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We examine particle production from spherical bodies collapsing into extremal Reissner-Nuorbtiak
holes. Kruskal coordinates become ill defined in the extremal case, but we are able to find a simple generali-
zation of them that is good in this limit. The extension allows us to calculate the late-time world line of the
center of the collapsing star, thus establishing a correspondence with a uniformly accelerated mirror in
Minkowski spacetime. The spectrum of created particles associated with such uniform acceleration is nonther-
mal, indicating that a temperature is not defined. Moreover, the spectrum contains a constant that depends on
the history of the collapsing object. At first sight this points to a violation of the no-hair theorems; however, the
expectation value of the stress-energy-momentum tensor is zero and its variance vanishes as a power law at late
times. Hence, both the no-hair theorems and the cosmic censorship conjecture are preserved. The power-law
decay of the variance is in distinction to the exponential falloff of a nonextremal black hole. Therefore,
although the vanishing of the stress tensor's expectation value is consistent with a thermal state at zero
temperature, the incipient black hole does not behave as a thermal object at any time and cannot be regarded
as the thermodynamic limit of a nonextremal black hole, regardless of the fact that the final product of collapse
is quiescent.

PACS numbd(s): 04.62:+v, 04.20.Dw, 04.70.Dy

I. INTRODUCTION far corroborated the conclusion implied by the third law, that
the nature of extremal black holes intrinsically differs from
Extremal black hole solutions have long played a promi-that of nonextremal ones. In particular, such calculations pre-
nent role in black-hole thermodynamics. Early on, investiga-dict a vanishing entropy for extremal black holé&s9—-12,
tors realized that the zero surface gravity of extremal blaclcontradicting the string-theory results.
holes, which implies zero Hawking temperature, makes them Given the apparent incompatibility between the two ap-
the natural equivalent of the zero temperature states in ordproaches, and the fact that it might indicate some nontrivial
nary thermodynamics. issue in the low-energy limit of superstring theories, we try
Nevertheless, the third law of black-hole dynamiits?] here to improve our understanding of the nature of extremal
states that the zero temperature stétee extremal black black holes from a semiclassical point of view. However, we
hole) is unattainable by means of a finite number of physicalshall not deal with the interpretation of the high-energy re-
processes. The real status and meaning of this law is still thsults in the present work, leaving this issue for future inves-
subject of debate and investigatifB], but recently a point tigations.
of view has emerged, according to which extremal black The calculations cited above have mainly dealt with eter-
holes are thermodynamically different from the zero tem-nal black holes. It is thus unclear whether the thermody-
perature limit of non-extremal on¢4—7]. namic discontinuity just mentioned applies to the case of
Over the past five years, advances in string thd@®y black holes formed by collapse. For this reason we have
have also stimulated a resurgence of interest in extremal salecided to examine particle production by an “incipient”
lutions. These have played a prominent role in both D-bran®Reissner-Nordsim (RN) black hole: a spherically symmet-
and supergravity calculations of black-hole entropy and thesgc collapsing charged body whose exterior metric is RN. In
results seem to imply, contrary to what might be inferredthis paper we do not address the issue of actually construct-
from above, that the Bekenstein-Hawking relationship being solutions of the Einstein equations that describe the col-
tween entropy and area holds in the extremal case. lapse of charged configurations, because some simple solu-
Semi-classical calculations, on the other hand, have thugons of this kind have already been fouh#i3—15. We
emphasize that one of our main results is that the incipient
extremal black hole does radiate in the early stages of the

*Email address: liberati@sissa.it collapse. The fine-tuning which would then be required to
"Email address: trothman@titan.iwu.edu produce extremal solutions makes the assumption of their
*Email address: sebastiano.sonego@dic.uniud.it existence highly nontrivial, because they would be extremely
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sensitive to effects such as the backreaction of the quantum

radiation on the metric; we discuss these matters further in ds?= — ( 1-—+ —) dt?

the Conclusion. Nevertheless, for our purposes we assume r

that models can be found in which collapse leads to a black

hole with Q?>=M?2, +
We approach the problem in a standard fashion, modeling

the collapse by a mirror moving in two-dimensional

Minkowski spacetimg16]. The spectrum resulting from the where d)? is the metric on the unit sphere. The tortoise

mirror’s world line will then be the same as that of the blackcoordinater , (Q,M) is given by

hole, up to gray-body factors due to the nontrivial metric

coefficients of RN spacetime and to the different dimension- dr

ality. However, to determine the appropriate world line for r*(Q,M):f (1—2M/r +Q2/r?)’

the mirror one must employ coordinates that are regular on

the event horizon, and although we find the tortoise coordicarrying out the integration yields, for the nonextremal case,
nater, to be continuous in th&@?=M? limit, the usual

(2.2

Kruskal transformation fails there. Nevertheless, we provide 1
a natural extension of Kruskal coordinates that is good forr, (Q,M)=r+ [r2In(r—r)—r2In(r—r_)]
the Q?>=M?2 case. The transformation cannot be explicitly 2VM?-Q?

inverted in terms of elementary functions, but is suitable for

obtaining the asymptotic behavior for the collapsing star. +const, 23

This leads us to consider a uniformly accelerated mirror in .. o< sual. =M + MZ—Q?

Minkowski spacetime, whose spectrum of created particles is Now. if we sétQZ:_MZ n Ey .(2 2 beforeintegrating

nonthermal. We therefore conclude that incipient extremal .. ' » . B '
. . we find the “extremal”r :

RN black holes create particles with a nonthermal spectrum. *

We find, moreover, that the spectrum’s amplitude con- M

tains a constant that depends on the history of the collapsing r,(M,M)=r+2M| In(r—M)— 20=M) +const.

object, apparently violating the no-hair theorems. However, 2.4

the expectation value of the particles’ stress-energy- '

momentum tensor is zero and its variance vanishes as Qote that the coordinate, (M,M) diverges only at =M,
power law at late times. Consequently, particle creation dieg settingQ?=M?2 in r, (Q,M) appears to yield the inde-
out in the late stages of collapse, and is such that both thgrminate form 0/0. However, if we leD2=M%(1—€?),
no-hair theorem and the cosmic censorship conjecture aigith e<1, and work to first order ir, it is straightforward
preserved. One might argue that the_zero vz_alue of t_he PhySiy show that Eq(2.3 does reduce to Eq2.4). Thereforer,

cal stress-energy-momentum tensor is consistent with a thefs continuous even at extremality.

modynamic object at zero temperature. True enough, how- ynfortunately, the Kruskal transformation itself breaks

ever, as we will see, th@pproachto zero of the stress tensor yown at that point. The Kruskal transformation is
and its variance along with the non-Planckian spectrum in-

dicate that the collapsing body acts like a thermal body at no 1

time in its history. Therefore, although the final object is u=—e"‘”<:>u=—;|n(—u),
quiescent, it is improper to regard it as the zero temperature
limit of a nonextremal black hole.

1
V=eVesv= ;Inv, (2.5
Il. KRUSKAL-LIKE COORDINATES
FOR THE EXTREMAL RN SOLUTION where
Several textbooks in general relativifgee, e.g., Refs. u=t—r,,
[17,18) imply that Cartef19] found the maximal analytical
extension of RN spacetime f@?=M?2. In fact he made a v=t+r, (2.6)

very ingenious qualitative analysis without actually provid- i ) ) )
ing an analogue of the Kruskal coordinates for the extremaf'® the retarded and advanced Eddington-Finkelstein coordi-

case. Nevertheless, for our analysis it is essential to hav@ates, respectively, andis the surface gravity. The latter is
such a coordinate transformation. For this reason we are gélefined as

ing to retrace the steps leading to the maximal analytic ex- 2 s
tension of RN, paying close attention to the difference be- = lim Ei(l 2_M Q_z) _ VM 2_Q 2.7
tween the nonextremal and extremal situations. r4+2 dr r r re ’

The first step in the procedure is to define the so-called
“tortoise” coordinate, which is then used to construct the and vanishes foD?=M?. Therefore the Kruskal coordinates
Kruskal coordinates. We start with the usual form of the RNZ{ and) become constant for any valuewandv and so the
geometry, transformation(2.5 becomes ill defined at that point.
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We are nonetheless able to remedy this situation. Note (r—Mm)?
that the Eddington-Finkelstein coordinates are constructed — ds°=— ——— ' (=U)¢' (V) dUdV+r?dQ?.
by adding or subtracting, tot, as in Eqs(2.6) above. Now, r 21
for the extremal case,, is given by Eq(2.4), which has the (2.14

extra poleM?/(r —M) with respect to the strictly logarith-
mic dependence of the Schwarzschild and nonextremal R
caseqgcompare Eq(2.3)]. The simplest thing to do is define

Nhis line element apparently is degenerateatif so, the
transformation is ill defined there. We now show, however,

a function that the factor (—M)? is actually killed and that the trans-
formation is regular at=M.
M At H the coordinate is always finite and so asymptoti-
¢(§)=4M(In &— 2—5) (2.8 cally we havet~—r, . Thereforeu~—2r, ~— (r — M)

where the last approximation follows from E.11). The
and guess that a suitable generalization of the Kruskal trangaverse transformation yields
formation is
U==¢ H(—u)~ =g HYr=M)=—(r=M).
u=—¢(=U, (2.19
(2.9

=y, Then, from the expression faf' given above we have, near

Note thaty' (£) = AM/£+2M2/¢2>0, always, and sqris e horizon,

monotonic; therefore Eq$2.9) are a well-defined coordinate
transformation. Note also that 4M 2M? 2M?

"(—U)~ + ~ . (212
) VU gt T e 219
r*(M,M)=r+§¢//(r—M), (2.10
Furthermore, sinc® is everywhere nonzero and finite, then
which means that near the horiZon ' (V) is regular there. Now it is easy to see that the form
taken by the metri¢2.14) is, asymptotically,
1
Mo (M,M)~ S 4(r—M). (2.11 2
2 2M
ds®~ — —— ¢ (V)dudv+ r2dQ?2. (2.17
r

We can give our choice af added motivation by noting

that near the horizon E¢2.3) gives _ o
The (r—M)? in the numerator of Eq(2.14 is killed by the

1 (r—M)? in the denominator of Eq2.16. Consequentlyl/
e (QM)~2In(r—r.). (212 andV are good Kruskal-like coordinates.
Notice that the coordinatasandv defined by the trans-

Thus we see that the functioer tIn(- - -) that enters in the formation (2.5) do not tend to those given by EqR.9) as
transformation(2.5) from the Kruskal to the Eddington- Q2—M?2. This is related to the fact that the maximal analytic
Finkelstein coordinates is just twice the one which gives axtensions of RN spacetime are qualitatively different in the
singular contribution ta, (Q,M) atr=r, . Our extension two cased18], and is further evidence of the discontinuous
(2.9 is therefore analogous to the Kruskal transformationbehavior mentioned in the Introduction.
(2.5: We choosey as the part ofr, that is singular ar
=r,, a procedure that should work in other, similar situa-
tions.

For Egs.(2.9) to be a good coordinate extension, the new  With the result of the previous section in hand we are now
coordinate$/ and) must be regular on the event horizé#, = able to construct late-time asymptotic solutions for the in-
This will be the case if the metric after the coordinate trans<ipient extremal black hole. Our goal is to find an equation
formation is singular only at=0. For the extremal case the for the center of the collapsing stén the coordinates and
metric in terms ofu andv reads v) that is valid at late times. Equatidi2.6) givesu andv
outside the collapsing star. We must therefore exteaddv
to the interior. Sincel andv are null coordinates, represent-
ing out- and in-going light rays, respectively, the extension
can be accomplished almost trivially by associating any
Written in terms of the “Kruskal-like” coordinate& andV,  event on the interior of the star with thieandv values of the
the metric(2.13 assumes the form light rays that intersect at this event.

The most general form of the metric for the interior of a
spherically symmetric star can be written as

IIl. ASYMPTOTIC WORLD LINES

M 2
ds?=—|1— —| dudv +r?dQ?2. (2.13
r

IHereafter, for two function$ andg, we use the notatioh~g to
mean linf/g=1 in some asymptotic regime. ds?=y(7,x)%(—dr?+dx?) +p(7,x)%dQ% (3.1
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— A
// U~u—a, Uu— +oo, (34)
’}—(+ p u=const
r d whereA=2p(0)M?/{(v) is a positive constant that depends

s on the details of the internal metric and consequently on the
dynamics of collapse.

We first note that the world lin€3.4) differs from the one
resulting from the collapse of a nonextremal object, which
would be of the form(see e.g.[16,21,22)

v~v—Be ®U, U+, (3.5

One immediately wonders, then, if our result can be recov-
N ered in the case of nonextremal black holes by simply going
v=const to a higher order approximation for the asymptotic world line
of the center of the collapsing star. It is easy to see that this

FIG. 1. A representation of gravitational collapse in null coor- is not the case. Recall that in the Kruskal coordinateend
dinates. The portion of spacetime beyond the event horizdnis V, the horizon is located df=0. Say the world line of the

not shown. center of the star crosses the horizon at sameV. Let us

. expandW(i) in a Taylor series arountf=0 such thatV
wherey andp are functions that can be chosen to be regular_ —

_ 2 — KU ;
on the horizon. From the coordinatesand y we can con- K@iéﬁgztﬁe}mgiafgg%% ?S thelscotrr:(;c?ixallﬂg\?ﬁ
struct interior null coordinated) =7~y and V=r+y, ever,U?xe 2! and so this term is also a constaﬁt for ex-
which will also be regular on the horizon. The center of thetrem’al incipient black holes. In fact corrections are constant
star can be taken g¢=0, in which caseV=U and o/ : P ’ .
_ : to arbitrary order. The extremal world line in no sense, there-
=dU there(see Fig. 1L

Because the Kruskal coordinatisandV are reqular ev- fore, represents a limit of the nonextremal case but implies a
9 real discontinuity in the asymptotic behavior of the collaps-
erywhere as well, they can be matcheduandV. In par- ing object
gf;rla:hgntvrﬁeneﬁﬁ) yaﬁsl:)tg(;:‘?gr rsyfdi'ﬁe(ru?d%f I\?v?tlge th: Equations(3.4) and (3.5) contain the constant& and B,
’ €y ) yd=p , With 3 which are determined by the dynamics of collapse. In the
regular function, outside. By the same token, sikcanduv

I h haviy/d d h . nonextremal case, it is known that no measurement per-
ore foduar SYSWnere, e eV ¢() v, W ere¢ Is formed at late times can be used to infer the valuB,ahus
another regular function. In fact, if we consider the last ray

enforcmg the no- hair theorems. In particular, the spectrum of

\ V=V

formatlon of the horizon, then to first ordeNVée {(v)dv is natural to ask whether a similar statement holds true also
whereg(v) is now constant. for extremal black holes. This point will be analyzed in the
We can write, near the horizon, following sections.
du
du=p(0) Edu' (3.2 IV. BOGOLIUBOV COEFFICIENTS

o Let us now consider a test quantum field in the spacetime
Since for the center of the staté=dV={(v)dv, this imme-  of an incipient extremal RN black hole. For the sake of sim-
diately integrates to plicity, and without loss of generality, we can restrict our
analysis to the case of a Hermitian, massless scalar dield
— — 1 Instead of dealing with a black hole proper, we consider a
{)(v=v)=BOUW==BO)y (~u)~=2B0)—  two-dimensional Minkowski spacetime with a timelike
(3.3y  boundary[16,21]. This spacetime is described by null coor-
dinates (1,v) and the equation governing the boundary is the
The last approximation follows from Eg2.8) where ¢  same as that that describes the world line of the center of the
~ ¢ (—2M?/ &) near the horizon. star, sayv=p(u).® At the center of the star the ingoing
Thus the late-time world line for the center of the star is,modes of¢) become outgoing, and vice versa; this translates
finally, represented by the equatfon

2

3In Refs. [16,21,23 the functionp is defined somewhat differ-
°This result was also obtained by Vang20] for a collapsing  ently. For a generic shape=z(t) of the boundary, one first defines
extremal thin shell, but without considering a coordinate extensiona quantityr, through the implicit relationr,— z(7,) =u. Then, the
Our method is completely general and shows that(Bg) follows function is defined ap(u)=27,—u, which is exactly the phase of
only from the kinematics of collapse and the fact that the externathe outgoing component of the in modes, andp(u) is just the
geometry is the extremal RN one. equation for boundary’s world line.

024005-4



NONTHERMAL NATURE OF INCIPIENT EXTREMAL . .. PHYSICAL REVIEW D 62 024005

into the requirement that on the spacetime boundary there be 1
perfect reflection or thatp(u,p(u))=0. Hence, “mirror”: 144
The timelike boundary in Minkowski spacetime is traced out 121
by a one-dimensional moving mirror for the fiedtl ]
In general, for a world linev=p(u) one has d 104
=+/p’(u)du, wherer is the proper time along the world line. 8] |
From this and the fact that the acceleration for the trajectory 11 2
in  two-dimensional Minkowski  spacetime isa 6—; ﬂK
=1p"(u)%p’(u)?, one can easily check that E¢8.4) and 4] \
(3.5 yield a®=1/A and a®= ke“'/(4B), respectively. Thus ] %
we see that an incipient extremal black hole is modeled at 2-; e
late times by a uniformly accelerated mirror; for nonextremal ] e
black holes the acceleration of the mirror increases exponen- ¢ 2 4 7 6 8 10

tially with time. In both cases the mirror's world line has a

null asymptotev =v in the future, while it starts from the ~ FIG. 2. Plot of the modified Bessel functioty(z), squared.

timelike past infinityi ~ att= —oo.

Without loss of generality, one can assume that the mirrofnation of extremal black holes. However, since the result is
is static fort<0. A suitable \;vorld line is then something of a textbook case, we here merely summarize the

main steps; for details, see e.g., Réfl], p. 109.
p(u)=uB(—u)+f(u)O(u), (4.7 The in and out states @b can be related by the Bogoliu-
bov coefficients:

Xpo' = ( ¢E:Jut) ’ ¢(QI,I?))

where® is the step function, defined as
1 if &0, 4.2
. 4. oo o
0 if £<0, e N IR N
0

and f(u) is a function with the asymptotic forni3.4). In
order for the world line to beC!, f(u) must be such that

0(§)=

(4.6

f(0)=0 andf’(0)=1. To simplify the calculations, it is o out) (in)k
convenient to choosé&(u) as hyperbolic at all time§21], Boo' (")
ie., +oo o
“i| o AP @)
A 0
f(u)=A— (4.3 o .
u+ A The spectrum of created particles is given by the expectation

value of the “out quanta” contained in the in state,
(0,in|N{"|0,in). In terms of the Bogoliubov coefficients this
spectrum is

which coincides with the function on the right hand side of
Eqg. (3.4), up to a(physically irrelevant translation of the
origin of coordinates.

As a result of the motion of the mirror, one expects that +oo
the in and out vacuum states will differ, leading to particle <Na)>:f do’|Bywr|?, (4.9
production whose spectrum depends on the fungti@n). In 0
our case, because the mirror world line has a null asymptot@lhere<N ) is shorthand fo(0, m|N(0ut)|0 in).

=v in the future but no asymptotes in the past, the explicit  yith the choice(4.3), one can compute Bogoliubov coef-
forms of the relevant in and out modes fgr are easily ficients that are appropriate in the asymptotic regime

shown to be — + o0, Performing the integrals in Eget.6) and(4.7) gives
. [21]
i
(in) _ —iwv _ a—iop(u) A ,
d)w (U,U) 47Tw(e e ) (44) awwlwi\/_ﬂ-—e—l\A(w+a) )Kl(Zi(Aww')l/Z), (49)
and
A R ’
Ba)w’ ~ \/ﬂ-—ehA(wa) )Kl(z(Awwl)llz)u
d)(out)(u v)= [e —iwu__ @(U v)e 7iwq(v)], (4.10
4w

(4.5 whereK is a modified Bessel function, shown in Fig. 2. For
argumentz, K,(z)~1/z for z—0, andK(z) ~ y=/(2z)e *
whereq(v)=p (v) and w>0. The spectrum of particles whenz— -+ [24].
created in such a scenario is known, although, to our knowl- We emphasize that Eq$4.9 and (4.10 do not corre-
edge, no one has pointed out the correspondence to the faspond to a full evaluation of the integrals in E¢4.6) and
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(4.7), but only take into account the contribution for V. PRESERVATION OF COSMIC CENSORSHIP
~+/A, i.e., from the mirror world line ati— + . This is the

only part of the Bogoliubov coefficients that can be related tQtremaI RN black hole creates particles with a spectrum that

particle cre_atic_Jn by an incipient bla(.:k hole, because anBEiepends on the constaAt These results immediately raise
other contribution corresponds to particles created much eay,

X . . . wo problems. First, since particle creation leads to black
lier, and depends therefore on the arbitrary choicp(of) in P b

h ot ideClearly. si N Y0 th . hole evaporation, it seems th@ome version gfthe cosmic
€ non-asymptotic regimeLiearty, sincgN,,) #0, there is censorship conjecture could be violated. Indeed, emission of
particle creation by the incipient extremal RN black hdle.

. X neutral scalar particles implies a decreaseMn while
As a result of the lipw') in the asymptotic form of b P n Q

2 . ; remains constant; evidently, a transition to a naked singular-
|§ww,| , the_spectrun@4.8) dlverge_s.at low frequencies. The ity (Q2>M2) should take place. Second, the dependence of
divergence inw’ has the same origin as the one that appearg,s spectrum o, which in turn depends on the details of

in the case of nonextremal black holes, where collapse, raises the possibility of getting information about
the collapsing object through measurements performed at

Equations(4.8) and (4.10 indicate that an incipient ex-

1 1 late times, a contradiction of the no-hair theorems.
|Buwr|?= ( ; ) (4.1 We consider the first problem. The luminosity of the
27w’ | @7l —1 black hole, the rate of change bf, is given by the flux of

created particles at infinity or th&,, component of the

These Bogoliubov coefficients also contain a logarithmic di_s?ress-energy tens_or. Wu and Fgas] have recently pro-
vided the expectation value df,, for the case of a moving

vergence inw’, which is due to the evaluation of the mode boundary in two-dimensional Minkowski time-
functions atu= + and for that reason can be interpreted as oundary o-dimensiona OWSKI Spacetime.

an accumulation of an infinite number of particles after an 171/0"\% 10"
infinite time. The divergence can be removed, however, as (Tuly=-— _(p_) - . (5.1)
Hawking suggestef26] by the use of wave packets instead Am| 4\ p’ 6 p’

of plane-wave in states; this has the effect of introducing a ) ) ) )
frequency cutoff. The remaining, Planckian factor in Eg.Inserting the form(4.1) of p, with f given by Eq.(4.3), into

(4.11) is well behaved inv. Eq. (5.1, one gets

For the case of the uniformly accelerated mirror, on the
other hand, even after any regularization of the divergence in (Tuut)= 1 S(u) (5.2
o’ (which however does not appear to have been carried out S 240 A ' '

in the literaturg, an infrared divergence i@ remains. There-
fore the spectrum of particles created by a uniformly accelThus, the only nonvanishing contribution{dr,,,:) is due to
erated mirror — and by an incipient extremal black hole —the transition from uniform to hyperbolic motion that takes
is truly divergent: For any value af, no matter how small, place att=0. For a discussion of incipient black holes only
the number of particles with energy smaller thanis infi-  the behavior foru— + o is relevant, and so this feature is
nite. uninteresting. On the other hand, in the hyperbolic regime
Contrary to what happens in the nonextremal cébe,) (:Tuy:) vanishes identically[lt is also straightforward to
is not a Planckian distribution and therefore the spectrum otheck from Eq.(5.1) that, conversely, a hyperbolic world
created particles is nonthermal. Thus, the notion of temperdine is the only one with nonzero acceleration that leads to
ture is undefined. This result supports the view that an ex¢:T,,:)=0.]
tremal black hole is not the zero temperature limit of a non- The result shows that the flux due to an incipient extremal
extremal one. However, it would be premature to draw thesblack hole vanishes asymptotically at late times. Conse-
conclusions only on the basis of E@.8), because the Bo- quently, extremal black holes do not lose m&asd cosmic
goliubov coefficients tell us only that particles are creaed censorship is preserved. However, the nonzero valy, gf
some timen the late stages of collapse, which does not nec¢learly shows that theris particle creation during collapse.
essarily mean that such creation takes place at a steady ra@osmic censorship has apparently been rescued only at the
In the next two sections we refine our conclusions through amprice of introducing a paradox: namely, particles are created
analysis of the stress-energy tensor of the quantum field. andtheir flux has zero expectation value. How can these two
statements be simultaneously true?
This puzzling situation has been extensively discussed in
the context of particle emission from a uniformly accelerat-

“There h i ion in the li ) ; : . ;
ere has been some discussion in the literal2§ about ing mirror [16,21,29. Davies and Fullind16] explain the

whether the calculation of the Bogoliubov coefficients by Davies
and Fulling[16,21] is correct. We find that their approximations are
valid in the asymptotic regime of interest to us.

5This result is only apparently in contradiction with the analysis GHere, we assume that luminosity is simply re|ated<ﬁiuu:>,
performed in Ref[20], where it is claimed that there is no emission which amounts to assuming the validity of the semiclassical field
of neutral scalar particles. In fact, such a conclusion was derived fogquationG ,,=87(:T,,:) [27]. This, however, might not be a
a massive field in the ultrarelativistic limit, and agrees with thegood approximation whewb is in a state with strong correlations
exponential behavior df; at large values ob. (see, e.g.[28] and references thersgin
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net zero energy flux in the presence of nonzgrp, by a  the energy flux. The possibility remains that other types of
special cancellation of the created modes via quantum intemeasurement could allow one to find out the valueAoff,
ference, which is due to contributions from the coefficientshowever,AT,,—0 for u— +c, then the random variable
@,, - In the Appendix, we analyze this issue further by T,, must tend to its expectation value, i.e., to zero. This

examining the response function of a detector. means that, asymptotically, the properties of the field are
those of the vacuum state. Consequently, all local observ-
VI. PRESERVATION OF THE NO-HAIR THEOREM ables will tend to their vacuum value.

Although extremal black holes obey the no-hair theorems,
We now turn to the second of the problems mentionedhe way in which cosmic baldness is enforced differs from
earlier: Given that the spectrum contains the conséardo  the nonextremal situation. Consider again the variance of the
extremal black holes violate the no-hair theorems? The resuffux. Inserting the functiom for nonextremal incipient black
(:Tyyu:)=0 suggests an escape — in spite of the nonzergoles [see Eq.(3.5)] into Egs. (5.1 and (6.1), one gets
value of (N,), no radiation is actually detected. However, (:Tyu:)=«?/(487) and
this resolution raises new questions. If no radiation is de-

tected, how can one claim that the black hole emits anything 1 e 4x2B2e2Ku
at all? Is the radiation observable? How should one then <;Tﬁu;>: 5| == — —
interpret(N,,)? (4m)“1 48 (v—v+Be ")
It is premature to claim that no radiation is detected only 4 2e2 kU
on the basis of:T,,:)=0, because there could be other Kk kB 6.3
nonvanishing observables from which one might infer the 768m° 47%(v—v)* '

presence of quanta. A straightforward calculation shows that

the expectation values &f,, and T, are also zero. How- Contrary to the extremal case, the “nonextremal” variance
ever, let us examine the variandd,, of the flux. Wuand AT tends not to zero asi— -+, but to the value
Ford [223] haye also recently givgq the following expression , .2 \/2/(48), which corresponds to thermal emission; this is
for (:T,:) in the case of a minimally coupled, masslesssfficient to guarantee that no information about the details
scalar field in two-dimensional Minkowski spacetime with a of collapse is conveyed. Furthermore, the approach to this
timelike boundary described by the equation p(u): value is exponentially fast, while for the extremal configura-
tion the decay obeys only a power law.

12 n\ 4

4p 3 (p )

— +_ _
[v—p(w]* 16\p’

1
(4m)?

n n 2 n 2
R A
4 pr pr 12 pr '
If one ignores the so-called cross terf@8], this coincides

with the varianceAT,, (because in our casgeT,,:)=0).
With p given by Egs.(4.1) and(4.3), Eq. (6.1) gives, foru

(Tout)=

VII. CONCLUSIONS

We have found a simple generalization of Kruskal coor-
(6.7) dinates that allows us to examine the behavior of incipient,
extremal RN black holes. Although the coordinate transfor-
mation we employ is not invertible in terms of elementary
functions, it makes possible the explicit calculation of the
asymptotic form of the world line for the center of the col-
lapsing object. Borrowing well-known results from quantum

>0, field theory in the presence of moving boundaries, we con-
) 5 cluded that an incipient extremal black hole emits particles
<.-|-2 H=— A _ o A _ with a nonthermal spectrum, which contains a constant that
Louur A7 A+(v—v)ul* Am%(v—v)*ut depends on the details of gravitational collapse.
(6.2 At first sight, this result seems to imply that the cosmic

censorship conjecture and the no-hair theorems are both vio-

Thus, in spite of the fact that the expectation value of the fludated by extremal black holes. Closer scrutiny reveals that
vanishes identically, its statistical dispersion does not, but itthe flux of emitted radiation vanishes identically, and in the
value becomes smaller and smaller and tends to zero in tHanit t— +c any measurement of local observables gives
limit u— +. Hence, although one could in principle infer results indistinguishable from those in the vacuum state. This
the value of the constai by measuring the quantitkT,,  is not incompatible with a nonzero spectrum, which is not a
at late times, such measurements will become more anlbcal quantity and tells us only that particles are created at
more difficult asA T, decreases according to H§.2). This ~ some time during collaps@ot necessarily &t= +). Thus,
damping is of course reminiscent of the familiar damping ofextremal black holes are not pathological in this respect.
perturbations, which prevents one from detecting by late- However, there are several clearly defined senses in
time measurements the details of an object that collapses intshich nonextremal and extremal black holes differ. Informa-
a black holg30]. And so, monitoringA T, does not lead to tion lost to an external observer depends on the rate at which
a violation of the no-hair theorems, because no tracé of the statistical dispersion of the flux approaches its value for
will survive in the limit u— +oo. t— +o0. In the nonextremal case, the dispersion goes to zero

This discussion shows only that no violation of the no-exponentially fast, Eq(6.3), whereas for an incipient ex-
hair theorems can be detected by measuring the variance iremal black hole it follows a slower power law, given by
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Eq. (6.2). More importantly, forQ>—M?, Eq. (6.2) is not  our results. We have seen in Sec. V thaQf=M? at the
the limit of Eq.(6.3).” One cannot therefore, consider quan-onset of the hyperbolic world lin€8.4), it will remain so and
tum emission by an incipient extremal black hole to be thethe cosmic censorship conjecture is preserved. However, the
limiting case of emission by a nonextremal black hole. Infact that mass loss from an incipient extremal black hole is
particular, although at=+ a black hole withQ?=M? is  zeroonlyin the late hyperbolic stage seems to imply that an
totally quiescent, it would be incorrect to consider it as theenormous fine-tuning is required in order to produce an ex-
thermodynamic limit of a nonextremal black hole, that is, antremal object by means of gravitational collapse. In fact, an
object at zero temperature. Indeed, the quantum radiatiofbject that is extremal from the start of its collapse might be
emitted by an incipient extremal black hole is not characterunstable with respect to the transition to a configuration with
ized by a temperature at any time during collapse. Wherea@>>M?. Such a transition would be triggered by quantum
incipient nonextremal black holes have a well-defined theremission in the early phases of collapse, wpgn) has not
modynamics, this is not true for extremal holes, and theyet assumed its hyperbolic form. This raises the question of
should be considered as belonging to a different class. Thigow, in presence of quantum radiation, the formation of a
result suggests that any calculations that implicitly rely on ahaked singularity is preventee.g., by the emission of
smooth limit in thermodynamic quantities &?=M?2 are  charged particlgsand the cosmic censorship conjecture pre-
suspect, if not incorrect. Our conclusions, of course, are justerved.
pertinent to incipient black holes; extending them to eternal Note added in proof.Simultaneously with this work,
black holes seems plausible, but requires cégen at the ~Anderson, Hiscock, and Tayl$B4] have demonstrated that
classical level, eternal black holes must be regarded as fuifor static RN geometries, zero-temperature black holes can-
damentally different from those deriving from collapse, be-not exist if one considers spacetime perturbations due to the
cause the global structure of spacetime differs in the twdack reaction and quantum fields.
cases.

We close the paper drawing an analogy between the ex-
otic subject of particle production by extremal black holes ACKNOWLEDGMENTS

and a well-known piece of ordinary physics. The divergence |t js a pleasure to thank F. Belgiorno for helpful remarks
of the particle spectruiN,,) is reminiscent of the infrared on a first draft of the paper. T.R. would like to acknowledge

catastrophe typical of QED, which manifests itself, for in- the hospitality of S.1.S.S.A., where this work was carried out.
stance, in the process of bremsstrahl(seg, e.g., Ref31],

pp. 165-17L However, the infrared divergence in the
bremsstrahlung cross section produces no observable effect, ~ APPENDIX: DETECTING RADIATION FROM
because it is canceled by analogous terms coming from ra- A UNIFORMLY ACCELERATED MIRROR
diative corrections(Thanks to the Bloch-Nordsieck theorem,
this cancellation is effective to all orders of perturbation
theory) One may well wonder whether the=0 singularity
in our spectrum is similarly fictitious and could thus be re-
moved by analogous techniques.

For the mirror this is possible, in principle, if one allows
momentum transfer from the field to the mirror, although
such a calculation is beyond the scope of the present pap

In Sec. V we mentioned the apparently paradoxical situ-
ation in which nonzero particle productiofas shown by
nonvanishing Bogoliubov coefficient, ) is accompanied
by zero energy flux(vanishing expectation value of the
stress-energy-momentum tensdiscussions about such is-
sues are often phrased in terms of ideal detedi®1s33.
&Ithough our arguments in the body of the paper are based
(See Ref[32] for a model that includes recgiBut whatever solely on the behavior of the stre.ss-.ene.rgy-morrl]‘entum te:’n-

30T, We can gain some additional insight into the “paradox

the answer to the mirror problem might be, it does not see i idering th f ol le detect
that one could transplant it in any straightforward way to the y considering theé response of a simple monopole detector

case of an incipient black hole. Indeed, taking recoil into®" & 9eodesic world line=u-+2x,, with X,=const, in two-
account would amount to admitting that backreaci®im- dlmen3|onal_ M|nkowsk|. spacetime.
portant and that the test-field approximation is never valid W? are |nte.re_sted In_computing the detector response
Thus, the whole subject would have to be reconsidere&mcuon per unit time, defined as
within an entirely different framework.

In connection with the possible — and crucial — rel-

1T T e
evance of backreaction, it is important to stress one aspect of ~ R(E)= lim EJ TdTJ Tdr’@(E)e IE(r="")
Tt - -

XD (u(7),0(7);u(7"),0(7"), (A1)
Since A and B do not depend om by definition, the only case
that admits a continuous limit is the one in whigk- 0. This cannot v _ . o
happen, because it would correspond to a null world line for theWhereD is the Wightman function of the scalar field in the

center of the star. Another apparent possibility—tBatl/«x so that !N vacuum,u(7) =7—Xq, v(7) =7+Xo, andE is_the_ excita-
«B is constant in the limitc— 0—is not viable, because the right tion energy of the detectofNote thatE=0, which is auto-

hand sides of Eqg6.2) and (6.3) would still have different func- ~matically enforced by the presence of the step functi¢f)
tional dependences an We thank Freeman Dyson for pointing out 0n the right hand side of E¢AL).] In terms of the in modes,
the issue to one of us. D* has the form
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N +o (i (in) the latter being easily established by considering the se-
D (u,v;u’,v’)=f_m dw®(w)dy”(u,v) gy (U’ ,v")*, quence of functions|E|+€) 'O(E+¢€)O(—E+e¢) in the
limit e—0. We getR,(E)=—2R,(E)=—2R3(E)=6(E),

A2 . S

(A2) so the first three contributions ®(E) sum to zero.
where we have extended the integration range-to, by The computation ofR4(E) is cleaner if one works in
introducing the step functiof (o). dimensionless variables, such &= AE, w=\Aw, 7

Since the definition oR(E) involves an integration over = 7/\/A. The identity
time from —o0 to +0, in the case of a mirror world line of

the type(4.1) it will get contributions corresponding to the +oo @ 10(6710) _

nonzero flux[such as, e.g., the one at=0 whenf(u) is fo dsz—ln(§—|0)+l —5 (A11)

given by Eq.(4.3)]. These we regard as spurious, because we

are really interested in clarifying the relationship between theynere| is the divergent quantity

zero flux and nonzero spectrum in the hyperbolic regime. For

this reason, let us consider a mirror world line which is hy- +% _ COS®

perbolic at all times, sap(u)=—A/u for u>0, for which = fo do————, (A12)
w

there can be no such spurious contributiongRidE).

The world linep(u)=—A/u has a null asymptote in the together with the properties of the logarithm, allows us to

past; thus, Write
i - i _0() 7
I (u,v)= [elov—@(u)e P, (A3) J o2l e T
Vamw = ol (T—=X) (7' —Xo)
On substituting Eq(A3) into Eq. (A2), we have @(w) ~ ~, _O(w) ~~ ~
f dw 'w(T ") —_ @ iw(7—Xq)
D" (u,v;u’,v")=Fy(v,0")+Fy(u,p’) o @
+Fa(0,u")+Fy(uu’),  (A4) _f d~®<w>éw<7 o)1, (A13)

where - ©

In this expression we have replaced one of the quantities
Fio,w')= ifﬂ w®(“’) —io(v—u') (A5) —i/2 with its complex conjugate by simultaneously chang-
ne 47 || ' ing the sign in one of the exponents. This manipulation is
allowed by the fact that, since—x, and 7' —X, can never
1 te o O(w) become negative ik, their logarithms are always real.
(A Pp— - dofv’—p(u)] 4
Fa(u,v’)= 47T®(u)f7w do || g TP, Note that the resulting expression agrees with the property of
(A6) R(E) of being a real quantity.
We can thus writeR4(E) =R41(E) + R4xE) + R43(E)

— oo

_ ) +R44(E). Using the formal relations
Fs(v,u')=— @( ’)j dw— —iwlv—p(u)]
(A7) lim f dréér= w5(§)+|e'fX0P( g) (A14)
T~>+OC
1 O(w) _, ,
"N —io[p(u)—p(u’)]
Fa(u,u’)= 72— o] e . and
(A8)
lim f drei=0(£)0(— &), (A15)
Correspondingly,R(E) can be split into four partsR(E) Tt T

=R1(E) +R(E) + R3(E) + R4(E). .
The termsZRl(E), %QZ(E), ;nng(E) can be computed to9ether with Eq(A10), we getR,y(E) = 6(E)/4, Rax(E)

straightforwardly, by using the formal identities +,R433(E): —d(E)/2, aan‘M(E): | 5(E)/4. Finally, since
| is divergent we can write

T
lim f dréé"=2m6 A9 I
oo ©) (A9) R(E)= ; 5(E). (A16)
and Thus, we have essentially a delta function peaked at zero
1 energy. Now,R(E) is related to a quantum mechanical
L e probability and so this result means that, for any vafie
|E| O(B)B(-E)=24(F), (AL0) >0 of the energy, no matter how small, the detector has
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probability 1 of making a transition of amplitude smaller therefore, whether there is any way to screen our detector
thanE and probability O of detecting particles of higher en- from this overwhelming flux of soft quanta.

ergy. (Of course, this does not mean it wilevermake tran- One might think to act on the selectivity of the detector by
sitions withE>0; only, these take place with probability) 0. using a two level system that requires at least a minimal
The reason for this behavior is evidently the divergence irenergy to switch. Unfortunately, the detection of the infinite
the spectrum a&— 0. Of course, the detector does not gaintail of soft quanta corresponds to the “transition” from the
energy during such a “detection” — in fact, one can say thatground state to the ground state, and there is obviously no
there is no detection at all. This is compatible with the zeroway to forbid this process. The detector cannot be forbidden
value of the flux. to not switch.

Hence one might be tempted to call the particles emitted So the analysis of the response function of a detector also
by a mirror in hyperbolic motion “phantom radiation”: Be- seems to prove that the radiation from uniformly accelerated
cause only arbitrarily soft particles would be registered bymirrors (and extremal incipient black holes in some sense
the detector with any nonzero probability, there would be ndike the apple in Dante’s purgatory: We can see it with our
chance to determine the spectrgh,). The question arises, mind but we shall never have it in our hands.
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