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Quantum corrections to the entropy of a Reissner-Nordstro¨m black hole due to spin fields

Li Zhong-heng
Department of Physics, Zhanjiang Normal College, Guangdong Zhanjiang 524048, China

~Received 7 December 1999; published 1 June 2000!

The quantum corrections to the entropy of the Reissner-Nordstro¨m black hole due to the gravitational,
electromagnetic, and neutrino fields are calculated by using the brick-wall model. The appearance of logarith-
mically divergent terms is demonstrated. These terms not only depend on the characteristics of the black hole
but also on the spin of the fields. The contribution of any spin field is not proportional to the scalar one and is
compatible from the results obtained earlier. For some quasiextreme black holes, the spin field gives no
contribution to the entropy.

PACS number~s!: 04.70.Dy, 04.62.1v, 97.60.Lf
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To find the statistical origin of black hole entropy, b
employing the so-called brick-wall model, ’t Hooft@1# stud-
ied first the contribution to the entropy of the Schwarzsch
black hole due to the scalar field. After this, the method w
applied to scalar fields in various black hole backgroun
@2–7#. Recently, the method was extended to the electrom
netic field in a Reissner-Nordstro¨m background in Ref.@8#,
where, in particular, it has been shown that the leading t
in the one-loop contribution to the entropy due to the el
tromagnetic field is exactly twice that due to the scalar fie

In this paper, we give the calculation of the entropy of t
Reissner-Nordstro¨m black hole due to fields of arbitrary spi
~s50 for the scalar field,s5 1

2 for the neutrino field,s51
for the electromagnetic field,s52 for the gravitational field!,
and show that the contribution of the electromagnetic field
not just twice the scalar one when logarithmically diverge
terms are taken into account. We derive the master equa
governing the spin fields and then calculate the contribu
to the black hole entropy by using the brick-wall model.

The line element of the Reissner-Nordstro¨m spacetime is
given by

ds25S 12
2M

r
1

Q2

r 2 Ddt22S 12
2M

r
1

Q2

r 2 D 21

dr2

2r 2~du21sin2 u dw2!, ~1!

whereM and Q are the mass and charge of the black ho
respectively. The horizon is located at

r 65M6AM22Q2. ~2!

We assume the nonextremal Reissner-Nordstro¨m black hole
with M.Q, so thatr 5r 1 and r 2 correspond to the posi
tions of the outer event horizon and the inner Cauchy h
zon, respectively.

Choosing the coordinatesxm5(t,r ,u,w), the resulting
tetrad is then given by@9#
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D
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2r 2 @r 2,2D,0,0#, ~3!
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where

D5r 222Mr 1Q2. ~4!

The nonvanishing spin coefficients are

r52
1

r
, g5

Mr 2Q2

2r 3 , m52
D

2r 3 ,

a52
cotu

2&r
52b, ~5!

whereas the only nonvanishing component of the Weyl t
sor is given by

C252
Mr 2Q2

r 4 . ~6!

Equations~5! and ~6! tell us that the Reissner-Nordstro¨m
metric is of Petrov-typeD. Using the result of Teukolsky
@10,11#, the field equations of spins5 1

2 , 1, and 2 for the
source free case can be combined into

$@D2~2s11!r#@D22sg1m!#2@d1~2s22!a#@ d̄22sa#

2~2s21!~s21!C2%F1s50,

$@D1~2s22!g1~2s11!m#@D2r#2@ d̄1~2s22!a#

3@d22sa#2~2s21!~s21!C2%F2s50, ~7!

where

D5 l m]m , D5nm]m , d5mm]m . ~8!

In Eq. ~7! the first equation is for spin statesp5s, while the
other one is forp52s.

Using the spin coefficients, the components of the W
tensor and the directional derivatives written down in E
~5!, ~6!, and~8! and making the transformations@9,12#

F1s ,F2s5r p2s
pRlE~r ! pYl

m~u,w!e2 iEt, ~9!
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we can separate the variables of Eq.~7! to write

FD2p
d

dr S Dp11
d

dr D1
r 4E212ipEr~r 223Mr 12Q2!

D

2l2G pRlE~r !50, ~10!

F 1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]w2 1
2ip cosu

sin2 u

]

]u
2p2 cot2 u

1p1l2G pYl
m~u,w!50. ~11!

Equation ~11! shows that pYl
m(u,w) is the spin-weighted

spherical harmonic@13,14#, and the separation constantl
satisfies

l5A~ l 2p!~ l 1p11!. ~12!

Here l andm are integers satisfying the inequalities

l>upu and 2 l<m< l . ~13!

It is remarkable that Eqs.~10! and~11! can also be shown to
describe the behavior of a massless scalar field (s50) on the
Reissner-Nordstro¨m background.

In the WKB approximation one writes pRlE(r )
;exp@iS(r,p,l,E)#. Then Eq.~9! yields the radial wave num
ber as

k2[~] rS!25
1

D F r 4

D
E22~ l 2p!~ l 1p11!G . ~14!

According to the semiclassical quantization rule, the rad
wave number is quantized as
02400
l

E
r 11«

L

dr k~r ,p,l ,E!5np, ~15!

under the brick-wall boundary conditionsF1s5F2s50 at
r 5r 11«, r 5L. Note thatn is assumed to be a non-negativ
integer, and« and L are ultraviolet and infrared regulators
respectively, where 0,«!r 1 andL@r 1 . In this range, the
energyE is always positive and the wave numberk is real.
Then, the number of wave solutions with energy not exce
ing E is given by@using Eq.~13!#

g~E!5(
p

(
l

~2l 11!n

5
1

p (
p
E

r 11«

L

drE
upu

l max
dl~2l 11!F r 4

D2 E2

2
~ l 2p!~ l 1p11!

D G1/2

5
2

3p (
p
E

r 11«

L r 6

D2 FE22
D

r 4 ~ upu2p!G3/2

dr. ~16!

The free energy at inverse temperatureb is given by

2bF56(
j

ln~16e2bEj !, ~17!

wherej represents the set of quantum numbers. The plus
in Eq. ~17! corresponds to the Fermi case, while the min
sign corresponds to the Bose case. Using Eq.~16! to deter-
mine the density of states, we find the leading behavior
the free energy:
one
is due

stro
F57
1

b E
0

`

dE
dg~E!

dE
ln~16e2bE!

'5 2
2vp3L3

135b4 2
2vp3r 1

6

45b4~r 12r 2!2

1

«
2

2vp3r 1
5 ~4r 126r 2!

45b4~r 12r 2!3 ln
L

«
1

spr 1
2

3b2~r 12r 2!
ln

L

«
~bosons!

2
7vp3L3

540b4 2
7vp3r 1

6

180b4~r 12r 2!2

1

«
2

7vp3r 1
5 ~4r 126r 2!

180b4~r 12r 2!3 ln
L

«
1

spr 1
2

6b2~r 12r 2!
ln
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~ fermions!,

~18!

where the factorv is the degeneracy due to the spin. For the gravitational and electromagnetic fields we havev52; for the
neutrino and scalar fields we havev51. The first term on the right-hand side of the latter equation is the usual
proportional to the volume, while the second and following terms give the quantum corrections. Note that the last term
to the fields of spin statep52s. From Eq.~18! we obtain, for the quantum corrections to the entropy,

Sq55
8vp3r 1

6

45b3~r 12r 2!2

1

«
1

8vp3r 1
5 ~4r 126r 2!

45b3~r 12r 2!3 ln
L

«
2

2spr 1
2

3b~r 12r 2!
ln
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«
~bosons!

7vp3r 1
6

45b3~r 12r 2!2

1

«
1

7vp3r 1
5 ~4r 126r 2!

45b3~r 12r 2!3 ln
L

«
2

spr 1
2

3b~r 12r 2!
ln

L

«
~ fermions!.

~19!

Choosing the inverse temperatureb to correspond to the Hawking temperature of the nonextremal Reissner-Nord¨m
black hole, we set
1-2
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b5
4pr 1

2

r 12r 2
, ~20!

upon which the entropy~19! becomes

Sq5H v~r 12r 2!

360«
1vF ~r 12r 2!

60r 1
2

1

180G ln L

«
2

s

6
ln

L

«
~bosons!
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8

~r 12r 2!

360«
1

7v

8 F ~r 12r 2!

60r 1
2

1

180G ln L

«
2

s

12
ln

L

«
~ fermions!.

~21!

On the other hand, the distance of the brick wall from the horizon is related to the ultraviolet cutoff as

«p5E
r 1

r 11«
A2grr dr'A4r 1

2 «/~r 12r 2!. ~22!

Let

«p
25

2e2

15
, L25

Le2

«
~23!

wheree and L are, respectively, the ultraviolet cutoff parameter and infrared cutoff parameter in Ref.@15#. The quantum
corrections to the entropy~21! then reads

Sq5H vA

48pe2 1vS 1

18
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M
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whereA54pr 1
2 is the surface area of the event horizon.

From Eq.~24!, it is clear that the first term has the ge
metric feature that whene→0, it is a quadratic divergence
The last two terms are logarithmic divergences, which
only depend on the characteristics of the black hole~mass,
charge! but also the spin of fields, and therefore cannot
neglected as nonessential additive constants. In the calc
tion, we found the third term comes from the fields of sp
statep52s.

It should be noted that whenv51 ands50, our results
reduce to the case discussed by Solodukhin@15#. Obviously,
the first two terms in Eq.~24! have completely the sam
s

02400
t

e
la-

form as that of the scalar field, except that the coefficien
different. However, the third term exists in Eq.~24! and
therefore the whole expression does not take the form of
scalar field. This result is very different from that of Refs.@8,
16#.

It is interesting to note that for some quasiextreme bla
holes„r 65M6d, whered'@(v130s)/v#« ln(L/«) for the
Bose case,d'@(7v1120s)/7v#« ln(L/«) for the Fermi
case… Eq. ~21! becomes zero. This means that the spin fie
do not contribute to the entropies of these black holes.
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