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Detection strategies for scalar gravitational waves with interferometers and resonant spheres
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We compute the response and the angular pattern function of an interferometer for a scalar component of
gravitational radiation in Brans-Dicke theory. We examine the problem of detecting a stochastic background of
scalar GWs and compute the scalar overlap reduction function in the correlation between an interferometer and
the monopole mode of a resonant sphere. While the correlation between two interferometers is maximized
taking them as close as possible, the interferometer-sphere correlation is maximized at a finite value off 3d,
where f is the resonance frequency of the sphere andd the distance between the detectors. This defines an
optimal resonance frequency of the sphere as a function of the distance. For the correlation between the
VIRGO interferometer located near Pisa and a sphere located in Frascati, near Rome, we find an optimal
resonance frequencyf .590 Hz. We also briefly discuss the difficulties in applying this analysis to the dilaton
and moduli fields predicted by string theory.

PACS number~s!: 04.30.2w, 04.80.Nn
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I. INTRODUCTION

A number of interferometers for gravitational wave~GW!
detection are presently under construction and are expe
to be operating in the next few years. In particular, VIRGO
being built near Pisa, the two Laser Interferometric Grav
tional Wave Observatory~LIGO! interferometers are bein
built in the US, GEO600 near Hannover, and TAMA300
Japan. These interferometers are in principle sensitive als
a hypothetical scalar component of gravitational radiati
Scalar GWs appear already in the simplest generalizatio
general relativity, namely Brans-Dicke theory, whose act
reads

SBD5
1

16pE d4xA2gFwR2
vBD

w
¹mw¹mwG1Smatter,

~1!

with w the Brans-Dicke scalar. The coupling of matter w
gravity, Smatter, is dictated by the equivalence principle.
order to avoid conflict with solar system experiments, o
must takeuvBDu greater than approximately 600.

At a more fundamental level, various scalar fields w
interactions of gravitational strength come from stri
theory. A universal example is the dilatonF; the low energy
effective action of string theory, in the graviton-dilaton se
tor, reduces to the first term on the right-hand side of Eq
with the identificationsw5(16p/a8)e22F ~wherea8 is the
string tension! andvBD521. To avoid conflict with experi-
ments, it is expected that the dilaton will get a mass fr
non-perturbative mechanisms@1#, or that it decouples from
matter with the cosmological mechanism proposed in@2#.
Furthermore, various scalar fields~moduli! appear when
compactifying string theory from ten to four dimension
Their number and couplings are strongly dependent on
specific compactification used.
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In this paper we investigate whether it is possible
search for such scalar particles using the GW interferome
under construction, as well as the resonant spheres which
under study. We start from the Brans-Dicke theory and,
Sec. II, we discuss the response of an interferometer to a
with a scalar component: in particular, we find that such
scalar component creates a transverse~with respect to the
direction of propagation of the GW! stress in the detector; w
compute the phase shiftDw measured in the interferomete
and derive the angular pattern function, i.e. the depende
of the signal on the direction (u,f) of the impinging GW
~see Fig. 1!. We find Dw}sin2u cos 2f. We also show the
physical ~and formal! equivalence of two different gauge
used to describe scalar radiation.

In Sec. III we consider the detection of a stochastic ba
ground of scalar GWs. In this case it is necessary to corre

FIG. 1. The definitions of the versors and angles discusse
the text.
©2000 The American Physical Society04-1
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MICHELE MAGGIORE AND ALBERTO NICOLIS PHYSICAL REVIEW D62 024004
two different detectors. We give a general treatment of
computation of the overlap reduction functionG( f ) for ge-
neric detectors in the scalar case: such a function represe
measure of the correlation between the signals of the
detectors and depends on the frequency of observationf and
on the type of detectors one uses, as well as on their loca
and relative orientation. Similarly to what has been done
Ref. @14# in the case of the1 and3 components, we ‘‘fac-
torize out’’ from G( f ) the response tensorsDi j of the detec-
tors, which summarize the whole information about the ty
of the detectors and their orientation in space; next we c
pute explicitly the remaining part ofG( f ), that is the depen-
dence on the frequency and the location of the detectors.
result is thus completely general and it is applicable to a
given pair of detectors.

We then examine in particular the correlation between
VIRGO interferometer and a resonant sphere, as the pr
type which is presently under study in Frascati, near Ro
@3–7#. Similar correlations are also in principle possible b
tween LIGO and the TIGA resonant sphere located in Lo
siana@8#. We compute the interferometer-sphere overlap
duction function and we find that, contrary to what happe
in the correlation of two interferometers, the correlation
not optimized when the detectors are as close as pos
~compatibly with the constraint of decorrelating loc
noises!, but instead there is an optimum nonzero value of
product of the distance between the detectors and the r
nance frequency of the sphere. For the distance betwee
VIRGO interferometer in Cascina, near Pisa, and a reso
sphere in Frascati, near Rome, we find an optimum corr
tion if the resonance frequency of the sphere isf .590 Hz.
This value off is quite interesting because it is in the ran
where interferometers achieve their highest sensitivities
at the same time is comparable to realistic values for
resonance frequency of the spheres which are presently
der study. Actually, the TIGA prototype has its first resona
mode at 3.2 kHz, but hollow spheres, which are presentl
the stage of preliminary feasibility studies@9#, depending on
the material used and other parameters, could have a r
nance frequency between 200 Hz and 1–2 kHz, with a ba
width of order 20 Hz.

In Sec. IV we discuss how the interaction with the dete
tors is modified by a very small mass term for the sca
field. This is partly motivated by the desire to examine t
perspective for detection of the string dilaton and mod
We find that, in presence of such a mass term, the st
induced in the detector by the scalar wave is not anym
purely transverse, but has also a longitudinal componen
relative amplitudem2/v2, if m is the mass of the scalar an
v is the frequency of the GW.

In Sec. V we will then briefly discuss some difficulties
applying our analysis to these fields predicted by str
theory. A number of technical details are collected in t
Appendixes.

II. THE RESPONSE OF THE INTERFEROMETER TO
SCALAR GRAVITATIONAL WAVES

A. Computation in the gaugeeµn
„s… Ädiag„0,1,1,0…

In this section we compute the phase shift measured in
interferometer when a scalar GW is coming from an arbitr
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direction. There are of course different possible gau
choices ~i.e. coordinate transformations! for representing
plane wave solutions of the equations of motion of Bra
Dicke theory with both spin 2 and spin 0 components. W
first consider a gauge choice that, for a wave propagatin
the 1z direction, brings the metric perturbation in the for

hmn~ t2z!5A(1)~ t2z!emn
(1)1A(3)~ t2z!emn

(3)

1F~ t2z!emn
(s) , ~2!

whereemn
1,3, s are the polarization tensors,

emn
(1)[S 0 0 0 0

0 11 0 0

0 0 21 0

0 0 0 0

D
emn

(3)[S 0 0 0 0

0 0 11 0

0 11 0 0

0 0 0 0

D ; ~3!

emn
(s) [S 0 0 0 0

0 11 0 0

0 0 11 0

0 0 0 0

D . ~4!

The choice of gauge that brings the plane wave solution
the equation of motion of Brans-Dicke theory into this for
is discussed in Refs.@10,5# and, for comparison with late
results, we recall the main points of the derivation in Appe
dix A. Under rotations around thez axis, it is straightforward
to verify thatei j

(1)6 iei j
(3) have helicities62, while ei j

(s) has
helicity 0. Thus the termA(1)emn

(1)1A(3)emn
(3) describes or-

dinary gravitational waves with1 and3 polarizations in the
transverse traceless gauge, and the termFemn

(s) describes a
scalar GW, characteristic of the theory that we are consid
ing.

To compute the response of the interferometer we s
with the geodesic equation for a free-falling mass,

ẍm1Gab
m ẋaẋb50, ~5!

where

Gab
m 5 1

2 hmn~]ahbn1]bhan2]nhab! ~6!

are the linearized Christoffel symbols and (˙ )[ d/dt de-
notes derivation with respect to proper-time of the mass
the gauge~2! we haveG00

m 50 and therefore, if the mass i
initially at rest, it will remain at rest also when the wav
arrives, and the proper timet is the same as the time variab
t. In other words, choosing the gauge~2! means that we
4-2
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DETECTION STRATEGIES FOR SCALAR . . . PHYSICAL REVIEW D 62 024004
automatically choose the reference frame whose coordin
are comoving with free-falling masses.

The situation is then perfectly analogous to the ordin
gravitational waves in the transverse traceless gauge: the
ordinates of the test masses are unaffected by the gra
tional wave, butphysical ~i.e., proper! distances between
masses are influenced by the wave. In our case the line
ment is

ds252dt21„d i j 1hi j ~ t2z!…dxidxj

52dt21dz21„11F~ t2z!…~dx21dy2!, ~7!

where we have restricted ourselves to a purely scalar w
and we use unitsc51; as usual we suppose that the wav
length of the scalar gravitational wave is much larger th
the distance between the test masses, which for the inte
ometer are the two mirrors and the beam-splitter; we take
latter at the originO of the coordinate system~note again
that in this gauge if the beam-splitter is at rest in the ori
before the wave comes, it will always remain there; this w
not be true in the gauge considered in the next subsec!
and so its frequencyf is much smaller than 1/T0, whereT0 is
the time a laser-beam takes to travel fromO to the mass;
under this assumption, we can consider the amplitudeF(t
2z) frozen at a valueF0. So, the proper distance of th
mass of coordinatesX,Y,Z from the originO is

L5A~11F0!~X21Y2!1Z2. ~8!

The physical interpretation of Eq.~8! is clear: the wave acts
only on the coordinates that are transverse with respect t
direction of propagation. If we denote byL0

[AX21Y21Z25T0 the proper distance that the mass h
from the originO before the wave arrives, then from Eq.
we see that, at first order inF0,

if Z50 ⇒ L5~11 1
2 F0!L0 ,

if X5Y50 ⇒ L5L0 . ~9!

So, just like the ordinary gravitational waves with1 and3
polarizations, the scalar wave is transverse, not only in
mathematical description, Eq.~2!, but also in its physical
effect.

It is now easy to compute the phase-shift produced in
interferometer. We take an interferometer whose arms
aligned along thex andz axes and we consider first a scal
wave traveling in the1z direction. From Eq. 9 we see tha
the time that the laser-beam takes in order to makeN round-
trips from the beam-splitter to the mirror in thex direction is

Tx5~11 1
2 F0!N2L0 , ~10!

while, for the beam traveling in thez direction, the travel
time is unaffected by the scalar wave,

Tz5N2L0 . ~11!
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The phase-shiftDw is obtained~see e.g.@11,12#! by multi-
plying the time difference (Tx2Tz) by the angular frequency
V laser of the laser; this leads to the result

Dw5 1
2 F0•warm, ~12!

wherewarm[V laserN2L0 is the phase that the laser-beam a
cumulates inN round-trips.

To compute the response of the interferometer for an
bitrary direction of propagation of the wave we recall that
is possible to associate to a detector a ‘‘response tensor’’Di j
such that the signal~the phase-shift, if the detector is a
interferometer! induced in the detector by a gravitation
wave of polarizationei j is proportional to Tr$De%5Di j eji

@13,14#; for an interferometer whose arms are along theû
and v̂ directions the detector tensor is

Di j 5ûi û j2 v̂ i v̂ j . ~13!

The polarization tensor for a purely scalar wave travel
along a generic directionn̂ is @see Eq.~4!#

ei j
(s)~ n̂!5d i j 2n̂i n̂ j , ~14!

and then the pattern functionFs(n̂)[Di j eji
(s) , which de-

scribes the interaction between a scalar wave propaga
along n̂ and an interferometric detector with arms alongû
and v̂, is

Fs~ n̂!52sin2u cos 2f, ~15!

where u and f are, respectively, the polar and azimuth
angles of the versorn̂ in the reference frame in which thex
and y axes are co-aligned withû and v̂ ~see Fig. 1!. Of
course, ifu50, there is no phase shift because the pro
length of the two arms is modified in the same way, and
cancels taking the difference. However the proper time t
the light takes to make a round trip in each of the two ar
separately is modified by the wave, and it is in princip
measurable.1 For a generic angle of incidence the cancel
tion does not take place and there is a phase shift.

Combining Eq.~15! with Eq. ~12! we get the phase shif
for arbitrary direction of incidence of the scalar wave@16#,

1VIRGO takes its output from a set of 5 photodiods which give
optical lengths including the difference between the two arms
course, and also the common mode, i.e. the sum of the two
lengths. However for the common mode the fluctuations in the la
power do not cancel, and the sensibility is quite limited; it is ba
cally the same sensibility that could be obtained measuring
common mode with two separate interferometers, one made
one arm and the prestabilization cavity and the other with the o
arm and again the prestabilization cavity.
4-3
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MICHELE MAGGIORE AND ALBERTO NICOLIS PHYSICAL REVIEW D62 024004
Dw~u,f!52 1
2 F0•warm•sin2u cos 2f. ~16!

The angular sensitivity of the interferometer to scalar GW
shown in Fig. 2, together with the standard angular patt
for the 1 and3 polarizations.

B. Computation in the gaugeeµn
„s… Ähµn

It is instructive to repeat the computation in a differe
gauge. Indeed, with a different gauge choice, we can b
the plane wave solution of the equations of motion into
form of Eq. 2 withemn

(1) andemn
(3) unchanged, while

emn
(s) 5hmn , ~17!

so that, for a purely scalar wave,

gmn5~11F!hmn . ~18!

In Appendix B we prove this assertion and we find the c
ordinate transformation that allows to move from the pre
ous gauge to this one.2

2This gauge has been used in Ref.@15#. However, the authors did
not realize that in this reference frame the beam splitter is not le
the origin by the passage of the GW, see below, and furtherm
computed a coordinate-time interval rather than a proper-time in
val, reaching the incorrect conclusion that the scalar GW ha
longitudinal effect, and no transverse effect. Their expression
the phase shift and angular pattern then differs from ours. In
subsection we will confirm the results of Sec. II A, with a prop
treatement of the scalar GW in this gauge.

FIG. 2. The angular sensitivity of the interferometer for sca
waves~top!, 1 polarization~bottom right! and3 polarization~bot-
tom left!. The solid lines in the middle of the figure indicate th
orientation of the arms of the interferometer.
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As in Sec. II A, we consider a purely scalar gravitation
wave traveling in the1z direction and impinging on an in
terferometer whose arms are aligned along thex andz axes,
and have a lengthL0 when there is no gravitational wave
We will denote quantities relative to the arms by subscriptX
and Z. Again, we deal only with the case in which the fr
quencyf of the wave is much smaller then 1/T051/L0, as
discussed in the previous section.

Consider the metric

ds25~11F!~2dt21dx21dy21dz2!. ~19!

The laser-beam follows null geodesics (ds250): so, for the
beam that propagates along thex axis

dxlaser

dt
561⇒xlaser~ t !5const6t, ~20!

and for the beam alongz

dzlaser

dt
561⇒zlaser~ t !5const6t. ~21!

The geodesic equation of motion for the mirrors and bea
splitter, in this gauge, is@15#

x~ t !5x0

y~ t !5y0

z~ t !5z01
1

2
I „t2z~ t !…

t~ t !5t1z~ t !, ~22!

where

I ~ t2z![E
2`

t2z

F~u!du ~23!

@note that the solution forz(t) is an implicit equation#.
Therefore, in this gauge, the transverse coordinates are
affected by the passage of the wave, while the longitudi
coordinate is affected. Of course, this does not mean tha
physical effect of the wave is longitudinal. The physical e
fect is determined looking at diffeomorfism invariant qua
tities, i.e. proper distances and proper times.

Since in this gauge thex-coordinates of the mirrors an
the beam-splitter are unaffected by the passage of the w
from Eq. ~20! we see that the interval, in coordinate timet,
that the laser takes for one round-trip in theX arm is

TX52L0 . ~24!

TX measures the time that the laser-beam takes in term
the variablet: the beam leaves the beam-splitter att50 and
comes back att5TX . However, this quantity is by definition
not invariant under coordinate transformations, and in or
to deal with interference at the beam-splitter, we must w
in terms of the beam-splitter proper time; it is this latt
variable that measures the physical length of the arms. T
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DETECTION STRATEGIES FOR SCALAR . . . PHYSICAL REVIEW D 62 024004
we call t(t) andzBS(t) the proper time andz-coordinate of
the beam-splitter at~coordinate! time t @with initial condition
zBS(2`)50#. From Eqs.~22!,

zBS~ t !5 1
2 E

2`

t2zBS(t)

F~u!du ~25!

t~ t !5t1 1
2 E

2`

t2zBS(t)

F~u!du. ~26!

The proper time interval that the beam takes to mak
round-trip in theX arm is then

tX[t~TX!2t~0!5TX1 1
2 E

2zBS(0)

TX2zBS(TX)

F~u!du

.TX1 1
2 F0@TX1zBS~0!2zBS~TX!#

.2L0~11 1
2 F0!, ~27!

where we have used Eq.~24!, we have consideredF ‘‘fro-
zen’’ at F0 and we have kept only the first order inF0. Note
that zBS(0)2zBS(TX)5O(F0).

We now computeTZ and tZ . Suppose that the beam
leaves the beam-splitter att50 and reaches the mirror alon
the z axis att5T1. Then

zBS~0!1T15Z~T1!, ~28!

whereZ(t) denotes thez-coordinate of theZ mirror at timet
@with Z(2`)5L0#. Similarly, when coming back from the
mirror the beam reaches again the beam-splitter att5TZ
5T11T2 such that

Z~T1!2T25zBS~TZ!. ~29!

Subtracting Eq.~29! from Eq. ~28! one has

TZ5T11T25@Z~T1!2zBS~0!#1@Z~T1!2zBS~TZ!#.
~30!

The equations of motion~22! for theZ mirror and the beam-
splitter read

Z~ t !5L01 1
2 E

2`

t2Z(t)

F~u!du ~31!

zBS~ t !5 1
2 E

2`

t2zBS(t)

F~u!du, ~32!

which, substituted in Eq.~30!, give
02400
a

TZ52L01 1
2 E

2zBS(0)

T12Z(T1)

F~u!du1 1
2 E

TZ2zBS(TZ)

T12Z(T1)

F~u!du.

~33!

Because of Eq.~28!, the first integral in Eq.~33! is zero. The
second integral, in the approximation of a frozen wave and
first order inF0, gives

1
2 E

TZ2zBS(TZ)

T12Z(T1)

F~u!du. 1

2
F0@T12Z~T1!2TZ1zBS~TZ!#

. 1
2 F0@L02L022L010#

52 1
2 F02L0.

Equation~33! thus becomes

TZ5~12 1
2 F0!2L0 . ~34!

Following the same steps leading to Eq.~27!, we then obtain

tZ[t~TZ!2t~0!.TZ~11 1
2 F0!.2L0 . ~35!

Equations~27! and~35! agree with the result of Sec. II A, se
Eqs.~10! and~11!, as they should. It is also apparent that t
computation in the gauge used in the previous section
much simpler, due to the fact that in this case the coordina
of test masses are not affected by the passage of the w
and only proper distances change.

III. STOCHASTIC BACKGROUNDS OF SCALAR GWS

A. General definitions

The standard procedure described in@14,17,18# for detec-
tion of stochastic backgrounds of ordinary gravitation
waves can be applied with minor modifications to the case
scalar GWs. A stochastic, Gaussian and isotropic ba
ground of scalar GWs can be characterized by the quan

Vw~ f ![
1

rc

drw

dlogf
, ~36!

whererw is the energy density associated to the backgrou
f is the frequency andrc is the critical energy density fo
closing the Universe,

rc5
3H0

2

8pG
~37!

@H05100h0 (km/sec)(1/Mpc) is the Hubble constant#. The
intensity of the background is expected to be well below
noise level of a detector: the detection strategy then cons
in correlating the outputs of two~or more! detectors, located
far enough so that local noises as the seismic noise are
correlated. One defines the quantity
4-5
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MICHELE MAGGIORE AND ALBERTO NICOLIS PHYSICAL REVIEW D62 024004
S[E
2T/2

1T/2

dtE
2T/2

1T/2

dt8s1~ t !s2~ t8!Q~ t2t8!, ~38!

wheresa denotes the output of theath detector,T the total
observation time andQ is a real filter function, that, for any
given form of the signal, can be determined exactly in or
to maximize the signal-to-noise ratio~SNR!. We write
sa(t)5ha(t)1na(t), whereha is the signal induced by the
background of scalar GWs~for an interferometer it is the
phase shift computed in the previous section!, andna is the
intrinsic noise of thea-th detector. Under the assumption
uncorrelated noises, the ensemble average~denoted by
^•••&) of the Fourier components of the noise satisfies

^ña* ~ f !ñb~ f 8!&5d~ f 2 f 8!dabSn
(a)~ u f u!. ~39!

The functionsSn
(a)(u f u) are known as square spectral noi

densities. The signal-to-noise ratio is defined as

SNR[F ^S&2

Š~S2^S&!2
‹

G 1/4

, ~40!

where we have used the exponent 1/4~instead of 1/2) to take
into account the fact thatS is quadratic in the signals@see Eq.
~38!#. Optimal filtering~see@17,18#! gives

SNR5F2TE
0

1`

df
Sh

2~ f !

Sn
2~ f !

G2~ f !G 1/4

. ~41!

The various quantities that appear in the SNR are define
follows.

The functionSh depends uniquely on the spectrum of t
background, and not on the features of the detectors, an
related toVw by

Sh~ f !5
3H0

2

4p2f 3

1

21vBD
Vw~ f !. ~42!

Note that in the case of ordinary gravitational waves
factor 1/(21vBD) is absent. The derivation of this result
given in Appendix C.

The functionSn is defined asSn( f )[ASn
(1)( f )Sn

(2)( f ) and
therefore depends uniquely on the intrinsic noises of the
tectors.

The functionG( f ) gives a measure of the correlation b
tween the detectors, and depends on their relative pos
and orientation; it is defined as

G~ f ![E dV n̂

4p
Fs

(1)~ n̂!Fs
(2)~ n̂!ei2p f dm̂•n̂, ~43!

whered•m̂5x(1)2x(2) is the vector joining the detectors (d

is their distance,m̂ a versor! and theFs
(a)(n̂) are the pattern

functions of the detectors for scalar waves.
In the case of the correlation between two interferomet

it is conventional to define the overlap reduction functiong
by @19,14#
02400
r
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g~ f !5
G~ f !

F12
, ~44!

where, for ordinary GWs

F12[E dV n̂

4p (
A51,3

FA
(1)~ n̂!FA

(2)~ n̂! ualigned, ~45!

and the subscript means that we must computeF12 taking the
two interferometers to be perfectly aligned, rather than w
their actual orientation.

This normalization is useful in the case of two interfe
ometers, since in this case, for ordinary GWs,F1252/5
~while for scalar GWsF1254/15) and it takes into accoun
the reduction in sensitivity due to the angular pattern, alre
present in the case of one interferometer, and thereforeg( f )
separately takes into account the effect of the separationDxW
between the interferometers, and of their relative orientat
With this definition,g( f )51 if the separationDx50 and if
the detectors are perfectly aligned.

This normalization is instead impossible when one co
siders the correlation between an interferometer and
monopole mode of a resonant sphere, since in this caseF12
50, as we will see below. Then one simply usesG( f ),
which is the quantity that enters directly Eq.~41!. Further-
more, the use ofG( f ) is more convenient when we want t
write equations that hold independently of what detect
~interferometers, bars, or spheres! are used in the correlation
In the following we will always refer toG( f ) as the overlap
reduction function.

B. The overlap reduction function for scalar GWs

In this section we compute analytically the overlap redu
tion function of two generic detectors in the case of a ba
ground of scalar waves, generalizing the result for ordin
gravitational waves of Ref.@14#.

As one can see from Eq.~43!, the overlap reduction func
tion is obtained by averaging, over the possible directions
propagation of the gravitational wave, the product of the p
tern functions of the two detectors, weighted with a pha
that depends on the delay in the propagation from one de
tor to the other. The pattern function and detector tensors
related by

Fs~ n̂!5Di j ei j
(s)~ n̂!. ~46!

As in the case of ordinary GWs, the response tensorsDi j
(a)

are normalized in such a way that the pattern functio
Fs

(a)(n̂) take 1 as maximum value, varyingn̂. Then we can
rewrite Eq.~43! in the form

G~ f !5Di j
(1)G i jkl ~a,m̂!Dkl

(2), ~47!

wherea[2p f d and

G i jkl ~a,m̂![E dV n̂

4p
ei j

(s)~ n̂!ekl
(s)~ n̂!eiam̂•n̂. ~48!
4-6



tio

n
e

th
fo
te

t

s
te

ors
for
r

en
ant
g to

t be
ant

the

ant

rlap

DETECTION STRATEGIES FOR SCALAR . . . PHYSICAL REVIEW D 62 024004
As we discussed in the previous section, the polariza
tensor for a scalar wave traveling in the directionn̂ is

ei j
(s)~ n̂!5 x̂i x̂ j1 ŷi ŷ j5d i j 2n̂i n̂ j , ~49!

where x̂ and ŷ are versors perpendicular ton̂ and to each
other~see Fig. 1!. The difference between the scalar case a
the traditional one resides inG i jkl , because in the latter cas
the polarization tensorsei j

(1,3)(n̂) take the form

ei j
(1)~ n̂!5 x̂i x̂ j2 ŷi ŷ j

ei j
(3)~ n̂!5 x̂i ŷ j1 ŷi x̂ j . ~50!

We now proceed to compute the tensorG i jkl . Note that the
result we find is absolutely general, independently on
type of the detectors used in the correlation, since the in
mations on the detectors is summarized in the response
sorsDi j

(a) and not inG i jkl .
Since the tensorG i jkl is symmetric ini↔ j , in k↔ l , and

in ( i j )↔(kl) @see Eq.~48!#, it can be written in the mos
general form as

G i jkl ~a,m̂!5A~a!Ai jkl 1B~a!Bi jkl 1C~a!Ci jkl

1D~a!Di jkl 1E~a!Ei jkl ~51!

where

Ai jkl 5d i j dkl

Bi jkl 5d ikd j l 1d i l d jk

Ci jkl 5d i j m̂km̂l1dklm̂im̂j ~52!

Di jkl 5m̂im̂j m̂km̂l

Ei jkl 5d ikm̂j m̂l1d jkm̂im̂l1d j l m̂im̂k1d i l m̂j m̂k

~the tensore ikmm̂me j lnm̂n1e i lmm̂me jknm̂n is a linear combi-
nation of these!.

To determine the coefficientsA(a), B(a), . . . , E(a),

one has to contractG i jkl @written both in the form~48! and in
the form~51!# with the five tensors~52! and to calculate the
corresponding scalar integrals, which can be done in term
spherical Bessel functions; one thus obtain a linear sys
with five equations, whose solution is

F A

B

C

D

E

G ~a!5
1

a2F a2
• j 0~a!22a• j 1~a!1 j 2~a!

j 2~a!

2a2
• j 0~a!14a• j 1~a!25• j 2~a!

a2
• j 0~a!210a• j 1~a!135• j 2~a!

a• j 1~a!25• j 2~a!

G ,

~53!

where thej l are the spherical Bessel functions,
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j 0~a![
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a

j 1~a![
j 0~a!2cosa

a

j 2~a![3
j 1~a!

a
2 j 0~a!.

The overlap reduction function for any specific two-detect
correlation can now be obtained using this general form
G i jkl and then plugging into Eq.~47! the appropriate detecto
tensors.

A particularly interesting correlation is the one betwe
the VIRGO interferometer and a resonant sphere. A reson
sphere has 6 different detection channels: 5 correspondin
the quadrupole modes withl 52, m50,61,62, and 1 cor-
responding to the monopole mode withl 50, m50. The
monopole mode is especially interesting because it canno
excited by ordinary spin 2 GWs. The response of a reson
sphere to scalar GWs has been computed in Ref.@5#.

To correlate an interferometer, with arms alongû and v̂,
with the monopole mode of a resonant sphere, we use
response tensors

D (1)5û^ û2 v̂^ v̂ ~54!

D (2)5 1
2 13 , ~55!

and we get@16#

G~ f !5~sin2u cos 2f! j 2~2p f d!, ~56!

whereu and f are the angular coordinates of the reson
sphere~i.e. of m̂) with respect to the ‘‘natural’’ reference
frame of the interferometer~see Fig. 3!.

Figure 4 shows the frequency dependence of this ove
reduction function for a particular choice of the distanced

FIG. 3. Relative position of the sphere and interferometer.
4-7
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FIG. 4. The behavior of
j 2(2p f d) against the frequencyf
~Hz! for d5270 km, which is ap-
proximately the distance betwee
the location of VIRGO and Fras
cati ~resonant spheres!.
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corresponding to the distance between the VIRGO site
Frascati. The most striking aspect, compared to the ove
reduction functions of interferometer-interferometer corre
tions, is that the correlation vanishes if the distance betw
the detectors,d, goes to zero. This is the opposite of wh
happens for two interferometers, where instead the corr
tion is maximum for coincident detectors, so that the id
strategy in that case would be to have two interferometer
close as possible, compatibly with the fact that local nois
like the seismic noise and local electromagnetic disturban
should be uncorrelated~it is believed that this implies a mini
mum distance of at least a few tens of kms!. In this case,
instead, a sphere coincident with an interferometer makes
a totally ineffective correlation. This is easily understoo
because the monopole mode of the sphere has, obvious
constant angular pattern, while an interferometer has a
pendence; cos 2f which over the solid angle integrates
zero. Parenthetically, this shows that in this case the func
g( f ) cannot be defined, since it should be defined divid
G( f ) for the value for coincident detectors, which is no
zero. However,G( f ) is the quantity that enters the SNR.

Of course, asd→` the overlap reduction function agai
vanishes, and therefore there is an optimal, finite value
the product of the distanced and the frequencyf, determined
by the maximum ofj 2(2p f d). Approximately, this maxi-
mum is reached when

S f

590 HzD S d

270 kmD.1. ~57!

We have taken the reference value 270 km, which co
sponds to the distance between the locations of VIRGO~Lat.
N 43.63, Lon. E 10.50 deg! and Frascati~Lat. N 41.80, Lon.
E 12.67 deg!. Since the resonant sphere is a narrow ba
detector, compared to the interferometer, this means tha
optimal correlation is obtained with a sphere that resonat
approximately 590 Hz. We see from Fig. 4 that the sensi
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ity of the overall correlation is very strongly affected by th
value off, and a value off ;1 kHz, while keeping the spher
in Frascati, can easily result in the loss of more than o
order of magnitude in the SNR defined in Eq.~41!. Note also
that the minimum detectable value ofh0

2Vgw is quadratic
with the SNR@18# and therefore an inappropriate value
the resonant frequency can easily result in loosing two
three order of magnitude inh0

2Vgw .
Conversely, if for technological reasons the frequency

the resonant sphere has to be fixed at a different value,
~57! can be used to obtain the optimal distance between
two detectors.

IV. THE INTERACTION OF THE INTERFEROMETER
WITH A VERY LIGHT SCALAR

Till now we have considered only massless scalars; i
interesting, having in mind the extension to situations mo
vated by string theory, to consider the effect of a small m
term on the response of a detector.

Let us first understand what it means ‘‘small’’ in th
context. We still want to treat the scalar as a classical w
that acts coherently on the detector. This implies first of
that m!1/L, whereL is the characteristic size of the dete
tor. For a sphere of size of order 1 meter, this gives appro
matelym,1026 eV, while for a km sized interferometerm
,1029 eV. In both cases, however, there is a stronger lim
tation that comes from the fact that, if we want to dete
these scalars with a detector that works at a frequencyf 0
51 kHz, or v052p kHz, we must require that the fre
quency of the massive scalar,vm5Ak21m2, is of order of
v0. Since of coursevm>m, we get

m,2p kHz;4310212 eV. ~58!
4-8
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DETECTION STRATEGIES FOR SCALAR . . . PHYSICAL REVIEW D 62 024004
For these ultralight scalars it still make sense to discuss t
effect as a coherent gravitational wave.3

In the opposite limit of large mass, the single quanta
the scalar field will behave as particles rather than waves
will interact incoherently with the detector, just with separa
hits and since they only interact gravitationally they will b
totally unobservable.

Consider the action describing the Jordan-Brans-Di
theory ~1!, with in addition a potential term for the scalar:

S5Sg1Sm,

Sg@gmn ,w#5
1

16pE d4xA2gFwR2
vBD

w

3¹mw¹mw2V~w!G ,
Sm@cm,gmn#5E d4xA2gLm@cm,gmn#. ~59!

In analogy with the massless case, to obtain the field eq
tions we vary the actionS with respect to the metricgmn and
to the scalarw; then, we linearize the equations near t
background (hmn ,w0), wherew0 is a minimum ofV. The
equations of motion in vacuum~where the matter energy
momentum tensorTmn is zero! are

Rmn2
1

2
Rhmn52]m]nF1hmnhF ~60!

hF2m2F50, ~61!

where Rmn ,R are the linearized@with respect to hmn

[(gmn2hmn)# Ricci tensor and scalar curvature;

F[2~w2w0!/w0 ;

m2[
V9~w0!w0

~312vBD!
.

Again in analogy to the massless case, the linearized
mann tensorRmnrs and the equations~60! and ~61! are in-
variant under gauge-transformations

hmn~x!→hmn8 ~x!5hmn~x!2] (men) ~62!

w~x!→w8~x!5w~x!;

3Of course, in general such a ultralight scalar would mediate
unacceptably strong fifth force: Newton’s law is tested down
length of order; cm, so that an hypothetical fifth force could b
mediated only by a particle with massm.(1 cm)21.2
31025 eV ~see e.g. Ref.@1#!. Here, however, we are considerin
Brans-Dicke theory, withvBD.600: the corrections to Newton’
gravity, in the weak field limit, are smaller thanO(1/vBD), so that
even a massless scalar is compatible with experiments.
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we then define

umn[hmn2hmn~ 1
2 h2F! ~63!

and choose theLorentz gauge~in analogy to electromagne
tism!

]mumn50, ~64!

by means of a transformation such thathen5]mumn . In
such a gauge the field equations become wave equation

humn50 ~65!

hF5m2F, ~66!

whose solutions are plane waves~and superpositions o
them!:

umn~x!5Amn~kW !eikaxa
1c.c. ~67!

F~x!5b~kW !eiqaxa
1c.c., ~68!

where

ka[~v0;kW ! v05k[ukW u

qa[~vm ;kW ! vm5Ak21m2; ~69!

as one sees from Eq.~69!, the dispersion law for the mode
of F is that of a massive field, and the group-velocity of
wave-packet ofF centered inkW is

vW 5
]vm

]kW
5

kW

vm
, ~70!

exactly the velocity of a massive particle with momentumkW .
As in the massless case, we have a residual gau

freedom: we remain in the gauge~64! by transformations
with hen50. Notice that the Lorentz gauge is a transvers
ity condition on the fieldumn

]mumn50 ⇒ kmAmn50, ~71!

but it says nothing about the transversality of the pertur
tion hmn5umn2hmn(1/2u2F). And, in fact, it is easy to
show that, due to the field equation~66!, it is impossible to
choose a gauge analogous to Eq.~2!. In fact, as in the mass
less case discussed in Appendix A, to choose such a ga
we should operate a transformation with

hem50

]mem52 1
2 u1F, ~72!

but now this is not compatible with the wave equations~65!,
~66!. Analogously, we cannot impose any linear relations
betweenumn and F: so, for example, we cannot choose

n

4-9
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gauge in whichhm050, which in the massless case inste
permits to integrate immediately the geodesic equation.

Instead, we can choose a gauge in which a gravitatio
wave propagating in the1z direction takes the form

hmn~ t,z!5A(1)~ t2z!emn
(1)1A(3)~ t2z!emn

(3)1F~ t,z!hmn ,

~73!

whereemn
(1) andemn

(3) are the polarization tensors~3!. This is
similar to the gauge choice discussed in Appendix B,
now, because of the non-linear dispersion law,F depends
separatelyon t and z, instead of depending only on the
difference t2z. This makes the discussion of the physic
effect of the wave different from the massless case.

To study the effect of the scalar wave on test-masses
now make use of theproper reference frameof one of these
masses~as the beam-splitter of an interferometer, for e
ample!: the analysis thus can be performed in Newton
terms~see@20# Sec. 13.6!, in the sense that the spatial coo
dinatesxj represent proper distances for the observer ‘‘
ting’’ on the beam-splitter, the time variablet represents his
proper time, and the effect of the gravitational wave on t
masses is described by the equation of motion

d2xj

dt2
52Rj

0k0xk, ~74!

where the quantitiesRj
0k0 are the so-called electric compo

nents of the Riemann tensor. The problem is thus reduce
calculateRj

0k0 in the proper reference frame of this o
server: this is connected by an infinitesimal coordinate tra
formation to the reference frame where Eq.~73! holds, and
since the linearized Riemann tensorRmnrs is invariant under
infinitesimal gauge transformations, we can compute it fr
the metric Eq.~73!. Restricting to a purely scalar GW,
straightforward computation gives

Ri
0 j 05 1

2 S 2] t
2 0 0

0 2] t
2 0

0 0 m2
D

i j

F~ t,z!

52 1
2 Ti j ] t

2F1 1
2 Li j m

2F, ~75!

whereTi j [(d i j 2n̂i n̂ j ) is the transverse projectorwith re-
spect to the direction of propagationn̂, and Li j [n̂i n̂ j the
longitudinal projector. The equation of motion~74! thus be-
comes

d2

dt2
xi5~ 1

2 ] t
2F!•Ti j xj1~2 1

2 m2F!•Li j xj , ~76!

from which one immediately sees what is the effect of
dilaton mass: it generates alongitudinal force~in addition to
the transverse one! proportional tom2. In the limit m→0 one
recovers the treatment of the massless case, confirm
again, also from the point of view of the proper referen
frame, the results of Sec. II.
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To better understand the contribution ofm, it is conve-
nient to restrict to a wave packetF(t,z) centered at a fre-
quencyvm5Ak21m2; in this case

d2

dt2
xi5~2 1

2 vm
2 F!•S Ti j 1

m2

vm
2 Li j D xj . ~77!

From this equation the physical effect of the mass can
read quite clearly. In particular;

for ultra-relativistic momenta (vm.k@m) the longitudi-
nal components of the force becomes negligible with resp
to the transverse one;

in the non-relativistic limitvm→m and the stress induce
by the wave becomes isotropic, asLi j 1Ti j 5d i j .

Now one can compute the pattern function of a detec
for these massive scalar waves. In a generic gauge the
sponse of the detector is obtained contracting the dete
tensorDi j with the tensorRi

0 j 0, which in the massive case i
proportional tovm

2 Ti j 1m2Li j . Note that the pattern function
of an interferometer for detection of such massive sca
waves is identical to the one computed in the massless c
in fact, the contraction ofvm

2 Ti j 1m2Li j with Di j is the sum
of a term containingDi j Ti j and a term containingDi j Li j ;
both these terms are proportional toDi j n̂i n̂ j , sinceDi j is
traceless, for an interferometer, and, so the only depende
on the massm is in the overall factor of the signal and i
independent ofn̂. In particular, forvm→m the signal goes to
zero. The pattern function is instead mass-dependent in
case of a detector with a non-traceless response tensor, a
the monopole mode of the sphere, or for the common m
of an interferometer, for whichDi j 5ûi û j1 v̂ i v̂ j .

V. THE STRING DILATON AND MODULI FIELDS

It is clearly important to understand whether these resu
that have been obtained in the context of Brans-Dic
theory, can be applied to the physically more interesting c
of the dilaton and the other scalar fields predicted by str
theory.

While the dilaton-graviton sector of the low energy sec
of string theory is the same as a Brans-Dicke theory,
situation is quite different for the interaction of the dilato
with matter. Since in the string casevBD521, the dilaton is
coupled with a strength of the same order as the gravi
and produces unacceptable deviations from general rela
ity, unless a non-zero dilaton mass is generated see e.g@1#.
The radius of the non-universal force that it mediates m
be smaller than about 1 cm, orm.231025 eV. Therefore
the analysis of the previous section, which was valid form
,4310212 eV, does not apply to a massive dilaton. Indee
it is also in general not easy to reconcile such light sca
particles with cosmology, see e.g.@21,22#, although there are
mechanisms that solve the cosmological problems create
light scalars, typically introducing a second short stage
inflation that dilutes the dilaton overproduced by oscillatio
around their quadratic potential.

Actually, there is the possibility to circumvent this boun
on the mass, with a mechanism that has been propose
4-10
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Damour and Polyakov@2#. Assuming some form of univer
sality in the string loop corrections, it is possible to stabili
a massless dilaton during the cosmological evolution, a
value where it is essentially decoupled from the matter s
tor. In this case, however, the dilaton becomes decoup
also from the detector, since the dimensionless coupling
the dilaton to matter (a in the notation of@2#! is smaller than
1027 ~see also@23#!. Such a dilaton would then be unobser
able at VIRGO, although it could still produce a number
small deviations from general relativity which might in prin
ciple be observable improving by several orders of mag
tude the experimental tests of the equivalence principle@24#.

So, in both cases, the analysis done for Brans-Di
theory does not appear to be relevant for string theory. H
ever, it is clear that our present understanding of the st
dilaton and moduli is incomplete and presents a numbe
unsettled issues, including the non-perturbative mechan
for mass generation, or the stabilization at the minimum
the potential@25#, and a definite conclusion is probably pr
mature.

ACKNOWLEDGMENTS

We thank Danilo Babusci, Stefano Braccini, Maura Br
netti, Ramy Brustein, Francesco Fucito and Thibault Dam
for useful discussions.

APPENDIX A: GRAVITATIONAL WAVES IN THE
JORDAN-BRANS-DICKE THEORY

The Jordan-Brans-Dicke theory is described in
Jordan-Fierz frameby the action

S5Sg@gmn ,w#1Sm@cm,gmn# ~A1!

Sg[
1

16pE d4xA2gFwR2
vBD

w
¹mw¹mwG

~A2!

Sm[E d4xA2gLm@cm,gmn#; ~A3!

where
gmn is the metric tensor, with which one constructs all t

covariant quantities, such as the scalar curvatureR, covariant
derivatives¹, etc.;

w is a scalar field;
vBD is a parameter;
cm are the matter fields, such as fermions, gauge fie

etc.;
Lm is their Lagrangian.
To obtain the field equation one as to vary the actionS

with respect togmn and tow; this leads to
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Rmn2 1
2 Rgmn5

8p

w
Tmn1

vBD

w2
@]mw]nw

2 1
2 gmngab]aw]bw#1

1

w
@¹m]nw

2gmngab¹a]bw# ~A4!

R2
vBD

w2
gmn]mw]nw12

vBD

w
gmn¹m]nw50, ~A5!

where

Tmn[2
2

A2g

dSm

dgmn
~A6!

is the matter-fields energy-momentum tensor.
Equation~A4!, multiplied bygmn, gives

2R5
8p

w
T2

vBD

w2
]mw]mw2

3

w
¹m]mw ~A7!

that, substituted in Eq.~A5!, leads to

~312vBD!

w
¹m]mw5

8p

w
T. ~A8!

Equations~A4! and ~A8! are our basic field equations. W
now study small perturbations around a background confi
ration: we choose as background the Minkowski metric a
w(x)5w05(412vBD) /(312vBD)G, in order to have the
correct post-Newtonian limit and to obtain general relativ
whenvBD→`, as shown in@26#; we consider

gmn~x!5hmn1hmn~x!

w~x!5w01dw~x!, ~A9!

with uhmnu!1 and udwu!w0. We call Rmnrs , Rmn and R
the linearization to first order inhmn of the corresponding
quantitiesRmnrs , Rmn andR; one has@20#

Rmanb5 1
2 $]m]bhan1]n]ahmb2]a]bhmn2]m]nhab%.

~A10!

The linearization of the field-equations~A4! and ~A8! in
vacuum (Tmn50) gives

Rmn2 1
2 hmnR52]m]nF1hmnhF ~A11!

hF50, ~A12!

with F(x)[2dw(x)/w0. In analogy to general relativity
we can define a transformation acting on our fields that le
unchanged the linearized Riemann tensorRm

nrs @and conse-
quently Eqs.~A11! and ~A12!#: such aninfinitesimal gauge
transformationwith parameterem is
4-11
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hmn~x!→hmn8 ~x![hmn~x!2] (men) ~A13!

F~x!→F8~x![F~x!.

It is straightforward to verify, by direct substitution in Eq
~A10!, that Rm

nrs is gauge-invariant. We want to use th
gauge freedom to obtain a wave equation. We thus defin

umn[hmn2 1
2 hmnh1hmnF ~A14!

u[hmnumn52h14F, ~A15!

with h[hmnhmn ; the transformation that expresseshmn in
terms ofumn has the same form

hmn5umn2 1
2 hmnu1hmnF ~A16!

h52u14F. ~A17!

Substituting Eq.~A16! into Eq. ~A11! one obtains the field
equation forumn

humn2]m~]auan!2]n~]auam!1hmn]b~]auab!50.
~A18!

Inserting Eq.~A13! into Eq. ~A14! one finds immediately
that under gauge-transformations

umn~x!→umn8 ~x!5umn~x!2] (men)1hmn]aea

u~x!→u8~x!5u~x!12]aea ~A19!

F~x!→F8~x!5F~x!;

By choosingem such thathen5]mumn , one has

]mumn8 50, ~A20!

and, so, a wave equation forumn8 @see Eq.~A18!#

humn8 50. ~A21!

In this gauge~we will call it Lorentz gauge, in analogy to
electromagnetism! the solutions are plane waves and th
superpositions@we omit the ( )8#

umn~x!5Amn~kW !eikaxa1c.c. ~A22!

F~x!5b~kW !eikaxa1c.c., ~A23!

with the following conditions@deriving from the field equa-
tions and from Eq.~A20!#:

kaka50 ~A24!

kmAmn50; ~A25!

the latter is a transversality condition forAmn .
Once we have chosen the Lorentz gauge, we can

operate transformations withhem50; we thus takeem such
that
02400
r

ill

hem50

]mem52 1
2 u1F ~A26!

~it is possible because in vacuum in Lorentz gaugehu
5hF50); one has@see Eqs.~A19! and ~A16!#

u52F ⇒ hmn5umn ; ~A27!

that means thathmn too is aplane transverse wave.
Again, we have not yet completely fixed the gauge:

satisfy our conditions

]mumn50

u52F ~A28!

also by operating gauge transformations with

hem50

]mem50. ~A29!

Consider the case in which the wave is propagating in1z
direction: then

km5~k,0,0,k! ~A30!

kmAmn50 ⇒ A0n52A3n ~A31!

An052An3 ~A32!

A0052A3051A33. ~A33!

Let us make a degrees-of-freedom counting forAmn :
we started with 10 (5 independent components of a sym

metric tensor!;
transversality leads to 7: it ‘‘kills’’ only 3~instead of 4!

because of symmetry ofAmn ;
the conditionu52F leads to 6: we chooseA00, A11,

A22, A21, A31, andA32 as independent components;
further gauge freedom permits us to put to zero 3 of th

components~three rather than four, because of conditi
]mem50).

Thus taking

em~x!5 ẽm~kW !eikaxa1c.c.

kmẽm50 ~A34!

the action of the gauge transformation onAmn is @see Eqs.
~A19! and ~A22!#

Amn→Amn8 5Amn2 ik (mẽn) ; ~A35!

or, for the 6 components we are interested in,

A00→A0012ik ẽ0

A11→A11
4-12
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A22→A22

A21→A21 ~A36!

A31→A312 ik ẽ1

A32→A322 ik ẽ2 .

Notice thatA11, A22 and A215A12 are invariant: we thus
chooseẽ0 , ẽ1 , ẽ2 in order to ‘‘kill’’ the others. We have
now completely fixed the gauge.

Doeshmn depend on the fieldF? Equation~A27! tells us
h5h111h2252F. Summarizing, we can say that,in this
gauge, the metric perturbationhmn produced by a gravita
tional wave propagating in the1z direction takes the form

hmn~ t2z!5A(1)~ t2z!emn
(1)1A(3)~ t2z!emn

(3)

1F~ t2z!emn
(s) , ~A37!

whereemn
1,3, s are given in Eqs.~3! and ~4!.

APPENDIX B: EQUIVALENCE OF THE TWO GAUGES

In this appendix we show that it is possible to choos
gauge~which we denote writing a tilde over quantities eval
ated in this gauge! in which the metric perturbationh̃mn has
the form ~A37!, with Ã(1)5A(1), Ã(3)5A(3), F̃

5F, ẽmn
(1)5emn

(1) , ẽmn
(3)5emn

(3) , but

ẽmn
(s) 5diag~21,11,11,11!5hmn . ~B1!

The quantities without a (˜) refer to the gauge used in th
previous Appendix and in Sec. II A. We call ‘‘transverse
the former gauge, and ‘‘conformal’’ the latter: we want
find a gauge transformation that passes from the transv
gauge to the conformal one. In order to have a wave equa
for umn one has to keep the Lorentz gauge condition: t
condition is mantained by imposinghem50. By choosing

]mem52
1

2
u

hem50, ~B2!

which is possible because in Lorentz gauge in vacuumhu
50, we obtain a tracelessumn8 and so@see Eq.~A16!#

hmn8 5umn8 1Fhmn . ~B3!

In analogy with Appendix A, acting with a transformatio
with

]mem50

hem50 ~B4!

we can now eliminate the appropriate components ofumn8

@see Eqs.~A36!#, in order to obtain exactlyh̃mn . It is then
02400
a

se
on
s

easy to prove thatÃ(1)5A(1) and Ã(3)5A(3), by examin-
ing the action of gauge transformations on those amplitud

The two gauges are thus equivalent: and in fact it is e
to exhibit the coordinate transformation that relates them@the
coordinates with a ( )8 denote the transverse gauge and
now limit to the case of a purely scalar wave#

x85x

y85y

z85z2 1
2 I ~ t2z! ~B5!

t85t1 1
2 I ~ t2z!,

where

I ~ t2z![E
2`

t2z

F~u!du. ~B6!

In fact

dx85dx

dy85dy

dz85~11 1
2 F!dz2 1

2 Fdt ~B7!

dt85~11 1
2 F!dt2 1

2 Fdz,

and

ds25~11F!~2dt21dx21dy21dz2!

5hmndx8mdx8n1F~dx821dy82!. ~B8!

As we have seen in Sec. II A, the physical meaning of
primed coordinates is that they are comoving with fre
falling test-masses, initially at rest, andt8 is proper time. We
can check this assertion in the conformal gauge, by mak
use of the solution of the geodesic equations of motion fou
in @15#, see Eq.~22!. By substituting Eq.~22! into the trans-
formations~B5! one finds

x8~ t !5x0

y8~ t !5y0

z8~ t !5z0 ~B9!

t8~ t !5t1z~ t !2z05t~ t !1const,

that proves that, in the primed coordinates, bodies initially
rest remain at rest.
4-13
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APPENDIX C: RELATIONSHIP BETWEEN Sh„f …
AND Vw„f …

When dealing with stochastic backgrounds of ordina
GWs one definesSh( f ) as follows @18#. One expands the
metric perturbation in plane waves

hi j ~ t,xW !5 (
A51,3

E
2`

1`

df E dV n̂hA~ f ,n̂!e2p i f (t2xW•n̂)ei j
A~ n̂!,

~C1!

where the ensemble average of the Fourier modes is

^hA* ~ f ,n̂!hA8~ f 8,n̂8!&5d~ f 2 f 8!
1

4p
d2~ n̂,n̂8!dAA8

1

2
Sh~ f !,

~C2!

and d2(n̂,n̂8)[d(f2f8)d(cosu2cosu8). By inserting Eq.
~C1! in the expressionrgw51/(32pG)^ḣi j ḣi j & for the energy
density of the background, one obtains

rgw5
4

32pGE
f 50

f 51`

d~ logf ! f ~2p f !2Sh~ f !, ~C3!

so that

Sh~ f !5
3H0

2

4p2f 3
Vw~ f !. ~C4!

In the case of scalar waves, we write

hi j
(s)~ t,xW !5E

2`

1`

df E dV n̂h(s)~ f ,n̂!e2p i f (t2xW•n̂)ei j
(s)~ n̂!,

~C5!

and

^h(s)* ~ f ,n̂!h(s)~ f 8,n̂8!&5d~ f 2 f 8!
1

4p
d2~ n̂,n̂8!

1

2
Sh~ f !.

~C6!

We want to relate this new functionSh( f ) to the energy
density rw of the field w. It is convenient to rewrite the
field-equation of the Jordan-Brans-Dicke theory in the E
stein frame, that it is related to the Jordan-Fierz one by
conformal transformation

gmn
E [S w

w0
Dgmn . ~C7!

In this frame, the field-equation for the metric has the st
dard general relativity form
to

02400
y

-
e

-

Rmn
E 2

1

2
gmn

E RE5
8p

w0
Tmn

E 1
312vBD

2w2 F]mw]nw

2
1

2
gmn

E gE
ab]aw]bw G , ~C8!

and the energy-momentum conservation law becomes

¹E
nFTmn

E 1
~312vBD!w0

16pw2
~]mw]nw2 1

2 gmn
E gE

ab]aw]bw!G
[¹E

n@Tmn
E 1Tmn

(w)#50, ~C9!

so we defineTmn
(w) as the energy-momentum tensor of t

field w. To first order inhmn
E [(gmn

E 2hmn) and F[2@(w
2w0)/w0# we have

Tmn
(w)5

~312vBD!w0

16p
~]mF]nF2 1

2 hmn]aF]aF!;

~C10!

the energy density is

rw[T00
(w)5

~312vBD!w0

32p
@Ḟ21~¹W F!2#, ~C11!

that, by using field equationhF50 and averaging over sev
eral wavelengths, reduces to

rw5
~412vBD!

32pG
^2Ḟ2&, ~C12!

where we usedw05(412vBD)/G(312vBD), as discussed
in Appendix A. Ashi j

(s)5Fei j
(s) , using Eqs.~C5! and~C6! we

have

rw5
~412vBD!

32pG
^ḣi j

(s)ḣi j
(s)& ~C13!

5
2~412vBD!

32pG E
f 50

f 51`

d~ logf ! f ~2p f !2Sh~ f !,

~C14!

so that

Sh~ f !5
3H0

2

4p2f 3

1

21vBD
Vw~ f !. ~C15!
-
n-
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