at which this happens is a bit la
than our back-of-envelope estimate, so thatz is systemati-
cally larger than 4/Y i

2 asymptotically. ForY i51026, we
would estimatez5431012 asymptotically, whereas the nu
merical result is 9.7531013, a factor of about 25 larger; fo
Y i51028 we would estimatez5431016, as opposed to the
numerical 431017, about a factor of 10 larger.~The discrep-
ancy in r is smaller, sincez}r 2n5r 4 for n52.! These re-
sults can be explained if the time to asymptote is a facto
3–5 larger than our simple estimate. By inspecting the
ures, we can see that the time at whichz levels off is about
5 times larger than the analytic estimate,'4.083107, for
(v,Y i ,m i)5(1024,1026,1022), and about 3 times large
than the analytic estimate,'4.0831010, for (v,Y i ,m i)
5(1026,1028,1023).

Once the radion field begins to settle into a minimu
around r 0, the value of the Planck mass zeros in on
present value.6 Once this happens, the temperature of
universe can begin to fall once more, and ultimately it m
drop belowTc,1. When this happens, the inflaton fields on
again are free to roll and move toward their minimum
nonzero vacuum expectation values. The amplitude of
residual oscillations in the radion field will then redsh
away exponentially, until the inflaton kinetic energy is the
malized in a second phase of reheating. It is therefore n
essary that once the temperature of the universe beco
constant during the radiation-dominated era of rad
growth, the constant temperature must be aboveTc,1. More-
over, we need to require that there be enough inflation a
the temperature falls belowTc,1 for the amplitude of oscilla-
tions in radius to drop to an acceptable level.

For F(r )512cosmrr, it is easy to see that the minima o
VE(F) are at mrr 52pkr , where kr is an integer. At
minima,

d2VE~F!

dF2 5
4p2kr

2r 0
nUbulk

m2n2 S r 0

r D n

~2.84!

and, at the minimum corresponding tor 5r 0,

d2VE~F!

dF2 5
4p2kr 0

2 r 0
nUbulk

m2n2
. ~2.85!

Thus, nearr 5r 0 ~or F50),

6It turns out that for a quadratic potential, there is also an ex
solution in the radiation dominated era if we ignore the source te
In this case, the equations are completely linear, and if we tak
potential like 1

2 m2(F2F0)2, the solution is

F2F05
A1J1/4~mt̂!1A2J21/4~mt̂!

~mt̂!1/4
; ~2.83!

the most important feature of this equation is that the amplit

falls like (mt̂)23/4 ~i.e. }â23/2) at late times.
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VE~F!'
2p2kr 0

2 r 0
nUbulk

m2n2
F2, ~2.86!

and the mass of the radion is

mradion
2 5

4p2kr 0

2 r 0
nUbulk

m2n2
;

8p2kr 0

2 V̂1

m2n2
5

256p3kr 0

2 V̂1

n~n12!MPl
2

;

~2.87!

numerically, we find@recall Eq.~2.75!#

mradion;7.331023 eV
kr 0

An~n12!
S V̂1

1 TeV4D 1/2

.

~2.88!

Remarkably, the mass of the radion that emerges is m
smaller than any other characteristic mass scale in the p
lem, unlesskr 0

@1 and/orV̂1@1 TeV4. For other choices of

F(r ) we would have

d2VE~F!

dF2 5
r 0

nUbulk

m2n2 S r 0

r D nF2n~n21!F~r !1r 2
d2F~r !

dr2 G ;
~2.89!

with the definition

~2pkr !
2[F2n~n21!F~r !1r 2

d2F~r !

dr2 G ~2.90!

this becomes identical to the formula for the special c
F(r )512cosmrr.

III. EXPANSION FACTORS AND THE RADION DENSITY

Now that we have a complete account of the vario
phases of expansion in our proposed cosmological model
can gather the results to calculate the factors by which
universe has expanded between various interesting ep
and the present. We shall work in the Jordan frame, for
most part, and define the cosmological scale factora(t0)
51 at the present day,t5t0. The value of the Hubble con
stant today isH05100h0 km s21 Mpc21, the cosmic micro-
wave background radiation~CMBR! temperature today is
T052.7 K, and the corresponding critical density isrc,0

53H0
2MPl

2 /8p'8.01310247h0
2 GeV4.

Before moving on to our more complicated cosmologic
model, it is useful to review the situation in convention co
mology with a fixed Planck mass and a single inflationa
era. Letaexp be the value of the scale factor at the end of t
period of exponential expansion, andarh the value of the
scale factor at the end of the reheating phase that follo
exponential expansion. IfTrh is the reheating temperature
then

arh5
S 0

1/3T0

S rh
1/3Trh

, ~3.1!

ct
.
a

e
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where the dimensionless factorsS0 and Srh count particle
states in thermodynamic equilibrium at present and atarh ,
respectively.7 If the energy density during inflation isrV ,
and the inflaton potential is harmonic near the minimum
tained at the end of inflation, then

p2ErhTrh
4

15
;rVS aexp

arh
D 3

, ~3.2!

where Erh is another dimensionless factor that counts
contributions of various particle states to the total ene
density at temperatureTrh .8 Defining

e rh[S p2ErhTrh
4

15rV
D 1/4

, ~3.3!

we find aexp/arh;e rh
4/3 or

aexp;
e rh

4/3S 0
1/3T0

S rh
1/3Trh

5
e rh

1/3S 0
1/3E rh

1/4

S rh
1/3 S p2T0

4

15rV
D 1/4

. ~3.4!

If we assume that the present day Hubble scaleH0
21 passed

outside the horizon during inflation, then the scale factor
the universe at that time wasaHubble5(rc,0 /rV)1/2, and the
ratio

aexp

aHubble
;

e rh
1/3S 0

1/3E rh
1/4

S rh
1/3 S p2T0

4rV

15rc,0
2 D 1/4

5expF30.810.25 lnS rV

1 TeV4D 1 lnS e rh
1/3S 0

1/3E rh
1/4

S rh
1/3h0

D G .

~3.5!

For rV'(1015 GeV)4, Eq. ~3.5! implies about 60e-foldings
betweenaHubble andaexp, the familiar value, but generally
the number ofe-foldings depends on details of the inflatio
ary model.

In the cosmological model developed above, there are
periods of exponential inflation that occur at different valu
of the Planck mass. The second inflationary epoch and
subsequent reheating occur at the end of phase II, at w
time the Planck mass has settled to its present value. T
we can apply the same reasoning to this epoch as was d
oped in the preceding paragraph and we find that the s
factor at the end of the period of inflation that conclud
phase II is

aexp,2;
e rh,2

1/3 S 0
1/3Erh,2

1/4

Srh,2
1/3 S pT0

4

15V̂1
D 1/4

~3.6!

7Recall that it is entropy that is conserved during adiabatic exp
sion. Note thatSrh may be considerable, e.g.*10.

8When only relativistic particles are present and the equation
state depends only on temperature,Erh53Srh/4.
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in the Jordan frame, wheree rh,2 , Erh,2 and Srh,2
1/3 have the

same meanings as the analogous symbols introduced for
ventional inflation and reheating, but apply to the end
Phase II only. If we assume that this second inflation led
an increase in scale by a factorF2, then the scale factor jus
before inflation began was

a25
aexp,2

F2
;

e rh,2
1/3 S 0

1/3Erh,2
1/4

Srh,2
1/3 F2

S pT0
4

15V̂1
D 1/4

; ~3.7!

this is also the value of the scale factor before the radion fi
began its power law growth during phase II.

Proceeding backward in time still further, we encoun
the first subphase of phase II, during which the energy d
sity of the universe declined from its value just after t
reheating at the end of phase I,p2Erh,1Trh,1

4 /15, to;V̂1; the
corresponding increase in scale was a fac
;(p2Erh,1Trh,1

4 /15V̂1)1/4, so the scale factor at the end of th
reheating that terminated phase I was

arh,1;
e rh,2

1/3 S 0
1/3Erh,2

1/4 T0

Srh,2
1/3 F2Erh,1

1/4 Trh,1

5
e rh,2

1/3 S 0
1/3Erh,2

1/4

Srh,2
1/3 F2e rh,1

S p2T0
4

15V̂0
D 1/4

,

~3.8!

wheree rh,1[(p2Erh,1Trh,1
4 /15V̂0)1/4. Consequently, the value

of the cosmological scale factor at the end of the exponen
expansion in phase I is

aexp,1;e rh,1
4/3 arh,1;

e rh,1
1/3 e rh,2

1/3 S 0
1/3Erh,2

1/4

Srh,2
1/3 F2

S p2T0
4

15V̂0
D 1/4

. ~3.9!

Although the derivation ofaexp,1 is more complicated than
the derivation ofaexp,2 ~or its conventional equivalent,aexp),
notice that it does not depend explicitly on the differe
Planck scales that arise in our inflationary model.

The dependence on Planck scales enters when we re
sider the relationship betweenaexp,1 and aHubble. We have
assumed that the present Hubble scale, and all other ma
scopic scales relevant to the development of large s
structure, crossed the horizon during phase I. As a res
aHubble5(rc,0 /V̂0)1/2(MPl, I /MPl), and

aexp,1

aHubble
;

e rh,1
1/3 e rh,2

1/3 S 0
1/3Erh,2

1/4 MPl

Srh,2
1/3 F2MPl, I

S p2T0
4V̂0

15rc,0
2 D 1/4

5expF30.810.25lnS V̂0

1 TeV4D 1 lnS MPl

F2MPl, I
D

1 lnS e rh,1
1/3 e rh,2

1/3 S 0
1/3Erh,2

1/4

Srh,2
1/3 h0

D G . ~3.10!

For our cosmology, the number ofe-foldings between hori-
zon crossing and the end of exponential expansion du
phase I depends on numerous uncertain parameters, pr

n-

f

1-12



i-

th
ni
th

t
di

th

ur

un
q

a

y
o
ee

s
th
ge

c

he

of
an
le,

a-
ry

ld

COSMOLOGY OF THE BRANE WORLD PHYSICAL REVIEW D62 024011
pally V̂0 and the combinationMPl /F2MPl, I . The require-
ment thataexp,1.aHubble is one constraint on our cosmolog
cal model.

We can obtain a separate constraint by requiring that
energy density in radions today does not overfill the u
verse. At the end of the subphase of power law growth of
radion during phase II, the energy density in radions is;V̂1;
during the ensuing exponential expansion it drops
;V̂1 /F 2

3. The energy density in radions drops by an ad
tional factor of (aexp,2 /arh,2)

3;e rh,2
4/3 by the time reheating is

complete, to a value;p2Erh,2Trh,2
4 /15F 2

3 , i.e. a factor;F 2
3

smaller than the energy density in relativistic matter at
end of reheating. BetweenTrh,2 and T0, the radion density
drops by a factor ofS0T0

3/Srh,2Trh,2
3 , so that

r rad,0;
p2S0Erh,2Trh,2T0

3

15Srh,2F 2
3

~3.11!

is the density of radions today. Comparing with the clos
density implies a radion density parameter

V rad,0;
8p3S0Erh,2Trh,2T0

3

15Srh,2F 2
3H0

2MPl
2

'
~Trh,2 /F 2

3!~S0Erh,2 /Srh,2h0
2!

10 eV
;

~3.12!

thus, V rad,0&1 as long as Trh,2 /F 2
3

&10(h0
2Srh,2 /S0Erh,2) eV.

IV. FLUCTUATIONS

Fluctuations about the smooth cosmological backgro
alter the form of the Jordan frame line element from E
~2.6! to

ds252dt21a2~ t !~d i j 1hi j !dxidxj ; ~4.1!

the corresponding Einstein frame metric isdŝ2

5ds2Au(x,t), whereu(x,t)[exp@2F(x,t)/m#. Assume that
u(x,t)5u0(t)@11h(x,t)#, where uh(x,t)u!1. Then, after
making an appropriate infinitesimal coordinate transform
tion, we get

dŝ252d t̂21â2~ t̂ !~d i j 1ĥi j !dx̂idx̂j ; ~4.2!

i.e., the metric in the Einstein frame can be reduced to s
chronous form. As always, the necessary infinitesimal co
dinate transformation is not unique; there is still gauge fr
dom even when the metric is reduced to the form of Eq.~4.2!
@18,19#.

The perturbed Ricci tensor corresponding to Eq.~4.2! can
be found in Ref. @18#. For compressional perturbation
around the power law background solution for phase II,
perturbation equations can be boiled down to two gau
independent equations
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f̂H9 1
5f̂H8

2 t̂
2

¹̂2f̂H

3â2
52S n12

24n Dc

t̂

¹̂2f̂H

â2
52S 9n26

32n D ~D2x!

t̂2
2S n12

16n Dc

t̂
, ~4.3!

wheref̂H is the ~Einstein-frame! gauge-independent metri
potential introduced in Ref.@19# and c5h81h/ t̂ , coupled
to three gauge-dependent equations

h91
3h8

2 t̂
1

h

t̂2
2

¹̂2h

â2
52

ĥ8

t

ĥ91
ĥ8

t
52F S 9n26

8n D D

t̂2
1S n12

8n D h

t̂2
1S n12

2 Dh8

t̂2 G
~xt !81

D2x

2
50, ~4.4!

where ĥ5ĥi i . If r0( t̂ ) and u0( t̂ ) denote the background
solutions given by Eqs.~2.56! and ~2.55!,

r̂5
r~ x̂, t̂ !

u~ x̂, t̂ !
5

r0~ t̂ !

u0~ t̂ !
@11D~ x̂, t̂ !#, ~4.5!

and if the Einstein-frame three-velocity isU5“̂V( x̂, t̂ ),

x~ x̂, t̂ !5
2â2~ t̂ !V~ x̂, t̂ !

t̂
. ~4.6!

Equations~4.4! and the second equation of Eqs.~4.3! can be
combined to yield the gauge-independent equation

c-1
13c9

2 t̂
1S 37n22

4n Dc8

t̂
1S 9n22

4n D c

t̂3
2

3¹̂2c

t̂ â2
2

¹̂2c8

â2

52
6¹̂2f̂H

t̂2â2
2

4¹̂2f̂H8

t̂ â2
. ~4.7!

On scales larger than the Einstein-frame horizon scale,Ĥ21,
a complete solution may be obtained by coupling Eq.~4.7! to
the first equation of Eqs.~4.3!.

At the end of phase I, there are no fluctuations in t
radion field, soc50 on all scales of interest today~i.e. well
outside the horizon!. ~This is because the effective mass
the radion field once in a minimum is generally larger th
the cosmological expansion rate; for a particular examp
see Appendix D.! There are fluctuations inf̂H on these
scales, and, from Eq.~4.7!, these tend to generate perturb
tions in the radion field. However, the driving terms are ve
small on large scales: for comoving wave numberk, they are
of order k2f̂H / t̂2â2!f̂H / t̂4. Consequently,c;k2 t̂ f̂H /â2

!f̂H /t, and the large-scale fluctuations in the radion fie
generated during phase II are far smaller thanf̂H ~which sets
1-13
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the scale of the density fluctuations on such scales after
re-enter the horizon!. Moreover, the source term in the equ

tion for f̂H is negligible on these scales, sincec/ t̂

!f̂H / t̂2, andf̂H remains constant on scales larger than
horizon during phase II.

V. DISCUSSION

In the preceding section, we developed a new picture
cosmology in the brane world. Our cosmological model
based on a specific form of the effective potential, Eq.~1.2!,
which, although admittedly somewhat complicated, allo
the size of the compact dimensions of the universe to evo
to its present value from a different, but much smaller, fix
value at early times. In the specific scenario we have
folded, the resulting evolution of the universe divides na
rally into four different phases, the last of which can
called the ‘‘standard big bang cosmology’’ that follows th
electroweak phase transition and proceeds to the present
with the radius of the extra dimensions fixed at its pres
value, r 0, and hence the Planck mass fixed atG21/251.22
31019 GeV.

The other three phases represent the evolution of the
dius of the extra dimensions to that value from a consid
ably smaller one. While we do not claim that the scenario
have developed for this evolution is unique, it does ha
some features that are attractive. The first phase, phase
Sec. II B, is relatively brief; the radion settles into a potent
minimum at r I during this phase. We have shown that th
process is not entirely guaranteed to take place, but ma
rather likely in scenarios where the effective potential for
radion has multiple~or an infinite number of! minima.

Phase 0 sets the stage for phase I of Sec. II C, du
which the universe inflates at a fixed Planck massMPl, I
5MPl(r I /r 0)n/2,MPl . We assume that this is the main in
flationary phase undergone by the expanding universe
that macroscopic comoving scales on which large sc
structure develops all passed outside the horizon du
phase 0. The density perturbation amplitude produced
quantum fluctuations in the inflaton field~s! c during phase 0
is estimated in Eq.~2.38!. For an inflaton effective potentia
proportional toms

4@12exp(2mdd)#, where d is the inter-
brane separation~as discussed in@20# and Appendix B!, we
estimate that the primordial density fluctuation amplitude
;(md /MPl, I)Nk for a mode with comoving wave numberk,
with Nk the number ofe-foldings between horizon crossin
for that mode and the end of exponential inflation duri
phase 0.@In Appendix B, we argue formd5mRR, the mass
of the Ramond-Ramond~RR! mode.# Nominally, we would
expectmd&ms , leading to a density perturbation amplitud
&ms /MPl, I , which would be woefully small for ms
;1 TeV if MPl, I5MPl . An attractive feature of our sce
nario is that it allowsMPl, I!MPl . Turning the argumen
around, observations of large scale temperature fluctuat
in the cosmic microwave background radiation@11# require
md /MPl, I;1025, so the radius of the extra dimensions du
ing phase I satisfies the constraint
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S r I

r 0
D n/2

5
MPl, I

MPl
;105

md

MPl
'10211S md

1 TeVD . ~5.1!

The radius of the extra dimensions during phase I was c
siderably smaller than today ifmd;1 TeV andn<7. One
of the principal motivating factors behind our cosmologic
model is the realization that the amplitude of primordial de
sity perturbations is proportional toMPl, I

21 , and that perturba-
tions at an acceptable amplitude are only possible ifMPl, I
!MPl .

Expansion fromr I to r 0 occurred during phase II, which
is mainly radiation dominated following the reheating th
terminated phase I. In our model, once the branes com
overlap,V0(c)→0, which frees the radion to expand onc
more since the product termV0(c) f I(r ) in the effective po-
tential ~1.2! is no longer active. The inflaton potential is the
dominated byV1(c), and we assumed that the initial rehea
ing was sufficient to trap the universe at smallc at first, at a
minimum with nonzeroV1(c). Phase II naturally divides
into three subphases, which was discussed in detail in
II D. During the first subphase, the universe expands ar
'r I , until it cools sufficiently that an approximate equilib
rium is attained, with comparable energies in radiation,
dion kinetic energy, and vacuum energy density. Once
happens, a new phase of power law expansion of the ra
of the extra dimensions ensues at virtually fixed radiat
temperature; see Eqs.~2.55! and ~2.56!. This subphase end
when the radion becomes trapped in one of the many~or
infinite! minima of its effective potential,f 0(r ) @see Eq.
~1.2!#; we assume that this minimum is atr 0, and Eqs.~2.75!
and~2.76! estimate the radion vacuum energy density in
bulk required for this to be true. The third subphase of ph
II is the phase transition associated with the inflaton poten
V1(c) in Eq. ~1.2!. During this phase, the universe expan
exponentially by an additional factorF2, and reheats, finally,
to a temperatureTrh,2 . Conventional, noninflationary big
bang cosmology commences at this point.

Another important constraint on our cosmological mod
is the requirement that the present day radion energy den
does not dominate the total energy density of the unive
Because the radion is trapped in a potential minimum tow
the end of phase II, it behaves, much like the axion, a
massive, cold dark matter particle; the effective radion m
is estimated in Eq.~2.88!, and may be;1 eV typically.9

Just after the reheating that ends the short inflationary pe
during phase II, the energy density in radions is smaller th
the energy density of the products of reheating by a fac
'F 2

23. Requiring that radions not dominate the mass d
sity of the universe today implies, by Eq.~3.12!,

9We shall discuss the development of density perturbations du
the ‘‘matter-dominated’’ phase of a universe consisting of radio
and other cold dark matter elsewhere, but note here that the
nothing special about the radion component, and it can be show
behave as a typical dark matter particle. As shown in Sec.
significant, additional fluctuations in the radion field are not p
duced during phase II.
1-14
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F 2*23103S Trh,2

100 GeVD
1/3S S0Erh,2

h0
2Srh,2

1/3 D 1/3

, ~5.2!

whereTrh,2 is the temperature of the universe after this l
reheating episode, and the remaining factors are;1 in gen-
eral; see Sec. III for details.10 Thus, if the second inflationary
epoch comprised more than about eighte-foldings, the
present day density in radions would be negligible, but
model cannot be consistent with fewer than eighte-foldings,
which would result in an overdense universe dominated
radions. We note that Newton’s constant of gravitation ac
ally oscillates in this model at a frequencymradion, but with a
very small amplitude,dG/G;V rad,0

1/2 H0 /mradion ~e.g. @13#!.
Combining Eqs.~3.10!, ~5.1! and ~5.2!, we can constrain

the number ofe-foldings that take place during phase I b
tween the time when the present-day Hubble length pas
outside the horizon and the end of exponential expansio

aexp,1

aHubble
;expF48.710.25 lnS V̂0

1 TeV4D 1 lnS 1TeV

md
D

3S 100 GeV

Trh,2
D 1/3

1 lnS e rh,1
1/3 e rh,2

1/3 V rad,0
1/3

h0
1/3e rh,2

1/12 D G . ~5.3!

While we expect this to be below the 60e-foldings generally
found for grand unified theory~GUT! scale inflation, it need
not be far smaller~e.g. by a factor of 2!, as one might have
expected for a theory in which inflation happens at a mu
lower energy scale ~e.g. ;1 TeV compared to
;1012 TeV). This is because the Planck scale was relativ
small during phase I, when the main inflationary era o
curred in our model. According to Eq.~5.3!, it is not too
difficult to satisfy the constraint that the number
e-foldings be considerably larger than 1, unlessV rad,0 is ab-
surdly small.

Ours is only one of several proposed scenarios for c
mology in the brane world. The model expounded here
some overlap with that of Ref.@8#, except that we assum
that the radion and inflaton are different fields, resulting
substantial differences between the two models. In cont
to our model, Ref.@9# proposes a different theory of baryo
genesis whereas we believe that baryogenesis from
~minimal supersymmetric! standard model electrowea
phase transition is adequate. In addition, it should be poss
to modify phase II of our scenario so that the fixing of t
radion to its present day value is achieved not by a poten
@as with our potentialf 0(r )], but instead by cosmologica
damping as suggested by Steinhardt@21#. There may exist
other viable cosmological scenarios in the brane wo
Eventually, string theory should provide the appropriate
dion and inflaton potentials, which hopefully will determin
the cosmological scenario that nature chooses.

10This also guarantees that the radion energy density during
mological nucleosynthesis was no more important than that of
other dark matter component, and therefore has negligible effe
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Recently, Randall and Sundrum proposed a scenario@22#
where the extra dimension does not have to be compacti
In this scenario, the radius can have a runaway behavior.
not even clear that the radion field has to be trapped du
inflation to obtain the correct power spectrum of the dens
perturbation. The cosmology of such a scenario will be
teresting to study. Some attempts along this direction can
found in Ref.@23#.
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APPENDIX A: THE EFFECTIVE POTENTIAL

Here we want to give some background on the motivat
on the choice of the effective potential~1.2! used in the text.
Although our universe is nonsupersymmetric, it is very he
ful to start from a supersymmetric theory in which spontan
ous supersymmetry breaking takes place dynamically. S
the brane world picture is naturally realized in string theo
where many non-trivial consistency properties~such as con-
sistent quantum gravity! are automatically built in, we shal
consider what stringy properties tell us about the effect
potential.

Since string theory has no free parameter~the string scale
ms simply sets the mass scale!, all physical parameters
emerge as various scalar fields obtaining vacuum expecta
values~VEVs! determined by string dynamics. For examp
the large radii of the large extra dimensions come from
VEVs of the radion fields. Before supersymmetry breaki
and dilaton stabilization~the latter fixes the string coupling
value!, the dilaton and the compactification radii are modu
that is, the effective potential is flat~and remains zero! as
their VEVs vary. This is true to all orders in the perturbatio
expansion. So supersymmetry breaking and moduli stabil
tions are expected to come from non-perturbative dynam
which is poorly understood at the moment. However, it
still reasonable to assume that the moduli degenerac
lifted after dynamical supersymmetry breaking.

Although the effective potential of a particular strin
vacuum ~i.e., ground state! is model dependent, there ar
stringy and supersymmetric features that are quite gen
@24#. Here we shall give a very brief description of some
the properties that are relevant in this paper. Besides
graviton, the dilaton and the radii, a typical semi-realis
string model has gauge fields~in vector super-multiplets! and
charged matter fields~as components of chiral supe
multiplets! as well as additional moduli. The general L
grangian couplingN51 supergravity to gauge multiplets an
chiral multipletszi ~the indexi labeling different chiral mul-

s-
y
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É. É. FLANAGAN, S.-H. H. TYE, AND I. WASSERMAN PHYSICAL REVIEW D62 024011
tiplets zi will be suppressed! depends on three functions:
~1! The Kähler potentialK(z,z̄) which is areal function.

It determines the kinetic terms of the chiral fields

Lkin5Kzz̄]mz]mz̄ ~A1!

with Kzz̄[]2K/]z] z̄.
~2! The superpotentialW(z) is aholomorphicfunction of

the chiral multiplets~it does not depend onz̄). W(z) deter-
mines the Yukawa couplings as well as theF-term part of the
scalar potentialVF :

VF~z,z̄!5eK/M Pl
2 H DzWKzz̄

21DzW23
uWu2

M Pl
2 J , ~A2!

with DzW[]W/]z1WKz /M Pl
2 .

~3! The gauge kinetic functionf ab(z) is alsoholomorphic.
It determines the gauge kinetic terms

Lgauge5Ref abFmn
a Fmnb1Im f abFmn

a F̃mnb. ~A3!

It also contributes to gaugino masses and the gauge pa
the scalar potentialVD :

VD5~Ref 21!ab~Kz ,Taz!~Kz̄ ,Tbz̄!. ~A4!

So the effective potential is given by

V5VF1VD . ~A5!

Consider a semirealistic type I string model, i.e., aD
54, N51 supersymmetric, chiral model, with a set
9-branes and up to 3 sets of 5-branes, with a comm
4-dimensional uncompactified spacetime (x0 to x3). We
shall treat the 6 compactified dimensions as composed
~orbifolded! two-tori: the first torus with coordinate
(x8 ,x9), the second with coordinates (x6 ,x7) and the third
with coordinates (x4 ,x5), the volumes of which are, crudel
speaking, r 1

2, r 2
2 and r 3

2 respectively. The 4-dimensiona
Planck massM Pl and the Newton’s constantGN are given by

GN
215M Pl

2 ;
~ms

4r 1r 2r 3!2

l2
~A6!

wherel is the string coupling. The gauge couplingsg9 and
g5i of the gauge groupsG9 andG5i are

g9
225

2~ms
3r 1r 2r 3!2

l
, g5i

225
2ms

2r i
2

l
~A7!

where thei th set of 5-branes hasr i as the size of its two
compactified directions. For large radiusr 3 , g9 andg53 are
too small to be relevant, so the standard model gauge gro
must come from the first two sets of 5-branes. This is thn
52 case. In the two examples@3,25# that we know, thisn
52 case is needed for phenomenology. Here, we shall id
tify r 5r 3 as the radion. To stabilize the moduli VEVs@and
maybe also to induce super-symmetry~SUSY! breaking#, the
string couplingl is likely to be strong. To obtain the wea
standard model gauge couplings from a generic strong st
02401
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coupling requiresmsr 1 and maybemsr 2 to be around 10.
This will modify Eq. ~1.1!. ~In semi-realistic string models
the picture is somewhat more complicated.!

The dilaton and the volume moduli are bulk modes:

S5g9
221 iu, Ti5g5i

221 iu i ~A8!

where theu ’s are corresponding axionic fields. The radio
field is parametrized byS and T3. For example, to lowes
order, the gauge kinetic functionsf 95S and f 5i5Ti , while
the Kähler potential is better known@24#. In the example of
Ref. @3#, with only two sets of 5-branes~orthogonal to the
third torus with very larger 35r 0), we have

K52 lnS S1S* 2( uzii u2D2( ln~Ti1Ti* !

1
uz12u2

2~S1S* !1/2~T31T3* !1/21••• ~A9!

wherezi j refers to open string chiral modes with one end
the string ending on thei th 5-branes and the other end en
ing on the j th 5-branes.@For zii with i 51,2, only thei th
torus ~world-sheet! excitation modes are included.# The su-
perpotentialW starts out with terms cubic inzi :

W5y~S,Ti ! jklzjzkzl1••• ~A10!

where y(S,Ti) jkl are model-dependent functions of th
moduli.

Let us concentrate on theF term VF of the effective po-
tential. Generically, the lowest order terms in the brane m
effective potential are multiplied by some functions of t
moduli, while higher order terms couple brane modes a
the moduli. From the form of the superpotentialW, whereS
and T3 parametrize the radion fieldr, any brane potentia
will couple to the radion. In low orders, it will be a direc
product of the brane potential and the radion potential. So
form V0(c)@11 f I(r )# is quite reasonable; this is the firs
term of our assumed effective potential~1.2!. Choosingc to
be the electroweak Higgs field, the last termV1(c) in Eq.
~1.2! is simply the Higgs potential in the standard model,
least for VEVs not much bigger than the electroweak sca
Of course, we are more interested in the electroweak Hi
potential in the minimal supersymmetric standard mod
which has two Higgs doublets. There, the effective Hig
potential is only poorly known.

Notice thatVF does not contain a term that involves on
the moduli, which is a property that extends to all orders
the perturbative expansion. However, a termf 0(r ) will ap-
pear if some brane modes other than the inflaton deve
non-zero VEVs. Also, we do expect effective potential ter
coupling the moduli to other bulk modes, as well as ter
involving the moduli to be generated non-perturbative
Otherwise, the moduli will appear as massless fields~much
like the Brans-Dicke field!, which is ruled out experimen
tally. Hence we need an effective potential to stabilize
radion. This is another reason we expect the presence
term like f 0(r ). It is a bulk potential. This more or les
1-16
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justifies the choice of the form of the effective potential
the type~1.2! proposed in the text.

APPENDIX B: BRANE INFLATION

The brane inflationary scenario@6# emerges rather natu
rally in the generic brane world picture@1–3#. We may con-
sider the type I string whereK branes sit more or less on to
of an orientifold plane at the lowest energy state, resulting
zero cosmological constant. In cosmology, it is reasonabl
assume that some of the branes were relatively displa
from the orientifold plane in the early universe.~This is the
generic situation in F theory, which may be considered a
generalization of the type I strings.! To simplify the problem,
we assume that only one brane~or a set of branes! is dis-
placed from the rest by a distanced. This situation probably
arises after all except one brane have moved towards
other. Before supersymmetry breaking and dilaton stabil
tion, the force between the separated brane and the re
precisely zero. In the realistic situation where supersymm
is absent, we expect the potentialV(d) to be, at large sepa
ration d,

V~d!5ms
4d22nS 11( e2mi8d2( e2mjdD ~B1!

where mi8 are the masses of the Neven-Schwarz–Nev
Schwarz~NS-NS! string states whilemj are the masses o
the string RR fields~the sums are over infinite spectra!. For
large d and n52, V(d) is essentially a constant. The ‘‘1’
term is due to gravitational interaction, the only long ran
force present at larged. For smalld, the form ofV(r ) de-
pends crucially on the mass spectrum.

A key feature of brane inflation is the identification of th
separationd with the vacuum expectation value of an appr
priate Higgs field@20#. This Higgs field is an open string
state with its two ends stuck on two separated branes. T
is, this Higgs field is a brane mode playing the role of t
inflaton. In the effective four-dimensional theory, the moti
of the branes is described by thisslowly-rolling scalar field,
the inflatonc5ms

2d, which is the scalar component of on
of the chiral fieldzi or some linear combination. To be sp
cific, we shall at times consider then52 case, and, as a
illustration, keep only the graviton and one RR mode, res
ing in an ~over-!simplified effective potential

V~c!;ms
4~12e2uc1u/mI !F~c!1V1~c2! ~B2!

wherec1 andc2 are two different brane modes andmI is a
model-dependent mass scale, which is related to the ma
the RR modemRR via c15ms

2d, that is,mImRR5ms
2 . We

also include a generic smooth functionF(c), which will be
neglected in the text. Since the RR mode is massless be
supersymmetry breaking and the supersymmetry brea
scale is below the string scale, we expectmI.ms.mRR.

In this scenario, it is even possible that the electrowe
Higgs field plays the role of the inflaton, a particularly inte
esting scenario. In this case, we may identifyc5c15c2 as
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the electroweak Higgs field andV1(c) as the electroweak
Higgs effective potential. That is,V1(c50);mEW

4 .

APPENDIX C: DERIVATION OF EFFECTIVE
LOW-ENERGY DESCRIPTION

In this appendix we derive the low energy, 4 dimension
description given in Sec. II A above from the higher dime
sional description of the brane world scenario. We start w
the action

L5E ds11xAA2det~gAB!F ks

G(s)

(s)RG
1E d4ymA2det~gmn!$Lb@gmn~yl!,x~yl!#%,

~C1!

where

ks5
~s22!G~s/2!

4~s21!ps/2
. ~C2!

The notation here is as follows. The number of spatial
mensions iss5n13, n is the number of extra compactifie
dimensions, andG(s) is the s-dimensional Newton’s con-
stant. The normalization of the first term in the action~C1! is
chosen such that the force law at short distances isF
5G(s)m1m2 /r s21. The quantitiesxA are coordinates in the
higher dimensional space~the bulk! with 0<A<31n, gAB
5gAB(xC) is the bulk metric, and(s)R is the Ricci scalar of
gAB . In the second term, the quantitiesym with 0<m<3 are
coordinates on the brane. The induced metric on the bran

gmn~yl!5gAB@zC~yl!#
]zA

]ym

]zB

]yn , ~C3!

where the location of the brane isxA5zA(ym). The quantity
Lb in Eq. ~C1! is the Lagrangian of all the fields, collectivel
calledx, that reside on the brane.

This action~C1! is a functional of the (41n) dimensional
metric, of the location of the brane, and of the fieldsx that
reside on the brane, and is invariant under transformation
both thexA coordinates and theym coordinates. We now
specialize thexA coordinate system as follows. Let us wri
xA5(xm,xa), where 0<m<3 and 4<a<31n. We can
choose the coordinate system such that the brane locatio

xA5zA~ym!5~ym,0,0, . . . ,0!. ~C4!

Hence we can identify the first four of the bulk coordinat
xm with the brane coordinatesym.

We now make the ansatz for the metric, in the abo
choice of bulk coordinatesxA, of

gAB~xm,xa!5Fgab~xm! 0

0 e2F̃(xm)hab~xc!
G . ~C5!
1-17
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Here it is assumed that the internal space is a compact s
of constant curvature, like ann-sphereSn or an n torus S1

3•••3S1, with metric hab(x
c). The volumeVn and effec-

tive radiusr of the extra dimensions are then given by

Vn5r n5enF̃E dnxaAdet~hab!. ~C6!

If r 0 is the value of the radiusr today, let us adopt the
convention that

E dnxaAdet~hab!5r 0
n , ~C7!

so that

r 5eF̃r 0 . ~C8!

In going from the full metricgAB(xm,xa) to the reduced form
~C5! we have thrown away all the Kaluza-Klein mod
which have masses*1/r . Hence the ansatz~C5! will only be
valid when all the fields vary withxm over length scales@r .
We have also thrown away several of the components of
metric—the componentsgm a(xm) and the traceless part o
gab(x

m). This is valid since these components have no c
plings to the brane fieldsc; in the four dimensional descrip
tion they will act as free, massless scalar and vector fie
which are coupled only to the metricgmn .11 Their equations
of motion will be source free equations of the for
¹a¹aw50 @26#, and so, at least classically, we can ta
them to vanish.12

We now specialize the brane LagrangianLb appearing in
Eq. ~C1! to be of the form

Lb~gmn ,x!52
1

2
~¹c!21Lrest~gmn ,x rest!, ~C9!

wherec is the inflaton field or fields, andx rest denotes the
remaining brane fields other thanc, described by the La-
grangianLrest. We also add to the action the terms

11To see that these fields are exactly decoupled classically,

should use a definition of the radion fieldF̃ which is more genera
than Eq.~C5!, namely

E dnxaA2det~gAB!5r 0
nenF̃A2det~gmn!.

This equation together with the action~C1! shows thatF̃ is the only
piece of the metric which has couplings to anything other than
metric.

12Quantum mechanically, these fields will be subject to the sa
process of parametric amplification during inflation as norm
gravitons, and if they start in their vacuum states, the totalV in
these fields today should presumably be comparable to the totV
in relic gravitons from inflation, which is of the order of 10214 in
typical inflation models but smaller in the models of this paper.
02401
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2E ds11xAA2det~gAB!Vbulk~F̃!

2E d4xaA2det~gmn!Vbrane~c,F̃!. ~C10!

This consists of a bulk potential energy per un
s-dimensional volumeVbulk and a brane potential energy p
unit 3-volumeVbrane.

13 We discussed in Appendix A abov
the physical origin for such terms which depend on the s
of the extra dimensions as well as on the inflaton.

Using the ansatz~C5! in the action~C1!, inserting the
brane action~C9! and adding the potential terms~C10! now
yields the reduced 4-dimensional action

S5E d4xAdetgF enF̃

16pG
(4)R1

n~n21!

16pG
enF̃~¹F̃!2

2V~c,F̃!1Lsm~gmn ,c!G . ~C11!

HereG is the usual 3-dimensional Newton’s constant, giv
by

1

16pG
5

ksr 0
n

G(s)
, ~C12!

wherer 0 is the equilibrium value of the radius of the ext
dimensions. The action~C11! has the form of a scalar-tenso
theory of gravity, written in the Jordan frame. Note that t
sign of the kinetic term for the scalar field in the action~C11!
is opposite to the normal sign; this is not a problem sinc
is the sign of the kinetic energy term in the Einstein fram
~see below! that is relevant to considerations like stabili
and positivity of energy, etc. The Jordan-frame potentialV is
given by

V~c,F̃!5r 0
nenF̃Vbulk~F̃!2

ki

8pGr0
2 e(n22)F̃1Vbrane~c,F̃!,

~C13!

where the Ricci scalar of the metrichab is 2kir 0
22 andki is a

dimensionless constant of order unity@cf. Eq. ~C7! above#.
From now on we specialize to flat internal spaces so thaki
50. Then we see that only the particular combinationV
5r nVbulk1Vbraneof the potentialsVbulk andVbraneis relevant
in the low energy description. Our assumed form for th
potentialV is given in Eq.~1.2! above.

Finally, we transform to the Einstein frame descriptio
We introduce a canonically normalized radion field by defi
ing m according to Eq.~2.3! above, and we define

F5nmF̃. ~C14!

ne

e

e
l

13Note that the explicit dependence of these potentials on the m

ric componentF̃ spoils the covariance of the full action unde
transformation of thexA coordinates; it is difficult to write down a
fully covariant radius-stabilization mechanism.
1-18
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The radiusr is thus related toF by

r 5r 0expF F

nmG ~C15!

from Eq. ~C8!. We define the Einstein frame metric by

ĝab5eF/mgab5enF̃gab . ~C16!

The action then takes the form of Eq.~2.1! above, where

Srest@gab ,x rest#[E d4xA2gLrest~gab ,x rest! ~C17!

is the action of the brane fieldsx rest.
The equations of motion derived from the action~2.1!,

when we treat the last term as a fluid with Jordan-fra
densityr and pressurep, are

MPl
2

8p
Ĝab5¹̂aF¹̂bF2

1

2
ĝab~¹̂F!21e2F/mF ¹̂ac¹̂bc

2
1

2
ĝab~¹̂c!2G2e22F/mV~c,F!ĝab1e22F/m

3@~r1p!ûaûb1pĝab#, ~C18!

¹̂a¹̂aF1
1

2m
e2F/m~¹̂c!22

]

]F
@e22F/mV~c,F!#

1
1

2m
e22F/m~r23p!50, ~C19!

and

¹̂a¹̂ac2
1

m
¹̂aF ¹̂ac2e2F/m

]

]c
V~c,F!50.

~C20!

Here ¹̂a is the derivative operator associated with the E
stein frame metricĝab , andûa is normalized with respect to
ĝab .

APPENDIX D: A PARTICULAR REALIZATION OF
PHASE 0 EVOLUTION

Here, we study the pre-inflation phase 0 in some detail
the sinusoidal potential

f I~r !5a~12cosmr! ~D1!

introduced in Sec. II B. For this choice, the effective pote
tial for the radion fieldF in the Einstein frame is, from Eq
~2.14!,

Veff5V̂0S r 0

r D 2n

~11a2a cosmr!. ~D2!

If amr/2n@1, it is easy to show that the maxima ofVeff are
at
02401
e
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r

-

mrj5~2 j 11!p1e j , e j'
2n~112a!

amrj
. ~D3!

The heights of successive maxima ofVeff differ by approxi-
mately

Veff
( j 11)2Veff

( j )'22nV̂0~112a!S r 0

r j
D 2nS r j 112r j

r j
D ;

~D4!

the potential is biased toward large values ofr. Since
whether or not the radion escapes over the first barrie
determined at very early times, we can ignore expansion,
treat the dynamics as completely conservative. If the rad
starts out with zero or negligible kinetic energy, then it c
only escape over the barrier atr j 11 if it begins sufficiently
close tor j . Expanding the effective potential nearr j we find
that

Veff~r j1Dr j !2Veff
( j )'22naV̂0S r 0

r j
D 2n

~mDr j !
2, ~D5!

Veff(r j1Dr j )5Veff(r j 11) when

mDr j'A8pn~112a!

amrj
, ~D6!

which is small if amrj /2n@1. If the radion begins at any
radii r j1Dr j&r &r j 11, it should be captured at the neare
minimum, which is roughly halfway betweenr j andr j 11; if
it begins atr j<r &r j1Dr j , then it should grow without
bound. Numerical solutions of Eqs.~2.17! verify this picture.
If the value ofr at the beginning of phase 0 is random, t
probability that the radion isnot trapped isPe'mDr j /2p,
which decreases}(2n/amr)1/2 asamr/2n grows. Thus, for
large amr/2n, it is extremely likely, althoughnot guaran-
teed, that the radion is trapped at the minimum ofVeff nearest
to its starting value ofr.

The Einstein-frame expansion rate once the radion se
into a minimum ofVeff(F) is

Ĥ2'
8pV̂0

3MPl
2

exp~22F/m!, ~D7!

whereF is the value of the field. ExpandingVeff(F) around
the minimum implies

Veff~F1DF!'aV̂0S mr

nm D 2

exp~22F/m!
~DF!2

2
,

~D8!

so the characteristic oscillation frequency for fluctuations
the radion field is
1-19
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vF
2 'aS mr

nm D 2

exp~22F/m!'
12a~mr!2Ĥ2

n~n12!
. ~D9!
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For large values ofmr ~anda not too small!, vF@Ĥ. One
consequence of this inequality is that we do not expect lar
scale fluctuations in the radion field to arise during inflatio
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