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Mesoscopic fluctuations in stochastic spacetime
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Mesoscopic effects associated with wave propagation in spacetime with metric stochasticity are studied. We
show that the scalar and spinor waves in a stochastic spacetime behave similarly to the electrons in a disor-
dered system. Viewing this as the quantum transport problem, mesoscopic fluctuations in such a spacetime are
discussed. The conductance and its fluctuations are expressed in terms of a nonlinear sigma model in the closed
time path formalism. We show that the conductance fluctuations are universal, independent of the volume of
the stochastic region and the amount of stochasticity.

PACS number~s!: 04.62.1v, 05.40.2a
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I. INTRODUCTION

A. Metric fluctuations in semiclassical gravity

Since the Einstein-Hilbert action is insensitive to fluctu
tions near the Planck scale, we expect large fluctuation
this regime to occur which may require reconsideration
the concept of the microstructure of spacetime itself. T
concept of metric fluctuations thus introduced originally
Wheeler@1,2# has been studied and modified in various d
ferent contexts. Spacetime foams or other string-theo
motivated microstructures of spacetime can be treated
possible stochastic sources@3#. Since these fluctuations be
come dominant only near the Planck scale and canno
directly observable, it is important to identify their possib
influence on the matter fields propagating in such a ba
ground with an energy much lower than the Planck va
which is possibly detectable by high energy astrophys
observation.

Since quantum gravity is still an unsolved problem,
conventional semiclassical gravity, a spacetime is left
quantized@4#. A recent study in semiclassical gravity, how
ever, reveals many pathological features in this approa
One of the most serious problems is violation of the posit
energy theorem due to large quantum fluctuations, wh
leads to violation of causality by allowing the creation
traversable wormholes@5#. It is also noticed that positivity
can be recovered by imposing additional smearing in
case of Minkowski spacetime@6#. This smearing, originating
in microscopic quantum fluctuations, may also cure ot
problems such as initial or black hole singularity problem
Other studies also suggest that the small stochastic fluc
tions of the spacetime metric lying on the deterministic ba
ground spacetime are not only the useful phenomenolog
modification of the semiclassical Einstein equation but a
the inevitable consequence of more fundamental process
of the backreaction induced by matter fluctuations@7,8#. In
an astrophysical context, squeezed states, evolved from
mordial gravitational waves by parametric amplification d
ing the cosmological expansion@9#, are considered to be on
of the origins of the stochastic gravitational waves believ
to exist in the present universe. Whether or not the trace
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such primodial fluctuations as the quatum noise lies wit
the detectable range of the Laser Interferometric Grav
tional Wave Observatory detector~LIGO! @10# is a curious
question under debate@11,12#.

B. Semiclassical gravity and mesoscopic physics

Semiclassical gravity, though far different in energy sca
shares many common features with mesoscopic phy
@13,14#. The quantum transport properties of metallic sy
tems are known to be divided into several different regim
depending on the qualitatively different contribution of sc
terers. For a length scale less than the mean free pathl M , the
wave propagates ballistically, similar to the free coher
wave; for a length scale larger than the coherence len
Lcoh , the scale at which the mutual coherence of waves
lost due to inelastic scattering, classical Boltzmann transp
theory is valid. In the mesoscopic scalel M,L,Lcoh , mul-
tiple scattering has to be taken into account and the co
ence between different paths becomes important. The e
of the environment also has to be considered, and the d
pation and decoherence due to inelastic scattering play
important role. Furthermore, in the mesoscopic regime cl
to Lcoh , the quantum-classical correspondence of
propagating wave becomes relevant; in the same reg
close tol M , the possible influence of the microscopic co
stituent of a medium will manifest itself in the transpo
properties of the wave. Owing to recent progress in na
scale technology@15#, many phenomena in this regime a
amenable to experiments. In light of this analogy, vario
effects associated with electromagnetic wave propaga
in the Friedmann-Robertson-Walker universe and
Schwarzschild spacetime with metric stochasticity we
studied in @16# based on the formal equivalence of Ma
well’s equations in a stochastic spacetime with those in r
dom media. Localization of photon and anomalous parti
creation can occur in such stochastic spacetimes.

In this paper, we show that the scalar and spinor fie
propagating in a stochastic Minkowski spacetime can
considered as electrons propagating in a disordered poten
The randomness couples to the frequency of the wave a
tively for the conformal metric fluctuations. Thus the effe
of the stochasticity resembles that of a random potential.
use the closed time path formalism, which allows us to stu
©2000 The American Physical Society02-1
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equilibrium and nonequilibrium quantum field theory in
unified framework@17,18#. The closed time path partition
function is defined for the stochastic quantum system fr
which we obtain the effective interaction between fundam
tal fields in the form of a four-point vertex after averagin
over stochasticity. Diagonalization of the matrix Green fun
tion is employed. This is an essential step for making use
the nonlinear sigma model developed for the disorde
transport problem @19–23#. We use the Hubbard
Storatonovich transformation and write the collective exc
tions in terms of auxiliary fields. The conductance and
fluctuations are expressed by these auxiliary fields.

The paper is organized as follows: In Sec. II, we start
showing that the effects of conformal metric fluctuations
scalar and Dirac fields can be simply represented by the
fects of a fluctuating mass. In Sec. III, we develop the n
linear sigma model to express higher order fluctuations
fundamental fields in terms of the correlation function
collective fields. The conductance associated with propa
tion of particles in such a spacetime can be defined an
gous to the one in electric circuits by the Kubo formula
the correlation function of currents. Similar to the mes
scopic quantum transport problem, we show that the cond
tance fluctuations are universal, independent of the siz
the stochastic region and the amount of stochasticity initia
assumed. The amplitude of the conductance fluctuation
constant up to leading order in the weak disorder expans
In Sec. IV, a summary of results is given followed by a br
discussion.

II. WAVE PROPAGATION AND SCALAR AND DIRAC
FIELDS IN STOCHASTIC SPACETIMES

The Lagrangian density for the complex free scalar fi
in curved spacetime has the form

LS5A2g@gmn]mf†]nf2~mS
21jR!f2#, ~1!

wherej is a dimensionless nonminimal coupling paramet
j51/6 is called conformal coupling andj50 is minimal
coupling. In the presence of a slight amount of inhomoge
ity in a flat spacetime background characterized bygmn

5hmn1hmn , the Lagrangian given above can be split into
flat space term and a perturbation term asLS5LS01LSI :

LS05hmn]mf†]nf2mS
2f2 ~2!

andLSI52TS
mnhmn , whereTS

mn is the stress-energy tenso
In a conformal coupling case (j51/6), theaction, Eq.~1!, is
conformally invariant except for the mass term. Thus, a c
formal type of metric fluctuations can be attributed to t
effect of a fluctuating mass. Accordingly, if we write th
stress-energy tensor in the form
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mn5]mf†]nf2

1

2
hmn@hlr]lf†]rf1mS

2f2#

22jF]mf†]nf2hmnhlr]lf†]rf1f†]m]nf

2
1

4
hmnf†hf2

3

4
hmnmS

2f2G ~3!

for an isotropic and conformal type of stochasticitygmn

5hmnev(x);hmn1hmnv(x), where v(x) is a stochastic
field, the interaction term can be simply written as

LSI52mS
2v~x!f2~x!. ~4!

In this case the total Hamiltonian is given by

H5E d3x@p21~¹f!21mS
2f21mS

2v~x!f2# ~5!

or, in a momentum representation,

H5(
p

Ff~2p!~p21mS
2!f~p!

1mS
2(

q
v~q!f~p!f~p1q!G . ~6!

Furthermore, if we restrict our case to elastic scattering,
have

H5(
pW

Ff~2pW !~pW 21mS
22v2!f~pW !

1mS
2(

qW
v~qW !f~pW !f~pW 1qW !G , ~7!

where v[p0. This has the form equivalent to electro
propagation in a disordered potential.

The equation of motion in this model will be

¹2f1~v22mS
2!f1vS~x!f50, ~8!

wherevS(x)[mS
2v(x). Comparing Eq.~8! with the equation

of motion for the electromagnetic wave@16#,

¹2f1v2f2v2vS~x!f50, ~9!

we see that the randomness couples additively to the
quency in the scalar wave, whereas it couples multipli
tively in the electromagnetic wave. Since the electrom
netic wave obeys Maxwell’s equations which a
conformally invariant, the equation of motion is rather sim
lar to that of wave propagation in random media, while f
the scalar wave subjected to conformal metric fluctuatio
the equation of motion has the form of massive particles i
random potential. We expect that the property of fields un
the influence of more general types of metric fluctuatio
will possess both aspects. The difference of the form
tween Eq.~8! and Eq.~9! leads to the different density o
2-2
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MESOSCOPIC FLUCTUATIONS IN STOCHASTIC SPACETIME PHYSICAL REVIEW D62 024002
states and transport properties. We also point out that
though the restriction of the metric fluctuations to the co
formal type simplifies the arguments significantly, many
guments in the rest of the paper are applicable to a m
general class of fluctuations.

The Lagrangian density for the Dirac field in curve
spacetime has the form

LD5bF i

2
c̄¹” c2mDc̄cG , ~10!

where ¹” [ga¹a, ga[ba
mgm, and b5detba

m for vierbein
fields ba

m . The Lagrangian given above splits into a fl
space contribution and a perturbation term asL5LD01LDI
similar to the scalar field case:

LD05
i

2
c̄¹” c2mDc̄c ~11!

andLDI52TD
mnhmn , whereTD

mn is the stress-energy tenso
which can be written as

TD
mn5

i

2
@c̄gm¹nc2¹nc̄gmc#. ~12!

For a massless Dirac field, the action, Eq.~10!, is confor-
mally invariant. Thus, a conformal type of metric fluctu
tions can also be considered as the effect of a fluctua
mass as in the scalar field. For an isotropic, conformal t
of stochasticityv(x) defined above, the interaction term ca
be manifestly given as

LDI5
i

2
v~x!c̄~x!¹” c~x!5mDv~x!c̄~x!c~x!, ~13!

where we used the equation of motion to obtain the sec
expression. The equation of motion in this model will be

@ i ]”2mD2vD~x!#c~x!50, ~14!

wherevD(x)[mDv(x). The corresponding equations for th
Green functions are

2@h1mS
21vS~x!#G~x,x8!5d4~x2x8! for a scalar field,

~15!

@ i ]”2mD2vD~x!#S~x,x8!5d4~x2x8! for a Dirac field.
~16!

We expect that the autocorrelation functions of the s
chastic fields have the following forms:

DS~x2y!5^vS~x!vS~y!&5uSFL~ uxW2xW8u/L !FT~ ut2t8u/T!,

DD~x2y!5^vD~x!vD~y!&

5uDFL~ uxW2xW8u/L !FT~ ut2t8u/T!, ~17!

whereFL andFT are rapidly decaying functions andL andT
are characteristic correlation ranges of the stochastic fiel
space and time, respectively.L andT can be regarded as th
02400
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minimum length and time appearing as a result of the coa
graining of microscopic dynamics characterizing the fin
resolution of spacetime. The functionsFL and FT are nor-
malized such that*F Ld3x5*FTdt51. For a possible
choice of the form of fluctuations,

^v~x!v~y!&5
l pl
a

uxW2xW8ua
e2uxW2xW8u/ l pl ~18!

for a constanta, whereL5 l pl51.6310233 cm is the Planck
length, we have

uS54pmS
4l pl

3 , ~19!

independent ofa. The disorder-averaged retarded~ad-
vanced! Green function^GR(A)(p,p8)&5GR(A)(p) can be
written in the form

GR(A)~p!5
1

p22mR
27 i sgn~p0!S I~p!

, ~20!

wheremR is the renormalized mass andS I(p) is an imagi-
nary part of the self-energy. The upper~lower! sign corre-
sponds to the retarded~advanced! Green function. For the
stochastic field that obeys Eq.~18!, v(x) can be approxi-
mated as a white noise potential ifupW u!M pl , where M pl
51019 GeV is the Planck mass. Consequently, the s
energyS I(p) is independent of the momentum and depen
only on the frequency in such a limit. That is, the low ener
elastic scattering is insensitive to the length scale that c
acterizes the fine structure of the medium. In this limit, t
effect of the medium is to renormalize the frequency of t
wave propagating through it. The real part of the self-ene
can be absorbed in the frequency term in this limit and w
not be considered in this paper. Such a medium is called
effective medium. Under this condition, the mean free p
of this system is given byl M54p/uS in the Born approxi-
mation. Combining with Eq.~19!, we obtainl M5mS

24l pl
23 .

For a massmS much smaller than the Planck mass (mS
!M pl), this naive calculation illustrates that the mean fr
path is much larger than the Planck length (l M@ l pl). Similar
results hold for the spinor field as well. The coherence len
Lcoh , on the other hand, is determined by many factors
cluding the other possible interactions, the time depende
in the randomness, and external fields and will not be sp
fied here.

III. MESOSCOPIC EFFECTS IN STOCHASTIC
MINKOWSKI SPACETIME

In this section, we consider quantization of the nonint
acting scalar field that obeys the stochastic equation of
tion discussed in the last section. The parallel argument
the Dirac field is given in Appendix A. The stochastic actio
for the scalar field has the form

SvS
@f,f†#5E d4x@]mf†]mf2mS

2f22vSf2#. ~21!
2-3
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FIG. 1. The contour in the
closed time path integral formal
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This action is invariant under the global U~1! gauge transfor-
mation

f~x!→eiuf~x!,
~22!

f†~x!→f†~x!e2 iu.

The corresponding Noether current is

Jm~x!5 if†]mf2 i ]mf†f. ~23!

A. Closed time path formalism for the stochastic system

The quantization of the stochastic system described in
~9! can be treated in the closed time path formalism. Here
assume that the whole system consists of a complex sc
quantum fieldf and a classical stochastic fieldvS . Then the
density matrix for the whole system is given by

rS@f1 ,f1
† ,f2 ,f2

† ,vS ,t#5^f1 ,f1
† ,vSur̂S~ t !uf2 ,f2

† ,vS&,
~24!

whereuf,f†,vS& is an eigenstate of the field operatorf̂ for
a particular realization ofvS such that

f̂~x!uf,f†,vS&5f~x!uf,f†,vS&. ~25!

To obtain the reduced density matrixrS@f1 ,f1
† ,f2 ,f2

† ,t#
for the system, we average overvS as

rS@f1 ,f1
† ,f2 ,f2

† ,t#5^rS@f1 ,f1
† ,f2 ,f2

† ,vS ,t#&v .
~26!

The closed time path partition function for this system
given by

Z@J,J†,vS#5E df fdf f
†^02uT̃ exp@2 iJ2•f̂#uf f ,f f

† ,vS&

3^f f ,f f
† ,vSuT exp@ iJ1•f̂#u02&

5E df fdf f
†Df1Df1

†Df2Df2
†

3exp$ i ~S@f1 ,f1
†#2S@f2 ,f2

†#

1J1•f12J2•f2!%exp$ i ~SI@f1 ,f1
† ,vS#

2SI@f2 ,f2
† ,vS# !% ~27!

for r̂S(t i)5u02&^02u and SI@f,f†,vS#[2*d4x vSf2,
J•f[*d4x@J†(x)f(x)1f†(x)J(x)# andT̃ denotes an anti-
time-ordered product. The path integral above is defin
02400
q.
e
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d

along two paths, one forward in time and the other backw
in time ~Fig. 1!. For an arbitrary initial state given by
rS@f1i ,f1i

† ,f2i ,f2i
† #, the partition function takes the form

Z@J,J†,vS#5E df fdf f
†Df1Df1

†Df2Df2
†

3exp$ i ~S@f1 ,f1
†#2S@f2 ,f2

†#

1J1•f12J2•f2!%rS@f1i ,f1i
† ,f2i ,f2i

† #

3F@f1 ,f1
† ,f2 ,f2

† ,vS#, ~28!

where

F@f1 ,f1
† ,f2 ,f2

† ,vS#

5exp$ i ~SI@f1 ,f1
† ,vS#2SI@f2 ,f2

† ,vS# !%

~29!

is a stochastic influence functional.
In the absence of the stochastic field,

Z@J,J†#5E df fdf f
†Df1Df1

†Df2Df2
†

3exp$ i ~S@f1 ,f1
†#2S@f2 ,f2

†#

1J1•f12J2•f2!%rS@f1i ,f1i
† ,f2i ,f2i

† #

5exp@2 iJ†GJ#, ~30!

where now the Green functionG acquired the 232 matrix
structure as

G5S G11 G12

G21 G22
D ~31!

andJ†5(J1
† ,2J2

†). For an initial thermally equilibrium state
with the temperatureT51/b, each component of the matri
Green function in the momentum representation is given

G11~p!52G22* ~p!5u~p0!GF~p!1u~2p0!GF* ~p!

22p i sgn~p0!nB~p!d~p22mS
2!,

G12~p!522p i sgn~p0!nB~p!d~p22mS
2!,

G21~p!522p i sgn~p0!eb(p02m)nB~p!d~p22mS
2!,

~32!

where GF(p)5(p22mS
21 i e)21 is the vacuum Feynman

propagator,nB(p)[(eb(p02m)21)21 is the Bose distribu-
2-4
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MESOSCOPIC FLUCTUATIONS IN STOCHASTIC SPACETIME PHYSICAL REVIEW D62 024002
tion function, andm is the chemical potential.G can be
diagonalized by multiplying matricesuB from each side as
G5uBGduB

21h, with

Gd5S GR 0

0 GA
D , ~33!

where GR and GA are retarded and advanced Green fu
tions, respectively. HereuB(p) is the thermal Bogoliubov
matrix andh is the 232 Lorentz matrix which have the
following forms @24,25#:

uB~p!5AnB~p!eb(p02m)/2S 1 e2b(p02m)

1 1 D ,

~34!

h5S 1 0

0 21D .

Defining the thermal doubletf5(f1 ,f2) and its conjugate
f̄[(f1

† ,f2
†)h, we can write

f†G21f5f†huBGd
21uB

21f

5f̄uBGd
21uB

21f. ~35!

By redefining the field variables by global Bogoliubov tran
formationsuB

21f→f andf̄uB→f̄, one can write the parti-
tion function in Eq.~30! as

Z@J,J̄#5E Df̄Df exp$ iS0@f,f̄#1 i J̄f1 i f̄J%rS@f i ,f̄ i #,

~36!

where

S0@f,f̄#5f̄Gd
21f

5E d3x dv

3$f̄~x,v!@v21]W22mS
21 i e~v!h#f~x,v!%.

~37!

Here e(v)[e sgn(v) for some infinitesimal constante.
When the stochastic fieldvS has no time dependence as
Eq. ~7!, the close time path action is given by

SvS
@f,f̄#5E d3x dv$f̄~xW ,v!@v21]W22mS

2

2vS~xW !1 i e~v!h#f~xW ,v!%.

Next we express the Green function and the partit
function for the scalar field in terms of the nonlinear sigm
model. After averaging out the partition function in Eq.~28!
without the source term with respect to the stochastic po
tial vS which obeys the Gaussian probability distribution
02400
-

-

n

n-

P@vS#5N expF2
1

2E d4x d4y vS~x!DS
21~x2y!vS~y!G ,

~38!

with the normalization constantN, we obtain the reduced
action

Z5^Z@vS#&vS
5E DvSP@vS#Df̄Df exp$ iSvS

@f̄,f#%

5E Df̄Df exp$ iS0@f̄,f#1 iSI@f̄,f#%, ~39!

where

SI@f̄,f#5
i

2E d4x d4y f̄~x!f~x!DS~x2y!f̄~y!f~y!.

~40!

Note that for a local correlationDS(x2y);d4(x2y), we
obtain the effectivef4 theory similar to the one obtaine
from spacetime foam@3#.

Now we extract the slow modes by the Hubbar
Stratonovich transformation. Introducing the auxiliary bil
cal matrix fields(x,y) as @19#

eiSI [ f̄,f]5E Ds expF2
1

2E d4x d4y

3Tr@s~x,y!DS
21~x2y!s~y,x!#G

3exp$ iSHS@s,f̄,f#%, ~41!

where

SHS@s,f̄,f#52E d4x d4y f̄~x!s~x,y!f~y! ~42!

and the trace is taken over thermal indices. The partit
function can be written as

Z5E DsDf̄Df expF2
1

2E Tr@sDS
21s#G

3exp$ iS0@f̄,f#1 iSHS@s,f̄,f#%, ~43!

wheres is Hermitian by construction, i.e.,s†(x2y)5s(y
2x). In energy representation, Eq.~42! becomes

SHS@s,f̄,f#52E d3x d3x8
dv

2p

dv8

2p
f̄~xW ,v!

3svv8~xW ,xW8!f~xW8,v8! ~44!

and
2-5
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K. SHIOKAWA PHYSICAL REVIEW D 62 024002
S0@f̄,f#1SHS@s,f̄,f#5E d3x d3x8
dv

2p

dv8

2p
f̄~xW ,v!

3$@v21]W22mS
21 i e~v!h#

3d~xW2xW8!d~v2v8!

2svv8~xW ,xW8!%f~xW8,v8!. ~45!

After integrating outf̄ andf, we obtain

Z5E Ds expF2
1

2E Tr@sDS
21s#G

3expF2E d3x d3x8
dv

2p

dv8

2p
Tr log$@v21]W22mS

2

1 i e~v!h#d~xW2xW8!d~v2v8!2svv8~xW ,xW8!%G . ~46!

The nonlinear sigma model is commonly used in many d
ferent areas in physics to study collective excitations and
dynamical symmetry breaking property of the system. N
ertheless, it has not been studied previously in the clo
time path method in detail. When applied to the disorde
systems, it is required that all fermion loop diagrams can
in order to include the effects of elastic scattering due
impurities which carry no energy. Such techniques as rep
formalism @19# or supersymmetric extension@26# are com-
monly used for this purpose. A general class of real ti
path ordered methods@27–31# is also known to have such
property owing to the energy integral. The closed time p
formalism employed here has the advantage compare
other methods that it is naturally extendable to the none
librium setting. The trace part in Eq.~46! can be expanded in
terms of thes field as

Tr log$@v21]W22mS
21 i e~v!h#

3d~v2v8!d~xW2xW8!2svv8~xW ,xW8!%

5Tr log@G212s#

5Tr log@G21#1 (
n51

~21!n

n
Tr@Gs#n, ~47!

whereG(x,x8)[(h1mS
2)21 is the free boson propagator.

Now we assume that the spatial correlation of disor
decays sufficiently fast so that thes field can be treated as
local field variable in space. This implies that the stocha
potentialvS has the time-independent form

P@vS#5N expF2
1

2uS
E d3x vS

2~xW !G . ~48!

In this case the partition function is reduced to
02400
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Z5E Ds expF2
1

2uS
E d3x Tr s2~xW !G

3expF2E d3x
dv

2p

dv8

2p
Tr log$@v21]W22mS

21 i e~v!h#

3d~v2v8!2svv8~xW !%G . ~49!

The equation of motion obtained from Eq.~49! corresponds
to the one obtained from the coherent potential approxim
tion:

svv8~PW !5
uS

v22PW 22mS
21 i e~v!h2svv8~PW !

. ~50!

The real part of thes field gives the mass and frequenc
renormalization and will not be considered hereafter. T
imaginary part of thes field s I(v) gives the scattering rate
Writing the homogeneous solution of Eq.~50! as svv8(PW )
52 is I(v)sgn(v)d(PW )d(v2v8), one obtains the relation

s I~v!5
uSpN~v!

2uvu
, ~51!

whereN(v) is the density of states of the scalar field.
The quadratic term in Eq.~47! can be written as

1

2E d3x1d3y1d3x2d3y2

dv

2p

dv8

2p
Tr@Gaa~xW1 ,yW 1 ,v!

3svv8
ab

~yW 1 ,xW2!Gbb~xW2 ,yW 2 ,v8!sv8v
ba

~yW 2 ,xW1!#. ~52!

In the momentum representation, the above expression
comes

1

2E d4P

~2p!4

d4k

~2p!4
TrFGbbS k1

P

2 Dsk
ba~2P!

3GaaS k2
P

2 Dsk
ab~P!G . ~53!

The Fourier component of thes field is defined as

s~x,y!5E d4P

~2p!4

d4k

~2p!4
sk~P!e2 ikre2 iPX, ~54!

wherer[x2y andX[(x1y)/2. Thus we obtain the kinetic
term of thes field in Eq. ~46!

1

2E d4P

~2p!4

d4k

~2p!4
TrH sk

ba~2P!F 1

uS
2GaaS k2

P

2 D
3GbbS k1

P

2 D Gsk
ab~P!J . ~55!
2-6
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MESOSCOPIC FLUCTUATIONS IN STOCHASTIC SPACETIME PHYSICAL REVIEW D62 024002
If the spatial dependence in thes field is local, thes field is
independent of the momentumkW , i.e., sk(P)5sk0

(P), and

we can integrate outkW and obtain

1

2E d4P

~2p!4

dk0

2p
TrH sk0

ba~2P!F 1

uS
2E

kW
GaaS k2

P

2 D
3GbbS k1

P

2 D Gsk0

ab~P!J . ~56!

By expanding inside the brackets in Eq.~56! with respect to
P0 andPW , one can show that, in the limits I(k0)@k0P0, the
off-diagonal term of the free propagator of thes field in the
thermal indices gives the massless excitation which has
form of the diffusion propagator@32#:

^sk0

ab~P!sk0

ba~2P!&5
2s I

2~k0!

pN~k0!

1

D~k0!PW 22 iP0haa
,

~57!

whereD(k0) is the diffusion constant. Diagramatically th
form is obtained by including all the ladder diagrams in t
particle-hole propagator. The diffusion constant is related
the dc conductivityC0 through the Einstein relationC0
5N(k0)D(k0). The diagonal term in Eq.~56! gives the mas-
sive excitation that can be integrated out. However, it d
not contribute directly to the infrared divergence respons
for the universal behavior of the conductance fluctuatio
and will not be considered in this work.

In this U~2! nonlinear sigma model, the matrix fields
takes its value in the coset space U(2)/U(1)3U(1). After
making a transformations→V21sV with V5u(v)1
1u(2v)s2, where matrices 1 ands2 act on the therma
indices, the saddle point solution changes its form
sgn(v)h→h. In this representation, the fields around the
saddle point can be parametrized as@21#

s5S A12qq† q

q† 2A12q†q
D

5S 1 0

0 21D 1S 0 q

q† 0D 2
1

2 S qq† 0

0 2q†qD •••.

~58!

The matrix fieldsq5qvv8 and q†5qv8v
† carry two fre-

quency indices. Inserting this expression into Eq.~56!, we
obtain the form of the free propagator ofq field as

^qk0
~P!qk0

† ~2P!&5
2

pN~k0!

1

D~k0!PW 22 iP0

. ~59!

s I(v) in the numerator was absorbed in the redefinition oq.
Thus the partition function for the linear part of the sigm
model with respect toq field is
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Z5E Dq†Dq expH 2pE d4P

~2p!4

dk0

2p
N~k0!qk0

† ~2P!

3@D~k0!PW 22 iP0#qk0
~P!J . ~60!

Higher order vertex terms will follow corresponding to th
expansion in Eq.~58!. The fieldsq andq† are free from the
constraint and take all possible values. Time dependenc
the stochasticity can be ascribed to the intrinsic property
the effective medium and treated as the frequency-depen
random potential. The modification associated with t
change can be absorbed in the diffusion constant as the
proportional to]vS /]v. If this correction is too large, a dif-
ferent approach is required. The usual prescription to acco
for the effect of inelastic scattering is to include the inelas
scattering rateD in the denominator of the diffusion propa
gator so that we replaceD(k0)PW 22 iP0 in Eq. ~60! simply by
D(k0)PW 22 iP01D. Here D will set the time scale beyond
which the phase memory of a scattered wave is lost and
transport behavior becomes classical.

B. Mesoscopic fluctuations of scalar fields

The conductivity associated with the Noether current
the presence of the external field with a frequencyk can be
written by the current-current correlation function by th
Kubo formula@33# as

Ck~xW ,yW ![
p

k E2`

`

dv Vk~v!(
mn

j mn~xW ! j nm~yW !

3d~v1k2vn!d~v2vm!, ~61!

wherej mn[ ifm
† ]Jfn is the Noether current expressed by tw

energy eigenstates andVk(v) is a smearing function tha
depends on the characteristics of the system and the env
ment. Near equilibrium, it can be written asVk(v)
5rS@v#2rS@v1k#, whererS@v# is the initial density ma-
trix. If the metric fluctuations are independent of temperat
as we assume, the effect of temperature on the conduct
only arises from this term. Here we assume thatVk(v) is
normalized such that*dv Vk(v)5k. In Fig. 2, the conduc-
tance is represented by the Feynman diagram. In the lea
order weak disorder expansion, averaging over disorde

FIG. 2. The Feynman diagram for the conductance. The me
fluctuations are included as a ladder contribution which is rep
sented by the dotted line.
2-7
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K. SHIOKAWA PHYSICAL REVIEW D 62 024002
taken into account by including all the ladder diagrams. T
conductivity can be written in the more familiar form i
terms of Green functions as@34#

Ck~xW ,yW ![2
1

4pkE2`

`

dv Vk~v!@GR~xW ,yW ,v!2GA~xW ,yW ,v!#

3 ]Jx]Jy@GR~yW ,xW ,v1k!2GA~yW ,xW ,v1k!#. ~62!

With the expression of Green functions in terms of therm
fields,

GR~x,y![2 iu~x02y0!^@f̂~x!,f̂†~y!#&5 i ^f1~x!f1
†~y!&,

GA~x,y![ iu~y02x0!^@f̂~x!,f̂†~y!#&52 i ^f2~x!f2
†~y!&,

~63!

we write Eq.~62! as

Ck~xW ,yW ![
21

4pkE2`

`

dv Vk~v! (
abcd

^fa~xW ,v!]Jxf
†b

3~xW ,v1k!fc~yW ,v1k!]Jyf
†d~yW ,v!&. ~64!

Note that even though the thermal indices in the sum
over all possible values, only pairwise equal terms contrib
to the conductivity.

This expression can be obtained directly from the pa
tion function in terms of the functional derivative by intro
ducing the external source termAW k in the form

S@A,f̄,f#5 i E d3x
dv

2p

dv8

2p
f̄~xW ,v!AW v

k ~xW !•]Jdkf~xW ,v8!,

~65!

with

dk[d~v82v1k!S 1 1

21 21D . ~66!

The matrix indk acts on the thermal indices. Note thatdk is
nilpotent, i.e.,dk

250. The nonlocal conductivity is given b

Ck~xW ,yW !5
2p

kV

d2W@A#

dAW k~xW !dAW 2k~yW !
, ~67!

whereV is the spatial volume of the system and the integ
over energy indices are understood. In the presence of
source term, the partition function for the matrix fields in
Eq. ~46! becomes

Z@A#5eiW[A]5E Ds expF2
1

2E Tr@sDS
21s#G

3expF E d3x d3x8
dv

2p

dv8

2p

3Tr log„$@v21]W22mS
21 i e~v!h#d~v2v8!
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k
• ]Jdk%d~xW2xW8!2svv8~xW ,xW8!…G . ~68!

Making use of the gauge symmetry in Eq.~68!, for a
constant vector fieldAW k, the source term above can be ge
erated by the following gauge transformation:

f~xW !→eixW•AW kdkf~xW !,

f̄~xW !→f̄~xW !e2 ixW•AW kdk. ~69!

Correspondingly, the Green functionG(xW ,yW ,v) and thes
field transform as

G~xW ,yW !→U21~xW !G~xW ,yW !U~yW ! ~70!

and

s~xW ,yW !→U21~xW !s~xW ,yW !U~yW !, ~71!

where U(xW )[e2 ixW•AW kdk. This gauge symmetry will induce
the gauge coupling in the effective Lagrangian through
covariant derivative¹W []W1 iAW kdk :

Tr~¹W s¹W s!5Tr~]Ws]Ws!12i Tr~AW kdks]Ws!

2Tr~AW k1dk1
sAW k2dk2

s!. ~72!

Now we obtain the expression of the conductivity
terms of thes field,

Ck5
2p

kV

d2W@A#

dAW kdAW 2k

5
2p

kV F E d3x1^Tr@dks~x1!d2ks~x1!#&

2E d3x1d3x2^Tr@dks~x1!]Ws~x1!#

3Tr@d2ks~x2!]Ws~x2!#&G , ~73!

and its fluctuation,

Ck1k2

2 5
p2

V2k1k2

d4W@A#

dAW k1dAW 2k1dAW k2dAW 2k2

5
1

V
@C(1)2C(2)1C(3)#, ~74!

where

C(1)5
2p2

k1k2VE d3x1d3x2^Tr@dk1
s~xW1!d2k1

s~xW1!#

3Tr@dk2
s~xW2!d2k2

s~xW2!#&,
2-8
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MESOSCOPIC FLUCTUATIONS IN STOCHASTIC SPACETIME PHYSICAL REVIEW D62 024002
C(2)5
4p2

k1k2VE d3x1d3x2d3x3^Tr@dk1
s~xW1!]Ws~xW1!#

3Tr@d2k1
s~xW2!]Ws~xW2!#Tr@dk2

s~xW3!d2k2
s~xW3!#&,

C(3)5
p2

k1k2VE d3x1d3x2d3x3d3x4^Tr@dk1
s~xW1!]Ws~xW1!#

3Tr@d2k1
s~xW2!]Ws~xW2!#Tr@dk2

s~xW3!]Ws~xW3!#

3Tr@d2k2
s~xW4!]Ws~xW4!#&.

Here we further included the energy indices in the definit
of the trace as

Tr~O![p*dk0 /~2p!2N~k0!D~k0!*dP0(aO aa~k0 ,P0!.

We are interested in the dc conductivity evaluated in
limit k1 ,k2→0. Note thatVk(v) is generally a peak func
tion which describes a wave packet peaked around the
cific modev5v0. Furthermore, if we assume for simplicit
that it is given by the step functionVk(v)51 ~for v0,v
,v01k) and 0~otherwise!, then taking the dc limitk→0
extracts the particular modev0. The effect of finite tempera
ture T can be viewed as an additional smearing due to
width of Vk(v). From Appendix B, in the dc limit, the for-
mula above gives the simple result

C0
25 lim

k1 ,k2→0
Ck1k2

2 5
c

VMIR
, ~75!

where c57.295 . . . is a constant andMIR is the infrared
cutoff of the momentum integral. In Fig. 3, the correspon
ing Feynman diagrams for the conductance fluctuations
given. Other diagrams that contain crossed diagrams con
ute as higher order terms in the weak disorder expans
Here we assume that the region with the fluctuating metri

FIG. 3. The conductance fluctuations are represented by F
man diagrams. The shaded regions are diffusion propagators~a!,
~b!, and~c! contain two, three, and four diffusions and correspo
to C(1), C(2), andC(3) in Eq. ~74!, respectively.
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restricted in the finite cube with the edge lengthL and that
the rest of the spacetime is flat. This enables us to handle
problem as a scattering process. TakingL as the paramete
that lies in themesoscopic scale, the analogy with the elec
tric circuit becomes elucidated. If we use the relationC0
5gL22d for the conductivity ind dimension for the dimen-
sionless conductanceg, we obtain the conductance fluctua
tions in terms of the conductivity fluctuations asg2

5C2L2d24. Then from Eq.~75!, in three dimensions, using
MIR;p/L, we obtain

g2;2.322 . . . . ~76!

This value is universal in the sense that it is independen
the amount of stochasticity initially assumed and the size
the stochastic region@35,36#. The conductance is also d
rectly related to the transmission matrix. Indeed one c
show that the conductance measures the intensity of w
transmission@34# and the fluctuations of conductance corr
spond to the fluctuations of wave intensity.

IV. DISCUSSION

In this paper, we showed the analogy between the fi
propagation in Minkowski spacetime with a small stocha
ticity in the metric and the wave in disordered system
While the electromagnetic field propagation in a stocha
spacetime is similar to that in random media, the scalar
spinor field propagation was shown to be similar to the el
tron in a disordered potential. Both cases can be treated s
larly; however, the following difference should be noted.
the former, the field remains massless and the random
affects the refraction property of light differently dependin
on the frequency of the wave. In particular, low energy sc
tering is suppressed. In the latter, a random mass causes
tering with any energy. Mesoscopic fluctuations associa
with wave propagation were characterized by the nonlin
sigma model in the closed time path method. We introdu
the collective fields by the Hubbard-Storatonovich transf
mation and integrated out the fundamental field variables
obtained the nonlinear sigma model written in terms of
collective fields only. The conductivity and its fluctuation
were expressed by these fields. For the time-independen
slowly dependent stochasticity, the fluctuations of the
conductivity were shown to be universal and of order uni
The origin of this universality is traced back to the infrar
divergence due to the Nambu-Goldstone boson which
pears as a result of symmetry breaking.

Although the induced effects on the propagation of wav
in the presence of metric fluctuations are themselves of
oretical and observational importance as long as the bac
action of the matter fluctuations is small, a self-consist
treatment is necessary for Planck scale processes@37#. This
line of consideration is important particularly of the metr
fluctuations produced in the cosmological processes.

Relativistic quantum field theoretic calculations of th
transport coefficients have been developed during the
decade@38–40#. The electrical conductivity in the early uni
verse controls the generation of primordial magnetic fi
which is believed to be the origin of the strong magne

n-
2-9
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K. SHIOKAWA PHYSICAL REVIEW D 62 024002
fields presently observed in spiral galaxies@41,42#. The
method developed in Sec. III also gives the field theore
basis for the study of, for example, mesoscopic fluctuati
due to random magnetic fields.

The coarse graining of microscopic degree of freed
necessarily induces the nonlocal correlation in the stocha
fields. Moreover, unitarity in the whole system guarante
the relation between the dissipation kernel and the noise
nel in the form of the fluctuation-dissipation theorem up
coarse graining. In the present work, the nonlocal, nonco
mutative origin of the stochastic fields and the effect of d
sipation are ignored and only the classical aspects are
sidered. The possible manifestation of the quantum natur
underlying microscopic gravitational dynamics in the me
scopic effects remains to be clarified@43#. The fluctuating
metric is also relevant for inferring possible decoherence
fects in the quantum interference of propagating partic
@44–46#. The closed time path method gives a suita
framework to discuss such effects. Our results of cond
tance fluctuations assume that the time scale of metric fl
tuations is relatively long. In such a case, the time scale
fluctuations appears in the coherence time scale to restric
validity of the arguments and diagrammatic calculatio
based on the coherence between different modes beyond
time scale. This prescription is quite successful in explain
many mesoscopic experimental results such as electron
tering in a helium gas. Thus, the heavy defects rando
created in the phase transition in the early universe can
the origin of such fluctuations of the metric.

Since we have not specified the origin of stochasticity
the metric in this work, explicit derivation of such stocha
ticity from the fundamental model of gravity is desired. T
spacetime uncertainty proposed in the context of str
theory @47# may have similar effects as discussed in t
work on low energy physics. Branes or other solitonic o
jects that appear in string theory acquire heavy mass in
weak string coupling limit and become another possi
source of stochasticity. Along with the possible decohere
associated with a fluctuating metric, the mesoscopic effe
treated here may have an observable consequence on f
experiments@48,49#. These microscopic origins of metri
fluctuations are intrinsically beyond the validity of semicla
sical gravity. Therefore the metric fluctuations introduced
a modification of the semiclassical Einstein equation in t
paper possibly capture the essential effects of near Pla
scale physics on the sub-Planckian scale physics effecti
while the self-consistency based only on the conventio
semiclassical Einstein equation may not have a predic
power on such a phenomenon. Clarifying the difference
tween these approaches needs more careful study. Th
fects of metric fluctuations in cosmological and black ho
spacetimes have been considered by many authors, fo
ample, in@50–55#. To identify how the mesoscopic effec
discussed in this paper manifest themselves in such cu
spacetimes is of particular interest. Studies in these di
tions are currently in progress.
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APPENDIX A: MESOSCOPIC FLUCTUATIONS
OF DIRAC FIELDS

In this appendix we consider the quantization of the Dir
field which obeys the equation of motion in Eq.~14!. The
action for this system has the following form:

SvD
@c,c̄#5E d4x c̄~x!@ i ]”2mD2vD~x!#c~x!. ~A1!

This action is invariant under the global U~1! gauge transfor-
mation

c~x!→eihc~x!,
~A2!

c̄~x!→c̄~x!e2 ih,

and the corresponding Noether current is

Jm~x!5 i c̄gmc. ~A3!

In the absence of a stochastic field, the closed time p
partition function has a form corresponding to Eq.~30!:

Z@J,J†#5E dc fdc̄ fDc1Dc̄1Dc2Dc̄2

3exp$ i ~S@c1 ,c̄1#2S@c2 ,c̄2#

1J1•c12J2•c2!%rD@c1i ,c̄1i ,c2i ,c̄2i #

5exp@2 iJ†SJ#, ~A4!

where J•c[*d4x@J†(x)c(x)1c†(x)J(x)#. The matrix
Green functionS has the form

S5S S11 S12

S21 S22
D , ~A5!

whose components are

S11~p!52S22* ~p!

5u~p0!SF~p!1u~2p0!SF* ~p!

22p i sgn~p0!nF~p!d~p22mD
2 !,

S12~p!52p i sgn~p0!nF~p!~p”1mD!d~p22mD
2 !,

S21~p!522p i sgn~p0!eb(p02m)nF~p!~p”1mD!

3d~p22mD
2 !, ~A6!

whereSF(p)5(p”2mD1 i e)21 is the fermion vacuum Feyn
man propagator,nF(p)[(eb(p02m)11)21 is the Fermi dis-
tribution function, andJ†5(J1

† ,2J2
†). HereS can be diago-

nalized by multiplying matricesuF from both sides asS
5uFSduF

21h, with
2-10
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Sd5S SR 0

0 SA
D , ~A7!

whereSR andSA are retarded and advanced Dirac propa
tors. HereuF(p) is the thermal Bogoliubov matrix which ha
the following form:

uF~p!5AnF~p!eb(p02m)/2S 1 2e2b(p02m)

1 1 D . ~A8!

Using the above property, one can write

c†S21c5c†huFSd
21uF

21c5c̄uFSd
21uF

21c, ~A9!

where c5(c1 ,c2) is the thermal fermion doublet and w
define its conjugatec̄[(c1

† ,c2
†)h. By changing the field

variables by the global Bogoliubov transformationsuF
21c

→c andc̄uF→c̄, one can write the partition function in Eq
~A4! without the source term as

Z5E dc fdc̄ fDcDc̄ exp$ iS0@c,c̄#%rD@c,c̄#,

~A10!

where
02400
-

S0@c,c̄#5c̄Sd
21c

5E d3x
dv

2p

3@c̄~x,v!~vg02 i ]W•gW 2mD1 i ehg0!c~x,v!#.

~A11!

In the presence of the random variablevD which is as-
sumed to obey the probability distribution given in Eq.~38!,
we average the partition function overvD and obtain the
reduced action

^Z@vD#&5E DvDP@vD#Dc̄Dc exp$ iSvD
@c,c̄#%

5E Dc̄Dc exp$ iS0@c,c̄#1 iSI@c,c̄#%,

~A12!

where

SI@c,c̄#5
i

2E d4x d4y c̄~x!c~x!DD~x2y!c̄~y!c~y!.

~A13!

By introducing the auxiliary bilocal matrix fieldsD(x,y)
as
eiSI [c,c̄]5E DsD expF1

2E d4x d4y Tr@sD~x,y!DD
21~x2y!sD~y,x!#Gexp$ iSHS@sD ,c,c̄#%, ~A14!

where

SHS@sD ,c,c̄#52E d4x d4y c̄ ~x!sD~x,y!c~y!, ~A15!

the partition function can be written as

Z5E DsDDc̄Dc expF1

2E Tr@sDDD
21sD#Gexp$ iS0@c,c̄#1 iSHS@sD ,c,c̄#%. ~A16!

In energy representation, Eqs.~A15! and ~A16! have the form

SHS@sD ,c,c̄#52E d3x d3x8
dv

2p

dv8

2p
c̄~xW ,v!sDvv8~xW ,xW8!c~xW8,v8! ~A17!

and

S0@c,c̄#1SHS@sD ,c,c̄#5E d3x d3x8
dv

2p

dv8

2p
c̄~xW ,v!@~vg02 i ]W•gW 2mD1 i ehg0!

3d~xW2xW8!d~v2v8!2sDvv8~xW ,xW8!#c~xW8,v8!. ~A18!

After integrating outc̄ andc, we obtain
2-11
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Z5E DsD expF2
1

2E Tr@sDDD
21sD#G

3expF E d3x d3x8
dv

2p

dv8

2p
Tr log$@vg02 i ]W•gW 2mD1 i ehg0#d~xW2xW8!d~v2v8!2sDvv8~xW ,xW8!%G ~A19!

and, for the time-independent stochastic field as in Eq.~48!,

Z5E DsD expF2
1

2uD
E d3x Tr sD

2 ~x!GexpF E d3x Tr log$~vg02 i ]W•gW 2mD1 i ehg0!d~v2v8!2sDvv8~x!%G .
~A20!

The equation of motion can be obtained from Eq.~A20! by functional derivative with respect tosD . Following the steps from
Eq. ~52! to Eq. ~55!, the kinetic term in thesD field in Eq. ~A19! can be given similarly to Eq.~55! which enables us to
constuct the effective field theory in terms of the collective field.

By the Kubo formula the conductivity can be written in terms of the Green functions as in Eq.~62!:

Ck~xW ,yW ![2
1

4pkE0

`

dv Vk~v!Tr$@SR~xW ,yW ,v!2SA~xW ,yW ,v!#gW @SR~yW ,xW ,v1k!2SA~yW ,xW ,v1k!#gW %. ~A21!

We obtain

Ck~xW ,yW ![
21

4pkE0

`

dv Vk~v! (
abcd

^c†a~xW ,v!gW cb~xW ,v1k!c†c~yW ,v1k!gW cd~yW ,v!&. ~A22!

This expression can be also obtained directly from the partition function by functional derivative after introducing a
term in the form

i E d3x
dv

2p

dv8

2p
c̄~xW ,v!AW k

•gW dkc~xW ,v8!, ~A23!

whereAW k is the external source field anddk was defined in Eq.~66!. Then the conductivity is given similarly by Eq.~67!. The
gauge transformation

c~xW !→e2 ixW•AW kdkc~xW !, c̄~xW !→c̄~xW !eixW•AW kdk, ~A24!

as we saw in Eq.~69!, generates the gauge coupling in the effective theory represented by

Z5E DsD expF2
1

2E Tr@sDD21sD#GexpF E d3x d3y
dv

2p

dv8

2p

3Tr log$@~vg02 i ]W•gW 2mD1 i ehg0!d~v2v8!1 iAW k
•gW dk#d~xW2yW !2sDvv8~xW ,yW !%G . ~A25!

This allows us to write the mesoscopic fluctuations in terms ofsD fields. We can discuss universal fluctuations parallel to
scalar fields in this formalism. For an initially thermal equilibrium state,Vk(v)5rD@v#2rD@v1k#, where rD@v#
5nF(v) is the Fermi distribution, the dc limitk→0 extracts the Fermi energyvF , which reminds us of the electron transpo
problem.
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APPENDIX B: CONDUCTANCE FLUCTUATIONS

C(1)5
2p4

k1k2

1

~2p!5E dv dv8Vk~v2k!Vk~v8!N2~k0!D2~k0!E d3P@^qv2k1v8~PW !qv8v2k1

†
~2PW !&1H.c.#

3@^qv81k2v~PW !qvv81k2

†
~2PW !&1H.c.#. ~B1!

For k1k2→0,

C(1)→ 25

~2p!2EMIR

` dp

p2
5

8

p2MIR

, ~B2!

C(2)5
4p5

k1k2

1

~2p!5E dv dv8Vk~v2k!Vk~v8!N3~k0!D3~k0!E d3PPW 2@^qv2k1v8~PW !qv8v2k1

†
~2PW !&

3^qv81k2v~2PW !qvv81k2

†
~PW !&^qv2k2v81k1

~PW !qv81k1v2k2

†
~2PW !&1H. c.#. ~B3!

For k1k2→0,

C(2)→ 27

~2p!2EMIR

` dp

p2
5

32

p2MIR

, ~B4!

C(3)5
p6

k1k2

1

~2p!5E dv dv8Vk~v2k!Vk~v8!N4~k0!D4~k0!

3E d3PPW 4@^qv2k1v8~PW !qv8v2k1

†
~2PW !&^qv81k1v~2PW !qvv81k1

†
~PW !&^qv8v~2PW !qvv8

†
~PW !&

3^qv2k1v81k2
~PW !qv81k2v2k1

†
~2PW !&1H. c.#1three other terms. ~B5!

For k1k2→0,

C(3)→ 2539

~2p!2EMIR

` dp

p2
5

72

p2MIR

. ~B6!
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