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Mesoscopic fluctuations in stochastic spacetime
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Mesoscopic effects associated with wave propagation in spacetime with metric stochasticity are studied. We
show that the scalar and spinor waves in a stochastic spacetime behave similarly to the electrons in a disor-
dered system. Viewing this as the quantum transport problem, mesoscopic fluctuations in such a spacetime are
discussed. The conductance and its fluctuations are expressed in terms of a nonlinear sigma model in the closed
time path formalism. We show that the conductance fluctuations are universal, independent of the volume of
the stochastic region and the amount of stochasticity.

PACS numbd(s): 04.62:+v, 05.40-a

[. INTRODUCTION such primodial fluctuations as the quatum noise lies within
the detectable range of the Laser Interferometric Gravita-

tional Wave Observatory detectdrlGO) [10] is a curious
Since the Einstein-Hilbert action is insensitive to fluctua-question under debafé1,12.

tions near the Planck scale, we expect large fluctuations in
this regime to occur which may require reconsideration of
the concept of the microstructure of spacetime itself. The . ] ] ] )
concept of metric fluctuations thus introduced originally by ~Semiclassical gravity, though far different in energy scale,
Wheeler[1,2] has been studied and modified in various dif- Shares many common features with mesoscopic physics
ferent contexts. Spacetime foams or other string-theoryt13:14. The quantum transport properties of metallic sys-
motivated microstructures of spacetime can be treated d§Ms are known to be divided into several different regimes
possible stochastic sourcg3]. Since these fluctuations be- depending on the qualitatively different contribution of scat-
come dominant only near the Planck scale and cannot brers. For a length scale less than the mean freel gatthe
directly observable, it is important to identify their possible wave propagates ballistically, similar to the free coherent
influence on the matter fields propagating in such a backwave; for a length scale larger than the coherence length
ground with an energy much lower than the Planck value. ..y, the scale at which the mutual coherence of waves is
which is possibly detectable by high energy astrophysicalost due to inelastic scattering, classical Boltzmann transport
observation. theory is valid. In the mesoscopic scajg<L<L o, mul-
Since quantum gravity is still an unsolved problem, intiple scattering has to be taken into account and the coher-
conventional semiclassical gravity, a spacetime is left unence between different paths becomes important. The effect
quantized 4]. A recent study in semiclassical gravity, how- of the environment also has to be considered, and the dissi-
ever, reveals many pathological features in this approactpation and decoherence due to inelastic scattering play an
One of the most serious problems is violation of the positiveimportant role. Furthermore, in the mesoscopic regime close
energy theorem due to large quantum fluctuations, whiclio L.,,, the quantum-classical correspondence of the
leads to violation of causality by allowing the creation of propagating wave becomes relevant; in the same regime
traversable wormholels]. It is also noticed that positivity close tol,,, the possible influence of the microscopic con-
can be recovered by imposing additional smearing in thestituent of a medium will manifest itself in the transport
case of Minkowski spacetim&]. This smearing, originating properties of the wave. Owing to recent progress in nano-
in microscopic quantum fluctuations, may also cure othescale technology15], many phenomena in this regime are
problems such as initial or black hole singularity problems.amenable to experiments. In light of this analogy, various
Other studies also suggest that the small stochastic fluctuaffects associated with electromagnetic wave propagation
tions of the spacetime metric lying on the deterministic backin the Friedmann-Robertson-Walker universe and the
ground spacetime are not only the useful phenomenologica&chwarzschild spacetime with metric stochasticity were
modification of the semiclassical Einstein equation but alsstudied in[16] based on the formal equivalence of Max-
the inevitable consequence of more fundamental processeswell’s equations in a stochastic spacetime with those in ran-
of the backreaction induced by matter fluctuati¢@s8]. In  dom media. Localization of photon and anomalous particle
an astrophysical context, squeezed states, evolved from prireation can occur in such stochastic spacetimes.
mordial gravitational waves by parametric amplification dur-  In this paper, we show that the scalar and spinor fields
ing the cosmological expansi¢f], are considered to be one propagating in a stochastic Minkowski spacetime can be
of the origins of the stochastic gravitational waves believectonsidered as electrons propagating in a disordered potential.
to exist in the present universe. Whether or not the trace ofhe randomness couples to the frequency of the wave addi-
tively for the conformal metric fluctuations. Thus the effect
of the stochasticity resembles that of a random potential. We
*Email address: kshiok@phys.ualberta.ca use the closed time path formalism, which allows us to study

A. Metric fluctuations in semiclassical gravity

B. Semiclassical gravity and mesoscopic physics
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equilibrium and nonequilibrium quantum field theory in a
unified framework[17,18. The closed time path partition
function is defined for the stochastic quantum system from
which we obtain the effective interaction between fundamen-
tal fields in the form of a four-point vertex after averaging
over stochasticity. Diagonalization of the matrix Green func-
tion is employed. This is an essential step for making use of
the nonlinear sigma model developed for the disordered
transport problem [19-23. We use the Hubbard-
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Storatonovich transformation and write the collective excitafor an Ui(%)tropic and conformal type of stochasticy,,
tions in terms of auxiliary fields. The conductance and its= 7ur€ "~ vt 7,,0(X), where v(x) is a stochastic

fluctuations are expressed by these auxiliary fields.
The paper is organized as follows: In Sec. Il, we start by
showing that the effects of conformal metric fluctuations on

scalar and Dirac fields can be simply represented by the efn this case the total Hamiltonian is given by

fects of a fluctuating mass. In Sec. lll, we develop the non-
linear sigma model to express higher order fluctuations of
fundamental fields in terms of the correlation function of

collective fields. The conductance associated with propaga-

Lg=—m3(X) $%(X).

field, the interaction term can be simply written as

4

Hzfd3x[w2+(v¢)2+m§¢2+m§v(x)¢2] (5

tion of particles in such a spacetime can be defined anald?’» In @& momentum representation,

gous to the one in electric circuits by the Kubo formula as
the correlation function of currents. Similar to the meso-
scopic quantum transport problem, we show that the conduc-
tance fluctuations are universal, independent of the size of
the stochastic region and the amount of stochasticity initially
assumed. The amplitude of the conductance fluctuations is

H=§ [¢(—p><p2+m§>¢<p>

+m§§ v(q)$(p) p(p+0)

6)

constant up to leading order in the weak disorder expansiork,rthermore, if we restrict our case to elastic scattering, we

In Sec. IV, a summary of results is given followed by a brief
discussion.

Il. WAVE PROPAGATION AND SCALAR AND DIRAC
FIELDS IN STOCHASTIC SPACETIMES

The Lagrangian density for the complex free scalar field

in curved spacetime has the form

Ls=\—0[9,,"dT9"¢—(m3+ ¢R) ¢?], (1)

have

H=2 [¢(—5>(52+m§—w2>¢<5>

p

+m3Y v(q)d(p)d(p+a)|, @)
q

where w=p°. This has the form equivalent to electron
propagation in a disordered potential.
The equation of motion in this model will be

VZh+(w?—md)d+uvg(X) =0, (8

whereé is a dimensionless nonminimal coupling parameter.

£=1/6 is called conformal coupling ang=0 is minimal
coupling. In the presence of a slight amount of inhomogene
ity in a flat spacetime background characterized dyy,
=n.,1h,,, the Lagrangian given above can be split into a
flat space term and a perturbation terméas= Lgy+ Lg,:

Lso=n""3,¢"9,¢—mip? (2)

and Lg;=—Ts"h,,, whereTg" is the stress-energy tensor.
In a conformal coupling case& € 1/6), theaction, Eq.(1), is

wherev ¢(x) =m2p (x). Comparing Eq(8) with the equation
of motion for the electromagnetic way&6],

Vi+ w?p—w’ug(X)$=0, (€)

we see that the randomness couples additively to the fre-
quency in the scalar wave, whereas it couples multiplica-
tively in the electromagnetic wave. Since the electromag-
netic wave obeys Maxwell’'s equations which are
conformally invariant, the equation of motion is rather simi-
lar to that of wave propagation in random media, while for
the scalar wave subjected to conformal metric fluctuations
the equation of motion has the form of massive particles in a

conformally invariant except for the mass term. Thus, a conrandom potential. We expect that the property of fields under

formal type of metric fluctuations can be attributed to the
effect of a fluctuating mass. Accordingly, if we write the
stress-energy tensor in the form

the influence of more general types of metric fluctuations
will possess both aspects. The difference of the form be-
tween Eq.(8) and Eq.(9) leads to the different density of
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states and transport properties. We also point out that alminimum length and time appearing as a result of the coarse
though the restriction of the metric fluctuations to the con-graining of microscopic dynamics characterizing the finite
formal type simplifies the arguments significantly, many ar-resolution of spacetime. The functiodg and F; are nor-
guments in the rest of the paper are applicable to a mormalized such thatfF d3x=[Frdt=1. For a possible
general class of fluctuations. choice of the form of fluctuations,

The Lagrangian density for the Dirac field in curved

spacetime has the form

Lo=b) ST y—mo i, 10

where V=1vy,V?, y°=b?, y*, and b=detb®, for vierbein

fields b%,. The Lagrangian given above splits into a flat

space contribution and a perturbation termfasLpg+ Lp,
similar to the scalar field case:

i _
£D0:§¢V¢_ Mp s (11)

andLp,=—Tp"h,,, whereT" is the stress-energy tensor,
which can be written as

TH =[PV Y=V iy, 12

For a massless Dirac field, the action, E#j0), is confor-

mally invariant. Thus, a conformal type of metric fluctua-
tions can also be considered as the effect of a fluctuatin
mass as in the scalar field. For an isotropic, conformal typ
of stochasticityv (x) defined above, the interaction term can

be manifestly given as

Loi=50(0POT Y =Moo (PP, (13

where we used the equation of motion to obtain the secon

expression. The equation of motion in this model will be

[14—mp—vp(X)]h(x)=0, (14

o .
pl e—‘X—XI‘/lm

= (18
[x—x"|«

(v(X)v(y))=

for a constanty, whereL=1,,=1.6x 10" % cm is the Planck
length, we have

us=4mmg?, (19

independent ofa. The disorder-averaged retardedd-
vanced Green function(Ggx)(p.p"))=Grea)(pP) can be
written in the form

1
p2—m&¥i sgr(po)Xi(p)’

Ggrea)(P)= (20)

wheremg is the renormalized mass ag(p) is an imagi-
nary part of the self-energy. The uppéower) sign corre-
sponds to the retarde@dvancedl Green function. For the
stochastic field that obeys EL8), v(x) can be approxi-

mated as a white noise potential|'{ﬁ|<Mp|, where M,
910! GeV is the Planck mass. Consequently, the self-

%nergy2|(p) is independent of the momentum and depends

only on the frequency in such a limit. That is, the low energy
elastic scattering is insensitive to the length scale that char-
acterizes the fine structure of the medium. In this limit, the
effect of the medium is to renormalize the frequency of the
wave propagating through it. The real part of the self-energy
gan be absorbed in the frequency term in this limit and will
not be considered in this paper. Such a medium is called the
effective medium. Under this condition, the mean free path
of this system is given by =4m/ug in the Born approxi-
mation. Combining with Eq(19), we obtainly=mg*l .

wherevp(X)=mpuv(X). The corresponding equations for the For a massmg much smaller than the Planck massig

Green functions are

—[O+m3+vg(x)]G(x,x")=6%x—x") for a scalar field,
(15

[i6—mp—vp(X)]S(x,x")=86%x—x") for a Dirac field.
(16)

<My)), this naive calculation illustrates that the mean free
path is much larger than the Planck length%1,)). Similar
results hold for the spinor field as well. The coherence length
Lcon, ON the other hand, is determined by many factors in-
cluding the other possible interactions, the time dependence
in the randomness, and external fields and will not be speci-
fied here.

We expect that the autocorrelation functions of the sto-

chastic fields have the following forms:

Ag(x=y)=(us(X)vs(y) =usFL (X=X /L) Fr(|t=t'|IT),

Ap(x=y)=(vp(X)vp(y))
=UpFL(IX=X'[IL) Fr([t=t'|/T), (17

where, andF7 are rapidly decaying functions ahdandT

are characteristic correlation ranges of the stochastic field in

space and time, respectivelyandT can be regarded as the

Ill. MESOSCOPIC EFFECTS IN STOCHASTIC
MINKOWSKI SPACETIME

In this section, we consider quantization of the noninter-
acting scalar field that obeys the stochastic equation of mo-
tion discussed in the last section. The parallel argument for
the Dirac field is given in Appendix A. The stochastic action
for the scalar field has the form

S, 06,01 [ a6, 0-még?—veg?). (21
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T Ret FIG. 1. The contour in the

o

This action is invariant under the globall) gauge transfor-
mation

(X)€" P(x),
¢'(0)— ¢ (e . 2
The corresponding Noether current is
J.(X)=i¢"9,6—id,¢'¢. (23

closed time path integral formal-
ism.

along two paths, one forward in time and the other backward
in time (Fig. 1). For an arbitrary initial state given by
pol d1i Pl bai dh 1, the partition function takes the form

203,001 [ d#,dg/D 4,0 410404}

X expli(S] ¢1, 11— S ba, b3
+31- 1= Jp- ho) o b1 bl b s ]

XF[b1,91, 02,05 ,05], (28)

A. Closed time path formalism for the stochastic system

The quantization of the stochastic system described in Egvhere
(9) can be treated in the closed time path formalism. Here we
assume that the whole system consists of a complex scalar
qguantum field$ and a classical stochastic fiald. Then the
density matrix for the whole system is given by

Ps[¢1,¢1’¢2a¢;rst’t]:<¢1,¢Iavs|;>s(t)|¢2,¢£’US(>274)

Fl1, 01, ¢, 83,05]

=expli(S[ b1, ¢1,05]— Sl ¢, b3.vs))}
(29

is a stochastic influence functional.

In the absence of the stochastic field,
where|¢,¢",vg) is an eigenstate of the field operaiprfor
a particular realization o 5 such that

7[3,3"1= f dpidp!D 1D $1D oD b5

d(XN)| b, " vs)=d(X)| b, B vg). (25)

To obtain the reduced density mattii ¢y, b1, ¢, b5 ,t]
for the system, we average ovet as

pd b1, b1, ba b 11=(pd h1,b1, b2, b} vst]), - 28

xexp(i(S 1, 1]~ S b2, b3
+31- 1= Jo- ho)pd b DL boi ]

=exg —iJ'GJ], (30)
where now the Green functio® acquired the X2 matrix

: . ) . _ structure as
The closed time path partition function for this system is

given by (Gn

G12>
31
G (31)

tin [F I t G2z
Z[J,JT,Us]:f doddi(0_|Texd —idy- ¢l dr, o1 ,vg)

andJ™=(J],—J%). For an initial thermally equilibrium state
with the temperatur@ =1/8, each component of the matrix

X (s, 0] vg Texids- $1]0-)

G1u(p)=—G3p) = 0(Po) Gr(p) + 6(— Po) GE(P)
— 211 sgr(po)ne(p) 8(p?—m3),

:f dep¢dp{D 1D $1D D ]

xexp{i(S ¢1,411— S b2, 43]

+31- 1= Jp- o)} expli (S 1, b1 ,vs]

~Si[ 2,508} 27)
for pg(t)=[0_)(0_| and S[¢,¢"vs]=—/d*xvse?,

J- b= [d*X[IT(X) p(x) + 4T (x)I(x)] andT denotes an anti- where Ge(p)=(p?—mi+ie) ! is the vacuum Feynman
time-ordered product. The path integral above is definegropagator,ng(p)=(efPo-#—1)"1 is the Bose distribu-

G1o(p)=—2i sgr(po)ng(p) (p2—m3),

Goi(p) = — 27 sgr(po)efPo~Wng(p) 8(p2—md),
(32)
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tion function, andu is the chemical potentialG can be B N 1
diagonalized by multiplying matricesg from each side as Plos]=Nexp — EJ d*x dyvs(X)As (x=Y)vs(y) |,
G=ugGqug ', with (39

Gg O with the normalization constant/, we obtain the reduced
=\ 9 Gp)’ (33 action

where Gg and G, are retarded and advanced Green func-
tions, respectively. Hereig(p) is the thermal Bogoliubov
matrix and » is the 2x2 Lorentz matrix which have the

following forms[24,25: :f DEDqSexp{iSo[g,qS]JriS|[$,¢>]}, (39)

2-(2v e, | DuPLoIDIDS exitis, [4.41)

1 e BPo—w)
ug(p)= \/ns(p)eﬁ(p(’”)lz( 1 1 ) where
(34) i
,,:(1 0 ) S[6.61= | XY B0 BO0ALY BB,

0 -1 (40

Be_flmr}g tf:e thermal doupleb=(¢1,¢2) and its conjugate Note that for a local correlatiotg(x—y)~ 8*(x—y), we
¢=(1,¢7)n, we can write obtain the effective¢* theory similar to the one obtained

_ 1 - from spacetime foarfi3].
ta-14_ 4t 1,-1

¢'G d=¢ nugGq Us" b Now we extract the slow modes by the Hubbard-
zguBGgluglqﬁ. 35) Stratonovich transformation. Introducing the auxiliary bilo-

cal matrix fieldo(x,y) as[19]

By redefining the field vaﬂables_by global Bogoliubov trans-

formationsuglqs—»qs and ¢pug— ¢, one can write the parti- e&[%ﬁ]:f Do ex;{ - Ef d*x d%y
tion function in Eq.(30) as 2

XTr o(x,y) A (x—y)o(y,x)]

7[3,3]= f D #D ¢ expliSol ¢, pl+id+idI}pd ¢, i,
(36) X exp{iSpyd o, ¢, &1}, (42)

where
where

Solé.b1= Gy ¢ B B
jda ; Sud 0., d]=- f d'x d'y () o(xy)b(y) (42
= X dw

and the trace is taken over thermal indices. The partition

X{p(x,w)[ 0+~ mitie(w) n]d(x,o)}. function can be written as

(37)
_ 1 B
Here e(w)=esgn) for some infinitesimal constané. ZZJ DoD¢D¢ exﬁ{—i T oAs o]
When the stochastic fieldg has no time dependence as in
Eq. (7), the close time path action is given by X exp{iSo[ ¢, ¢]+iSud o, d, b1}, (43)
S, [¢,,$]:f d3x dw{E()Z,w)[wZJréz—mé where o is Hermitian by construction, i.eq'(x—y)=o(y
s —X). In energy representation, E@2) becomes

—vg(X)+ie(w)n]P(X, )} do do'—

SHS[U:Ead’]:_f dx dsx'z ﬁd)(;,w)

Next we express the Green function and the partition
function for the scalar field in terms of the nonlinear sigma L. .
model. After averaging out the partition function in E89) X0 o (XX ) d(X",@") (44)
without the source term with respect to the stochastic poten-
tial vg which obeys the Gaussian probability distribution  and
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so[$,¢]+sHs[a,$,¢]=f d3x d%i—i%&(i,m z=f Daexp[—ziusj d3x Tr o(X)

240 92 2 do do’ R
*loTrat-mstie(w)7] X ex —J P o Trlogl[ w?+ 82— m+i e(w) 7]
- - 2 2T
XS(Xx—X")o(w—w")
—wa/(;,i’)}qﬁ()?,w’). (45) Xé(w—w')—(rww/(x)} . (49
After integrating outg and ¢, we obtain The equation of motion obtained from E@.9) cgrrespondg
to the one obtained from the coherent potential approxima-
1 tion:
Z:f Daex;{—if Tr[o-Agla]
- u
’ O-ww’(P): > (50)

do do - w?—P2—mi+ie(w)n—0,, (P)

Xex;{—j d3x d3x’z ETrlog{[weraz—mé stie(w)y (P)
The real part of ther field gives the mass and frequency

(46) renormalization and will not be considered hereafter. The
imaginary part of ther field o (w) gives the scattering rate.

Writing the homogeneous solution of E&O) as o, (P)

+ie(w)7]8(X—X")(w— ") =04y (X,X)}.

The nonlinear sigma model is commonly used in many dif-=—io|(w)sgn(w) 5(!5) S(w—w"), one obtains the relation
ferent areas in physics to study collective excitations and the

dynamical symmetry breaking property of the system. Nev- UsmN(w)

ertheless, it has not been studied previously in the closed o(w)= W (51)

time path method in detail. When applied to the disordered

systems, it is required that all fermion loop diagrams Cance\'/vhereN(w) is the density of states of the scalar field.
in order to include the effects of elastic scattering due to ¢ quadratic term in Eq47) can be written as
impurities which carry no energy. Such techniques as replica

formalism[19] or supersymmetric extensid26] are com- 1 do do’

monly used for this purpose. A general class of real time —f d3x,d3y,d3%,d3y, — —T1 G2&(X;,Y1, ®)
path ordered method27-31 is also known to have such a 2 2m 27

property owing to the energy integral. The closed time path
formalism employed here has the advantage compared to
other methods that it is naturally extendable to the nonequi- , )
librium setting. The trace part in E¢46) can be expanded in In the momentum representation, the above expression be-

X O'j)k,),,r(gl 1)22)be()22 ,)72,0)')0'5,?0)()72 a)zl)]- (52

terms of theo field as comes
- 1 d*P d% P
Trlog![ w2+ 92— m2+ie ) _J_ Tr[be k+ —|oP2(—p
ail stie(w)n] 2) 2m)* (2m) 2| %k (=P)
X S(w— ") d(X—X") =0y (X,X')} o
=Trlog[G !—0] XGaa(k— 5) Uﬁ‘b(P) . (53
- (=" : e
=Trlog[G 1]+ > T{Go]", (470  The Fourier component of the field is defined as
n=1 n
d*p  d% —ikr o—iPX
whereG(x,x")=(0+m32) ! is the free boson propagator. a(X,y)= f 2m° (ZT)‘l‘Tk(P)e e " (54

Now we assume that the spatial correlation of disorder
decays sufficiently fast so that tleefield can be treated as a Yy _ . A
local field variable in space. This implies that the stochastitivé?ﬁqr%;:hxeaﬁiiﬂjdi>r(1_E(XJ(r43g/2' Thus we obtain the kinetic
potentialv 5 has the time-independent form 9

}f d*P  d%
. (48) 2) 2m)* (2m)*

L o, P
us 2

oﬁb(P)] : (55)

Tr[ o3 (—P)

Plvs]=Nex —if d3x v3(x)
S 2US S

X GPP

k—I—P
2

In this case the partition function is reduced to
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If the spatial dependence in tlefield is local, theo field is
independent of the momentuRy i.e., ak(P)=akO(P), and

we can integrate out and obtain

1( d*P d 1
—f——kOTr oEa(—P) ——f‘Gaa(k— )
2) (2m)* 2m 0 us Jk 2
bb P ab
X GPP| k+ > ok, (P) . (56) FIG. 2. The Feynman diagram for the conductance. The metric
fluctuations are included as a ladder contribution which is repre-

L ) ) sented by the dotted line.
By expanding inside the brackets in E§6) with respect to

P, andP, one can show that, in the limit, (ko) >koPo, the dP dk,
off-diagonal term of the free propagator of thefield in the sz Dq'Dq exp{ - wf -
thermal indices gives the massless excitation which has the (2m)* 27
form of the diffusion propagatdi32]:

N(ko)d,(—P)

, X[D<ko>52—iPOJqKO<P>]. (60
207 (ko) 1

(ko) D (ko)P?=iPo7*®’

(TP (—P))=
Higher order vertex terms will follow corresponding to the
(57) expansion in Eq(58). The fieldsq andq" are free from the
_ o _ ) . constraint and take all possible values. Time dependence in
whereD (ko) is the diffusion constant. Diagramatically this {he stochasticity can be ascribed to the intrinsic property of
form is obtained by including all the ladder diagrams in thehe effective medium and treated as the frequency-dependent
particle-hole propagator. The diffusion constant is related tQandom potential. The modification associated with this
the dc conductivityC, through the Einstein relatiol€,  change can be absorbed in the diffusion constant as the term
=N(ko)D(ko). The diagonal term in Eq56) gives the mas-  proportional todus/dw. If this correction is too large, a dif-
sive excitation that can be integrated out. However, it dogerent approach is required. The usual prescription to account
not contribute directly to the infrared divergence responsiblggy the effect of inelastic scattering is to include the inelastic
for the universal behavior of the conductance ﬂUCtuat'O”%cattering raté\ in the denominator of the diffusion propa-

and will not be considered in this work. oo .
In this U(2) nonlinear sigma model, the matrix field gator so that we replad(ko) P~ iPy in Eq. (60) simply by

-’2 . . .
takes its value in the coset spacé2)/U(1)xU(1). After ~ D(Ko)P“—iPo+A. Here A will set the time scale beyond
making a transformatione—V oV with V=6(w)1 which the phase memory of a scattered wave is lost and the
+ 6(— w) op, Where matrices 1 ane-, act on the thermal transport behavior becomes classical.
indices, the saddle point solution changes its form as
sgn(w) »— n. In this representation, the field around the B. Mesoscopic fluctuations of scalar fields

saddle point can be parametrized(as] The conductivity associated with the Noether current in

the presence of the external field with a frequercgan be
(Vl—qq q ) written by the current-current correlation function by the
o=

qt _ /_*_l—q q Kubo formula[33] as
i . T (> R R
_(P 0, (% 9 _tfae 0 cK<x,y>E—f 4o Q,(0) jneX)ian()
0 -1 qT 0 2\ 0 —qTq KJ - mn

(58 XS w+k—w,)(w— o), (62

The matrix fieldsq=q,, and qT=ql,w carry two fre- Wherejmnzi¢L3¢n is the Noether current expressed by two
quency indices. Inserting this expression into Esg), we  energy eigenstates arfd, (w) is a smearing function that

obtain the form of the free propagator gfield as depends on the characteristics of the system and the environ-
ment. Near equilibrium, it can be written a8, (w)
2 1 =pd w]—pd w+ k], wherepd w] is the initial density ma-
(qe (P)al (—P))= ——— (59 trix. If the metric fluctuations are independent of temperature
° ° 7N(Ko) D(ko)P?~iPy as we assume, the effect of temperature on the conductivity

only arises from this term. Here we assume tha{ w) is
o, (w) in the numerator was absorbed in the redefinition.of normalized such thatdw Q,(w)= «. In Fig. 2, the conduc-
Thus the partition function for the linear part of the sigmatance is represented by the Feynman diagram. In the leading
model with respect tq field is order weak disorder expansion, averaging over disorder is

024002-7



K. SHIOKAWA PHYSICAL REVIEW D 62 024002

taken into account by including all the ladder diagrams. The . . .
conductivity can be written in the more familiar form in HIAL 96, FO(X=X") =040 (X,X"))]. (68)
terms of Green functions 484

Making use of the gauge symmetry in E@8), for a

N 1 (> - - o
C.(x,y)=— 4—f do Q,(0)[Gr(X,Y,w)—Ga(X,Y,w)] constant vector field\, the source term above can be gen-
TS e erated by the following gauge transformation:

X 3,0,[Gr(Y,X, 0+ K) = Ga(Y,X, 0+ k)]. (62 S(R) Ay

With the expression of Green functions in terms of thermal L
fields, B(X)— Pp(x)e” XA, (69)

Gr(X,Y)=—16(xo—Yo){[#(x),dT(V)])=i{#1(X) $1(y)),  Correspondingly, the Green functid®(X,y,») and theo
field transform as

Ga(X%,Y)=i0(yo—Xo){[D(X), dT(¥)]) = —i{B2(X) 1Y),
(63)

G(x,y)—U"XxX)G(x,y)U(y) (70)

. and
we write Eq.(62) as
1 (= a(%Y)= U ) a6y U(Y), (71)
Cli=gr | Q00,03 (607,07 o N
) abcd where U(x)=e A", This gauge symmetry will induce
- - - - the gauge coupling in the effective Lagrangian through the
X (X w+ ) ¢ 0t €) dypT(y,@). (64 covariant derivativel =3+iA*5, :

Note that even though the thermal indices in the sum run . - - - . S
over all possible values, only pairwise equal terms contribute Tr(VoVo)=Tr(dodo) +2i Tr(A*S,.0d0)

to the conductivity. - -
This expression can be obtained directly from the parti- ~TH(AMS, oA25,,0). (72
tion function in terms of the functional derivative by intro-

ducing the external source tert in the form Now we obtain the expression of the conductivity in

terms of theo field,

s ; 3 do do K Py YN
S[A ¢, ¢]=i f d°; 2—¢(x 0)AS(X)- 08, p(X,0"), -7 WA
(65) KV SARSATH

with = _W[ ’
= f d°x((Tr[ 8,,0(Xq) 6_ .o(X1)])

5,=0(w'—w+k)

1 )
. (66) .
1 -1 - f P d%o(TH 8,0 (X0) dor(x1)]

The matrix ind,, acts on the thermal indices. Note thtis

nilpotent, i.e.,62=0. The nonlocal conductivity is given by XTH 8- v (X2) do(X2) 1) |, (73)

_ 2

C(Xy)= — ﬂ (677  and its fluctuation,
KV SAN(X)SAK(Y)’
2 S*'W[A

whereV is the spatial volume of the system and the integral Ci = 27T ———— [ *] —
over energy indices are understood. In the presence of the Y22k, SAFISATFLOAR2GA 2
source term, the partition function for the matrix fieddin 1
Eq. (46) becomes = V[C(l)—C(Z)Jr c®), (74)

where

Z[A]Ze‘W[A]:j Doexp{—%f T oAg o]

do do’ 2m?
3 3y’ (1) =
xex;{f A3 dB3x =— — C PP

| T ot 6 oti]
X Trlog({[ w2+ §2— m§+ ie(w)7]8(0—o') XTI 8,,0(Xp) 6_,0(X2)]),
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restricted in the finite cube with the edge lendgttand that

the rest of the spacetime is flat. This enables us to handle the
problem as a scattering process. Takings the parameter
that lies in themesoscopic scalehe analogy with the elec-
tric circuit becomes elucidated. If we use the relatiGp
=gL2"9 for the conductivity ind dimension for the dimen-

@ ®) sionless conductanag we obtain the conductance fluctua-
tions in terms of the conductivity fluctuations ag’
=C2L29"4 Then from Eq.75), in three dimensions, using
Mg~ /L, we obtain

g?~232. ... (76)

This value is universal in the sense that it is independent of
the amount of stochasticity initially assumed and the size of
© the stochastic regiofi35,36. The conductance is also di-
] rectly related to the transmission matrix. Indeed one can
FIG. 3. The conductance fluctuations are represented by Feynshow that the conductance measures the intensity of wave

EE;"” dg:\(g;ams.t T.hi shat(:]ed regic(Jjn:, arz_giffgsion prgpaga(a)rs. dtransmissior[34:| and the fluctuations of conductance corre-
; analo) contain To, Tree, and four aifiusions and correspon spond to the fluctuations of wave intensity.

to C), ¢, andC® in Eq. (74), respectively.

IV. DISCUSSION

472 -
C(2)=K1K2Vf a0 X5 (TH 6, 7 (X0) dr(X1)] In this paper, we showed the analogy between the field
o R R propagation in Minkowski spacetime with a small stochas-
xTr[(S,Klo(xz)aa(xz)]Tr[5K20(x3)5,Kza(x3)]>, ticity in the metric and the wave in disordered systems.
While the electromagnetic field propagation in a stochastic
2 o spacetime is similar to that in random media, the scalar and
cO®= J d3x,03%,03x 503X 4 (T 8, 0 (X1) dor(X7)] spinor field propagation was shown to be similar to the elec-
AELAAY ' tron in a disordered potential. Both cases can be treated simi-
> 2 = > 2z > larly; however, the following difference should be noted. In
X 5‘Klo(XZ)aa(XZ)]Tr[5K20(X3)(90(X3)] the former, the field remains massless and the randomness

affects the refraction property of light differently depending
on the frequency of the wave. In particular, low energy scat-
tering is suppressed. In the latter, a random mass causes scat-
ntering with any energy. Mesoscopic fluctuations associated
with wave propagation were characterized by the nonlinear
sigma model in the closed time path method. We introduced
the collective fields by the Hubbard-Storatonovich transfor-
é*nation and integrated out the fundamental field variables and
obtained the nonlinear sigma model written in terms of the
gpllective fields only. The conductivity and its fluctuations
Were expressed by these fields. For the time-independent or
slowly dependent stochasticity, the fluctuations of the dc
conductivity were shown to be universal and of order unity.
The origin of this universality is traced back to the infrared
divergence due to the Nambu-Goldstone boson which ap-
%ears as a result of symmetry breaking.

Although the induced effects on the propagation of waves
in the presence of metric fluctuations are themselves of the-
oretical and observational importance as long as the backre-

XTI 8- 1, 0(X) d0r(X)]).

Here we further included the energy indices in the definitio
of the trace as

Tr(O)=m[dky/(27)2N(Kg)D (ko) [dPo= ,033(Kg,Py).

We are interested in the dc conductivity evaluated in th
limit «;,xk,—0. Note that() ,(w) is generally a peak func-
tion which describes a wave packet peaked around the sp
cific modew= wg. Furthermore, if we assume for simplicity
that it is given by the step functiof (w)=1 (for wg<w
<wgt+ k) and O(otherwisg, then taking the dc limitc—0
extracts the particular mode,. The effect of finite tempera-
ture T can be viewed as an additional smearing due to th
width of ), (w). From Appendix B, in the dc limit, the for-
mula above gives the simple result

Ci= lim C2, = ¢ , (759  action of the matter fluctuations is small, a self-consistent
K1, Ky—0 2 VMg treatment is necessary for Planck scale procels®8s This
line of consideration is important particularly of the metric
wherec=7.2% ... is aconstant andM y is the infrared fluctuations produced in the cosmological processes.

cutoff of the momentum integral. In Fig. 3, the correspond- Relativistic quantum field theoretic calculations of the
ing Feynman diagrams for the conductance fluctuations argansport coefficients have been developed during the past
given. Other diagrams that contain crossed diagrams contrillecadqd 38—40. The electrical conductivity in the early uni-
ute as higher order terms in the weak disorder expansiorverse controls the generation of primordial magnetic field
Here we assume that the region with the fluctuating metric isvhich is believed to be the origin of the strong magnetic
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fields presently observed in spiral galaxip$l,42. The for useful comments, and Professor D. Page for explaining
method developed in Sec. Il also gives the field theoretichis relevant work on the spacetime foam.
basis for the study of, for example, mesoscopic fluctuations
due to random magnetic fields. _ APPENDIX A: MESOSCOPIC FLUCTUATIONS
The coarse graining of microscopic degree of freedom OF DIRAC FIELDS
necessarily induces the nonlocal correlation in the stochastic
fields. Moreover, unitarity in the whole system guarantees In this appendix we consider the quantization of the Dirac
the relation between the dissipation kernel and the noise kefield which obeys the equation of motion in E@{.4). The
nel in the form of the fluctuation-dissipation theorem uponaction for this system has the following form:
coarse graining. In the present work, the nonlocal, noncom-
mutative origin of the stochastic fields and the effect of dis- — 4 r
sipation are ignored and only the classical aspects are con- Sy [#. lﬂ]:J d*x P(X)[16—mp—vp(X)]h(X). (AL)
sidered. The possible manifestation of the quantum nature of
underlying microscopic gravitational dynamics in the meso-Thjs action is invariant under the global1) gauge transfor-
scopic effects remains to be clarifi¢d3]. The fluctuating  mation
metric is also relevant for inferring possible decoherence ef-

fects in the quantum interference of propagating particles P(X)—e T(x),
[44-464. The closed time path method gives a suitable (A2)
framework to discuss such effects. Our results of conduc- - vy ~iy

P(X)—=p(x)e”'7,

tance fluctuations assume that the time scale of metric fluc-

tuations is relatively long. In such a case, the time scale Ogmd the corresponding Noether current is
fluctuations appears in the coherence time scale to restrict the
validity of the arguments and diagrammatic calculations I(X=iv (A3)
based on the coherence between different modes beyond this ul Yuth-

time scale. This prescription is quite successful in explaining In the absence of a stochastic field, the closed time path
many mesoscopic experimental results such as electron Scatértition function has a form corres on,din to E80):

tering in a helium gas. Thus, the heavy defects randomlyp P 9 80):

created in the phase transition in the early universe can be

the origin of such fluctuations of the metric. Z[J,JT]zf deydyiD 1D g, D ;D ih
Since we have not specified the origin of stochasticity in
the metric in this work, explicit derivation of such stochas- ; 1 m
ticity from the fundamental model of gravity is desired. The X (S g1, 9n]= S 2. 4]
spacetime uncertainty proposed in the context of string + 31—y ) Y pol Yy jli i ,%i]
theory [47] may have similar effects as discussed in this
work on low energy physics. Branes or other solitonic ob- =exf —iJ'sJ], (A4)

jects that appear in string theory acquire heavy mass in the

weak string coupling limit and become another possiblevhere J-¢=[d*x[3"(x)¢:(x) + 4" (x)I(x)]. The matrix
source of stochasticity. Along with the possible decoherenc&reen functiorS has the form

associated with a fluctuating metric, the mesoscopic effects

treated here may have an observable consequence on future _ S Si (A5)
experiments[48,49. These microscopic origins of metric 1Sy Sy

fluctuations are intrinsically beyond the validity of semiclas-

sical gravity. Therefore the metric fluctuations introduced asvhose components are

a modification of the semiclassical Einstein equation in this

paper possibly capture the essential effects of near Planck S1(p)=—S5,.p)
scale physics on the sub-Planckian scale physics effectively _ N
while the self-consistency based only on the conventional = 0(Po)Se(p) + 6(—Po) Se (P)

semiclassical Einstein equation may not have a predictive
power on such a phenomenon. Clarifying the difference be-
tween these approaches needs more careful study. The ef-
fects of metric fluctuations in cosmological and black hole
spacetimes have been considered by many authors, for ex-

— 2 sgr(po)Ne(p) 8(p?—m3),

SyA(p) =2 sgripo)ne(p)(Pp+mp) 8(p?—m3d),

= — 2 B(Po— 1)
ample, in[50—55. To identify how the mesoscopic effects S24(P) = — 21 sgn(po) €7 ne(p)(p+Mp)
discussed in this paper manifest themselves in such curved % 5(p2—m2) (A6)
spacetimes is of particular interest. Studies in these direc- pr
tions are currently in progress. whereS(p) =(p—mp+ie) ! is the fermion vacuum Feyn-

man propagatomg(p)=(efPo~#) +1)~1 is the Fermi dis-
tribution function, andi™=(J1, - J1). HereS can be diago-

The author thanks Professor B. L. Hu for various discushalized by multiplying matricesi from both sides asS
sions which motivated the present work, Professor V. Frolov= uFSdugln, with

ACKNOWLEDGMENTS
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S W]=ySyt
0 Sa do
:f d3x_
whereSg and S, are retarded and advanced Dirac propaga- 2m

tors. Hereug(p) is the thermal Bogoliubov matrix which has

- 0_ *' —>_ .
the following form: X[p(x,0)(@y =1d-y=mp+ienyo) Y(X,0)].

(A11)
I~ 1 —efRoms In th f the rand iabig which i
u =Jn eﬁ(poM)IZ( ) A8 n the presence of the random variabklg which is as-
F(P) F(P) 1 1 (A8) sumed to obey the probability distribution given in E89),
we average the partition function over, and obtain the
Using the above property, one can write reduced action
YIS =yl pueSy U Y= gueSTus ty,  (A9) (Z[vp))= f DupPlvp]D YDy exiS, [ 4.1}
where = (i1, ,) is_the thermal fermion doublet and we _ _ - _
define its conjugatey=(y],¢}) 5. By changing the field :f DyDyexpliSol ¢, 1 +iS[¢. 411,
variables by the global Bogoliubov transformatiouslzp (A12)
— ¢ andyur— ¢, one can write the partition function in Eq.
(A4) without the source term as where

i _ _
— — — — Sy, ¢]l==| d*xd* Ap(x— .
Z:fd‘//fdl//fDl//DlIIEXp{iSo[w,t//]}pD[t/f,I/f], L] ZJ XY IOITEIRLEIIY)

(AL0) (A13)
By introducing the auxiliary bilocal matrix fieldp(x,y)
where as
iS,[ 4, 4] 1 4y A4 -1 . -
e="%=] Dopexps d* d%y Trlop(X,y)Ap (X=y)op(y,X)]|expliSyd op , &, ¥]}, (A14)
where
Sudlop. i ¢]=— f d*x d*y ¢ (X) ap(X.Y) (y), (A15)
the partition function can be written as
_ 1 . _ — _
Z:J' DO'DDlle,bex EJ’ TI’[O‘DAD O'D:I exm|80[¢,w]+|SHs[(TD,lp,lp]} (A16)
In energy representation, Eq#15) and (A16) have the form
S _——fd?* e o do’ 22 XX )ih(X' @' A17
HS[O-D !‘/Ivlr/f]_ X avx EZ¢(X,@)Uwa/(X,X )I/I(X , W ) ( )
and
- — 3, 3y do do’ — - 0_i3. 2 :
S+ Sud o0 0= | dx PG S8 YK ) (0713 5-mo+ienyo
X (X=X ) w—w") = 0pyy (XX )X, 0"). (A18)

After integrating outz? and ¢, we obtain
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1
Z=f Dchexr{—Ej T opAptop]

do do’ . ) I .
X ex Jd3xd3x’zﬁTrlog{[wyo—la‘y—mD+|emfo]ﬁ(x—x’)ﬁ(w—w’)—chww,(x,x’)} (A19)
and, for the time-independent stochastic field as in(E§),
1 , - ,
sz Dop ex _TI d3x Tr o5 (x) |ex fd3xTrIog{(wy°—|¢9-y—mD+|enyo)é(w—w’)—owa,(x)}.
D
(A20)

The equation of motion can be obtained from E&0) by functional derivative with respect o, . Following the steps from
Eq. (52 to Eq. (55), the kinetic term in therp field in Eq. (A19) can be given similarly to Eq555) which enables us to
constuct the effective field theory in terms of the collective field.

By the Kubo formula the conductivity can be written in terms of the Green functions as it68q.

- - 1 (= - - - - - - - .o -
CK(X,Y)E_HJO dwQk(w)Tr{[SR(X!va)_SA(vaiw)]’Y[SR(yiwi—i_K)_SA( ,X,C!)+K)]’)’}- (AZl)
We obtain
C(x *)=—_1 dew Q(0) X (13X, 0) yP(X, 0+ k) (Y, 0+ ) Yy, 0)) (A22)
K 1y _47TK 0 K S~ ’ Y ’ y! Y yi .

This expression can be also obtained directly from the partition function by functional derivative after introducing a source
term in the form

) 3 do do'— . . . -
'f A5 (X @A Yo, (X, 0"), (A23)

whereA” is the external source field arit] was defined in Eq66). Then the conductivity is given similarly by E€67). The
gauge transformation

Y(X)—e T ADY(X), PX)— (X)X Ak, (A24)

as we saw in Eq(69), generates the gauge coupling in the effective theory represented by

ex fdgxd?’yd—wﬂ
2 2T

1
sz DO'D eXF{_Ef Tr[O’DAil(TD]

XTrlog{[(0y°—id- y—Mp+ieny) dw—w')+iA% y8,18(X—Y) = 0ppu (X,Y)}|. (A25)

This allows us to write the mesoscopic fluctuations in termegfields. We can discuss universal fluctuations parallel to the
scalar fields in this formalism. For an initially thermal equilibrium sta€e,(w)=pp[w]—pp[w+ «], where pp[w]
=ng(w) is the Fermi distribution, the dc limik— 0 extracts the Fermi energye , which reminds us of the electron transport
problem.
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APPENDIX B: CONDUCTANCE FLUCTUATIONS

1 27" 2 2 3 3
cW= do do’Q (0= K)Q (0" )N (kg)D(ko) | d*P[(Qy 0 (P)AL,,,_, (—P))+H.C]
K1K2 (277)5 !
- T —
X[<qw’+K2w(P)quf+K2(_P)>+H'C-]- (Bl)
For k1k,—0,
25 (= d 8
c_, ZJ _f: . (B2)
(2m)“IMrps 7 Mg
co- 2T do do’Q (0— k)0, (" )N (ko) D3(k >fd3F"52[< (P)ULys e (—P))
= w Uw W™K W W—Ki@' o' 0—K -
KKz (2m)° 0 0 Uo—x, q L
X <qw’+K2w( - P)qu'+,<2( P)><qw—K2w’+Kl( P)qwf +K1m—K2( - P)>+ H. C']' (83)
For K1K2—>O,
27 » d 32
c@_, Zf _S: _— (B4)
(2m)=Imrp® 7T Mg
6
cO=—" IN(ko) D (ko)
K1K2 (277)°
- - T - -
X J' daPP4[<qw—Klw’(P)qw'w7Kl(_ P)><qw’+K1w( P) ww/+K1(P)><qw/a)( P)qu (P)>
X{ Qg Klw’+Kz(P) o'+ g K( P))+H. c.]+three other terms. (B5)
For k1k,—0,
25%9 (= d 72
c®_ = J ar_ S (B6)
(2m)?Impp? Mir
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