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We develop a possible cosmology for a universe in which therenaadditional spatial dimensions of
variable scale and an associated scalar field, the radion, which is distinct from the field responsible for inflation,
the inflaton. Based on a particular ansatz for the effective potential for the inflaton and tadiich may
emerge in string theojywe show that the early expansion of the universe may proceed in three stages. During
the earliest phase, the radion field becomes trapped at a value much smaller than the size of the extra
dimensions today. Following this phase, the universe expands exponentially, but with a Planck mass smaller
than its present value. Because the Planck mass during inflation is small, we find that density fluctuations, in
agreement with observations, can arise naturally. When inflation ends, the universe reheats, and the radion
becomes free to expand once more. During the third phase the universe is “radiation dominated” and tends
toward a fixed-point evolutionary model in which the radius of the extra dimension grows, but the temperature
remains unchanged. Ultimately, the radius of the extra dimensions becomes trapped once again at its present
value, and a short period of exponential expansion, which we identify with the electroweak phase transition,
ensues. Once this epoch is over, the universe reheats to a tempetatd(g, the electroweak scale, and the
mature universe evolves according to standard cosmological models. We show that the present day energy
density in radions can be smaller than the closure density of the universe if the second inflationary epoch lasts
~8 e-foldings or more; the present-day radion mass turns out to be small{= eV, depending on
parameters We argue that although our model envisages considerable time evolution in the Planck mass,
substantial spatial fluctuations in Newton’s constant are not produced.

PACS numbgs): 04.50:+h, 11.25.Mj, 98.80.Cq

[. INTRODUCTION get to its final value without violating cosmological bounds.
Some of the cosmological issues in the brane world have
Recently it was suggested that the fundamental scale dfeen discussed alreafly—9].
gravity may be as low as 1 TeM]. According to this idea, The main concern of the present paper is the cosmology
the observed weakness of gravity is associated witlew,  in this framework, during the epoch before big bang nucleo-
relatively large spatial dimensiongompactified to a size synthesis, especially inflatiof10]. Obviously, in the brane
~T) in which only gravity can propagate. In this picture, all world, the standard cosmological picture is altered dramati-
the standard model particles reside in a set of branes withally. In this paper, we present a plausible cosmological sce-
three extended space dimensioftbrane modes’), while  nario where a number of issues in the brane world, such as
gravitons reside in the higher dimensional bulk of spacetiménflation, density perturbation, reheating, baryogenesis, as
(“bulk modes”). This scenario turns out to be quite natural well as the radion problem, are addressed. Our scenario in-
in (type ) string theory. In this “brane world” picturg2,3], corporates the brane inflation featu® and some of its
the standard model particles are open strings whose end@xtensiond7], as well as some features of the rapid asym-
must end on the brane@.g., stretched between brajes metric inflation[8]. The main goal here is to show that cos-
while gravitons are closed string states that can move awagnology in the brane world is viable, and highlight some of
from the branes and into the bulk. The relation between tothe issues that we believe to be important.
day’s Planck scal#lp=1.2x 10'° GeV and the fundamental The reader may view this scenario as a search for viable
string scalemg is approximately given by potentials for the inflaton and the radion. The particular form
we use has an effective potential for the radion fieldnd
inflaton fieldsy= (¢4, . . . ,¢y) such that
M2~ml*2rg. (1.2)
V() =Vo(p)[1+f(r)]+fo(r)+Vi(s) (1.2
Phenomenological and astrophysical constraints imply thaf! the Jordan frame(Appendix A gives some stringy justi-
m, may be as low as a few TeV, with=2 [1,4]. In string  fication for such a potential. Here Vo(#)~mg while
and M theory,n<7, and in the brane world)y=2 is a rea- V1(¢)~m‘éw<vo, where mgy, is the electroweak scale.
sonable choicé3]. In any caser, must be fine-tuned to a Also the functionf,(r) tends to force the radion to some
very large valuemsr0~(Mp|/mS)2’”>1; this fine-tuning valuer, whenVqy(#) is large, wherea$y(r) is unimportant
problem is known as the radion problem. In this paper, weuntil r—rg, wherer, is the value ofr today. Instead of
shall simply assume that the radiusrgtis a stable mini- choosingry to be the only minimum off4(r), we choose
mum. However, as we shall see, this is not the end of thdy(r) to have multiple minima, withry just one of many
radion problem. One must still find a way for the radius topossible minima. Our scenario utilizes an inflaton potential
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V(1) due to brane separatideee Appendix B and incor-
porates a radion potentig}(r) [andf,(r) as well with mul- i
tiple minima. To simplify the problem, we might assume that
V() depends only on one componentfandVq() on
the others(perhaps only one othgror « might only have /()
one component witlvy andV, both depending on this one m
component. The specific choices we examine for these po-
tentials and functions are given in EQ.27) for Vy(#), Eq.
(D) for f,(r), and Eqs(2.68), (2.70, and(2.80 for fq(r).
Here is a brief chronological description of the various
phases of the scenario. W
Phase 0: The pre-inflationary phas€he key feature of a3
this phase is that the radion fietds driven to a value, at EW
which it becomes fixed, thus allowing the subsequent stage FIG. 1. The inflaton effective potenti@hot drawn to scale The
of standard inflation to take place. The piece of the potentialiashed line indicates the finite temperature effective potential after
(1.2) that achieves this trapping is the teMa()f,(r); r, phase I.
will be a local minimum off,(r). The initial conditions for
this phase that we assume are that the radii of the extraf the inflaton. On the other hand,is related to the vacuum
dimensions begin at values “around’r{, wheremg is the  expectation value of a brane mode= mgd, soV(y) is a
string scale(say, around 10 Te) (By “around” we mean  function of a brane mode. In a particularly intriguing sce-
that values~1-100 times larger tham_ * are not out of the nario, the electroweak Higgs field in the standard model
question). Such initial conditions are natural since in string plays the role of the inflatog. In then=2 case, the inflaton
theory, the only scale is the string scale, and thus all paranpotential (schematically shown in Fig.)Imay be taken to
eters should typically scale likeng unless there are good have the following(oversimplified qualitative form:
reasons(such as dynamical evolutiprfor other values. In
Sec. Il B we explore conditions under which the radion po- Vol z/;)+vl(¢//)~m‘s‘(1—e*|¢|’m')+V1( ) (1.3
tential f(r) achieves the fixing of the radion to some value
r,. A specific choice of functional form dfi(r), which may  with its minimum aty~mg,,~ 100 GeV.
or may not correspond to reality, is discussed further in Ap-  For larged (but still much smaller than,), V~m{ is very
pendix D. Generally speaking, we think it likely thatfi{r)  flat, so the inflaton slowly rolls down the potential towards
has numerous potential minima separated by some scaignall d. In standard cosmology, the number ®foldings
~m~*, then the radion will become trapped at a minimum atrequired to solve the flatness and the horizon problems is
fairly large mr (i.e. mr= a few), and that, if the radion around 60, but for brane cosmology, the required number of
settles to a potential minimum, it does so right away, withoute-foldings is differentsee Eqs(3.10 and (5.3)], partly be-
moving away from the potential well it starts in. The reasoncause the energy scale of inflationnig<mg 1~ 10" TeV,
is that it is the Einstein-frame radion potentat ~*"f|(r)  but also because the Planck mads, |, during inflation is
that is relevant to the dynamics, not the Jordan-frame poterconsiderably smaller than todd¥ortuitously, the number of
tial o f,(r) [see Eqs(C15 and(2.10 below, and Appendix efoldings required to solve the horizon and flatness prob-
C for a discussion of the Jordan and Einstein fralnk#ss  lems may turn out to be about 60; see E53).]
plausible thatf,(r) might have a fixed amplitude of varia-  The amplitude of primordial density perturbations gener-
tion, so that the Einstein-frame potential will decreaseé > ated by quantum fluctuations in the inflaton field during this
at larger. Even under these assumptions abbyt), the inflationary epoch is-mZ/mMy, | for the inflaton potential,
dual conditions that, should be “around”ms‘1 and that Eq. (1.3. [See Eq.(2.38 in Sec. IIB] Since Mp |

mr,= (a few) can be satisfied for values of “around” m;. ~mg(mgr)™?,  this  amplitude is  approximately
If f,(r) increases in amplitude at largerapidly enough to  ~m./m,(mdr)"2, and to achieve the measured amplitude
overcome the factor 2", then it is possible that actually —~1075 of primordial perturbationg11], we must require
increases somewhat from its original value during this pre{mgr,)™?~10°m¢/m,. For m,~ms, this would mean that
inflation era before settling into a minimum gt mgr,>1 (e.g. ~10° for n=2), but largerm, is expected

Phase I: Inflation at small Planck mas®nce the radion naively (see Appendix B and it is conceivable thangr,
is fixed at the value,, slow-roll inflation can take place. ~1-100(i.e. larger than one but not by a factor as large as
The value of the Planck mass during inflatibhy, | is much  10°).
smaller than today’'s Planck masdp, as M|23|J Phase Il: Radion growth and radiation dominatioAt
=(r,/r0)”M§,,, wherer g is the value of today. In the brane the end of inflation, we expect the brane to be heésatce
world, brane inflatiof 6] is quite natural(A brief review is  the inflatony is a brane modewhile the bulk remains rela-
given in Appendix B). In the brane inflation scenario, when tively cold. We expect the reheat temperatliygo be below
branes are separated by a distadc@an effective potential the Hagedorn temperature, which is typically lower tman
V(d) is generated by gravitational and other closed stringsay by a factor of 3—20 Sincemg>mgy, this temperature
exchanges between the branes. The distdnaays the role T, should be above the electroweak phase transition critical
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temperaturd ¢ ;. So the finite temperature effective potential =0 . \;}/ 0 To10s netos | 3
V(,T,) has a minimum at the origin, as indicated by the R S P
dashed line in Fig. 1. The inflaton rolls past the minimum of & ¢ y=a(t)/a, - ]
the T=0 potential towardsy=0 and is trapped there. The 210 T ‘?((ft))//‘? e y
rate of cooling to the bulk ¢ T""7/m2*?) is very small, g 5 C @ /// ----------------------- 1
,,,,,, ya|
since T/mg is small. In this radiation dominated phase, the F SR e
radion potential is negligibléwhich is not hard to arrange 00’ Ery g = i 1‘(') **** ]
while the inflaton field remains frozen. Under these condi- log,,(f15)
tions, we find that the cosmological model tends toward a
fixed point in which the temperature remains nearly constant, 15 T |

L ' T
while the radiug grows as a power of timgsee Eqs(2.55 n=2 V,/p=10"* 1,=10"° p,= lgz// ]
and(2.56)]. While this power law solution holds, the radion @10

potential energy is unimportant compared with its kinetic

energy, which, however, decreases with titad hence 2 5
with increasing radiys

After sufficient time elapses, the kinetic energy of the 0
radion field drops to a value comparable with the amplitude 0

of the radion potentiafy(r), and the growth of the radion,

which is substantial up to this point, is halted.fif(r) had FIG. 2. Numerical solutions for the cosmological model during
only a single minimum, it would be a fantastic coincidence if phase I for two different sets of parameters. The long-dashed line
(a) that minimum were precisely at the valugand (b) the is +(}), the solid line isa(), the dot-dashed line ia(%), and the
power law growth ofr halted exactly when that minimum dotted line ist(f). Both solutions are characterized by an initial

was encountered. Since power law growthroduring the adjustment period during which the radiation energy density, which

radiation dominated phase that follows inflation is generic ing proportional toa; *, drops, followed by a protracted period of

our picture, it seems that we must require that the radionygyer jaw growth of the radius of the extra dimensidas fixed
effective potentialfo(r) have multiple minima. Since it is temperaturg which terminates when the radion potential traps the

inevitable that the radion kinetic energy becomes smallefied at a minimum. Exponential inflation begins once the radion
than the height of its effective potential after some elapse@ecomes trapped.

time, the radion must become trapped at one of the minima
of fo(r) eventually. As an illustration, we consider a periodic would be small-amplitude oscillations of Newton’s constant
radion potentialy g is just one of the infinity of minima of at a high frequencj12,13; see Eq(2.89 and Sec. V]. This
this potential. That the universe settlesrtois a cosmologi- can be achieved by a short period of inflation during the
cal accident in our scenario, although it is natural for thesupercooling period, followed by either prompt or delayed
radion to settle to some radius much larger than its valueeheating. The actual electroweak phase transition then takes
during inflation(and much larger than the string scmél). place with the presence of nucleation bubbles. This allows
Thus, the radion problem is not so severe in our picturethe electroweak phase transition to complete and baryogen-
which accommodates growth of the radius of the extra diesis during this period can happen more or less as in the
mensions to a large, but stable value very simply. What westandard scenarid4]. Alternatively, baryogenesis can hap-
do not explain is why o (and hence Newton's constaftas  pen via the Affleck-Dine mechanism or some other mecha-
a particular value among the infinity of possibilities. How- nism [15]. In fact, it may take place before the end of the
ever, we identify what conditions must be satisfied by thesecond inflationary era.
underlying physical theory for the universe to settle dtsee The final reheat temperature can be around a few GeV,
Egs.(2.795 and (2.76)]. maybe even close to the electroweak saalgy, if mg is
Phase lll: Second inflationary era and electroweak phasdarge enough, and still avoid excessive cooling to the bulk,
transition WhenT drops belowT ;, the stable minimum of ~ which would overproduce Kaluza-KleifiKK) modes, whose
the inflaton will yield the spontaneous symmetry breaking ofenergy density could overclose the universe and ruin the suc-
the electroweak model. It is reasonable to suppose that theess of big bang nucleosynthesis. It is also high enough to
electroweak phase transition is first ordé€fhis should be provide the “initial conditions” of the hot big bang before
easy to arrange in models with multi-Higgs fields, e.g., thebig bang nucleosynthesis.
minimal supersymmetric standard mogiéh this case, some The scenario is summarized in Fig. 2.
supercooling is expected and the actual phase transition hap- The basic plan of this paper is the following. In Sec. II,
pens during a period some time affEthas dropped below we present our cosmological scenario; Sec. Il A gives some
Tc1. In the meantime, we expect considerable dilution of theuseful backgroungsome of which is also found in Appendix
radion energy density as well as the bulk energy densityC), Sec. Il B treats the pre-inflationary phase, Sec. Il C treats
Indeed, we show that requiring the radion density at preserinflation at small Planck mass, and Sec. Il D treats the phase
not to exceed the critical density for a flat universe constrainsluring which the radius of the extra dimensions grows from
the number ofe-foldings of this inflationary erdsee Eqs. r,tory. Some constraints on our model are gathered in Sec.
(3.12 and(5.2)]. [Associated with the radion density today Ill. Density fluctuations during the epoch when the radion
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grows are discussed briefly in Sec. IV. The results are disyg) e \70
cussed in Sec. V. Some additional details about our cosm -
logical model are contained in various Appendixes.

exponentially with some mass sd@em,. The
oﬁotentialvl(zp) is assumed to have a minimum at nonzero
&, and a value/;=V,(0) at =0 which satisfies/,; <V,.

Il MATCHING PHASES We _W|II do all our calculations in the I_Elnsteln frame.
Assuming zero spatial curvature, the metric of the cosmo-
A. Setup logical background in the Jordan frame can be written in the
form

The starting point for our analysis is the following low
energy action, which is valid when the length scales over
which all fields vary are much larger than the size of the
extra dimensions:

ds?’= —dt?>+a?(t)dx- dx, (2.6)

and the corresponding metric in the Einstein frame is

R 1. o
S:f dw‘_@’[m—gww d&=e®'*[—dt’+a*(t)dx- dx]
= —dt?+a?(t)dx- dx, 2.7
1 .
_EE*@//.L(Vw)Z_e*Z@/Mv(lp,q)) where
+Sesl€ P Gp Xrest- (2.1 di=exg®/2p)dt, ad)=exg®@2w)alt). (2.9

This action is derived from the higher dimensional descrip-t is important to keep the relation&.8) in mind, since
tion in Appendix C. The action is written in the Einstein proper time is not the same in the Einstein and Jordan
frame,§,4 is the Einstein frame metric, and frames, nor is the scale factor. In termsrpthe scalings are

— o Dlug A -

Gap=€ ""Gap 22 di=(r/rg™dt, ad)=(r/rg)™a(t). (2.9
is the physical, Jordan frame metric. The quan@tys the
usual three-dimensional Newton’s constant, ans a mass

of order the Planck masMp=\ci/G=1.22<10"° GeV
given by

Thus, ag changes, the relative rates of advance of time and
scale factor differ in the two frames.
We treat the last term in the actid8.1) as a fluid with
Jordan-frame density and pressure. Then, the cosmologi-
P cal equations of motion that follow from the actidg.l)
w=Mp \/ 55—, (2.3)  follow from the general equations of motion given in Appen-
32mn dix C, and are given by

wheren is the number of extra dimensions. The fidids the

canonically_ norm_alized radion field, related to the radia$ f2= 87 Eq)ler Ee“IJ’“(//’ZJre‘z‘I’/MV((//,d))
the extra dimensions by 3M3L2 2
@ —-2d/
r=roexg—1, (2.4 +e “pl, (2.10
nu
whererg is the equilibrium radius of the extra dimensions R J 1
today. The fieldsp= (¢4, ... ,\) are inflaton fields. The O"+3HD + E[e*2®’“V(¢,<D)]+ mef‘”w’?

quantityV(#,®) is the Jordan-frame potential for the radion
and inflaton discussed in the Introduction and in Appendix A P=3P L4

below. Finally the actiorS.es{ 9us. Xresd iS the action of the = 2u © K, (211
remaining matter fieldg,es;, Which in our analysis below we

will treat as a fluid.

As discussed above, we assume that the Jordan-frame ef- '+ | 3H— (1 +e P i\/(l/,,q;):o (2.12
fective potentialV(y,®)=V(i,r) is of the form[cf. Eq. ® i
(1.2)]

V() =Vo(P[1+1(r)]+fo(r)+Vi(eh). (2.5 These evolution equations do not include any coupling between

. the inflaton and the radiation, which would be necessary to describe
Here we might assume th&f, depends only on one compo- eheating. If we add the standard type of phenomenological terms to

nent ofyandV, on the other componentperhaps only one  achieve this in the Jordan frame, we obtain after transforming to the
othey. The functionf,(r) tends to force the radion to some Ejnstein frame that one should add a terff () ' e~ */¥) to the
valuer, while Vj is large, whereasy(r) is unimportant until  right hand side of the inflaton equatiof2.12 and a term
r—ry, its value today. Following Ref6], we assume that F(y)y'2e®(?# to the right hand side of Eq2.13, whereF ()
V() —0 asir—0 and thaVy( ) asymptotes to a constant can be any function.
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and 48n
. v=rs (2.18
"+3(p+p)|H—5—®'[=0. 2.1
P (p+P) 2u } 213 It is easy to see that if,(r)=0, the solution of Eq(2.17)
tends to
In these equations primes denote derivatives with respect to
Einstein-frame proper time[Eq. (2.6) abovd, andH is the yo 73 roc V23, (2.19

Einstein-frame Hubble parameteir=2'/a. ) ) _ )

In the next few subsections, we shall substitute the poter@ccording to whichr grows without bound, and the radion
tial (1.2) into the evolution equation$2.10—(2.13, and  Kinetic energy dominates the energy density of the universe,
solve for approximate solutions in the four different phasedut there is no inflatiof16]. The approach to this asymptotic
of cosmological evolution discussed in the Introduction. ~ solution may be very slow: for example, for=2 we have

L3 so the vacuum energy density declines3,
B. Phase 0: Radion to its first equilibrium which is only a bit faster than the rate of decline of the

radion kinetic energy, tf. Nevertheless, it is noteworthy

During phase 0, the radion evolves to some siz&@here . : ; R
gp ‘ that without the radion potential,would grow to infinity in

it remains pinned during inflatioigphase ). This pinning

oA o this phase.
happens by some timg when the scale factor igy. The To halt the growth of, the radion potential must be ca-
end of phase 0 signals the onset of the first mfla'uonarypame of trapping the radion field. From E@.17), we see
phase, phase I. o ) that this is only possible if the condition
To see how the pinning might come about, let us assume
that we can neglect the ternfg(r) and V,(¢), and that rodf(r)
there is no energy density except what is duaftand the I+ =5, —g; 0 (2.20

radion. Furthermore, let us assume that the kinetic energy of

the inflaton is negligible, and thato(4)~V,. Then the can be satisfied. If we consider the chofgér)=(mr)* for
Friedmann equation®.10 and(2.11) together with the po- example, wheren is a mass parameter and>0, then it is
tential (1.2 simplify to clear that Eq.(2.20 will only have real solutions forx
>2n in which case the radion could settle to a value
=(x/2n—1)"1. (Analogously shifted minima have been dis-
cussed by e.g. Steinhardt and WlL3].) However, such
steeply growing function$(r) could prevent from growing

2. 87 | 12
:3M%I[Voexp(—ZCD/u)[lﬂLf,(r)]Jr E((I) ) ]

.

9 _ to a large value later on.
O+ 3HD’ :2V0exp( 2¢/w) [14- fi(r)— ZL dfc;(r)} Instead, we shall consider the possibility that
n dr
(2.19 fi(ry=aF(r), (2.2)

We can render these equations non-dimensional by letting \,here a is a dimensionless amplitude factor, aR¢r) has
_ . multiple minima, separated by a characteristic seala™?,
=exp2(® =) u] 219 with “potential barriers”|F(r)|~1. A specific examplébut

and defining a new time variableby ?zotz(tgnli)que or requiredis F(r)=1-cosmr, for which Eq.
. ecomes

dr= 8Vo| ™ ®. /u)di 21 amrsinmr
™ 3M2, exp(—®;/p)dt, (216 1+a(1—cosmr)—2—nzo. (2.22
where®; is the initial value of®, at the beginning of phase gince cosnr<1 and simr<1, there are no solutions to this
0. In terms of these new variables, we fintf £df/d7 in  equation unlesamr/2n>1 or mr>2n/a. Thus, unless is
these equations large (which we consider unlikely the radion will only

o o settle into minima at relatively large values rofr, if at all.
(Y_> 1+f(r) N i( { ) This conclusion ought to hold for other choicesFdir) with

y

¢ 2v similar qualitative properties. If, for exampley~mg, then
we conclude that the radion will only settle on values larger
r df(r) than the string scale, which, in fact, is required for consis-

1+fi(r)— 2n dr I tency of our entire picturlRemember that, for example,

(2.177 ~ must exceed the brane separation.
For f,(r) of this general type, it seems likely that the

Herey=2a/4;, with §; the initial value of the Einstein frame radion must settle into its first minimum, the one nearest its
scale factory =r; 2", with r; the initial value of the radius value at the onset of phase 0, if it settles to a minimum at all.
of the extra dimensions, and The reason is that the height of the Einstein frame effective

!

3y
y

oS
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potential decreases with increasingso that if the radion Vo(t—to)
acquires sufficient kinetic energy to roll over the first barrier exp(y/m) =exp(yo/m) — ———
it encounters, it should be able to overcome all subsequent 3miH,

barriers.[Remember that in the asymptotic solutions to Eq.
(2.17) the energy density of the universe becomes dominated
by radion kinetic energy as time progres$&¥e explore the
particular exampld-(r)=1—cosmr in some detail in Ap-
pendix D. It is also important to note, though, that it is pos-This approximate solution holds as long as the two condi-
sible to imagine choices fof(r) that undo the decrease tions

factor in amplitude<r ~2" in Eq. (2.14 at larger. For such

potentials, it might be possible forto evolve considerably o ‘
before settling to a potential minimum.

2

_ Mpy,
|

M3, exp( — y/my)
- <1
3H,y| 24mrm?

C. Phase [: Inflation at small Planck mass

W M exp—2¢im)

During phase I, the universe inflates at a fixed radion = > <1 (2.3)
2V, 48mm;

radius,r,. This fixes the Planck mass to be

M2, =(r,/rg)"M2, (2.2 are satisfied. Assuming thitp, >m,, which emerges natu-
’ rally later, the first of these two conditions fails first, when
and the expansion rate is

ar\2 2ny ny ex /m,)~ .
f2e a :87'rro V0:87Tr0Vo 29 R/ my) 247mm?
I 2.2n 2 .n (2.24
3Mprr| 3Mpy, i

M,

(2.32

a
If the initial value exp{,/m,) of exp@/m,) is far larger than
in the Einstein frame, where prime denotes differentiationthe limit (2.32), then the time required for the inflaton field to

with respect td. The Jordan frame expansion rate is simplyreach this magnitude is extremely large, giveri by

2

a 2 87T\70 87Tm|
H2=|Z] = , 2.2 H (tg—tg)~ ex /my), (2.33
| a 3M|23|‘| ( 3 I( sr 0 M|23|1| li‘ﬂo |

where the overdot denotes differentiation with respect;, to wheretg, is the time at the end of slow roll, which implies

this is just as in the usual general relativity but with a differ- many e-foldings during inflation. When slow rolling ends, a

ent Planck mass. The scale factor in this phase is second subphase of inflaton evolution begins. Since the ki-
netic energy of the inflaton at the beginning of this subphase

—exf A (1-1)]= a_ exdH,(t—to)]. (2.2 isonly ~(12em?IM3, )Vo<Vy, the inflaton moves on ap-

ao proximately a “zero energy solution with negligible damp-

ing.” That is, it satisfies the equation

Since the radius of the extra dimensions is frozen in phase I,

it is equally easy to use the Jordan or Einstein frame descrip- P~ —\2Voexp( — yi2m,), (2.39)

tions. (The same will not be true for subsequent phases.

Presuming that a single inflaton field is important in thiswhich has the solution
phase, with an effective potential

£ |»

. [V
Vo(¢)=Vo[1—exp(—¢/m))], (2.27)  exp(yl2m) =explis/2m;) — Z—H:Z(t—tsr)=eXp( sd2m;)
|
the inflaton equation of motion is
e Mey ey (2.39
. YA 16 m, " s '
1//+3H,zp=—ﬁexp(—¢/;/m|). (2.28

where exp{,/2m))~Mp /m;y247. The time remaining

The evolution of the inflaton proceeds in two subphasesfor #—0 is not large:H,(teng—ts) ~1, whereteyq signifies
During the first subphase, we have the usual slow—rollingthe end of this inflationary epoch, and henceforth we do not

approximation distinguish between the two timég andtqg.
Using our approximate expression foH,(ts—te)
) Voexq— yim,) ~H,(tens—to), We rewrite the slow rolling solution as
~— T 3Hm (2.29
whose solution is 2The subscript “sr” stands for the end of slow rolling.
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M2 just as it would be in constamitp cosmology. However, to
exp(/m))~ Al '2 H (tenge—t). (2.36  find out how fast the temperature decreases, we also need to
8mm know how the radion field evolves.

. : L Under the assumption that the radion potential is negli-
From this and the slow rolling approximation it follows that gible, we find from Eqs(1.2), (2.11) and (2.27 the evolu-

tion equation

. m,
g~ — ———. (2.37 i
tend t R 2\/1
. . . . . . O"+3HP' = — —2®/u). 2.4

The primordial density perturbation amplitude is tHa] 3 " expl Iw) (249
Sp HZ \8mVy/3 238 We make the change of variables
———~——N,, 2.3
Py MMey u=exp(2d/ ). (2.42

where N, is the number oke-foldings that remain between

horizon crossing for a scale of comoving lengttk ! and Then Eq.(2.41) is equivalent to

the end of phase I. We note that the spectrum of inhomoge- , , ~

neities implied by Eq(2.38 is insensitive td, in agreement U+ 3[ = u_) O =u | = — u_) ' ﬁ

with observation$11]. If the effective potential as a function u 2t u w? '

of interbrane separatioth is proportional to - exp(—myd), (2.43

and we setyy=m?d, then myd=mgyy/m?, which implies i i
m,=m2/my. Then the amplitude of the density fluctuations whereH = 1/2t, appropriate for this subphase, has been used.

is proportional tO\/V—Omd/mﬁM o1, Which, forVo~m?, is ~ During the first subphase,
~my/Mp, |. Note also that since the radion is trapped, fluc- )
tuations inr are suppresseldee Eq(D9) of Appendix D). i> u (2.44)
2t U’ '
D. Phase II: Radiation domination

In that case, under the assumption that0 andu=u, at

At the end of inflation,t=t, and a=3a,; the universe . - ,
t=t,, we find

reheats to a temperatued/3* wheree<1 depends on how

efficiently the kinetic energy of the inflaton is thermalized N
oncey—0. r_ 8V,
u'=—=

Reheating will alter the effective potential so that there is 5u2

a minimum aty=0, provided that the critical temperature

T, 1 for the phase transitiofpresumed first ordg¢iconnected  which can be integrated to yield

with the potentiaV,(#) is small compared with the reheat-

ing temperature. In this case, there will be a nonzero vacuum (., 1372

energyV;, but as long as the temperature remains above UZUﬁ; t?-5 1+m : (2.49

T.1, the universe remains radiation dominated, afds K

pinned at zero. . . : .
We assume that the radion potential becomes negligibl-ﬁr:;tsfzti)llsus\(l)hnezmds as long as E@.44) s true, a condition

when this happens. Let us explore the growth in the radion

field that ensues. ., PO
It is most convenient to work in the Einstein frame. This 2tu ~ 16V,t7/15u -1 (2.47)

phase of evolution will divide into three subphases. During 3u U+ 4\A/1f2/5,u2 '

the first subphase, when radiation dominates, the Friedmann

equations arglcf. Eqgs. (2.10 and (2.13 above with p or

= pl3]

_j[T/z

{572
~ b
t ) , (2.4

8 it (2.48
™ U~ ——. .
S pexp(—2®P/u), pa‘exp—2d/u)=const, Yow2

Pl

2=

(2.39 (In getting this condition, we have assumed that the first

where we recall thap is the Jordanframe energy density, Subphase ends at a timet;.) Sinceu=exp(2b/u) is still
i.e. p~T*. Thus, the scale factor in Einstein frame is simply ©nly a factor of 2 or so different from,, it follows that

_ pidfexp2®/p) piVitfu paVat]

~\ 12
é=él<r) , (2.40 , (249

Alexp(2d,/p)  pfui pPu
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where in the first equality we used Eq€.40, (2.42 and critical temperature for the inflaton in this regifha&Vithin

(2.48. Using® this solution, it also follows that, up to a possible additive
5 constant,
3Mpy Uz
2~ = ~M3\/—, 2.5 I
1 87TP]_ PI p1 ( Q 2,(,Lt
t= T (2.57)
Vl

andt?=u,t?, we find

. and therefore, as a function gfthe radion expands accord-
p~Vi (250 ingto

since u~Mp,. Thus, the first subphase ends when the en- ~4a
i o Vit
ergy density in radiation becomes comparable to the vacuum U= —
energy in the inflaton. The value of the Planck mass only w? '
changes by a factor of order unity during this regime.
During the second subphase, the radion potential is stiland grows without any expansion of the universe at all in the
unimportant, but the radion kinetic energy is not. Thus, theJordan frame.

(2.58

radion evolves according to E@2.43, but the expansion It is worth investigating the meaning of this power law
rate in the Einstein frame is given by solution further. Clearly, a solution in which the temperature
remains constant is not expanding in the Jordan frame at all.
., 8 p Vi(y) pP(u'\? ()7 Such a solution ought to apply only in a limiting sense. That
H :3M§,, o —v telul 200 | (252 s, the correct solution might approach this one asymptoti-

cally, at late times. To see if this happens, we consider the
The evolution of the inflaton field is governed by the equa-"umerical solution, Eqd2.43 and(2.54, with the energy-

tion conservation conditiopa*/u=const. We arbitrarily choose
u=u; andp=p; at some initial timet;, whena=3; . If we
. dv define
W+ 3Ry = _ g2Vl (2.53
dy A
_a u
We assume that the universe remains hot enough that the y=_ and (=, (259

inflaton is trapped in a symmetric phase, at fixed vacuum

energy density/; during this subphase. At least at first, the and define a dimensionless Einstein-frame time variable by
kinetic energy of the inflaton field will be unimportant, and

we can approximate the expansion rate by dr=(8mp/3M3u;) ¥dt, (2.60
.. 8w v 2(u")? then we find the two coupled equations
H?=— L S ( 2) (2.54 pled ed
3Mzlu U 8u

yr 2 1 é«/ 2 v 1 3yr é«/
) ) —| == to+ "+ — | =,
It is easy to see that at the start of this subphase, the three |y 2v\ ¢ y y 4
contributions to the energy density are comparable to one (2.61
another. Moreover, there is a simple, power law solution to

the fully nonlinear problem defined by Eqé2.43 and Where
(2.54). For this solutionAc \/? and

Wit2 v 2 4 we let a(t)=a(t)[1+a(t)] and u(®)=up(t)[1+ 7(t)],
u= w? u 3 (2.59 wherea,(t) andug(t) are the power law solution of Eq&2.43
and(2.549), it is easy to show that
since pa*/u=const, p=const. From Eq(2.54 we find a L 37 m 6a
consistency condition Tt et =0
p 9n—6 e 3n—2) n+2) , 7,)
£ _ s _[hre _7.
TV R (2.56 7\ 4n 2an |\ 7 T 5f

1

these coupled perturbation equations have power law solutidhs

which givesp/V,=3 for n=2, for example; thus, the tem- where

perature remains \7%’4, and could be comfortably above the

(st+1)

s 3n—-2
S+ E + T):O

Thus, there are no growing perturbations, and the power law, fixed
*Recall thatM3, = M3 (r,/ro)"=M3\u;. point solution to Egs(2.43 and(2.54) is stable.
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48n
n+2

<
N

and v

14

We can also evaluate the Jordan frame scale factor from

and can find the time elapsed in the Jordan frame using

dt=udt,

which we rescale by definingy= (8p;/3M3,\/u;) 4, to get
7y={¢ Y4 Equationg2.61) are to be solved with initial con-
ditions {=y=1 at 7=7;; we can choosé; arbitrarily (al-
though we expect it to be-0.5 if we want a solution that has

>

(2.62

(2.63

(2.69

PHYSICAL REVIEW 362 024011

first subphase; e.g. EQ.48]; sinceu;<1, t,_, >1;.°
In order for the radion to become pinnedratr, we need
a coincidence to happen: near the tiﬁ}gro, the radion

potential itself must begin to play a central role in the evo-
lution of the field. Only the radion’s potential can make it
settle into a minimum, rather than rolling forever to ever
increasing radius. Indeed, what we want is for the effective
potential of the radion to have many possible minima, so that
the value it settles into eventually is determined by this co-
incidence.

To understand the settling process better, we need to in-
corporate the radion potential terfig(r) of the Jordan-frame
potential (1.2) in our analyses. IV,(r) is the radion po-
tential in 4+n dimensions, then, after integrating over tne
extra dimensions, the corresponding Jordan frame potential
is

fo(r)=r"Vpu(r) (2.68

(see Appendix ¢ and the Einstein frame potentisl ob-

y—0 at 7—0). The solutions depend only on the two pa- tained after conformal transformation is

rametersy andv; in terms of these, the power law solution

found previously becomes

—-1/4 1/4
(B3] e 2 e

3n—-2

(2.65

2n, —n n roVouk(r)
Ve=ror Vbulk(r)Zroexr.(—CI)/,u)Vbu|k(r)=T_
(2.69
Suppose that
Voui(F) = UpukF (1), (2.70

where Uy, is a constant andr(r) is dimensionless. We
assume thaf(r) may undulate up and down, but with a
characteristic amplitudg=(r)|~1; thus the scale of the ra-

Numerical evaluations fon=2 show that, although the so- dion potential is determined by . SinceF(r) is dimen-
lutions oscillate slightly at late times, they approach thesionless, it must contain mass scales; these are reflected in
simple solution found above to high accuracy. From examthe magnitudés) of the derivativés) of the potential. We
ining the output, it appears that the Jordan frame scale facteissume thafF(r) may have multiple minimaan infinite
actually does not remain precisely constant at late times, butumber in the model considered below

increases and even decreases sligtily less than 10%6as

time progresses.

In the asymptotic regime of the second subphase, the ra-5

dion grows according to

4V, t?

_ 2n __
u=(rirg)“"= >

sou—1, orr—rg, at atime

o
r—ro 2\/\,\/—1

(2.66

(2.67)

if this solution continues to hold. Note that., ~u; *4;,

Wherefi marks the onset of this subphdse the end of the

As this is a pretty odd solution, let us also consider an alternative,
that the radion evolves like a free field after the second subphase
begins, and its kinetic energy dominates the energy density of the
universe. In this cas®’=®/a%a%, and

Am(D])?

e=——
M5 (a/a)®

which implies the solution&/a,)3=1\/127®//Mp,. Using this so-
lution, we find thatd’ = MP|/f V127 and consequently
(E)\m
r=r| =
|

or roct¥®c 3" for n=2. For this solution to hold true, all other
contributions to the energy density must decline more rapidly than
(®")%2=172, But it is easy to see thapexp(—2d/u)xa *

«t~#3 according to this solution, so it must not be valid.

024011-9



E. E. FLANAGAN, S.-H. H. TYE, AND I. WASSERMAN PHYSICAL REVIEW D62 024011

One condition for the radion to be able to settle into oneThese equations are augmented by the conservation condi-
of the minima of its potential is that the Einstein frame ki- tion pa*/u=const. Also we have defined
netic energy density fall below the Einstein frame potential

energy amplitude. Since the kinetic energy is Y= roU puik 2.78
20002 2 \%1
2 M
?(U) - E (27D which we expect to be-2. If we nondimensionalize as be-
fore we find

and the potential energy amplitude is

(y’)2 1(4”)2 v 1 oYy

Vb _ Ui oy VBT T e
Vuo i, | N (3L _ 5_') ;
during the power law regime, the two become comparable at Y ¢
an Einstein frame time N YUyl dF(n) F(r)}
) ,LL\/\7—1 2 n dr =r g
t= (2.73 2.79

roU bk
Notice that in this form of the equation¥, only appears in
§he combinationy ;=Y \u;, and since we expect <1, this
parameter is small, implying that deviations from the power
\/7 law solution only appear at late times, as we have already
M V1 M concluded.
— (2.79 . . .

These equations contain three parameters explicit(gr

roUpuk  2VV ' ~
o ! v), v=V;/p;, andY;. In addition, they contain onéor

This time ought to be smaller than or comparable to the tim
at whichu—1; i.e., we must require

which implies more parameters implicitly, because of the mass scales im-
R plicit in F(r). For example, if
roU pu~ 2V1 - 2.7
0 bulk =T @73 F(r)=1—cogmr), (2.80

Since, presumablyy,c andV, are determined by funda- g4 that there is only one mass scate,, there is an addi-
mental physics, this relationship may be taken to determinggnal nondimensional parametgr=m.r, . For this form of

rg. Moreover, since we know thal5~mZ*"rg, we find £y the evolution equations are
2V;mZ*" 2V;mZ*" y'\2 100\ v 1 oY,
Mi~——— or Uppu~———. (2.7 (_) :_<_) + =4 — 4 11— cod w: Yy
P U bulk bulk M '%l y 2v g éf y4 é,1/2 [ Q/J“Ié’ )]g
If we assume that ¥~mg,,, wheremg,, is the electroweak N 0
unification scale, andmi>mgyy,, then it is clear that y 14
Upui/me ™ "~mg/M2m2<1. In getting these estimates, v Yon_ .
we have presumed th&t(r) takes on a typical value far S vv iguz{"*ig sin(uig )_1
~Tg; i.e., we are excluding the possibility that, for example 2 n
|[F(r~rg)|<1, which would alter the above estimates. This
amounts to assuming that whatever mass scales appear in +cos(,ui§1’2”)} (2.81

F(r) are generally of ordewgl or larger.

To investigate the settling process in more detail, we neeg, these units, substantial deviations from the scaling equa-
the equations of motion, which can be obtained from Edsiions are expected after

(2.10 and(2.11). The resulting equations are
iyl n+2 08
1 N1y (.82

\| 20117\2 \|
sz 8772 §+%+%+Y—\/\EF(I’OUUZ’) u”
M ! at which timeZ=4/Y?, provided thatu;=(Y,;/2)*".
.~ u'\u’ Figure 2 shows the results of numerically integrating the

+|3H— U)U dimensionless evolution equations, EQ$2.81), for
(v,Yi,1)=(10"%,10"%,10"% [Fig. 2@)] and @,Y;,u)

4V, 2YVyulr dF(r) =(10"4,10 ©,10"?) [Fig. 2b)], respectively, withn=2 in

= "7 |n ar —F(r)} . (270 poth cases. The numerical results show clearly that after a
M H r=rout/ long period of power law expansidim close agreement with
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the fixed point solution found aboyel levels off, although 2 72K2 FOU e
in both cases, the time at which this happens is a bit later Ve(d)~ fo 07 bu P2, (2.8
than our back-of-envelope estimate, so thias systemati- wu’n?

cally larger than 4Yi2 asymptotically. ForY;=106, we o
would estimate;=4x 10*2 asymptotically, whereas the nu- and the mass of the radion is
merical result is 9.7% 10'3, a factor of about 25 larger; for

Y;=10"® we would estimate =4x 106, as opposed to the , 4m?K rgUpuc 8mKEVy 256wk} V;
numerical 4x 10'7, about a factor of 10 largefThe discrep- Miadion— o T .o T NYE :
ancy inr is smaller, since/xr?"=r* for n=2.) These re- pn pn n(n+2)Mp,
sults can be explained if the time to asymptote is a factor of (2.87)

3-5 larger than our simple estimate. By inspecting the fignymerically, we findrecall Eq.(2.75)]
ures, we can see that the time at whickevels off is about

5 times larger than the analytic estimate4.08x 10’, for Kk ¥ 12
(v,Y;,1)=(10"%10"%,10"2), and about 3 times larger Meagior~ 7.3 1073 eV. 0 !

than the analytic estimate=4.08<10% for (v,Y;,u) Vyn(n+2) |1 TeV*
=(10"%10"8,10°3). (2.88

Once the radion field begins to settle into a minimum , )
g Remarkably, the mass of the radion that emerges is much

aroundr,, the value of the Planck mass zeros in on its - .
present valu€.Once this happens, the temperature of thesmaller than any other characteristic mass scale in the prob-

universe can begin to fall once more, and ultimately it mustem, unless, >1 and/orV,;>1 TeV*. For other choices of
drop belowT. ;. When this happens, the inflaton fields onceF(r) we would have
again are free to roll and move toward their minimum at

nonzero vacuum expectation values. The amplitude of any d?Vg(®)  riUpuk/ro\" 2dZF(r)
residual oscillations in the radion field will then redshift —ggz =53 (7) —n(n=1)F(r)+r Wr}i

away exponentially, until the inflaton kinetic energy is ther- mn 28
malized in a second phase of reheating. It is therefore nec- (2.89
essary that once the temperature of the universe becomgsin the definition

constant during the radiation-dominated era of radion

growth, the constant temperature must be abbyg More- d?F(r)

over, we need to require that there be enough inflation after (2mk,)?=| =n(n—1)F(r)+r? ar2 (2.90

the temperature falls beloW, , for the amplitude of oscilla-

tions in radius to drop to an acceptable level. this becomes identical to the formula for the special case

ForF(r)=1-cosmr, itis easy to see that the minima of F(r)=1-cosmr.
Ve(P) are atm,r=2wk,, wherek, is an integer. At

minima, Iil. EXPANSION FACTORS AND THE RADION DENSITY
d2Ve (D) 4772kr2f8Ubu|k ro\" Now that we havc_a a complete account of the various
—= o~ — (2.84 phases of expansion in our proposed cosmological model, we
do pn r can gather the results to calculate the factors by which the

universe has expanded between various interesting epochs
and, at the minimum correspondingte-r g, and the present. We shall work in the Jordan frame, for the
most part, and define the cosmological scale faet()
=1 at the present day=t,. The value of the Hubble con-

2 4m2KkZ rju . o
dVe(®) T Fry 0> bulk stant today isH,=100h, kms *Mpc™?, the cosmic micro-

= . 2.8
do? w’n? 283 wave background radiatiofCMBR) temperature today is
To=2.7 K, and the corresponding critical density gg g
Thus’ near =rg (Or (I):O), =3H(2)M€>|/87T%801>< 10747h(2) GeV“

Before moving on to our more complicated cosmological
model, it is useful to review the situation in convention cos-
mology with a fixed Planck mass and a single inflationary
bra. Letac,, be the value of the scale factor at the end of the
geriod of exponential expansion, am¢g, the value of the
Scale factor at the end of the reheating phase that follows
exponential expansion. [T, is the reheating temperature,

81t turns out that for a quadratic potential, there is also an exac
solution in the radiation dominated era if we ignore the source term
In this case, the equations are completely linear, and if we take
potential like3m?(d —d,)?, the solution is

A dy(mY)+A_J_(mt
P yamt) 5 v ); (283 then
(mt)1/4
ST,
the most important feature of this equation is that the amplitude arhzlol—, (3.1
falls like (mt) %4 (i.e. xa~%?) at late times. Sth Trh
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where the dimensionless factofs and S, count particle in the Jordan frame, wherey, », &, and S}ffz have the
states in thermodynamic equilibrium at present and,at same meanings as the analogous symbols introduced for con-
respectively. If the energy density during inflation igy, ventional inflation and reheating, but apply to the end of
and the inflaton potential is harmonic near the minimum atPhase Il only. If we assume that this second inflation led to

tained at the end of inflation, then an increase in scale by a factdp, then the scale factor just
. before inflation began was
11'2“-;:rh-|—rh _ 8exp 3 (3.2 va
15 M, - O i ar
a2: f -~ 1/3 ~ ’ (3 7)
2 SihoF2 15V,

where &, is another dimensionless factor that counts the

contributions of various particle states to the total energy, . . L
density at temperaturg,, 8 Defining this is also the value of the scale factor before the radion field

began its power law growth during phase II.
28 TA |\ 4 Proceeding backward in time still further, we encounter
frh_< rh rh) , (3.3 the first subphase of phase Il, during which the energy den-
sity of the universe declined from its value just after the

reheating at the end of phaseni?Srh,leM/lS, to~V,; the
corresponding increase in scale was a factor

14 ~(m2En 4T 4/15V1) Y4, so the scale factor at the end of the

) . (3.4 reheating that terminated phase | was

|15y

we find aeyp/am~ €ff or

41301/ 13cl3p1/4 214
erhSOSTO_ €S0 Cin (77 To

a-exp’” =
1/ 1/3
Sth Trn Sin 150y

Elf/]3 3/351{142-'-0 61{}3 3/351(]42 772T3 4
If we assume that the present day Hubble sésjé passed Arh,1™ {/3 1,; = r1}3 = ( = ) :
: . L : TS FRE T SiiooFo€ 15v

outside the horizon during inflation, then the scale factor of rh,2/"2¢rh,1%rh,1 rh,2/"2€rh,1 0

the universe at that time wag,,ppie=(pco/pv) Y% and the (3.9

ratio .
wheree 1= (7°En 1 Trh 1/15V0) ¥4 Consequently, the value
a elBgL3c 4 [ 274 oy 14 of the cosmological scale factor at the end of the exponential
exp__ rh 3/3 il 02 expansion in phase | is
AHubble St 15050
13 _1/3 o1/3o1/4 24\ 1/4
1301/301/4 €1 1€ E 7T
B pv €hSo Cih Qexpr~ €43 a 1~ — 20 T2~ 0) (39
1TeV Smho rh.2°2 0

(3.5  Although the derivation 0Beyp1 is more complicated than
5 4 o ) the derivation ofae,,, (Or its conventional equivalerd,,),

For py~(10"* GeV)", Eq.(3.5) implies about 6@&foldings  notice that it does not depend explicitly on the different
betweenay,ppie andaeyp, the familiar value, but generally pjanck scales that arise in our inflationary model.
the number ok-foldings depends on details of the inflation-  The dependence on Planck scales enters when we recon-
ary model. ) sider the relationship between,,, andayppie. We have

In the cosmological model developed above, there are tWassumed that the present Hubble scale, and all other macro-
periods of exponential inflation that occur at different valuesscopiC scales relevant to the development of large scale

of the Planck mass. The second inflationary epoch and theyycture, crossed the horizon during phase I. As a result,
subsequent reheating occur at the end of phase I, at whlcg = (peo/Vo) YA Mpy /Mp), and
time the Planck mass has settled to its present value. ThuSHubble™ Pco’ Vo PLITRTPYS

we can apply the same reasoning to this epoch as was devel-

; : . U3 _1/3 o1i3p1/4 o4y, \ 14
oped in the preceding paragraph and we find that the scale exp1  €rh,1€rh,250 S 2Mei[ 77ToVo
factor at the end of the period of inflation that concludes  ayyppie Sr1'/1’o,‘27:2,\/|mI 15p510
phase Il is
13 o1/3p1/4 4\ 14 =exg 30.8+0.25I Vo +1In Me
€250 €z TTo R 1 TeV FoMpy,
aexp,2~ 81/3 15\'\/ (36) '
rh.2 1 13 _1/3 ol/3cl/4
€rh 16,250 Crh.2
+In| —— 55— (3.10
Srh,ZhO
"Recall that it is entropy that is conserved during adiabatic expan- ) )
sion. Note thatS,, may be considerable, e.g:10. For our cosmology, the number effoldings between hori-
8When only relativistic particles are present and the equation oZon crossing and the end of exponential expansion during
state depends only on temperatufg,= 3S,,/4. phase | depends on numerous uncertain parameters, princi-
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pally \70 and the combinatioMp/F,Mp ;. The require- - 53),’4 @ZQSH n+2\ ¢
ment thate 1> apypple IS ONE constraint on our cosmologi- T 2t 332 ~ "\ 24n 1
cal model.
We can obtain a separate constraint by requiring that the 224 . _
energy density in radions today does not overfill the uni- Vi :_(gn 6 (AA X) — n+2 f (4.3
verse. At the end of the subphase of power law growth of the a2 32n t2 16n | t

radion during phase 11, the energy density in radions &;; A i _ . .
during the ensuing exponential expansion it drops tovhere ¢y is the (Einstein-framg gauge-independent metric

~$/1/F3. The energy density in radions drops by an addi-Potential introduced in Ref19] and = '+ #/t, coupled

tional factor of @expa/asn 2)3~ €, by the time reheating is three gauge-dependent equations

complete, to a value- 728, ;T /1573, i.e. a factor~ F3 39 g Y2y R

smaller than the energy density in relativistic matter at the P+t —tm——=——
end of reheating. Betweeh,, , and Ty, the radion density 2t t2 a? t
drops by a factor 08,Tg/Sin 2Tih 2, SO that A
ﬁ”+h—, (Qn—G)A n+2\ 7 (n+2 7'
t || 8n |32 8n /32 2 |12
m280Eh 2Trh 2To t t t
N i — (3.11
155 75 A—y
(xt)'+——=0, (4.9

is the density of radions today. Comparing with the closure

density implies a radion density parameter where h=h;;. If po(t) and uy(t) denote the background
solutions given by Eq92.56) and(2.55),

rad,0””

87°Sof2T2To _ (Tl F2)(Sofin ol Sin.ad) 8D pold)
158, »F SHZM2, 10 eV ’ p=——==—[1+AR D], (4.5

(3.12 u(x,t) ug(t)

thus Qrago=1 as long as Tl Fs and if the Einstein-frame three-velocity is= VV(%,1),
=<10(h3Sih 2/ SoEn.2) €V.

(4.6

A2 N ~ 7
D 23 (t)fV(x,t)

IV. FLUCTUATIONS

Fluctuations about the smooth cosmological backgroundEquationg(4.4) and the second equation of E¢4.3) can be
alter the form of the Jordan frame line element from Eq.combined to yield the gauge-independent equation

(2.6) to . .
e 13¢”+(37n—2)¢’ (9n—2) v 3V Vi
ds2= —dt2+a2(t)( 8+ hy ) dxidx; 4.1 2t an JtoLoan B ta @’

t
the corresponding Einstein frame metric 9% _ 6V2 _ AV2d, _
=ds?\Ju(x,t), whereu(x,t)=exg 2P(x,t)/u]. Assume that 232 ta?
u(x,t)=ug(t)[1+ 7(x,t)], where|n(x,t)|<1. Then, after .
making an appropriate infinitesimal coordinate transformaOn scales larger than the Einstein-frame horizon s¢#lé,
tion, we get a complete solution may be obtained by coupling @g?) to

the first equation of Eqg4.3).
R 221 a2 Y At the end of phase I, there are no fluctuations in the
d¥=—dt*+a%(1)(; +h;)dX'd%; (4.2 radion field, say=0 on all scales of interest toddie. well
outside the horizon (This is because the effective mass of
i.e., the metric in the Einstein frame can be reduced to SYnthe radion field once in a minimum is genera”y |arger than
chronous form. As always, the necessary infinitesimal coorthe cosmological expansion rate; for a particular example,
dinate transformation is not unique; there is still gauge free-See Appendix D. There are fluctuations imh, on these

dom even when the metric is reduced to the form of @®  gcqjes, and, from Eq4.7), these tend to generate perturba-

[18,19. . . tions in the radion field. However, the driving terms are very
The perturbed Ricci tensor corresponding to &q2) can small on large scales: for comoving wave numkethey are

be found in Ref.[18]. For compressional perturbations o~ moap A g nn o
around the power law background solution for phase I, thé®f Order kK=en /t7a”< /1% Consquently,¢~k thu /a _
perturbation equations can be boiled down to two gauge<<¢n/t, and the large-scale fluctuations in the radion field

independent equations generated during phase Il are far smaller tﬁ@n(which sets

(4.7)
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the scale of the density fluctuations on such scales after they ( r ) 2 Mp
— ’ (5.0

i ; = Nlo‘Sﬂ%lo—ll i
re-enter thAe horizon Moreover, the source term in the egua— Mo Mpy 1 Tev)
tion for ¢, is negligible on these scales, sinag/t

< ¢y /12, and ¢y, remains constant on scales larger than therhe radius of the extra dimensions during phase | was con-
horizon during phase II. siderably smaller than today ifig~1 TeV andn<7. One
of the principal motivating factors behind our cosmological
model is the realization that the amplitude of primordial den-
V. DISCUSSION sity perturbations is proportional @ ;,’1“ and that perturba-

In the preceding section, we developed a new picture fop<ons at an acceptable amplitude are only possibIbli,

cosmology in thg_brane world. Our c_:osmologif:al model is E)lep;ansion fronr, to ry occurred during phase Il, which
based on a specific form of the effective potential, 802, s mainly radiation dominated following the reheating that
which, although admittedly somewhat complicated, allowsigminated phase 1. In our model, once the branes come to
the_ size of the compact dlmgnsmns of the universe to e‘_’°|V%verIap,V0(z/;)HO, which frees the radion to expand once
to its present va_Iue from a dlfferen.t_, but much smaller, fixedpore since the product teriy()f,(r) in the effective po-
value at early times. In the specific scenario we have Untential(1.2) is no longer active. The inflaton potential is then
folded, the reSUlting evolution of the universe divides natu-dominated le(l,[I), and we assumed that the initial reheat-
rally into four different phases, the last of which can bejng was sufficient to trap the universe at smalht first, at a
called the “standard big bang cosmology” that follows the minimum with nonzeroV,(#). Phase Il naturally divides
electroweak phase transition and proceeds to the present dato three subphases, which was discussed in detail in Sec.
with the radius of the extra dimensions fixed at its presentl D. During the first subphase, the universe expands at
value,r,, and hence the Planck mass fixedGit?=1.22  ~r, until it cools sufficiently that an approximate equilib-
X 10'° GeV. rium is attained, with comparable energies in radiation, ra-
The other three phases represent the evolution of the ralion kinetic energy, and vacuum energy density. Once this
dius of the extra dimensions to that value from a considerhappens, a new phase of power law expansion of the radius
ably smaller one. While we do not claim that the scenario weof the extra dimensions ensues at virtually fixed radiation
have developed for this evolution is unique, it does havaemperature; see EqR.55 and (2.56). This subphase ends
some features that are attractive. The first phase, phase 0 when the radion becomes trapped in one of the m@my
Sec. Il B, is relatively brief; the radion settles into a potentialinfinite) minima of its effective potentialfy(r) [see Eq.
minimum atr, during this phase. We have shown that this(1.2)]; we assume that this minimum isrg, and Eqs(2.75
process is not entirely guaranteed to take place, but may bend(2.76) estimate the radion vacuum energy density in the
rather likely in scenarios where the effective potential for thebulk required for this to be true. The third subphase of phase

o

radion has multipldor an infinite number gfminima. Il is the phase transition associated with the inflaton potential
Phase 0O sets the stage for phase | of Sec. Il C, duriny/;(#) in Eq. (1.2). During this phase, the universe expands
which the universe inflates at a fixed Planck maés;,  exponentially by an additional factdf,, and reheats, finally,

=Mp(r,/ro)"?<Mp,. We assume that this is the main in- to a temperatureT , ,. Conventional, noninflationary big
flationary phase undergone by the expanding universe, dsang cosmology commences at this point.

that macroscopic comoving scales on which large scale Another important constraint on our cosmological model
structure develops all passed outside the horizon during the requirement that the present day radion energy density
phase 0. The density perturbation amplitude produced byoes not dominate the total energy density of the universe.
quantum fluctuations in the inflaton fi€&l » during phase 0 Because the radion is trapped in a potential minimum toward
is estimated in Eq(2.38). For an inflaton effective potential the end of phase Il, it behaves, much like the axion, as a
proportional tomZ[1—exp(—myd)], whered is the inter- massive, cold dark matter particle; the effective radion mass
brane separatiofas discussed if20] and Appendix B, we s estimated in Eq(2.89, and may be~1 eV typically?
estimate that the primordial density fluctuation amplitude isJust after the reheating that ends the short inflationary period
~(mg/Mp; )N for a mode with comoving wave numblr  during phase II, the energy density in radions is smaller than
with Ny the number ofe-foldings between horizon crossing the energy density of the products of reheating by a factor
for that mode and the end of exponential inflation during=JF, >. Requiring that radions not dominate the mass den-
phase 0[In Appendix B, we argue fomy=mgg, the mass sity of the universe today implies, by E(.12),

of the Ramond-Ramon(RR) mode] Nominally, we would

expectmy=mg, leading to a density perturbation amplitude

=ms/Mp,,;, which would be woefully small forms %We shall discuss the development of density perturbations during
~1 TeV if Mp,;=Mp. An attractive feature of our Sce- e “matter-dominated” phase of a universe consisting of radions
nario is that it allowsMp, ;<Mp. Turning the argument ang other cold dark matter elsewhere, but note here that there is
around, observations of large scale temperature fluctuationspthing special about the radion component, and it can be shown to
in the cosmic microwave background radiatidri] require  behave as a typical dark matter particle. As shown in Sec. IV,
mg/Mp; ~10"°, so the radius of the extra dimensions dur- significant, additional fluctuations in the radion field are not pro-
ing phase | satisfies the constraint duced during phase II.
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Tino VY3 Solins 13 Recently, Randall and Sundrum proposed a scehaép
Fo=2Xx10° 100r G \) 2 rl/é ) , (5.2  where the extra dimension does not have to be compactified.
€ hoSh 2 In this scenario, the radius can have a runaway behavior. It is

) ) ) not even clear that the radion field has to be trapped during
where T, is the temperature of the universe after this lastinflation to obtain the correct power spectrum of the density
reheating episode, and the remaining factors-afein gen-  perturbation. The cosmology of such a scenario will be in-

eral; see SeC||| for detaiFé).Thus, if the Sgcond i_nflationary teresting to study. Some attempts along this direction can be
epoch comprised more than about eighfoldings, the found in Ref.[23].

present day density in radions would be negligible, but our

model cannot be consistent with fewer than eigffivldings,
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APPENDIX A: THE EFFECTIVE POTENTIAL

(5.3 Here we want to give some background on the motivation
on the choice of the effective potentidl.2) used in the text.
Although our universe is nonsupersymmetric, it is very help-
o ) > 9% ful to start from a supersymmetric theory in which spontane-
found for grand unified theoryGUT) scale |nflat|or_1, itneed g supersymmetrypbregking takes plage dynamica?lly. Since
not be far smallete.g. by a f_actqr Of.B as one might have o prane world picture is naturally realized in string theory,
expected for a theory in which inflation happens at a muchare many non-trivial consistency propertissich as con-
Iower2 energy scale (e.g. ~1 TeV compared 10 gigtent quantum gravifyare automatically built in, we shall
~10'? TeV). This is because the Planck scale was relafivelyongiger what stringy properties tell us about the effective
small d_urlng phase I, when_the main mﬂquqnary era OC-otential.
curred in our model. According to EG5.3), it is not too Since string theory has no free paramédthe string scale
d|ff|cu_lt to satlsfy the constraint that the nur_nber of m. simply sets the mass scaleall physical parameters
e-foldings be considerably larger than 1, unlébgqois ab-  emerge as various scalar fields obtaining vacuum expectation
surdly S’T‘a”- ) values(VEVs) determined by string dynamics. For example,
Ours is only one of several proposed scenarios for coSpg |arge radii of the large extra dimensions come from the
mology in the brane world. The model expounded here haggys of the radion fields. Before supersymmetry breaking
some overlap with that of Ref8], except that we assume anq gilaton stabilizatiorithe latter fixes the string coupling

that the radion and inflaton are different fields, resulting invalue) the dilaton and the compactification radii are moduli:
substantial differences between the two models. In contrashat is’ the effective potential is fldand remains zejoas ’

to our model, Ref[9] proposes a different theory of baryo- hair vEVs vary. This is true to all orders in the perturbation

genesis whereas we believe that baryogenesis from thenansion. So supersymmetry breaking and moduli stabiliza-

(minimal - supersymmetrjc standard model electroweak tions are expected to come from non-perturbative dynamics,
phase transition is adequate. In addition, it should be possiblghich is poorly understood at the moment. However, it is

to modify phase Il of our scenario so that the fixing of the i reasonable to assume that the moduli degeneracy is
radion to its present day value is achieved not by a potentig|feq after dynamical supersymmetry breaking.
[as with our potentiafo(r)], but instead by cosmological — Ajthough the effective potential of a particular string
damping as suggested by Steinhai2lt]. There may exist yacyum (i.e., ground stateis model dependent, there are
other viable cosmological scenarios in the brane worldgyingy and supersymmetric features that are quite generic
Eventually, string theory should provide the appropriate ra24]. Here we shall give a very brief description of some of
dion and infla_ton potentigls, which hopefully will determine o properties that are relevant in this paper. Besides the
the cosmological scenario that nature chooses. graviton, the dilaton and the radii, a typical semi-realistic
string model has gauge fiel@is vector super-multiplejsand
charged matter fieldsas components of chiral super-
OThis also guarantees that the radion energy density during cognultiplets as well as additional moduli. The general La-
mological nucleosynthesis was no more important than that of angrangian couplingN=1 supergravity to gauge multiplets and
other dark matter component, and therefore has negligible effect. chiral multipletsz; (the indexi labeling different chiral mul-

While we expect this to be below the @foldings generally
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tiplets z; will be suppresseddepends on three functions:

(1) The Kaler potentialk (z,z) which is areal function.

It determines the kinetic terms of the chiral fields
Ekin: KZ—Z(QMZ&’U‘? (Al)
with K ;5= K/ 9zdz.

(2) The superpotentidlV(z) is aholomorphicfunction of
the chiral multipletsit does not depend om). W(z) deter-
mines the Yukawa couplings as well as théerm part of the
scalar potentiaV:

- WK
Ve(2,7) =M Dzvvr<;%DzW—3|M—2| :
Pl

(A2)

with D,W= W/ dz+WK,/M3, .
(3) The gauge kinetic functioh,,(z) is alsoholomorphic
It determines the gauge kinetic terms

Lyauge= RefapF 3 FAP+Im f,,F2 FA2 (A3)

It also contributes to gaugino masses and the gauge part

the scalar potentiaVp :

Vp=(Ref 1) 4(K,,T%2) (K%, T2). (A4)
So the effective potential is given by

Consider a semirealistic type | string model, i.e.Da

=4, N=1 supersymmetric, chiral model, with a set of

PHYSICAL REVIEW D62 024011

coupling requiresngr; and maybemgr, to be around 10.
This will modify Eq. (1.1). (In semi-realistic string models,
the picture is somewhat more complicajed.

The dilaton and the volume moduli are bulk modes:

S=go%+i6, T,=g5’+i6, (A8)

where thef’s are corresponding axionic fields. The radion
field is parametrized bys and T;. For example, to lowest
order, the gauge kinetic functiorig=S andfs;=T,, while
the Kahler potential is better knowf24]. In the example of
Ref. [3], with only two sets of 5-branegrthogonal to the
third torus with very large ;=rg), we have

K=—1InlS+S* =2 |2'|?|= > In(T;+T¥)
|Zl2|2
1/2, * l/2+.'.
2(S+S*) T3+ T3)

(A9)

V\fherezij refers to open string chiral modes with one end of
fhe string ending on thith 5-branes and the other end end-
ing on thejth 5-branes[For z" with i=1,2, only theith
torus (world-sheek excitation modes are includgdlhe su-
perpotentiaW starts out with terms cubic g, :
W=y(S,T)juzjzezi+ - - - (A10)

where y(S,T;);q are model-dependent functions of the
moduli.

Let us concentrate on tHe term Vi of the effective po-

9-branes and up to 3 sets of 5-branes, with @ cOMMORyniia|. Generically, the lowest order terms in the brane mode

4-dimensional uncompactified spacetime, (to X3). We

shall treat the 6 compactified dimensions as composed of g,

(orbifolded two-tori: the first torus with coordinates
(Xg,Xg), the second with coordinategg,x;) and the third
with coordinates X4,Xs), the volumes of which are, crudely
speaking,r3, r3 and r respectively. The 4-dimensional
Planck mas®1p, and the Newton’s consta@®y are given by

4
(msr1r2r3)2

~1_ 12
Gn =Mp~ N2

(AB)

where\ is the string coupling. The gauge couplingg and
gs; of the gauge group&g andGs; are
2(m3rr,rg)? , 2mir?

g;2:f, 95i2: N

(A7)

where theith set of 5-branes has as the size of its two
compactified directions. For large radiug, g4 andgs; are

effective potential are multiplied by some functions of the
oduli, while higher order terms couple brane modes and
the moduli. From the form of the superpotentd) whereS

and T parametrize the radion field any brane potential
will couple to the radion. In low orders, it will be a direct
product of the brane potential and the radion potential. So the
form Vo(¢p)[1+f,(r)] is quite reasonable; this is the first
term of our assumed effective potentil2). Choosingys to

be the electroweak Higgs field, the last te¥( ) in Eq.
(1.2 is simply the Higgs potential in the standard model, at
least for VEVs not much bigger than the electroweak scale.
Of course, we are more interested in the electroweak Higgs
potential in the minimal supersymmetric standard model,
which has two Higgs doublets. There, the effective Higgs
potential is only poorly known.

Notice thatVg does not contain a term that involves only
the moduli, which is a property that extends to all orders in
the perturbative expansion. However, a tefgir) will ap-
pear if some brane modes other than the inflaton develop

too small to be relevant, so the standard model gauge groupgn-zero VEVs. Also, we do expect effective potential terms
must come from the first two sets of 5-branes. This isrthe coupling the moduli to other bulk modes, as well as terms

=2 case. In the two exampl¢8,25] that we know, thisn

involving the moduli to be generated non-perturbatively.

=2 case is needed for phenomenology. Here, we shall ider®therwise, the moduli will appear as massless fi¢idach

tify r=r5 as the radion. To stabilize the moduli VEYand
maybe also to induce super-symmetBJUSY) breaking, the

like the Brans-Dicke fielg which is ruled out experimen-
tally. Hence we need an effective potential to stabilize the

string coupling\ is likely to be strong. To obtain the weak radion. This is another reason we expect the presence of a
standard model gauge couplings from a generic strong stringgrm like fo(r). It is a bulk potential. This more or less
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justifies the choice of the form of the effective potential of the electroweak Higgs field and,;(¢) as the electroweak
the type(1.2) proposed in the text. Higgs effective potential. That i&/;(=0)~mg,,.

APPENDIX B: BRANE INFLATION APPENDIX C: DERIVATION OF EFFECTIVE

. . LOW-ENERGY DESCRIPTION
The brane inflationary scenarj6é] emerges rather natu-

rally in the generic brane world pictufé—3]. We may con- In this appendix we derive the low energy, 4 dimensional
sider the type | string wher€ branes sit more or less on top description given in Sec. Il A above from the higher dimen-
of an orientifold plane at the lowest energy state, resulting irsional description of the brane world scenario. We start with
zero cosmological constant. In cosmology, it is reasonable tthe action
assume that some of the branes were relatively displaced
from the orientifold plane in the early universg@his is the
generic situation in F theory, which may be considered as a L:f d**ixA— det(gap)
generalization of the type | stringslo simplify the problem,
we assume that only one brafer a set of brangsis dis- VR v N N
placed from the rest by a distandeThis situation probably +f d?y* V= det( @, Ll 9un(y™) X (YD ]}
arises after all except one brane have moved towards each
other. Before supersymmetry breaking and dilaton stabiliza-
tion, the force between the separated brane and the rest j
precisely zero. In the realistic situation where supersymmetry
gt?cl):):gnt, we expect the potentigld) to be, at large sepa- (s—2)T'(s/2)

' Kg=————————. (C2

5 A(s—1)7s2

i(s)R}
Gs)

(CY

V(d)=mid® " 1+ e ™M~ e ™! (Bl  The notation here is as follows. The number of spatial di-
mensions is=n+ 3, nis the number of extra compactified
dimensions, and5q, is the s-dimensional Newton’s con-
stant. The normalization of the first term in the acti@1) is
chosen such that the force law at short distanced is
=G(S)m1m2/r5*1. The quantitiesx are coordinates in the
higher dimensional spadéhe bulk with 0O<SA<3+n, gap
=gap(x°) is the bulk metric, and®R is the Ricci scalar of
Oag- In the second term, the quantitig$ with 0= <3 are
coordinates on the brane. The induced metric on the brane is

where m/ are the masses of the Neven-Schwarz—Neven
Schwarz(NS-N§ string states whilem; are the masses of
the string RR field§the sums are over infinite spedtr&or
larged andn=2, V(d) is essentially a constant. The “1”
term is due to gravitational interaction, the only long range
force present at largd. For smalld, the form ofV(r) de-
pends crucially on the mass spectrum.

A key feature of brane inflation is the identification of the
separatiord with the vacuum expectation value of an appro-
priate Higgs field[20]. This Higgs field is an open string
state with its two ends stuck on two separated branes. That
is, this Higgs field is a brane mode playing the role of the
inflaton. In the effective four-dimensional theory, the motionwhere the location of the branex$=z*(y*). The quantity
of the branes is described by thEwly-rolling scalar field, £, in Eq.(C1) is the Lagrangian of all the fields, collectively
the inflatongy=mZd, which is the scalar component of one called x, that reside on the brane.
of the chiral fieldz, or some linear combination. To be spe-  This action(C1) is a functional of the (4-n) dimensional
cific, we shall at times consider the=2 case, and, as an metric, of the location of the brane, and of the fiejdshat
illustration, keep only the graviton and one RR mode, resultfeside on the brane, and is invariant under transformations of
ing in an(overjsimplified effective potential both thex” coordinates and thg* coordinates. We now

specialize thex* coordinate system as follows. Let us write
V() ~mi(1—e "™yE(y) +V () (B2) XM= (x*,x3), where O<u<3 and 4<a<3+n. We can
choose the coordinate system such that the brane location is

J A B

9.(Y) =0l 2°(Y)] W oy (C3)

wherey;, and ¢, are two different brane modes ang is a
model-dependent mass scale, which is related to the mass of
; — 2 ; )
the RR modemgg via i =msd, that is,mmgr=ms. We o000 \e can identify the first four of the bulk coordinates
also include a generic smooth functiért), which will be : :
) i . x* with the brane coordinateg‘.
neglected in the text. Since the RR mode is massless before We now make the ansatz for the metric. in the above
supersymmetry breaking and the supersymmetry breakinghoice of bulk coordinates?. of '
scale is below the string scale, we expagt-mg>mgg. '
In this scenario, it is even possible that the electroweak 9us(X") 0
Higgs field plays the role of the inflaton, a particularly inter- gap(XH,x3) = ap - _
esting scenario. In this case, we may identify ;= i, as ’ 0 e?®h_ L (x°)

xA=7A(y")=(y*,0,0,...,0. (C4)

(CH
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Here it is assumed that the internal space is a compact space -
of constant curvature, like ansphereS" or ann torus St —f d>* %A\~ det(gap) Vour( D)
X ... xSt with metrich,,(x%). The volumeV, and effec-
tive radiusr of the extra dimensions are then given b ~
g Y - J' d4xa\/ _de(g,uu)vbraneg a,b,(I)), (ClO)
Vn=r”:e”5’f d"x2ydethgy). (C6)  This consists of a bulk potential energy per unit

s-dimensional volumé&/,,,, and a brane potential energy per
i _ unit 3-volumeVy.ne > We discussed in Appendix A above
If o is the value of the radius today, let us adopt the the physical origin for such terms which depend on the size

convention that of the extra dimensions as well as on the inflaton.
Using the ansatZC5) in the action(Cl), inserting the
— brane actionC9) and adding the potential terni€10) now
nya N
f d"x*ydethap) =ro, €7 yields the reduced 4-dimensional action
so that S=f d*x /dey —en& DR+ Mn-1) (V)2
167G 167G
r=e%r,. (C8)

—V(, D)+ Lo, 9 |- (C11)

In going from the full metriag,g(x*,x?) to the reduced form
(C5 we have thrown away all the Kaluza-Klein modes HereG is the usual 3-dimensional Newton’s constant, given
which have masses 1/r. Hence the ansat5) will only be  py

valid when all the fields vary witli* over length scales-r.

We have also thrown away several of the components of the 1 Ksl'§

metric—the componentg,, 5(x*) and the traceless part of 167G G.o' (C12
Oab(X*). This is valid since these components have no cou- ©

plings to the brane fieldg; in the four dimensional descrip- wherer is the equilibrium value of the radius of the extra
tion they will act as free, massless scalar and vector fieldgdimensions. The actiofC11) has the form of a scalar-tensor
which are coupled only to the metrig;,,.** Their equations  theory of gravity, written in the Jordan frame. Note that the
of motion will be source free equations of the form sign of the kinetic term for the scalar field in the acti@11)
V.V¥ =0 [26], and so, at least classically, we can takeis opposite to the normal sign; this is not a problem since it

them to vanish? is the sign of the kinetic energy term in the Einstein frame
We now specialize the brane Lagrangi@pappearing in  (see below that is relevant to considerations like stability
Eq. (C1 to be of the form and positivity of energy, etc. The Jordan-frame potentia
given by

1
‘C v =—3 V 2+ ‘C v 1 (Cg =7 T e k — ~) o4
b(Fup»X) 2 (Vi) rest 9puv s Xrest ) V(&)= fgen(bemk(‘b) _ me(n 2)b Virand 4, ®),

where ¢ is the inflaton field or fields, ang,.s; denotes the (€13

remaining brane fields other thaf, described by the La- where the Ricci scalar of the mettig, is 2k;r, 2 andk; is a

grangianL,.. We also add to the action the terms dimensionless constant of order unfif. Eq. (C7) abovd.
From now on we specialize to flat internal spaces so khat
=0. Then we see that only the particular combinatidn

iTo see that these fields are exactly decoupled classically, ong " Vbukt VoraneOf the potentiald/py i andVpaneis relevant -
should use a definition of the radion fiekl which is more general in the low energy description. Our assumed form for this

than Eq.(C5), namely potentialV is given in Eq.(1.2) above.
Finally, we transform to the Einstein frame description.
—— S We introduce a canonically normalized radion field by defin-
N, _ — N nd [
f %V~ delgag) =T e dexg,.,). ing » according to Eq(2.3) above, and we define

This equation together with the acti¢@l) shows thatb is the only ~
piece of the metric which has couplings to anything other than the O=nud. (C149
metric.

2Quantum mechanically, these fields will be subject to the same—
process of parametric amplification during inflation as normal
gravitons, and if they start in their vacuum states, the tftah B3Note that the explicit dependence of these potentials on the met-
these fields today should presumably be comparable to theQotal ric component® spoils the covariance of the full action under
in relic gravitons from inflation, which is of the order of 1 in transformation of the® coordinates; it is difficult to write down a
typical inflation models but smaller in the models of this paper. fully covariant radius-stabilization mechanism.
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The radiusr is thus related tab by

)
r=roexpg —
nu

from Eq. (C8). We define the Einstein frame metric by

(C19

gaﬂz e(D/MgaB: ena)gaﬁ . (C16)

The action then takes the form of E@.1) above, where
Sres[gaﬂ Xres] = f d*x N g‘cresﬁgaﬁ Xres) (CL7)

is the action of the brane fielggcg:.
The equations of motion derived from the acti¢hl),

PHYSICAL REVIEW 62 024011

2n(1+2a)

mrJ:(2]+1)7T+EJ, 6j~ amri

(D3)

The heights of successive maxima\gf; differ by approxi-

mately
2
"o) n(rj+1_rj)_
g r

the potential is biased toward large values rof Since

whether or not the radion escapes over the first barrier is
determined at very early times, we can ignore expansion, and
treat the dynamics as completely conservative. If the radion

VD —vll~—2nVy(1+2a)

(D4)

when we treat the last term as a fluid with Jordan-framestarts out with zero or negligible kinetic energy, then it can

densityp and pressure, are

2

Mbpi . - - 1 SH 21 a—Plul o O
EGQBZVQCDVBCD—EQQB(V(D) +e TH Vaz//VBgZ/
1 Y —2d/ N —2®/
- Egaﬂ(vw) —€ #V(¢r®)gaﬁ+e K
X[(p+p)0a0ﬁ+ pga’ﬂ]r (C18)

A A 1 ~ J
a —dlu 2_ —2D/u
V.V (D+_2Me (Vi) —(?q)[e V(i ®)]

1
+5e 2i(p—3p)=0,

o (C19

and

A A 1. ~ Jd
vV, Vey— ;Vﬂ) V- e*‘l”#wV( Y, ®)=0.
(C20

Here%a is the derivative operator associated with the Ein-
stein frame metrig,z, andd, is normalized with respect to

gaﬁ'

APPENDIX D: A PARTICULAR REALIZATION OF
PHASE 0 EVOLUTION

Here, we study the pre-inflation phase 0 in some detail for 87V

the sinusoidal potential

f,(r)y=a(1—cosmr) (D1

only escape over the barrier gt, ; if it begins sufficiently
close tor;. Expanding the effective potential negrwe find
that

Veﬁ(rj+Arj)—ng¥~—2na§/0

rO 2n
r—_) (mAr)?, (D5)
J

Vei(rj+Arj) =Ver(rj1) when

[8m7n(1+2a)
mArj% Trj,

which is small ifamr;/2n>1. If the radion begins at any
radii r;+Arj=<r=rj,4, it should be captured at the nearest
minimum, which is roughly halfway between andr, q; if
it begins atrj<r=r;+Ar;, then it should grow without
bound. Numerical solutions of Eq&.17) verify this picture.
If the value ofr at the beginning of phase 0 is random, the
probability that the radion isiot trapped isP,~mAr /27,
which decreasesc(2n/amr)¥? asamr/2n grows. Thus, for
large amr/2n, it is extremely likely, althougmot guaran-
teed that the radion is trapped at the minimum\Gf; nearest
to its starting value of.

The Einstein-frame expansion rate once the radion settles
into a minimum ofVu(®) is

(D6)

Vo
2
Pl

2.

exp(—2d/u), (D7)

where® is the value of the field. Expanding.(®) around

introduced in Sec. Il B. For this choice, the effective poten-the minimum implies

tial for the radion field® in the Einstein frame is, from Eq.

(2.14,

o (rg\?"
V=V TO) (1+a—acosmr). (D2)

If amr/2n>1, it is easy to show that the maxima\éf; are
at

(A®)?
5
(DY)

V(@ +AD)~aV,

mr)* 20/
e exp(—2d/ )

so the characteristic oscillation frequency for fluctuations in
the radion field is
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mr) 2 2a(mr)2I:|2 For large values omr (anda not too small, wq,>F|. One
e exp—2d/p)~ Thtnt2) (D9 consequence of this inequality is that we do not expect large-
scale fluctuations in the radion field to arise during inflation.
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