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Detection strategies for scalar gravitational waves with interferometers and resonant spheres

Michele Maggiore
INFN, sezione di Pisa, and Dipartimento di Fisica, UniversiiaPisa, via Buonarroti 2, 1-56127 Pisa, Italy

Alberto Nicolis
INFN, sezione di Pisa, and Dipartimento di Fisica, UniversiiaPisa, via Buonarroti 2, I-56127 Pisa, Italy
and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56125 Pisa, Italy
(Received 16 July 1999; published 2 June 2000

We compute the response and the angular pattern function of an interferometer for a scalar component of
gravitational radiation in Brans-Dicke theory. We examine the problem of detecting a stochastic background of
scalar GWs and compute the scalar overlap reduction function in the correlation between an interferometer and
the monopole mode of a resonant sphere. While the correlation between two interferometers is maximized
taking them as close as possible, the interferometer-sphere correlation is maximized at a finite Yalde of
wheref is the resonance frequency of the sphere dritle distance between the detectors. This defines an
optimal resonance frequency of the sphere as a function of the distance. For the correlation between the
VIRGO interferometer located near Pisa and a sphere located in Frascati, near Rome, we find an optimal
resonance frequendy=590 Hz. We also briefly discuss the difficulties in applying this analysis to the dilaton
and moduli fields predicted by string theory.

PACS numbd(s): 04.30—w, 04.80.Nn

[. INTRODUCTION In this paper we investigate whether it is possible to
search for such scalar particles using the GW interferometers
A number of interferometers for gravitational wag@W)  under construction, as well as the resonant spheres which are
detection are presently under construction and are expectetder study. We start from the Brans-Dicke theory and, in
to be operating in the next few years. In particular, VIRGO isSec. I, we discuss the response of an interferometer to a GW
being built near Pisa, the two Laser Interferometric Gravita-with a scalar component: in particular, we find that such a
tional Wave ObservatoryLIGO) interferometers are being scalar component creates a transvgmsith respect to the
built in the US, GEO600 near Hannover, and TAMA300 in direction of propagation of the GWétress in the detector; we
Japan. These interferometers are in principle sensitive also wmpute the phase shift¢ measured in the interferometer
a hypothetical scalar component of gravitational radiationand derive the angular pattern function, i.e. the dependence
Scalar GWs appear already in the simplest generalization aif the signal on the directioné(¢) of the impinging GW
general relativity, namely Brans-Dicke theory, whose actionsee Fig. 1 We find A pxsirffcos 2b. We also show the
reads physical (and forma) equivalence of two different gauges
used to describe scalar radiation.
1 4 wgp In Sec. Il we consider the detection of a stochastic back-
SBD:EJ d*xV=g| ¢R- TVM<PVM‘P *+ Smaten ground of scalar GWs. In this case it is necessary to correlate

D

with ¢ the Brans-Dicke scalar. The coupling of matter with
gravity, Smarers IS dictated by the equivalence principle. In
order to avoid conflict with solar system experiments, one
must takelwgp| greater than approximately 600.
At a more fundamental level, various scalar fields with
interactions of gravitational strength come from string
theory. A universal example is the dilatdr the low energy
effective action of string theory, in the graviton-dilaton sec-
tor, reduces to the first term on the right-hand side of Eq. 1,
with the identificationsp= (167/a’)e™?® (wherea’ is the
string tensionand wgp= —1. To avoid conflict with experi- u
ments, it is expected that the dilaton will get a mass from
non-perturbative mechanisni], or that it decouples from
matter with the cosmological mechanism proposed2h
Furthermore, various scalar fieldsnodul) appear when
compactifying string theory from ten to four dimensions.
Their number and couplings are strongly dependent on the FIG. 1. The definitions of the versors and angles discussed in
specific compactification used. the text.

0556-2821/2000/62)/02400415)/$15.00 62 024004-1 ©2000 The American Physical Society



MICHELE MAGGIORE AND ALBERTO NICOLIS PHYSICAL REVIEW D62 024004

two different detectors. We give a general treatment of thalirection. There are of course different possible gauge
computation of the overlap reduction functid{f) for ge- choices (i.e. coordinate transformationgor representing

neric detectors in the scalar case: such a function representptane wave solutions of the equations of motion of Brans-
measure of the correlation between the signals of the tw@icke theory with both spin 2 and spin 0 components. We
detectors and depends on the frequency of observAaod first consider a gauge choice that, for a wave propagating in

on the type of detectors one uses, as well as on their locatiofhe + z direction, brings the metric perturbation in the form
and relative orientation. Similarly to what has been done in

Ref.[14] in the case of the- and X components, we “fac- h,(t—2) =AM (t—2)el) + AC) (t—z)el¥)
A mv v nv
torize out” from I'(f) the response tensob; of the detec- <
tors, which summarize the whole information about the type +®(t—2)el?), i)

of the detectors and their orientation in space; next we com-
pute explicitly the remaining part df(f), that is the depen- wheree?:* S are the polarization tensors,
dence on the frequency and the location of the detectors. The -
result is thus completely general and it is applicable to any

; ; 0 O 0 O

given pair of detectors.
We then examine in particular the correlation between the |0 1 0 0

VIRGO interferometer and a resonant sphere, as the proto- €= 0 0 -1 0
type which is presently under study in Frascati, near Rome
[3—7]. Similar correlations are also in principle possible be- 0 0 0 0
tween LIGO and the TIGA resonant sphere located in Loui-
siana[8]. We compute the interferometer-sphere overlap re- 0 0 0O 0
duction function and we find that, contrary to what happens
in the correlation of two interferometers, the correlation is o) = 0 0 +1 0 . &)
not optimized when the detectors are as close as possible b0 +1 0 0)°
(compatibly with the constraint of decorrelating local 0 0o 0 0o
noises, but instead there is an optimum nonzero value of the
product of the distance between the detectors and the reso-
nance frequency of the sphere. For the distance between the 0 O 0 O
VIRGO interferometer in Cascina, near Pisa, and a resonant 0 +1 0 O
sphere in Frascati, near Rome, we find an optimum correla- el® = (4)
tion if the resonance frequency of the spherd<s590 Hz. 10 0 +1 0
This value off is quite interesting because it is in the range 0 0 0 0

where interferometers achieve their highest sensitivities and
at the same time is comparable to realistic values for th h
resonance frequency of the spheres which are presently UE:\ . . . . ;
der study. Actually, the TIGA prototype has its first resonant. € dgquatlog C.)f EOtf'OEOOé Brags-fDmke theo.ry Into mlﬁ fto rm
mode at 3.2 kHz, but hollow spheres, which are presently ap discussed in ke $10,5] and, for comparison with later

the stage of preliminary feasibility studigg], depending on rgsults, we recall ?he main points Of. th? Qerivaj[ion in Appen-
the material used and other parameters, could have a resdix A. Under rotations around theaxis, it is straightforward
o verify thate")xie{) have helicities=2, while e has

nance frequency between 200 Hz and 1-2 kHz, with a band® = H)a(+) 1 A0 -
width of order 20 Hz. helicity 0. Thus the ternA'™’e,,/+ A" e’ describes or-

In Sec. IV we discuss how the interaction with the detec-dinary gravitational waves with- andx polarizations in the
tors is modified by a very small mass term for the scalafiransverse traceless gauge, and the tdre)’) describes a
field. This is partly motivated by the desire to examine the_scalar GW, characteristic of the theory that we are consider-
perspective for detection of the string dilaton and moduli.Ing.

We find that, in presence of such a mass term, the stress To compute the response of the interferometer we start
induced in the detector by the scalar wave is not anymor&ith the geodesic equation for a free-falling mass,

purely transverse, but has also a longitudinal component of

relative amplitudem?/ w?, if mis the mass of the scalar and N rgﬁxax/?:(), (5)

w is the frequency of the GW.

In Sec. V we will then briefly discuss some difficulties in \ypere
applying our analysis to these fields predicted by string

e choice of gauge that brings the plane wave solutions of

theory. A number of technical details are collected in the _
Appe)rqdixes. Tip=3 7""(3ahp,+ dgha,— 3, ap) (6)
Il. THE RESPONSE OF THE INTERFEROMETER TO are the linearized Christoffel symbols and )& d/dr de-
SCALAR GRAVITATIONAL WAVES notes derivation with respect to proper-time of the mass. In

the gauge(2) we havel'f,=0 and therefore, if the mass is

initially at rest, it will remain at rest also when the wave
In this section we compute the phase shift measured in tharrives, and the proper timeis the same as the time variable

interferometer when a scalar GW is coming from an arbitranyt. In other words, choosing the gaug®) means that we

A. Computation in the gaugee' =diag(0,1,1,0
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automatically choose the reference frame whose coordinat&he phase-shift\ ¢ is obtained(see e.g[11,12) by multi-

are comoving with free-falling masses. plying the time differenceT,— T,) by the angular frequency
The situation is then perfectly analogous to the ordinary() ..., of the laser; this leads to the result

gravitational waves in the transverse traceless gauge: the co-

ordinates of the test masses are unaffected by the gravita-

1
tional wave, butphysical (i.e., propen distances between Ae=z Do @am, (12
masses are influenced by the wave. In our case the line ele-
ment is where g =0 2seN2L ¢ is the phase that the laser-beam ac-
cumulates inN round-trips.
ds?= —dt?+ (5 + h;;(t—2))dx'dx’ To compute the response of the interferometer for an ar-
B ) ) ) ) bitrary direction of propagation of the wave we recall that it
=—dt*+dz"+ (1+ ®(t=2))(dx*+dy?),  (7) s possible to associate to a detector a “response terBgr”

) such that the signalthe phase-shift, if the detector is an
where we have restricted ourselves to a purely scalar wavigiterferometer induced in the detector by a gravitational
and we use units=1; as usual we suppose that the wave-ygye of polarizatione;; is proportional to TfDe}=D;e;;

Iength of the scalar gravitational wave is _much Iarggr tha 13,14; for an interferometer whose arms are along the
the distance between the test masses, which for the interfer- ' 7. . i
dv directions the detector tensor is

ometer are the two mirrors and the beam-splitter; we take th8"
latter at the originO of the coordinate systertnote again

that in this gauge if the beam-splitter is at rest in the origin Dij :l]il]j _{)i{)j ) (13
before the wave comes, it will always remain there; this will
not be true in the gauge considered in the next subsectio
and so its frequencliis much smaller than Tf, whereTg is
the time a laser-beam takes to travel fr@nto the mass;
under this assumption, we can consider the amplitbde
—2) frozen at a valueb,. So, the proper fjistance of the ei(js)(ﬁ)=5ij—ﬁiﬁj, (14)
mass of coordinateX,Y,Z from the originO is

Yhe polarization tensor for a purely scalar wave traveling
along a generic direction is [see Eq.(4)]

i N=D. e® i -
L=\(1+®o)(X2+Y2)+Z2 ®) anq then th_e patte_rn functioR(n)=D;;e};”, which de _
scribes the interaction between a scalar wave propagating

The physical interpretation of E¢) is clear: the wave acts along n and an interferometric detector with arms alamg

only on the coordinates that are transverse with respect to igndv, is

direction of propagation. If we denote byl,

= X%+ YZJ_rzzzTo the proper dlstan_ce that the mass has F{(N)=—sin?0 cos 26, (15)

from the originO before the wave arrives, then from Eq. 8

we see that, at first order i, ) ]

where # and ¢ are, respectively, the polar and azimuthal

if Z=0=L=(1+ 1 dy)L, angles of the versan in the reference frame in which the

andy axes are co-aligned withi and v (see Fig. 1 Of

course, if6=0, there is no phase shift because the proper
length of the two arms is modified in the same way, and it
cancels taking the difference. However the proper time that

So, Just I_|ke the ordinary grawta_nonal waves with and X the light takes to make a round trip in each of the two arms
polarizations, the scalar wave is transverse, not only in its

. . T 4 Separately is modified by the wave, and it is in principle
(ranﬁaetztematmal description, Eq2), but also in its physical measurablé.For a generic angle of incidence the cancella-

It is now easy to compute the phase-shift produced in artlion does not take place and there is a phase shift
y P P P Combining Eqg.(15) with Eqg. (12) we get the phase shift

interferometer. We take an interferometer whose arms arg . S L
. . . or arbitrary direction of incidence of the scalar wa\e],
aligned along thex andz axes and we consider first a scalar

wave traveling in thet z direction. From Eq. 9 we see that
the time that the laser-beam takes in order to mdkeund-

trips from the beam-splitter to the mirror in tiedirection is VIRGO takes its output from a set of 5 photodiods which give 5
optical lengths including the difference between the two arms, of

course, and also the common mode, i.e. the sum of the two arm
lengths. However for the common mode the fluctuations in the laser
. o ) ) power do not cancel, and the sensibility is quite limited; it is basi-

while, for the beam traveling in the direction, the travel cqjly the same sensibility that could be obtained measuring the

if X=Y=0=L=L,. (9)

Te=(1+ 3 ®y)N2L,, (10

time is unaffected by the scalar wave, common mode with two separate interferometers, one made with
one arm and the prestabilization cavity and the other with the other
T,=N2L,. (11 arm and again the prestabilization cavity.
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As in Sec. Il A, we consider a purely scalar gravitational
wave traveling in thet z direction and impinging on an in-
terferometer whose arms are aligned alongxfaendz axes,
and have a length, when there is no gravitational wave.
We will denote quantities relative to the arms by subsciipts
andZ. Again, we deal only with the case in which the fre-
quencyf of the wave is much smaller thenTy=1/L,, as
discussed in the previous section.

Consider the metric

ds?= (14 ®)(—dt?+ dx?+dy?+dz?). (19

The laser-beam follows null geodesicsste0): so, for the
beam that propagates along thexis

8 A A i g
7
772

dXlaser

a * 1= Xpaseft) = CONStEL, (20

k\}\\\‘\.‘l;‘

RN
N\ 7
1 N
NN
i ”‘l"\\\\i\&\\\\ /\
AR

\{;\\

and for the beam along

dZIaser

@ +1=7,t)=consttt. (21

FIG. 2. The angular sensitivity of the interferometer for scalar
waves(top), + polarization(bottom righy and X polarization(bot-
tom left). The solid lines in the middle of the figure indicate the
orientation of the arms of the interferometer.

The geodesic equation of motion for the mirrors and beam-
splitter, in this gauge, if15]

X(t)=Xq
Agp(0,¢)=— %(DO'(Parm' sin200032¢. (16)

y(t)=Yo

The angular sensitivity of the interferometer to scalar GWs is 1

shown in Fig. 2, together with the standard angular pattern z(t)=zo+ 1 (t—2z(1))

for the + and X polarizations.
T(t)=t+2z(1), (22)

B. Computation in the gaugee'S =7,

It is instructive to repeat the computation in a differentWhere

gauge. Indeed, with a different gauge choice, we can bring t—7
the plane wave solution of the equations of motion into the I(t—z)zf ®(u)du (23
form of Eq. 2 withe(;}) ande();) unchanged, while ”

S =5 (17) [note that the solution foz(t) is an implicit equatioh

py RYE Therefore, in this gauge, the transverse coordinates are not
affected by the passage of the wave, while the longitudinal
coordinate is affected. Of course, this does not mean that the
9= (1+d)7 (19) phys_ical effect_ of the wave is I(_)ngitudin_al. T_he p_hysical ef-

wy uv: fect is determined looking at diffeomorfism invariant quan-
In Appendix B we prove this assertion and we find the co-tltlessihgg'iEr?rl]oi:r;gﬁ?g?ﬁ;?gg&:}oﬁg; t:)Tfﬁé mirrors and
ordinate transfo_rmation that allows to move from the previ-,[he beam-splitter are unaffected by the passage of the wave,
ous gauge to this orfe. from Eq. (20) we see that the interval, in coordinate time

that the laser takes for one round-trip in tkearm is

so that, for a purely scalar wave,

°This gauge has been used in Réf5]. However, the authors did Tx=2L,. (24)
not realize that in this reference frame the beam splitter is not left at . .
the origin by the passage of the GW, see below, and furthermord x Measures the time that the laser-beam takes in terms of
computed a coordinate-time interval rather than a proper-time interln® variablet: the beam leaves the beam-splittet a0 and
val, reaching the incorrect conclusion that the scalar GW has &0mes back at=Ty . However, this quantity is by definition
longitudinal effect, and no transverse effect. Their expression fof0t invariant under coordinate transformations, and in order
the phase shift and angular pattern then differs from ours. In thi¢0 deal with interference at the beam-splitter, we must work
subsection we will confirm the results of Sec. Il A, with a proper in terms of the beam-splitter proper time; it is this latter
treatement of the scalar GW in this gauge. variable that measures the physical length of the arms. Thus
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we call 7(t) andzgg(t) the proper time and-coordinate of
the beam-splitter aicoordinate time t [with initial condition
Zgg(—)=0]. From Eqgs.(22),

N t—2zgg(t)
2os0= 1 [ (25)

t—z

S(t)
®(u)du. (26)

— o0

T(t)=t+%f

The proper time interval that the beam takes to make a

round-trip in theX arm is then

Tx—28s(Tx)

ry=1(Ty) — 7(0)=Ty+ & f b (u)du

zgg(0)
=Tx+ 3 Po[ Tx+Zps(0) — Zgs(Tx) ]

=2Lo(1+ 3 Do), (27)

where we have used E(R4), we have considered ‘“fro-
zen” at ®, and we have kept only the first orderdr,. Note
that zg5(0) — zgs(Tx) = O(Py).

We now computeT, and 7,. Suppose that the beam
leaves the beam-splitter &0 and reaches the mirror along
the z axis att=T,. Then

Zg(0) +T1=2(Ty), (28)

whereZ(t) denotes the-coordinate of theZ mirror at timet
[with Z(—)=Lg]. Similarly, when coming back from the
mirror the beam reaches again the beam-splittet=at,
=T,+T, such that

Z(Ty) —To=24(T7). (29

Subtracting Eq(29) from Eq. (28) one has

T,=T1+T,=[2Z(T1)—2gs(0) | +[Z(T1) —zgs(T2) ].

The equations of motiof22) for the Z mirror and the beam-
splitter read

t—2(t

Z(t)=Lo+ %f )db(u)du (31

— oo

t—zpg(t)

Zgg(t) = %f ®(u)du, (32

which, substituted in Eq.30), give

PHYSICAL REVIEW D 62 024004

T1—2(Ty) T1—2(Ty)

@ (u)du.
(33

<I>(u)du+%f

Tz-2p(T2)

T,=2Lg+ %f

—25(0)

Because of Eq28), the first integral in Eq(33) is zero. The
second integral, in the approximation of a frozen wave and to
first order in®, gives

T1-2(Ty)
%j q)(u)dUZ%CDO[Tl_Z(Tl)_TZ+ZBS(TZ)]
Tz=2g5(T2)

~ 1
=2

Po[Lo—Lo—2Ly+0]

- % (Dozl_o.
Equation(33) thus becomes

T,=(1— 5 ®g)2L,. (34

Following the same steps leading to E&7), we then obtain

72=7(Tz) = 7(0)=Tz(1+ 3 Pg)=2L,. (35
Equationg27) and(35) agree with the result of Sec. Il A, see
Egs.(10) and(11), as they should. It is also apparent that the
computation in the gauge used in the previous section is
much simpler, due to the fact that in this case the coordinates
of test masses are not affected by the passage of the wave,
and only proper distances change.

Ill. STOCHASTIC BACKGROUNDS OF SCALAR GWS
A. General definitions

The standard procedure describedi4,17,18 for detec-
tion of stochastic backgrounds of ordinary gravitational
waves can be applied with minor modifications to the case of
scalar GWs. A stochastic, Gaussian and isotropic back-
ground of scalar GWs can be characterized by the quantity

dp,
dlogf’

1
Q¢(f)5p— (36)

wherep,, is the energy density associated to the background,
f is the frequency ang. is the critical energy density for
closing the Universe,

3H3
P 87G

(37

[Ho=100Ch, (km/sec)(1Mpc) is the Hubble constahtThe
intensity of the background is expected to be well below the
noise level of a detector: the detection strategy then consists
in correlating the outputs of tw@r more detectors, located

far enough so that local noises as the seismic noise are un-
correlated. One defines the quantity
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+T/2

. r(f)

+T/2
mJ~ dt’s;(t)s,(t")Q(t—t"), (38) yﬁ)=-E——, (44)
-T/2 12

T2
wheres, denotes the output of thath detector,T the total  where, for ordinary GWs
observation time an@ is a real filter function, that, for any
given form of the signal, can be determined exactly in order [ dQ;
to maximize the signal-to-noise ratitSNR). We write 12=f E
Sa(t) =h,(t) +n,(t), whereh, is the signal induced by the
background of scalar GWor an interferometer it is the and the subscript means that we must compyteaking the
phase shift computed in the previous secli@ndn, is the o interferometers to be perfectly aligned, rather than with
intrinsic noise of thea-th detector. Under the assumption of their actual orientation.
uncorrelated noises, the ensemble averddenoted by This normalization is useful in the case of two interfer-
(---)) of the Fourier components of the noise satisfies ometers, since in this case, for ordinary GW&,,=2/5
~— e~ ) @ (while for scalar GWg-,,=4/15) and it takes into account
(N3 (F)n(f"))=06(f—1") 858y (| f]). (39 the reduction in sensitivity due to the angular pattern, already
present in the case of one interferometer, and therefofe
separately takes into account the effect of the separmﬁ)n
between the interferometers, and of their relative orientation.
2 1/4 With this definition, y(f)=1 if the separatioldx=0 and if
(S (40) the detectors are perfectly aligned.
{((S—(S))?) This normalization is instead impossible when one con-
siders the correlation between an interferometer and the
where we have used the exponent (instead of 1/2) to take monopole mode of a resonant sphere, since in this Ease
into account the fact th@is quadratic in the signalsee Eq. =0, as we will see below. Then one simply usgéf),
(38)]. Optimal filtering (see[17,18) gives which is the quantity that enters directly E@1). Further-
more, the use of (f) is more convenient when we want to
v Sh(f) ) write equations that hold independently of what detectors
ZTJ'O df%F (f) (interferometers, bars, or spherese used in the correlation.
" In the following we will always refer td'(f) as the overlap

The various quantities that appear in the SNR are defined 4§duction function.
follows.
The functionS;, depends uniquely on the spectrum of the B. The overlap reduction function for scalar GWs

background, and not on the features of the detectors, and is |, this section we compute analytically the overlap reduc-

related to(2, by tion function of two generic detectors in the case of a back-
) ground of scalar waves, generalizing the result for ordinary
_ 3Ho 1 Q,(f 42) gravitational waves of Refl14].
4723 2+ wgp ¢ As one can see from E¢3), the overlap reduction func-

tion is obtained by averaging, over the possible directions of

Note that in the case of ordinary gravitational waves thepropagation of the gravitational wave, the product of the pat-
factor 1/(2+ wgp) is absent. The derivation of this result is tern functions of the two detectors, weighted with a phase
given in Appendix C. that depends on the delay in the propagation from one detec-
The functionS, is defined asS,(f)= ‘/snlii(f)g(n?)(f) and torto the other. The pattern function and detector tensors are

therefore depends uniquely on the intrinsic noises of the de€lated by

47 AZT x F(Al)(n)F,(A\z)(n)\aligneda (45)

The functionsS{(|f|) are known as square spectral noise
densities. The signal-to-noise ratio is defined as

1/4

SNR= (41)

tectors. - (82
The functionI'(f) gives a measure of the correlation be- Fy(n)=Djej’(n). (46)
tween the detectors, and depends on their relative position .
and orientation: it is defined as As in the case of ordinary GWs, the response tenﬁljf%
are normalized in such a way that the pattern functions
dQ; ~ N F®(n) take 1 as maximum value, varying Th
— (1) (2) i2rfdm-n s , varying 1hen we can
F(f)_f A Fs(mFT(nje ’ (43 rewrite Eq.(43) in the form
whered-rﬁ:x(l)rx(z) is the vector joining the detectors ( I'(f)=D{"Tj(a,m)DE, (47)
is their distancem a versoy and theF(sa)(n) are the pattern
functions of the detectors for scalar waves. wherea=2mfd and
In the case of the correlation between two interferometers, 40
it is conventional to define the overlap reduction functipn - n - A iam-n
by [10.14 g » ijia (e, )= f T el medme . (g
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As we discussed in the previous section, the polarization ‘

tensor for a scalar wave traveling in the directioms
ei(JS)(ﬁ):;(i;(j+§/i§/j:5ij_ﬁiﬁj, (49

wherex andy are versors perpendicular foand to each

9 ,
other(see Fig. 1 The difference between the scalar case and \ .

the traditional one resides iy, , because in the latter case
the polarization tensors{;™")(n) take the form

el (n)=XX;~ Yy,
e =xy;+yiX;. (50)

We now proceed to compute the tendgy, . Note that the

result we find is absolutely general, independently on the
type of the detectors used in the correlation, since the infor-
mations on the detectors is summarized in the response ten-

sorsD{? and not inljjy .

Since the tensof 'y is symmetric ini+j, in k1, and
in (ij)«<(kl) [see EQq.(48)], it can be written in the most
general form as

Tiji (@, m) = A(a@) Ajj + B(@) Biji + C(a)Cij
+D(a)Dij +E(a)&ij (51
where
Aijxi = 6ij 6k
Bijki = i 6j1 + i Sjk
Cijii = &; MMy + Sigmym, (52
Dji = My My mymy
Eija = Sy My + Sjmimy+ 8 mymy + &, m;my,
(the tensore M€ My + €ijmMnéjknM, is a linear combi-

nation of thesg
To determine the coefficient&(«), B(«), ..., E(a),

one has to contradt;;,, [written both in the forn{48) and in
the form (51)] with the five tensor$52) and to calculate the

Y«

/
/
/
pa~d
,

FIG. 3. Relative position of the sphere and interferometer.

. sina
Jo(a)ET

. jo(a)—cos
j(a)="2"
jz(a)53]l£¥a)_jo(a)-

The overlap reduction function for any specific two-detectors
correlation can now be obtained using this general form for
I'jj and then plugging into Eq47) the appropriate detector
tensors.

A particularly interesting correlation is the one between
the VIRGO interferometer and a resonant sphere. A resonant
sphere has 6 different detection channels: 5 corresponding to
the quadrupole modes with=2, m=0,+1,=2, and 1 cor-
responding to the monopole mode with-0, m=0. The
monopole mode is especially interesting because it cannot be
excited by ordinary spin 2 GWSs. The response of a resonant
sphere to scalar GWs has been computed in F5f.

To correlate an interferometer, with arms alamgnd v,
with the monopole mode of a resonant sphere, we use the
response tensors

corresponding scalar integrals, which can be done in terms of DW=ugu—-vev (54
spherical Bessel functions; one thus obtain a linear system

with five equations, whose solution is

[ AT i a® jola)=2a-ji(a)+ja)]
B 1 jo(a)
Clla)== —a® jo(a)t4a-ji(a)=5-jy(a) |,
D “| @ o(a) =10 ji(@) +35 j5(a)

| E L a-ji(a)=5-j(a)]

(53

where thej, are the spherical Bessel functions,

D@ =31, (55)
and we gef16]
I'(f)=(sirtd cos 2¢)j,(2mfd), (56)

where 6 and ¢ are the angular coordinates of the resonant

sphere(i.e. of m) with respect to the “natural” reference
frame of the interferometgisee Fig. 3.

Figure 4 shows the frequency dependence of this overlap
reduction function for a particular choice of the distamte
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0.3}
0.2}
FIG. 4. The behavior of
o-tr j2(27rfd) against the frequencly
(Hz) for d=270 km, which is ap-
proximately the distance between
the location of VIRGO and Fras-
or cati (resonant sphergs
-0.1f

lIO 5‘0 l(I)O 5(;0 lOIOO SOIO 0
f (Hz)

corresponding to the distance between the VIRGO site anily of the overall correlation is very strongly affected by the
Frascati. The most striking aspect, compared to the overlapalue off, and a value of ~1 kHz, while keeping the sphere
reduction functions of interferometer-interferometer correlain Frascati, can easily result in the loss of more than one
tions, is that the correlation vanishes if the distance betweegrder of magnitude in the SNR defined in E41). Note also
the detectorsd, goes to zero. This is the opposite of what that the minimum detectable value nggW is quadratic

happens for two interferometers, where instead the correlggii, the SNR[18] and therefore an inappropriate value of

tion is maximum for coincident detectors, S0 that the 'dealthe resonant frequency can easily result in loosing two or
strategy in that case would be to have two interferometers 3% ree order of magnitude 20
0= ~gw*

close as possible, compatibly with the fact that local noises, Converselv. if for technoloaical reasons the frequency of
like the seismic noise and local electromagnetic disturbancet?] ty’ h has t bg fixed at a diff tq | y £
should be uncorrelatd is believed that this implies a mini- € resonant spnere has 1o be fixed at a difierent value, Eg.

mum distance of at least a few tens of Rm this case (57) can be used to obtain the optimal distance between the

instead, a sphere coincident with an interferometer makes fd¥V0 detectors.

a totally ineffective correlation. This is easily understood,

because the monopole mode of the sphere has, obviously, a

constant angular pattern, while an interferometer has a de- IV. THE INTERACTION OF THE INTERFEROMETER
pendence~ cos 2p which over the solid angle integrates to WITH A VERY LIGHT SCALAR

zero. Parenthetically, this shows that in this case the function

y(f) cannot be defined, since it should be defined dividing Till now we *_‘a"‘? cor_15|dered only r_nassles_s sc_alars; It IS
T'(f) for the value for coincident detectors, which is now Interesting, having in mind the extension to situations moti-

zero. HoweverI'(f) is the quantity that enters the SNR. vated by string theory, to consider the effect of a small mass
Of course, asl— the overlap reduction function again €M on the response of a detector. ) o
vanishes, and therefore there is an optimal, finite value for L€t us first understand what it means “small” in this
the product of the distanakand the frequenc§; determined ~ context. We still want to treat the scalar as a classical wave
by the maximum ofj,(27fd). Approximately, this maxi- that acts coherently on the detector. This implies first of all

mum is reached when thatm<1/L, whereL is the characteristic size of the detec-
tor. For a sphere of size of order 1 meter, this gives approxi-
f d matelym< 10 © eV, while for a km sized interferometen
(590 Hl) 270 km) =1 (57 <107 eV. In both cases, however, there is a stronger limi-

tation that comes from the fact that, if we want to detect
We have taken the reference value 270 km, which correthese scalars with a detector that works at a frequeigcy
sponds to the distance between the locations of VIRG&. =1 kHz, or wy=27 kHz, we must require that the fre-
N 43.63, Lon. E 10.50 deaand FrascatiLat. N 41.80, Lon. quency of the massive scalas,,= JKZ+m?, is of order of
E 12.67 deg@ Since the resonant sphere is a narrow bandvg. Since of courses,,=m, we get
detector, compared to the interferometer, this means that the
optimal correlation is obtained with a sphere that resonate at
approximately 590 Hz. We see from Fig. 4 that the sensitiv- m<2m kHz~4x10 2 eV. (58
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For these ultralight scalars it still make sense to discuss theiwe then define
effect as a coherent gravitational wave.

In the opposite limit of large mass, the single quanta of 0,,=h,,—7,,(3h—P) (63
the scalar field will behave as particles rather than waves and
will interact incoherently with the detector, just with separateand choose th&orentz gaugdin analogy to electromagne-
hits and since they only interact gravitationally they will be tism)
totally unobservable.

Consider the action describing the Jordan-Brans-Dicke d,0"=0, (64)

theory (1), with in addition a potential term for the scalar:
by means of a transformation such thate,=d“0,,. In

S=S84+ S, such a gauge the field equations become wave equations:
de,,=0 (65
1 [OF=Y5) Mmv
Sg[guw@]zﬁf d'x —9[ PR——
¢ 0@ =m?d, (66)
xV"@VMgo—V(cp)} whose solutions are plane wavéand superpositions of
them):
_ ) aik X
Seltn Q= [ EX=GL L U0, (59 OurX) = A (l)&T c.c. 67
—b(k)eldax"
In analogy with the massless case, to obtain the field equa- P(x)=b(k)e +e.c. (68)
tions we vary the actios with respect to the metrig“” and where
to the scalarg; then, we linearize the equations near the
background ¢,,,,¢q), Where ¢, is a minimum ofV. The a— (. R k=lk
equations of motion in vacuurfwhere the matter energy- k= (woik) wo=k=[K]
momentum tensof ,, is zerg are -
" ° 9°=(wm;K) op=Vk+m? (69)
1 —_ —
Ruv= 3R M= = 9,0, P+ 77, 1P (60) as one sees from E¢69), the dispersion law for the modes
of & is that of a massive field, and the group-velocity of a
Od—m?P=0, (61  Wwave-packet ofP centered irk is
where R,,,R are the linearized[with respect toh,, . doy Kk
- _h e . " v=—o=—, (70)
=(9,,— 7,»)] Ricci tensor and scalar curvature; oKk om
=—(¢=¢0)/¢o; exactly the velocity of a massive particle with momentkim
. As in the massless case, we have a residual gauge-
me= V" (@0) @0 freedom: we remain in the gaugé4) by transformations
(3+2wpp) with Ce,=0. Notice that the Lorentz gauge is a transversal-

- , ) _ity condition on the fieldd,,,
Again in analogy to the massless case, the linearized Rie-

mann tensofR ,,,,, and the equation&0) and (61) are in- 3,0""=0= k,A*"=0, (71)
variant under gauge-transformations
but it says nothing about the transversality of the perturba-
h () =N, () =N, (X) = d(,€, (62 tionh,,=6,,— 7,,(1/26—®). And, in fact, it is easy to
show that, due to the field equatid@6), it is impossible to
o(X)—= @' (X)=@(X); choose a gauge analogous to E2). In fact, as in the mass-
less case discussed in Appendix A, to choose such a gauge,
we should operate a transformation with

30f course, in general such a ultralight scalar would mediate an et=0
unacceptably strong fifth force: Newton’s law is tested down to
length of order~ cm, so that an hypothetical fifth force could be
mediated only by a particle with massn>(1 cm) =2
X 10 ° eV (see e.g. Ref[1]). Here, however, we are considering
Brans-Dicke theory, withwgp™>600: the corrections to Newton's but now this is not compatible with the wave equati¢ds),
gravity, in the weak field limit, are smaller tha(1/wgp), so that ~ (66). Analogously, we cannot impose any linear relationship
even a massless scalar is compatible with experiments. betweend,,, and ®: so, for example, we cannot choose a

0,eth=— 10+, (72)
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gauge in whichh ,,=0, which in the massless case instead To better understand the contribution of it is conve-
permits to integrate immediately the geodesic equation.  nient to restrict to a wave packdi(t,z) centered at a fre-
Instead, we can choose a gauge in which a gravitationajuencyw,,= Vk+m?; in this case
wave propagating in the-z direction takes the form
d2

K- hof®).

hu(t,2) =AM (t=2)el) + AL (t-2)el) + D(t,2) 7.,
(73)

whereeij;) and e%) are the polarization tensof8). This is From this equation the physical effect of the mass can be

similar to the gauge choice discussed in Appendix B, buf€ad quite clearly. In particular; o
now, because of the non-linear dispersion lalvdepends for ultra-relativistic momentad,=k>m) the longitudi-
separatelyon t and z, instead of depending only on their nal components of the force becomes negligible with respect

differencet—z. This makes the discussion of the physical© the transverse one;

m2
Tij+;2-|_ij)xi. (77)
m

effect of the wave different from the massless case. in the non-relativistic limitw,,—m and the stress induced
To study the effect of the scalar wave on test-masses, wly the wave becomes isotropic, Bg+Tj; = Jj; .
now make use of thproper reference framef one of these Now one can compute the pattern function of a detector

masses(as the beam-splitter of an interferometer, for ex-fOr these massive scalar waves. In a generic gauge the re-
ample: the analysis thus can be performed in NewtonianSPONSe of the detector is obtained contracting the detector
terms(see[20] Sec. 13.§ in the sense that the spatial coor- 1€NSOD;; with thze tenso;R'ojo, which in the massive case is
dinatesx! represent proper distances for the observer “sit-Proportional towy,Tj;+ m“L;; . Note that the pattern function

masses is described by the equation of motion in fact, the contraction o, T;;+m?L;; with Dj; is the sum
of a term containingd;; T;; and a term containin®;;L;; ;
o Dok both these terms are proportional Imjﬁiﬁj, sinceD;; is
dt2 =~ RlokoX", (74 traceless, for an interferometer, and, so the only dependence

on the massan is in the overall factor of the signal and is

where the quantitie®/ o, are the so-called electric compo- independent of. In particular, foro,—m the signal goes to
nents of the Riemann tensor. The problem is thus reduced t#2ro. The pattern function is instead mass-dependent in the
calculate Ry, in the proper reference frame of this ob- case of a detector with a non-traceless response tensor, as for
server: this is connected by an infinitesimal coordinate transthe monopole mode of the sphere, or for the common mode
formation to the reference frame where K@3) holds, and  of an interferometer, for whicDj; =u;u;+vv; .

since the linearized Riemann tensgoy,,,, is invariant under

infinitesimal gauge transformations, we can compute it from  THg STRING DILATON AND MODULI FIELDS

the metric Eq.(73). Restricting to a purely scalar GW, a

straightforward computation gives It is clearly important to understand whether these resullts,
that have been obtained in the context of Brans-Dicke
— atz 0 0 theory, can be applied to the physically more interesting case

P 2 of the dilaton and the other scalar fields predicted by string

ROjO_E 0 _(9»[ 0 (I)(t,Z) theory.

0 0 m? i While the dilaton-graviton sector of the low energy sector
of string theory is the same as a Brans-Dicke theory, the

=— %Tij(?tzq’Jf 3 Lim?d, (75)  situation is quite different for the interaction of the dilaton

with matter. Since in the string casgyp= — 1, the dilaton is

where T;;= (5, _ﬁiﬁj) is the transverse projectomith re- coupled with a strength of the same order as the gravito_n,
o o~ o~ and produces unacceptable deviations from general relativ-
spect to the direction of propagation and Lj;=n;n; the

o . ; : ity, unless a non-zero dilaton mass is generated se¢ld.g.
longitudinal projector The equation of motiof74) thus be- The radius of the non-universal force that it mediates must

comes be smaller than about 1 cm, ar>2Xx 10 ° eV. Therefore
> the analysis of the previous section, which was validrfor
—x;=(% ﬁtzq’)'Tinﬁ(— Lm2d)-Lyx;, (76) <4X 10*1_2 eV, does not apply to a massive dilaton. Indeed,
dt? it is also in general not easy to reconcile such light scalar

particles with cosmology, see e[@1,22, although there are
from which one immediately sees what is the effect of themechanisms that solve the cosmological problems created by
dilaton mass: it generated@ngitudinal force(in addition to  light scalars, typically introducing a second short stage of
the transverse on@roportional tom?. In the limitm—0 one inflation that dilutes the dilaton overproduced by oscillations
recovers the treatment of the massless case, confirmirground their quadratic potential.
again, also from the point of view of the proper reference Actually, there is the possibility to circumvent this bound
frame, the results of Sec. Il. on the mass, with a mechanism that has been proposed by
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Damour and Polyakoy2]. Assuming some form of univer- 87 .

sality in the string loop corrections, it is possible to stabilize R,,— 3R, =—T,,+ — [9.0d,0
a massless dilaton during the cosmological evolution, at a ¢ ¢

value where it is essentially decoupled from the matter sec-

) X 1
tor. In this case, however, the dilaton becomes decoupled - %g#ygaﬁé’awﬁwﬂ—[v#ﬁv@
also from the detector, since the dimensionless coupling of ¥
the dilaton to matterd in the notation of2]) is smaller than _gwgaﬁvaaw] (A%)

10 7 (see alsd23]). Such a dilaton would then be unobserv-
able at VIRGO, although it could still produce a number of
small deviations from. general relativity which might in prin-_ R— @gmﬁ WV(PJFZEQMV 9,6=0, (A5)
ciple be observable improving by several orders of magni- 2 K ¢ a
tude the experimental tests of the equivalence prin¢iié
So, in both cases, the analysis done for Brans-Dickevhere
theory does not appear to be relevant for string theory. How-
ever, it is clear that our present understanding of the string 2 88,
dilaton and moduli is incomplete and presents a humber of Tu=— \/: P (AB)
unsettled issues, including the non-perturbative mechanism —949
for mass generation, or the stabilization at the minimum of

: - L _Is the matter-fields energy-momentum tensor.
tmh:tg:)etentla[ZS], and a definite conclusion is probably pre Equation(A4), multiplied by g“*, gives

877 wBp 3
—R= —T——Z(?#(p&“go——V#o"“(p (A7)
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1)
APPENDIX A: GRAVITATIONAL WAVES IN THE Equations(A4) and (A8) are our basic field equations. We
JORDAN-BRANS-DICKE THEORY now study small perturbations around a background configu-
The Jordan-Brans-Dicke theory is described in theration: we choose as background the Minkowski metric and
Jordan-Fierz frameby the action ©(X)=¢o=(4+2wgp) /(3+2wgp)G, in order to have the

correct post-Newtonian limit and to obtain general relativity
when wgp— 0, as shown irff26]; we consider

S=50,,,01+ Sl .9, Al
19,001+ Sel ¥m 9,,] (A1) 0,00 = 7,0, N (X)

1 ©ap @(X)=¢@ot d¢(x), (A9)
S E—f d4X\/—g{<pR— —V*#pV (p}
9 16w ¢ g with |h,,[|<1 and|d¢|<¢,. We callR,,,,, R,, andR
(A2) the linearization to first order i, of the corresponding
quantitiesR R,, andR; one haq20]

LYpo
—1 _ —
SmEf d*x\—gLy[ U 9unl; (A3) Ruavg= 249, part 9u0alyup = 000g &”ﬁ”h“gi'lo)
The linearization of the field-equation®4) and (A8) in
where vacuum (T ,,=0) gives
g, is the metric tensor, with which one constructs all the
covariant quantities, such as the scalar curvaRjmovariant Ruv— 3 NuwR=—0,0,0+7,,0P (A11)
derivativesV, etc.;
¢ is a scalar field; Od=0, (A12)

wgp IS a parameter;
Y are the matter fields, such as fermions, gauge fieldsyith ®(x)=— 8¢(x)/¢o. In analogy to general relativity,

etc.; we can define a transformation acting on our fields that leave
L, is their Lagrangian. unchanged the linearized Riemann teriRdr, ., [and conse-
To obtain the field equation one as to vary the actibn quently Egs.(A11) and(A12)]: such aninfinitesimal gauge
with respect tag#” and to¢; this leads to transformationwith parametere” is
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h, (0 —h. () =h,,(X)— d(.€,) (A13) De*=0

P(X) =P (X)=P(X). d,€"=—30+d (A26)
It is Straightforwal’d to Vel’ify, by direct substitution in Eq (lt is possib'e because in vacuum in Lorentz gaU@g
(A10), that R*,,,, is gauge-invariant. We want to use this — ¢ =0); one hagsee Eqs(A19) and (A16)]
gauge freedom to obtain a wave equation. We thus define
0=20=h,,=0,,; (A27)

0,,=h,,— 3 N+ 7, P (A14)

- that means that,,, too is aplane transverse wave
0=7""6,,= —h+4d, (A15) Again, we have not yet completely fixed the gauge: we

satisfy our conditions

with h=»*"h ,,; the transformation that expresskeg, in
terms of¢,,, has the same form 0,,=0
h,uvz 0,4.“/_ % 77,U,l/0+ 7’#1/(1) (AlG) 0=20 (A28)
h=— 6+ 4® (A17) also by operating gauge transformations with
Substituting Eq(A16) into Eq. (A11l) one obtains the field De=0
ion f
equation ford,,,, 5,64 =0. (A29)

06,,—3,(9%0,,)—3,(3%0,,)+ 1,,0°(3%6,5) =0.
pr ™ Ol 0 0) = I T Oa) 000 % Ou) (A1g)  Consider the case in which the wave is propagating-in

direction: then
Inserting Eq.(A13) into Eq. (A14) one finds immediately

that under gauge-transformations k#=(k,0,0k) (A30)
0,,,(X) = 0),,(X) = 0,,(X) = 3 €,)F 1,,07€, k“A,,=0= Ag,=—Ag, (A31)
6(x)— 6’ (X) = 6(x) +23%,, (A19) Ao=—A (A32)
(I)(X)—“I)I(X):(I)(X), AOOZ_A30:+A33. (A33)
By choosinge* such thatle,=d"6,,,, one has Let us make a degrees-of-freedom countingAqr, :
) we started with 10 € independent components of a sym-
9*0,,=0, (A20)  metric tensor;
, transversality leads to 7: it “kills” only 3(instead of 4
and, so, a wave equation fo?r;w [see Eq(A18)] because of symmetry d,,, ;

the condition6=2® leads to 6: we choosfqq, Aq1,
Asy, Asq, Azq, andAgz, as independent components;

further gauge freedom permits us to put to zero 3 of the 6
components(three rather than four, because of condition
d,€"=0).

Thus taking

0e,,=0. (A21)

In this gauge(we will call it Lorentz gaugein analogy to
electromagnetisinthe solutions are plane waves and their
superpositiongwe omit the ( Y]

00 =A,,(K)e et c.c. (A22) €,(0) =%, (Rt c.c
L0=%, c.

d(x)=b(k)ek*+c.c., (A23) Ko =0 (A34)
M

with the following conditiong deriving from the field equa-

tions and from Eq(A20)]; the action of the gauge transformation An, is [see Egs.

(A19) and (A22)]

k?k,=0 (A24) , L
A AL =A,,— K (A35)

k“A,,=0; (A25) _ .
or, for the 6 components we are interested in,

the latter is a transversality condition fér,, .

Once we have chosen the Lorentz gauge, we can still Ago—Agot 2ikeg
operate transformations with e#=0; we thus takes* such
that A11—A1
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Azo— Az

Az1—Agq (A36)

A31—>A31_ |k’;1
A32—)A32_ |k;2 .

Notice thatA;;, A,, and A,;=A;, are invariant: we thus
choosee,, €;, €, in order to “kill” the others. We have
now completely fixed the gauge.

Doesh,,, depend on the field? Equation(A27) tells us
h=h;,+h,,=2®. Summarizing, we can say thah this
gauge the metric perturbatiom ,, produced by a gravita-
tional wave propagating in the z direction takes the form

— A=A (t=7)al*) )t — (X)
h,(t—=2)=A""(t-2)e,,/+A(t-2)e,,

+d(t-2)eld), (A37)
wheree:* S are given in Eqs(3) and (4).

wv

APPENDIX B: EQUIVALENCE OF THE TWO GAUGES

In this appendix we show that it is possible to choose a

gauge(which we denote writing a tilde over quantities evalu-
ated in this gaugein which the metric perturbatioﬁw has
the form (A37), with A=A ACI=AC) P

_ ) — ) ax) = al(x)

=d, e, /=e,’, €,/=¢€, , but

el =diag —1,4+1,+1,+1)=17,,. (B1)

The quantities without & ) refer to the gauge used in the
previous Appendix and in Sec. IlA. We call “transverse”
the former gauge, and “conformal” the latter: we want to

find a gauge transformation that passes from the transverse
gauge to the conformal one. In order to have a wave equation
for 6, one has to keep the Lorentz gauge condition: this

condition is mantained by imposirige, =0. By choosing

1

ﬁMGMZ—EG

Oe*=0, (B2

which is possible because in Lorentz gauge in vacuu
=0, we obtain a traceles%;” and so[see Eq.(A16)]
h;w= 0;]}4—(1)77#,,. (B3)

In analogy with Appendix A, acting with a transformation
with
d,e"=0
Oe*=0 (B4)

we can now eliminate the appropriate components?}g,]‘
[see Eqgs(A36)], in order to obtain exacty,,,. It is then

PHYSICAL REVIEW D 62 024004

easy to prove thal(")=A(*") and AC)=A™) py examin-

ing the action of gauge transformations on those amplitudes.
The two gauges are thus equivalent: and in fact it is easy

to exhibit the coordinate transformation that relates them

coordinates with a ( ") denote the transverse gauge and we

now limit to the case of a purely scalar wgve

X' =X
y'=y
7’=z—31(t—2) (B5)
t'=t+ 21(t—2),
where
t—z
I(t—z)zf_w ®(u)du. (B6)
In fact
dx’'=dx
dy’=dy
dz'=(1+ 2 ®)dz— 3 Pt (B7)
dt’=(1+ 3 ®)dt— 3 ddz,
and
ds?= (14 ®)(—dt?+ dx?+ dy2+ dz?)
= 7,,0x"#dx’ "+ D (dx' 2+ dy’?). (B8)

As we have seen in Sec. Il A, the physical meaning of the
primed coordinates is that they are comoving with free-
falling test-masses, initially at rest, abdis proper time. We
can check this assertion in the conformal gauge, by making
use of the solution of the geodesic equations of motion found
in [15], see Eq(22). By substituting Eq(22) into the trans-
formations(B5) one finds

X' (t)=Xo
y'()=Yo
Z'(t)=1z9 (B9)
t'(t)=t+2(t)— zo= 7(t) + const,

that proves that, in the primed coordinates, bodies initially at
rest remain at rest.
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APPENDIX C: RELATIONSHIP BETWEEN Sy (f)
AND Q ()
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RE __g RE—8 TE +3+2(l)BD
- ®o

e 242 90,

When dealing with stochastic backgrounds of ordinary

GWs one definess,(f) as follows[18]. One expands the

metric perturbation in plane waves

- +OO ~ . -on ~
hij(t,x)=A:2+X j_ dffdQﬁhA(f,n)eZW'f“—*")ef}(n),
(Cy

where the ensemble average of the Fourier modes is

(hx(f,mha (f,0"))=o8(f— ' )—52(n n')dan 5 Sh(f)
(C2
and 82(n,n")=8(¢p— ¢') 5(cosé—cose'). By inserting Eq.

(C) in the expressiopg,= 1/(327G)(h;; h;;) for the energy
density of the background, one obtains

_ 4 f=+ocd| f f f ) f
pgw_szweffzo (logf)f(27f)?Sy(f),  (C3

so that

2

3H;
S =43 2(1).

(CH
In the case of scalar waves, we write

- +OO ~ . -on ~
hff’(t,x):f_ dff dQahe(f,n) e - Mel) ),
(CH

and

. . 1 .. 1
(h(s)(f,n)h(s)(f’,n’»:5(f—f’)ﬂéz(n,n’)zsh(f).
(C6)

We want to relate this new functio8,(f) to the energy
density p,, of the field ¢. It is convenient to rewrite the
field-equation of the Jordan-Brans-Dicke theory in the Ein-
stein frame, that it is related to the Jordan-Fierz one by the

conformal transformation

E_[£
gMV_((Po)gMV. (C7)

In this frame, the field-equation for the metric has the stan-

dard general relativity form

1 E 4
- EgiygEB(ya(P(?ﬁ(P}l (C8)

and the energy-momentum conservation law becomes

Y (3+2wgp) ¢o o
VE T;LV+ ( ,U,(PaV(P 2 gELVgEB&a(Paﬂ‘P)
167 ¢?
=vyTE, +T¥]=0, (C9)

SO we deflneT(“’) as the energy-momentum tensor of the
field ¢. To flrst order |nh (gﬁy— 7,) and O=—[(¢
— o)/ ¢o] we have

T(‘P)=(3+ 2wgp) ¢o

(o o (0u0, 0= 5 7,,0°00,D);
(C10
the energy density is
3+ 2w
_qio_ 3200 1o sg2 (e

Pe= To0 327

that, by using field equationl® =0 and averaging over sev-
eral wavelengths, reduces to

(4+ ZwBD)

Pe™ 322G (C12

(202),

where we usedoo—(4+ 2wgp)/G(3+2wgp), as discussed

in Appendix A. Ash! S)—d)el(f), using Eqs(C5) and(C6) we

have
_2(4+2wBD) f=+o 2
~—omg ), dloghf(2mh)?Sy(f),
(C19
so that
3H3
Si(f)=—3 Qy(h). (€15
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