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Nonthermal nature of incipient extremal black holes
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Universitàdi Udine, Via delle Scienze 208, 33100 Udine, Italy
~Received 7 February 2000; published 8 June 2000!

We examine particle production from spherical bodies collapsing into extremal Reissner-Nordstro¨m black
holes. Kruskal coordinates become ill defined in the extremal case, but we are able to find a simple generali-
zation of them that is good in this limit. The extension allows us to calculate the late-time world line of the
center of the collapsing star, thus establishing a correspondence with a uniformly accelerated mirror in
Minkowski spacetime. The spectrum of created particles associated with such uniform acceleration is nonther-
mal, indicating that a temperature is not defined. Moreover, the spectrum contains a constant that depends on
the history of the collapsing object. At first sight this points to a violation of the no-hair theorems; however, the
expectation value of the stress-energy-momentum tensor is zero and its variance vanishes as a power law at late
times. Hence, both the no-hair theorems and the cosmic censorship conjecture are preserved. The power-law
decay of the variance is in distinction to the exponential falloff of a nonextremal black hole. Therefore,
although the vanishing of the stress tensor’s expectation value is consistent with a thermal state at zero
temperature, the incipient black hole does not behave as a thermal object at any time and cannot be regarded
as the thermodynamic limit of a nonextremal black hole, regardless of the fact that the final product of collapse
is quiescent.

PACS number~s!: 04.62.1v, 04.20.Dw, 04.70.Dy
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I. INTRODUCTION

Extremal black hole solutions have long played a prom
nent role in black-hole thermodynamics. Early on, investi
tors realized that the zero surface gravity of extremal bl
holes, which implies zero Hawking temperature, makes th
the natural equivalent of the zero temperature states in o
nary thermodynamics.

Nevertheless, the third law of black-hole dynamics@1,2#
states that the zero temperature state~the extremal black
hole! is unattainable by means of a finite number of physi
processes. The real status and meaning of this law is stil
subject of debate and investigation@3#, but recently a point
of view has emerged, according to which extremal bla
holes are thermodynamically different from the zero te
perature limit of non-extremal ones@4–7#.

Over the past five years, advances in string theory@8#
have also stimulated a resurgence of interest in extrema
lutions. These have played a prominent role in both D-br
and supergravity calculations of black-hole entropy and th
results seem to imply, contrary to what might be inferr
from above, that the Bekenstein-Hawking relationship
tween entropy and area holds in the extremal case.

Semi-classical calculations, on the other hand, have
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far corroborated the conclusion implied by the third law, th
the nature of extremal black holes intrinsically differs fro
that of nonextremal ones. In particular, such calculations p
dict a vanishing entropy for extremal black holes@6,9–12#,
contradicting the string-theory results.

Given the apparent incompatibility between the two a
proaches, and the fact that it might indicate some nontriv
issue in the low-energy limit of superstring theories, we
here to improve our understanding of the nature of extre
black holes from a semiclassical point of view. However,
shall not deal with the interpretation of the high-energy
sults in the present work, leaving this issue for future inv
tigations.

The calculations cited above have mainly dealt with et
nal black holes. It is thus unclear whether the thermo
namic discontinuity just mentioned applies to the case
black holes formed by collapse. For this reason we h
decided to examine particle production by an ‘‘incipien
Reissner-Nordstro¨m ~RN! black hole: a spherically symmet
ric collapsing charged body whose exterior metric is RN.
this paper we do not address the issue of actually constr
ing solutions of the Einstein equations that describe the
lapse of charged configurations, because some simple s
tions of this kind have already been found@13–15#. We
emphasize that one of our main results is that the incip
extremal black hole does radiate in the early stages of
collapse. The fine-tuning which would then be required
produce extremal solutions makes the assumption of t
existence highly nontrivial, because they would be extrem
©2000 The American Physical Society05-1
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sensitive to effects such as the backreaction of the quan
radiation on the metric; we discuss these matters furthe
the Conclusion. Nevertheless, for our purposes we ass
that models can be found in which collapse leads to a bl
hole with Q25M2.

We approach the problem in a standard fashion, mode
the collapse by a mirror moving in two-dimension
Minkowski spacetime@16#. The spectrum resulting from th
mirror’s world line will then be the same as that of the bla
hole, up to gray-body factors due to the nontrivial met
coefficients of RN spacetime and to the different dimensi
ality. However, to determine the appropriate world line f
the mirror one must employ coordinates that are regular
the event horizon, and although we find the tortoise coo
nate r * to be continuous in theQ25M2 limit, the usual
Kruskal transformation fails there. Nevertheless, we prov
a natural extension of Kruskal coordinates that is good
the Q25M2 case. The transformation cannot be explici
inverted in terms of elementary functions, but is suitable
obtaining the asymptotic behavior for the collapsing st
This leads us to consider a uniformly accelerated mirror
Minkowski spacetime, whose spectrum of created particle
nonthermal. We therefore conclude that incipient extrem
RN black holes create particles with a nonthermal spectr

We find, moreover, that the spectrum’s amplitude co
tains a constant that depends on the history of the collap
object, apparently violating the no-hair theorems. Howev
the expectation value of the particles’ stress-ener
momentum tensor is zero and its variance vanishes a
power law at late times. Consequently, particle creation d
out in the late stages of collapse, and is such that both
no-hair theorem and the cosmic censorship conjecture
preserved. One might argue that the zero value of the ph
cal stress-energy-momentum tensor is consistent with a t
modynamic object at zero temperature. True enough, h
ever, as we will see, theapproachto zero of the stress tenso
and its variance along with the non-Planckian spectrum
dicate that the collapsing body acts like a thermal body a
time in its history. Therefore, although the final object
quiescent, it is improper to regard it as the zero tempera
limit of a nonextremal black hole.

II. KRUSKAL-LIKE COORDINATES
FOR THE EXTREMAL RN SOLUTION

Several textbooks in general relativity~see, e.g., Refs
@17,18#! imply that Carter@19# found the maximal analytica
extension of RN spacetime forQ25M2. In fact he made a
very ingenious qualitative analysis without actually prov
ing an analogue of the Kruskal coordinates for the extre
case. Nevertheless, for our analysis it is essential to h
such a coordinate transformation. For this reason we are
ing to retrace the steps leading to the maximal analytic
tension of RN, paying close attention to the difference
tween the nonextremal and extremal situations.

The first step in the procedure is to define the so-ca
‘‘tortoise’’ coordinate, which is then used to construct t
Kruskal coordinates. We start with the usual form of the R
geometry,
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ds252S 12
2M

r
1

Q2

r 2 D dt2

1S 12
2M

r
1

Q2

r 2 D 21

dr 21r 2dV2, ~2.1!

where dV2 is the metric on the unit sphere. The tortoi
coordinater * (Q,M ) is given by

r * ~Q,M !5E dr

~122M /r 1Q2/r 2!
. ~2.2!

Carrying out the integration yields, for the nonextremal ca

r * ~Q,M !5r 1
1

2AM22Q2
@r 1

2 ln~r 2r 1!2r 2
2 ln~r 2r 2!#

1const, ~2.3!

where as usualr 65M6AM22Q2.
Now, if we setQ25M2 in Eq. ~2.2! before integrating,

we find the ‘‘extremal’’ r * :

r * ~M ,M !5r 12M S ln~r 2M !2
M

2~r 2M ! D1const.

~2.4!

Note that the coordinater * (M ,M ) diverges only atr 5M ,
but settingQ25M2 in r * (Q,M ) appears to yield the inde
terminate form 0/0. However, if we letQ25M2(12e2),
with e!1, and work to first order ine, it is straightforward
to show that Eq.~2.3! does reduce to Eq.~2.4!. Thereforer *
is continuous even at extremality.

Unfortunately, the Kruskal transformation itself brea
down at that point. The Kruskal transformation is

U52e2ku⇔u52
1

k
ln~2U!,

V5ekv⇔v5
1

k
lnV, ~2.5!

where

u5t2r * ,

v5t1r * ~2.6!

are the retarded and advanced Eddington-Finkelstein coo
nates, respectively, andk is the surface gravity. The latter i
defined as

k5 lim
r→r 1

1

2

d

dr S 12
2M

r
1

Q2

r 2 D5
AM22Q2

r 1
2 , ~2.7!

and vanishes forQ25M2. Therefore the Kruskal coordinate
U andV become constant for any value ofu andv and so the
transformation~2.5! becomes ill defined at that point.
5-2



o
te

-
R

e

an

e

-
s

io

a

ew

ns
e

er,
-

i-

r

n
rm

tic
the
us

ow
in-
on

t-
ion
ny

a

NONTHERMAL NATURE OF INCIPIENT EXTREMAL . . . PHYSICAL REVIEW D 62 024005
We are nonetheless able to remedy this situation. N
that the Eddington-Finkelstein coordinates are construc
by adding or subtractingr * to t, as in Eqs.~2.6! above. Now,
for the extremal case,r * is given by Eq.~2.4!, which has the
extra poleM2/(r 2M ) with respect to the strictly logarith
mic dependence of the Schwarzschild and nonextremal
cases@compare Eq.~2.3!#. The simplest thing to do is defin
a function

c~j!54M S ln j2
M

2j D ~2.8!

and guess that a suitable generalization of the Kruskal tr
formation is

u52c~2U!,
~2.9!

v5c~V!.

Note thatc8(j)54M /j12M2/j2.0, always, and soc is
monotonic; therefore Eqs.~2.9! are a well-defined coordinat
transformation. Note also that

r * ~M ,M !5r 1
1

2
c~r 2M !, ~2.10!

which means that near the horizon1

r * ~M ,M !;
1

2
c~r 2M !. ~2.11!

We can give our choice ofc added motivation by noting
that near the horizon Eq.~2.3! gives

r * ~Q,M !;
1

2k
ln~r 2r 1!. ~2.12!

Thus we see that the functionk21 ln(•••) that enters in the
transformation~2.5! from the Kruskal to the Eddington
Finkelstein coordinates is just twice the one which give
singular contribution tor * (Q,M ) at r 5r 1 . Our extension
~2.9! is therefore analogous to the Kruskal transformat
~2.5!: We choosec as the part ofr * that is singular atr
5r 1 , a procedure that should work in other, similar situ
tions.

For Eqs.~2.9! to be a good coordinate extension, the n
coordinatesU andV must be regular on the event horizon,H.
This will be the case if the metric after the coordinate tra
formation is singular only atr 50. For the extremal case th
metric in terms ofu andv reads

ds252S 12
M

r D 2

dudv1r 2dV2. ~2.13!

Written in terms of the ‘‘Kruskal-like’’ coordinatesU andV,
the metric~2.13! assumes the form

1Hereafter, for two functionsf andg, we use the notationf ;g to
mean limf /g51 in some asymptotic regime.
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~r 2M !2

r 2
c8~2U!c8~V!dUdV1r 2dV2.

~2.14!

This line element apparently is degenerate atH; if so, the
transformation is ill defined there. We now show, howev
that the factor (r 2M )2 is actually killed and that the trans
formation is regular atr 5M .

At H the coordinatev is always finite and so asymptot
cally we havet;2r * . Thereforeu;22r * ;2c(r 2M )
where the last approximation follows from Eq.~2.11!. The
inverse transformation yields

U52c21~2u!;2c21
„c~r 2M !…52~r 2M !.

~2.15!

Then, from the expression forc8 given above we have, nea
the horizon,

c8~2U!;
4M

r 2M
1

2M2

~r 2M !2
;

2M2

~r 2M !2
. ~2.16!

Furthermore, sinceV is everywhere nonzero and finite, the
c8(V) is regular there. Now it is easy to see that the fo
taken by the metric~2.14! is, asymptotically,

ds2;2
2M2

r 2
c8~V!dUdV1r 2dV2. ~2.17!

The (r 2M )2 in the numerator of Eq.~2.14! is killed by the
(r 2M )2 in the denominator of Eq.~2.16!. Consequently,U
andV are good Kruskal-like coordinates.

Notice that the coordinatesu andv defined by the trans-
formation ~2.5! do not tend to those given by Eqs.~2.9! as
Q2→M2. This is related to the fact that the maximal analy
extensions of RN spacetime are qualitatively different in
two cases@18#, and is further evidence of the discontinuo
behavior mentioned in the Introduction.

III. ASYMPTOTIC WORLD LINES

With the result of the previous section in hand we are n
able to construct late-time asymptotic solutions for the
cipient extremal black hole. Our goal is to find an equati
for the center of the collapsing star~in the coordinatesu and
v) that is valid at late times. Equation~2.6! gives u and v
outside the collapsing star. We must therefore extendu andv
to the interior. Sinceu andv are null coordinates, represen
ing out- and in-going light rays, respectively, the extens
can be accomplished almost trivially by associating a
event on the interior of the star with theu andv values of the
light rays that intersect at this event.

The most general form of the metric for the interior of
spherically symmetric star can be written as

ds25g~t,x!2~2dt21dx2!1r~t,x!2dV2, ~3.1!
5-3
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whereg andr are functions that can be chosen to be regu
on the horizon. From the coordinatest and x we can con-
struct interior null coordinatesU5t2x and V5t1x,
which will also be regular on the horizon. The center of t
star can be taken atx50, in which caseV5U and dV
5dU there~see Fig. 1!.

Because the Kruskal coordinatesU andV are regular ev-
erywhere as well, they can be matched toU and V. In par-
ticular, if two nearby outgoing rays differ by dU inside the
star, then they will also differ by dU5b(U)dU, with b a
regular function, outside. By the same token, sinceV andv
are regular everywhere, we have dV5z(v)dv, where z is
another regular function. In fact, if we consider the last r

v5 v̄ that passes through the center of the star before
formation of the horizon, then to first order dV5z( v̄)dv,
wherez( v̄) is now constant.

We can write, near the horizon,

dU5b~0!
dU
du

du. ~3.2!

Since for the center of the star dU5dV5z( v̄)dv, this imme-
diately integrates to

z~ v̄ !~v2 v̄ !5b~0!U~u!52b~0!c21~2u!;22b~0!
M2

u
.

~3.3!

The last approximation follows from Eq.~2.8! where j
;c21(22M2/j) near the horizon.

Thus the late-time world line for the center of the star
finally, represented by the equation2

2This result was also obtained by Vanzo@20# for a collapsing
extremal thin shell, but without considering a coordinate extens
Our method is completely general and shows that Eq.~3.4! follows
only from the kinematics of collapse and the fact that the exte
geometry is the extremal RN one.

FIG. 1. A representation of gravitational collapse in null coo
dinates. The portion of spacetime beyond the event horizonH 1 is
not shown.
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v; v̄2
A

u
, u→1`, ~3.4!

whereA52b(0)M2/z( v̄) is a positive constant that depend
on the details of the internal metric and consequently on
dynamics of collapse.

We first note that the world line~3.4! differs from the one
resulting from the collapse of a nonextremal object, wh
would be of the form~see e.g.,@16,21,22#!

v; v̄2Be2ku, u→1`. ~3.5!

One immediately wonders, then, if our result can be rec
ered in the case of nonextremal black holes by simply go
to a higher order approximation for the asymptotic world li
of the center of the collapsing star. It is easy to see that
is not the case. Recall that in the Kruskal coordinatesU and
V, the horizon is located atU50. Say the world line of the
center of the star crosses the horizon at someV5V̄. Let us
expandV(U) in a Taylor series aroundU50 such thatV
5V̄1a1U1a2U 2. The term a1U}e2ku is the usual one
found for the thermal case anda2U 2 is the correction. How-
ever,U 2}e22ku and so this term is also a constant for e
tremal incipient black holes. In fact corrections are const
to arbitrary order. The extremal world line in no sense, the
fore, represents a limit of the nonextremal case but implie
real discontinuity in the asymptotic behavior of the collap
ing object.

Equations~3.4! and ~3.5! contain the constantsA and B,
which are determined by the dynamics of collapse. In
nonextremal case, it is known that no measurement p
formed at late times can be used to infer the value ofB, thus
enforcing the no-hair theorems. In particular, the spectrum
Hawking radiation depends only on the surface gravityk. It
is natural to ask whether a similar statement holds true a
for extremal black holes. This point will be analyzed in th
following sections.

IV. BOGOLIUBOV COEFFICIENTS

Let us now consider a test quantum field in the spacet
of an incipient extremal RN black hole. For the sake of si
plicity, and without loss of generality, we can restrict o
analysis to the case of a Hermitian, massless scalar fieldf.
Instead of dealing with a black hole proper, we conside
two-dimensional Minkowski spacetime with a timelik
boundary@16,21#. This spacetime is described by null coo
dinates (u,v) and the equation governing the boundary is t
same as that that describes the world line of the center of
star, sayv5p(u).3 At the center of the star the ingoin
modes off become outgoing, and vice versa; this transla

n.

al

3In Refs. @16,21,23# the functionp is defined somewhat differ-
ently. For a generic shapex5z(t) of the boundary, one first define
a quantitytu through the implicit relationtu2z(tu)5u. Then, the
function is defined asp(u)52tu2u, which is exactly the phase o
the outgoing component of the in modes, andv5p(u) is just the
equation for boundary’s world line.
5-4
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into the requirement that on the spacetime boundary ther
perfect reflection or thatf„u,p(u)…[0. Hence, ‘‘mirror’’:
The timelike boundary in Minkowski spacetime is traced o
by a one-dimensional moving mirror for the fieldf.

In general, for a world linev5p(u) one has dt
5Ap8(u)du, wheret is the proper time along the world line
From this and the fact that the acceleration for the traject
in two-dimensional Minkowski spacetime is a
5 1

2 Ap9(u)2/p8(u)3, one can easily check that Eqs.~3.4! and
~3.5! yield a251/A and a25keku/(4B), respectively. Thus
we see that an incipient extremal black hole is modeled
late times by a uniformly accelerated mirror; for nonextrem
black holes the acceleration of the mirror increases expon
tially with time. In both cases the mirror’s world line has
null asymptotev5 v̄ in the future, while it starts from the
timelike past infinityi 2 at t52`.

Without loss of generality, one can assume that the mi
is static fort,0. A suitable world line is then

p~u!5uQ~2u!1 f ~u!Q~u!, ~4.1!

whereQ is the step function, defined as

Q~j!5H 1 if j>0,

0 if j,0,
~4.2!

and f (u) is a function with the asymptotic form~3.4!. In
order for the world line to beC1, f (u) must be such tha
f (0)50 and f 8(0)51. To simplify the calculations, it is
convenient to choosef (u) as hyperbolic at all times@21#,
i.e.,

f ~u!5AA2
A

u1AA
, ~4.3!

which coincides with the function on the right hand side
Eq. ~3.4!, up to a ~physically irrelevant! translation of the
origin of coordinates.

As a result of the motion of the mirror, one expects th
the in and out vacuum states will differ, leading to partic
production whose spectrum depends on the functionp(u). In
our case, because the mirror world line has a null asymp

v5 v̄ in the future but no asymptotes in the past, the expl
forms of the relevant in and out modes forf are easily
shown to be

fv
(in)~u,v !5

i

A4pv
~e2 ivv2e2 ivp(u)! ~4.4!

and

fv
(out)~u,v !5

i

A4pv
@e2 ivu2Q~ v̄2v !e2 ivq(v)#,

~4.5!

whereq(v)5p21(v) and v.0. The spectrum of particle
created in such a scenario is known, although, to our kno
edge, no one has pointed out the correspondence to the
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mation of extremal black holes. However, since the resul
something of a textbook case, we here merely summarize
main steps; for details, see e.g., Ref.@21#, p. 109.

The in and out states off can be related by the Bogoliu
bov coefficients:

avv85~fv
(out) ,fv8

(in)
!

52 iE
0

1`

dx@fv
(out)~u,v ! ]J tfv8

(in)
~u,v !* # t50 ,

~4.6!

bvv852~fv
(out) ,fv8

(in)* !

5 iE
0

1`

dx@fv
(out)~u,v ! ]J tfv8

(in)
~u,v !# t50 . ~4.7!

The spectrum of created particles is given by the expecta
value of the ‘‘out quanta’’ contained in the in stat
^0,inuNv

(out)u0,in&. In terms of the Bogoliubov coefficients thi
spectrum is

^Nv&5E
0

1`

dv8ubvv8u
2, ~4.8!

where^Nv& is shorthand for̂ 0,inuNv
(out)u0,in&.

With the choice~4.3!, one can compute Bogoliubov coe
ficients that are appropriate in the asymptotic regimet
→1`. Performing the integrals in Eqs.~4.6! and~4.7! gives
@21#

avv8' i
AA

p
e2 iAA(v1v8)K1„2i~Avv8!1/2

…, ~4.9!

bvv8'
AA

p
eiAA(v2v8)K1„2~Avv8!1/2

…,

~4.10!

whereK1 is a modified Bessel function, shown in Fig. 2. F
argumentz, K1(z);1/z for z→0, andK1(z);Ap/(2z)e2z

whenz→1` @24#.
We emphasize that Eqs.~4.9! and ~4.10! do not corre-

spond to a full evaluation of the integrals in Eqs.~4.6! and

FIG. 2. Plot of the modified Bessel functionK1(z), squared.
5-5
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~4.7!, but only take into account the contribution forx
'AA, i.e., from the mirror world line atu→1`. This is the
only part of the Bogoliubov coefficients that can be related
particle creation by an incipient black hole, because a
other contribution corresponds to particles created much
lier, and depends therefore on the arbitrary choice ofp(u) in
the non-asymptotic regime.4 Clearly, sincê Nv&Þ0, there is
particle creation by the incipient extremal RN black hole.5

As a result of the 1/(vv8) in the asymptotic form of
ubvv8u

2, the spectrum~4.8! diverges at low frequencies. Th
divergence inv8 has the same origin as the one that appe
in the case of nonextremal black holes, where

ubvv8u
25

1

2pv8
S 1

e2pv/k21
D . ~4.11!

These Bogoliubov coefficients also contain a logarithmic
vergence inv8, which is due to the evaluation of the mod
functions atu51` and for that reason can be interpreted
an accumulation of an infinite number of particles after
infinite time. The divergence can be removed, however
Hawking suggested@26# by the use of wave packets instea
of plane-wave in states; this has the effect of introducin
frequency cutoff. The remaining, Planckian factor in E
~4.11! is well behaved inv.

For the case of the uniformly accelerated mirror, on
other hand, even after any regularization of the divergenc
v8 ~which however does not appear to have been carried
in the literature!, an infrared divergence inv remains. There-
fore the spectrum of particles created by a uniformly acc
erated mirror — and by an incipient extremal black hole
is truly divergent: For any value ofv, no matter how small,
the number of particles with energy smaller thanv is infi-
nite.

Contrary to what happens in the nonextremal case,^Nv&
is not a Planckian distribution and therefore the spectrum
created particles is nonthermal. Thus, the notion of temp
ture is undefined. This result supports the view that an
tremal black hole is not the zero temperature limit of a no
extremal one. However, it would be premature to draw th
conclusions only on the basis of Eq.~4.8!, because the Bo
goliubov coefficients tell us only that particles are createdat
some timein the late stages of collapse, which does not n
essarily mean that such creation takes place at a steady
In the next two sections we refine our conclusions through
analysis of the stress-energy tensor of the quantum field

4There has been some discussion in the literature@25# about
whether the calculation of the Bogoliubov coefficients by Dav
and Fulling@16,21# is correct. We find that their approximations a
valid in the asymptotic regime of interest to us.

5This result is only apparently in contradiction with the analy
performed in Ref.@20#, where it is claimed that there is no emissio
of neutral scalar particles. In fact, such a conclusion was derived
a massive field in the ultrarelativistic limit, and agrees with t
exponential behavior ofK1 at large values ofv.
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V. PRESERVATION OF COSMIC CENSORSHIP

Equations~4.8! and ~4.10! indicate that an incipient ex
tremal RN black hole creates particles with a spectrum t
depends on the constantA. These results immediately rais
two problems. First, since particle creation leads to bla
hole evaporation, it seems that~some version of! the cosmic
censorship conjecture could be violated. Indeed, emissio
neutral scalar particles implies a decrease inM, while Q
remains constant; evidently, a transition to a naked singu
ity (Q2.M2) should take place. Second, the dependence
the spectrum onA, which in turn depends on the details o
collapse, raises the possibility of getting information abo
the collapsing object through measurements performed
late times, a contradiction of the no-hair theorems.

We consider the first problem. The luminosity of th
black hole, the rate of change ofM, is given by the flux of
created particles at infinity or theTuu component of the
stress-energy tensor. Wu and Ford@23# have recently pro-
vided the expectation value ofTuu for the case of a moving
boundary in two-dimensional Minkowski spacetime:

^:Tuu :&5
1

4p F1

4 S p9

p8
D 2

2
1

6

p-

p8
G . ~5.1!

Inserting the form~4.1! of p, with f given by Eq.~4.3!, into
Eq. ~5.1!, one gets

^:Tuu :&5
1

24pAA
d~u!. ~5.2!

Thus, the only nonvanishing contribution to^:Tuu :& is due to
the transition from uniform to hyperbolic motion that tak
place att50. For a discussion of incipient black holes on
the behavior foru→1` is relevant, and so this feature
uninteresting. On the other hand, in the hyperbolic regi
^:Tuu :& vanishes identically.@It is also straightforward to
check from Eq.~5.1! that, conversely, a hyperbolic worl
line is the only one with nonzero acceleration that leads
^:Tuu :&50.#

The result shows that the flux due to an incipient extrem
black hole vanishes asymptotically at late times. Con
quently, extremal black holes do not lose mass,6 and cosmic
censorship is preserved. However, the nonzero value ofbvv8
clearly shows that thereis particle creation during collapse
Cosmic censorship has apparently been rescued only a
price of introducing a paradox: namely, particles are crea
and their flux has zero expectation value. How can these t
statements be simultaneously true?

This puzzling situation has been extensively discusse
the context of particle emission from a uniformly acceler
ing mirror @16,21,29#. Davies and Fulling@16# explain thes

or

6Here, we assume that luminosity is simply related to^:Tuu :&,
which amounts to assuming the validity of the semiclassical fi
equationGmn58p^:Tmn :& @27#. This, however, might not be a
good approximation whenf is in a state with strong correlation
~see, e.g.,@28# and references therein!.
5-6
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net zero energy flux in the presence of nonzerobvv8 by a
special cancellation of the created modes via quantum in
ference, which is due to contributions from the coefficie
avv8 . In the Appendix, we analyze this issue further
examining the response function of a detector.

VI. PRESERVATION OF THE NO-HAIR THEOREM

We now turn to the second of the problems mention
earlier: Given that the spectrum contains the constantA, do
extremal black holes violate the no-hair theorems? The re
^:Tuu :&50 suggests an escape — in spite of the nonz
value of ^Nv&, no radiation is actually detected. Howeve
this resolution raises new questions. If no radiation is
tected, how can one claim that the black hole emits anyth
at all? Is the radiation observable? How should one t
interpret^Nv&?

It is premature to claim that no radiation is detected o
on the basis of̂ :Tuu :&50, because there could be oth
nonvanishing observables from which one might infer
presence of quanta. A straightforward calculation shows
the expectation values ofTvv and Tuv are also zero. How-
ever, let us examine the varianceDTuu of the flux. Wu and
Ford @23# have also recently given the following expressi
for ^:Tuu

2 :& in the case of a minimally coupled, massle
scalar field in two-dimensional Minkowski spacetime with
timelike boundary described by the equationv5p(u):

^:Tuu
2 :&5

1

~4p!2 F2
4p82

@v2p~u!#4
1

3

16S p9

p8
D 4

2
1

4

p-

p8
S p9

p8
D 2

1
1

12S p-

p8
D 2G . ~6.1!

If one ignores the so-called cross terms@23#, this coincides
with the varianceDTuu ~because in our casê:Tuu :&50).
With p given by Eqs.~4.1! and ~4.3!, Eq. ~6.1! gives, foru
.0,

^:Tuu
2 :&52

A2

4p2@A1~v2 v̄ !u#4
;2

A2

4p2~v2 v̄ !4u4
.

~6.2!

Thus, in spite of the fact that the expectation value of the fl
vanishes identically, its statistical dispersion does not, bu
value becomes smaller and smaller and tends to zero in
limit u→1`. Hence, although one could in principle infe
the value of the constantA by measuring the quantityDTuu
at late times, such measurements will become more
more difficult asDTuu decreases according to Eq.~6.2!. This
damping is of course reminiscent of the familiar damping
perturbations, which prevents one from detecting by la
time measurements the details of an object that collapses
a black hole@30#. And so, monitoringDTuu does not lead to
a violation of the no-hair theorems, because no trace oA
will survive in the limit u→1`.

This discussion shows only that no violation of the n
hair theorems can be detected by measuring the varianc
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the energy flux. The possibility remains that other types
measurement could allow one to find out the value ofA. If,
however,DTmn→0 for u→1`, then the random variable
Tmn must tend to its expectation value, i.e., to zero. T
means that, asymptotically, the properties of the field
those of the vacuum state. Consequently, all local obs
ables will tend to their vacuum value.

Although extremal black holes obey the no-hair theorem
the way in which cosmic baldness is enforced differs fro
the nonextremal situation. Consider again the variance of
flux. Inserting the functionp for nonextremal incipient black
holes @see Eq.~3.5!# into Eqs. ~5.1! and ~6.1!, one gets
^:Tuu :&5k2/(48p) and

^:Tuu
2 :&5

1

~4p!2 S k4

48
2

4k2B2e22ku

~v2 v̄1Be2ku!4D
;

k4

768p2 2
k2B2e22ku

4p2~v2 v̄ !4
. ~6.3!

Contrary to the extremal case, the ‘‘nonextremal’’ varian
DTuu tends not to zero asu→1`, but to the value
k2A2/(48p), which corresponds to thermal emission; this
sufficient to guarantee that no information about the det
of collapse is conveyed. Furthermore, the approach to
value is exponentially fast, while for the extremal configur
tion the decay obeys only a power law.

VII. CONCLUSIONS

We have found a simple generalization of Kruskal co
dinates that allows us to examine the behavior of incipie
extremal RN black holes. Although the coordinate transf
mation we employ is not invertible in terms of elementa
functions, it makes possible the explicit calculation of t
asymptotic form of the world line for the center of the co
lapsing object. Borrowing well-known results from quantu
field theory in the presence of moving boundaries, we c
cluded that an incipient extremal black hole emits partic
with a nonthermal spectrum, which contains a constant
depends on the details of gravitational collapse.

At first sight, this result seems to imply that the cosm
censorship conjecture and the no-hair theorems are both
lated by extremal black holes. Closer scrutiny reveals t
the flux of emitted radiation vanishes identically, and in t
limit t→1` any measurement of local observables giv
results indistinguishable from those in the vacuum state. T
is not incompatible with a nonzero spectrum, which is no
local quantity and tells us only that particles are created
some time during collapse~not necessarily att51`). Thus,
extremal black holes are not pathological in this respect.

However, there are several clearly defined senses
which nonextremal and extremal black holes differ. Inform
tion lost to an external observer depends on the rate at w
the statistical dispersion of the flux approaches its value
t→1`. In the nonextremal case, the dispersion goes to z
exponentially fast, Eq.~6.3!, whereas for an incipient ex
tremal black hole it follows a slower power law, given b
5-7
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Eq. ~6.2!. More importantly, forQ2→M2, Eq. ~6.2! is not
the limit of Eq. ~6.3!.7 One cannot therefore, consider qua
tum emission by an incipient extremal black hole to be
limiting case of emission by a nonextremal black hole.
particular, although att51` a black hole withQ25M2 is
totally quiescent, it would be incorrect to consider it as t
thermodynamic limit of a nonextremal black hole, that is,
object at zero temperature. Indeed, the quantum radia
emitted by an incipient extremal black hole is not charac
ized by a temperature at any time during collapse. Wher
incipient nonextremal black holes have a well-defined th
modynamics, this is not true for extremal holes, and th
should be considered as belonging to a different class. T
result suggests that any calculations that implicitly rely o
smooth limit in thermodynamic quantities atQ25M2 are
suspect, if not incorrect. Our conclusions, of course, are
pertinent to incipient black holes; extending them to eter
black holes seems plausible, but requires care.~Even at the
classical level, eternal black holes must be regarded as
damentally different from those deriving from collapse, b
cause the global structure of spacetime differs in the
cases.!

We close the paper drawing an analogy between the
otic subject of particle production by extremal black ho
and a well-known piece of ordinary physics. The divergen
of the particle spectrum̂Nv& is reminiscent of the infrared
catastrophe typical of QED, which manifests itself, for i
stance, in the process of bremsstrahlung~see, e.g., Ref.@31#,
pp. 165–171!. However, the infrared divergence in th
bremsstrahlung cross section produces no observable e
because it is canceled by analogous terms coming from
diative corrections.~Thanks to the Bloch-Nordsieck theorem
this cancellation is effective to all orders of perturbati
theory.! One may well wonder whether thev50 singularity
in our spectrum is similarly fictitious and could thus be r
moved by analogous techniques.

For the mirror this is possible, in principle, if one allow
momentum transfer from the fieldf to the mirror, although
such a calculation is beyond the scope of the present pa
~See Ref.@32# for a model that includes recoil.! But whatever
the answer to the mirror problem might be, it does not se
that one could transplant it in any straightforward way to
case of an incipient black hole. Indeed, taking recoil in
account would amount to admitting that backreactionis im-
portant and that the test-field approximation is never va
Thus, the whole subject would have to be reconside
within an entirely different framework.

In connection with the possible — and crucial — re
evance of backreaction, it is important to stress one aspe

7SinceA and B do not depend onu by definition, the only case
that admits a continuous limit is the one in whichA50. This cannot
happen, because it would correspond to a null world line for
center of the star. Another apparent possibility—thatB}1/k so that
kB is constant in the limitk→0—is not viable, because the righ
hand sides of Eqs.~6.2! and ~6.3! would still have different func-
tional dependences onu. We thank Freeman Dyson for pointing ou
the issue to one of us.
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our results. We have seen in Sec. V that ifQ25M2 at the
onset of the hyperbolic world line~3.4!, it will remain so and
the cosmic censorship conjecture is preserved. However
fact that mass loss from an incipient extremal black hole
zeroonly in the late hyperbolic stage seems to imply that
enormous fine-tuning is required in order to produce an
tremal object by means of gravitational collapse. In fact,
object that is extremal from the start of its collapse might
unstable with respect to the transition to a configuration w
Q2.M2. Such a transition would be triggered by quantu
emission in the early phases of collapse, whenp(u) has not
yet assumed its hyperbolic form. This raises the question
how, in presence of quantum radiation, the formation o
naked singularity is prevented~e.g., by the emission o
charged particles! and the cosmic censorship conjecture p
served.

Note added in proof.Simultaneously with this work,
Anderson, Hiscock, and Taylor@34# have demonstrated tha
for static RN geometries, zero-temperature black holes c
not exist if one considers spacetime perturbations due to
back reaction and quantum fields.
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APPENDIX: DETECTING RADIATION FROM
A UNIFORMLY ACCELERATED MIRROR

In Sec. V we mentioned the apparently paradoxical s
ation in which nonzero particle production~as shown by
nonvanishing Bogoliubov coefficientsbvv8) is accompanied
by zero energy flux~vanishing expectation value of th
stress-energy-momentum tensor!. Discussions about such is
sues are often phrased in terms of ideal detectors@21,33#.
Although our arguments in the body of the paper are ba
solely on the behavior of the stress-energy-momentum
sor, we can gain some additional insight into the ‘‘parado
by considering the response of a simple monopole dete
on a geodesic world linev5u12x0, with x05const, in two-
dimensional Minkowski spacetime.

We are interested in computing the detector respo
function per unit time, defined as

R~E!5 lim
T→1`

1

2TE2T

T

dtE
2T

T

dt8Q~E!e2 iE(t2t8)

3D1
„u~t!,v~t!;u~t8!,v~t8!…, ~A1!

whereD1 is the Wightman function of the scalar field in th
in vacuum,u(t)5t2x0 , v(t)5t1x0, andE is the excita-
tion energy of the detector.@Note thatE>0, which is auto-
matically enforced by the presence of the step functionQ(E)
on the right hand side of Eq.~A1!.# In terms of the in modes
D1 has the form

e

5-8
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D1~u,v;u8,v8!5E
2`

1`

dvQ~v!fv
(in)~u,v !fv

(in)~u8,v8!* ,

~A2!

where we have extended the integration range to2`, by
introducing the step functionQ(v).

Since the definition ofR(E) involves an integration ove
time from 2` to 1`, in the case of a mirror world line o
the type~4.1! it will get contributions corresponding to th
nonzero flux@such as, e.g., the one atu50 when f (u) is
given by Eq.~4.3!#. These we regard as spurious, because
are really interested in clarifying the relationship between
zero flux and nonzero spectrum in the hyperbolic regime.
this reason, let us consider a mirror world line which is h
perbolic at all times, sayp(u)52A/u for u.0, for which
there can be no such spurious contributions toR(E).

The world linep(u)52A/u has a null asymptote in th
past; thus,

fv
(in)~u,v !5

i

A4pv
@e2 ivv2Q~u!e2 ivp(u)#. ~A3!

On substituting Eq.~A3! into Eq. ~A2!, we have

D1~u,v;u8,v8!5F1~v,v8!1F2~u,v8!

1F3~v,u8!1F4~u,u8!, ~A4!

where

F1~v,v8!5
1

4pE2`

1`

dv
Q~v!

uvu
e2 iv(v2v8), ~A5!

F2~u,v8!52
1

4p
Q~u!E

2`

1`

dv
Q~v!

uvu
eiv[v82p(u)] ,

~A6!

F3~v,u8!52
1

4p
Q~u8!E

2`

1`

dv
Q~v!

uvu
e2 iv[v2p(u8)] ,

~A7!

F4~u,u8!5
1

4p
Q~u!Q~u8!E

2`

1`

dv
Q~v!

uvu
e2 iv[ p(u)2p(u8)] .

~A8!

Correspondingly,R(E) can be split into four parts:R(E)
5R1(E)1R2(E)1R3(E)1R4(E).

The termsR1(E), R2(E), andR3(E) can be computed
straightforwardly, by using the formal identities

lim
T→1`

E
2T

T

dteijt52pd~j! ~A9!

and

1

uEu
Q~E!Q~2E!52d~E!, ~A10!
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the latter being easily established by considering the
quence of functions (uEu1e)21Q(E1e)Q(2E1e) in the
limit e→0. We getR1(E)522R2(E)522R3(E)5d(E),
so the first three contributions toR(E) sum to zero.

The computation ofR4(E) is cleaner if one works in
dimensionless variables, such asẼ5AAE, ṽ5AAv, t̃
5t/AA. The identity

E
0

1`

dṽ
e2 iṽ(j2 i0)

ṽ
52 ln~j2 i0 !1I 2 i

p

2
, ~A11!

whereI is the divergent quantity

I 5E
0

1`

dṽ
cosṽ

ṽ
, ~A12!

together with the properties of the logarithm, allows us
write

E
2`

1`

dṽ
Q~ṽ!

uṽu
expS 2 iṽ

t̃2 t̃8

~ t̃2 x̃0!~ t̃82 x̃0!
D

5E
2`

1`

dṽ
Q~ṽ!

uṽu
e2 iṽ( t̃2 t̃8)2E

2`

1`

dṽ
Q~ṽ!

uṽu
e2 iṽ( t̃2 x̃0)

2E
2`

1`

dṽ
Q~ṽ!

uṽu
eiṽ( t̃82 x̃0)12I . ~A13!

In this expression we have replaced one of the quantitieI
2 ip/2 with its complex conjugate by simultaneously chan
ing the sign in one of the exponents. This manipulation
allowed by the fact that, sincet̃2 x̃0 and t̃82 x̃0 can never
become negative inF4, their logarithms are always rea
Note that the resulting expression agrees with the propert
R(E) of being a real quantity.

We can thus writeR4(E)5R41(E)1R42(E)1R43(E)
1R44(E). Using the formal relations

lim
T̃→1`

E
x̃0

T̃
dt̃eijt̃5pd~j!1 ieij x̃0PS 1

j D ~A14!

and

lim
T̃→1`

1

T̃
E

x̃0

T̃
dt̃eijt̃5Q~j!Q~2j!, ~A15!

together with Eq.~A10!, we getR41(E)5d(E)/4, R42(E)
1R43(E)52d(E)/2, andR44(E)5Id(E)/4. Finally, since
I is divergent we can write

R~E!5
I

4
d~E!. ~A16!

Thus, we have essentially a delta function peaked at z
energy. Now,R(E) is related to a quantum mechanic
probability and so this result means that, for any valueE
.0 of the energy, no matter how small, the detector h
5-9
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probability 1 of making a transition of amplitude small
thanE and probability 0 of detecting particles of higher e
ergy.~Of course, this does not mean it willnevermake tran-
sitions withE.0; only, these take place with probability 0!
The reason for this behavior is evidently the divergence
the spectrum asv→0. Of course, the detector does not ga
energy during such a ‘‘detection’’ — in fact, one can say th
there is no detection at all. This is compatible with the ze
value of the flux.

Hence one might be tempted to call the particles emit
by a mirror in hyperbolic motion ‘‘phantom radiation’’: Be
cause only arbitrarily soft particles would be registered
the detector with any nonzero probability, there would be
chance to determine the spectrum^Nv&. The question arises
th

ek

on

n-
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therefore, whether there is any way to screen our dete
from this overwhelming flux of soft quanta.

One might think to act on the selectivity of the detector
using a two level system that requires at least a minim
energy to switch. Unfortunately, the detection of the infin
tail of soft quanta corresponds to the ‘‘transition’’ from th
ground state to the ground state, and there is obviously
way to forbid this process. The detector cannot be forbidd
to not switch.

So the analysis of the response function of a detector
seems to prove that the radiation from uniformly accelera
mirrors ~and extremal incipient black holes! is in some sense
like the apple in Dante’s purgatory: We can see it with o
mind but we shall never have it in our hands.
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