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Spinodal decomposition and inflation: Dynamics and metric perturbations
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We analyze the dynamics of spinodal decomposition in inflationary cosmology using the closed time path
formalism of out of equilibrium quantum field theory combined with the non-perturbative Hartree approxima-
tion. In addition to a general analysis, we compute the detailed evolution of two inflationary models of
particular importance:lF4 new inflation and natural inflation. We compute the metric fluctuations resulting
from inflationary phase transitions in the slow roll approximation, showing that there exists a regime for which
quantum fluctuations of the inflaton field result in a significant deviation in the predictions of the spectrum of
primordial density perturbations from standard results. We provide case examples for which a blue tilt to the
power spectrum~i.e. ns.1) results from the evolution of a single inflaton field, and demonstrate that field
fluctuations may result in a scalar amplitude of fluctuations significantly below standard predictions, resulting
in a slight alleviation of the inflationary fine-tuning problem. We show explicitly that the metric perturbation
spectrum resulting from inflation depends upon the state at the outset of the inflationary phase.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

In recent years, there has been strong interest in thedy-
namicsof quantum fields in the early universe. This intere
has led to a better understanding of a number of proce
including the formation of topological defects during ea
phase transitions@1#, the reheating of the universe after in
flation @2#, and the dynamics of inflation itself@3#. In the
particular case of inflationary reheating, our improved und
standing has been revolutionary and has significantly
shaped the subject@4#.

The lessons provided by these studies are varied.
crucial aspect is the importance of using time-depend
techniques to study processes of the early universe. It
been repeatedly shown that classical and one-loop effec
potentials are poorly defined and of little use in dynami
systems; they should only be used to determine static q
tities such as the ground state of the system@5#. Another
common theme is the importance of non-linear correction
the linear dynamics. These corrections have been found t
quite dramatic in studies of phase transitions and reheat

Despite these important advances in studies of quan
fields in the early universe, it is still widely believed th
these techniques have little to add to our understanding
the inflationary phase itself. The belief that the inflaton f
lows a classical trajectory determined from the classical
fective potential with only perturbatively small quantum co
rections @6# is still widely held. While the techniques o
stochastic inflation@7# allow these corrections to add up
they do so in an incoherent fashion through a repeated s
mation of one-loop effects without self-consistent inclusi
of higher order corrections@8#.

Much work has been done to verify that the dynamics
the inflaton field is predominantly classical. The existence
a particle horizon and the natural squeezing of states du
the near exponential redshifting of field modes justifies
0556-2821/2000/62~2!/023520~19!/$15.00 62 0235
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quasi-classical description of the inflaton field up to a pert
batively small component of field fluctuations with wav
lengths inside the de Sitter horizon@9#. However, it is im-
portant to emphasize that the validity of a classical evolut
of the inflaton field alone doesnot justify the use of the
classical effective potential for a non-linear dynamical s
tem. As has been shown quite clearly by the classical fi
theory simulations of the early stages of reheating, the
non-linear dynamics of even a purely classical system
pends strongly on coherent effects of backreaction due to
field’s fluctuations@10#. It is then not unreasonable to expe
that non-linear field fluctuations during inflation could res
in a departure from the dynamics derived directly from t
classical effective potential.

In this report we address these issues using the techni
of out-of-equilibrium quantum field theory. We examine
class of models in which strongly quenched inflaton evolv
under the influence of a negative mass squared in the po
tial, a process which, following the terminology of suc
phase transitions in condensed matter physics, we refer t
spinodal decomposition@11#. This class of inflation models
includes new@12# and natural inflation@13#, as well as many
models of hybrid inflation@14#. Such inflation models are o
particular interest in the present study because the evolu
from the initial to the final state of the system is necessa
a non-linear process.

The particular case in which the inflaton field is treated
a component of anO(N) vector in the largeN limit has
already been detailed for the case of new inflation, wher
was found that the full non-perturbative quantum dynam
does in fact reproduce an effectively classical trajectory
the evolution of the inflaton. The growth of quantum fluctu
tions results in a dynamical flattening of the potential@15#,
an analogue of the Maxwell construction commonly used
studies of the equilibrium properties of phase transitions
this earlier work, it was found that the effectively classic
©2000 The American Physical Society20-1
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trajectory of the inflaton field, a result of the phenomen
known as zero mode reconstruction, is a consequenc
Goldstone’s theorem@16#.

However, the case of a single, real inflaton field is qu
different. Here, the long wavelength quantum fluctuations
the field also reassemble themselves into a semi-clas
field, but in this case the assembled fielddoes notobey the
classical equations of motion of the original potenti
Rather, the inflaton may be broken up into two compone
The first is the mean fieldf and obeys the classical equatio
of motion expected from the original potential except tha
is coupled to a second field. This second fields, constructed
through the assembly of quantum fluctuations, obeys a m
fied equation of motion. The result is an effectively classi
theory of two coupled fields, referred to asspinodal inflation
@17#.

The observational consequences are dramatic. As t
are effectively two fields, the evolution becomes quite co
plicated and depends on the initial conditions. There are
regimes. In the first, the mean inflaton field, defined as
expectation value of the quantum field, has an initial va
greater than the expansion ratef(t0).H0/2p and the semi-
classical fields never becomes dynamically relevant. T
evolution reproduces all of the standard results for that p
ticular model of inflation and we can think of this as th
classicalregime. In the second, quantum, regime for whi
f(t0),H0/2p, the influence of thes field is quite impor-
tant. In this case, observational quantities such as the am
tude and spectrum of primordial density fluctuations dep
not only on the parameters of the model, but also on
particular value of the initial mean fieldf(t0).

A simple single field model can therefore produce a ran
of observational results for any given choice of paramet
In fact, due to the effective two field dynamics, it is possib
to produce observational features not possible in the sim
classical, single field version of the same theory, such as
generation of a blue primordial power spectrum; this c
occur much in the same way as it does in hybrid inflation

We begin with a short introduction to spinodal models
inflation and the need for a fully out-of-equilibrium and no
perturbative description of the dynamics. We write down
self-consistent Hartree equations of motion for a gene
spinodal potential, followed by an explanation of the asse
bly of quantum fluctuations and how this results in an eff
tively classical two field model. Next, we move on to a d
tailed analysis of the two most important spinodal models
inflation, lF4 new inflation and natural inflation.

Having determined the evolution of the field, we wish
examine the observational consequences of spinodal i
tion. Beginning with the gauge invariant formulation
gravitational perturbations of Mukhanov, Feldman, a
Brandenberger@18#, we note that while the effective dynam
ics is that of two fields, returning to the full quantum theo
we see that only one set of field fluctuations couples to gr
ity perturbations.

We then provide a complete and detailed numerical an
sis of the dynamics of spinodal inflation in single field mo
els, including computations of the primordial spectrum
scalar and tensor perturbations which result. The conseq
02352
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Cl spectra @19# for a particularly interesting example i
shown to allow for the direct relation of spinodal effects
observation. Here we see explicitly the exciting features p
sible through the dynamics of spinodal inflation.

II. SPINODAL MODELS OF INFLATION

We envision the evolution of a scalar field near the top
a potential of the form sketched in Fig. 1. The potential m
be expanded in the form

V~F!5K2
1

2
m2F21

l

4!
F41•••, ~2.1!

where the cosmological constant contributionK is chosen
such that the potential is zero in the true vacuum, andm2 is
positive.

Initially, the field will ‘‘roll’’ slowly toward one of the
minima of the potential. This is the regime in which inflatio
will take place. To a first approximation, we ignore the qu
tic term and see that the initial evolution follows that of
free field in an inverted harmonic potential. This evolutio
has been studied in great detail in the context of inflation
cosmology@20#. For early times, the field grows expone
tially. Eventually the higher order terms in the potential b
come important, with the result that any perturbative analy
of the dynamics will break down and must be augmented
some non-perturbative technique.

Our choice of approximation is further restricted by t
fact that the system we wish to study is not in thermal eq
librium, thus leading us to real-time methods. We emphas
that equilibrium constructs, such as the effective potent
are completely inadequate tools for this problem.

The simplest approximation satisfying the requirement
the Gaussian variational approximation, in which the qu
tum density matrix is restricted to take on a Gaussian fo
Also known as the time dependent Hartree-Fock approxim

FIG. 1. A typical potential with a region of negative curvatur
The dashed line is the spinodal line, separating the unphysical s
odal region~above the line! from the physical region~at and below
the line!. The exact shape of the dotted portion of the curves
pends upon the higher order terms in Eq.~2.1!.
0-2



a

an
f t

n

la

-

in

a

q
th

x-

ari-

on-

e

te.
-

the
he

nd-

to

SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
tion, such mean field techniques have been utilized in qu
tum mechanics dating back to Dirac@21#. It is a standard
technique in chemistry, condensed matter physics,
nuclear physics and has led to a better understanding o
structure of a number of phase transitions.

A. Real scalar field: Hartree dynamics

In what follows, we assume a spatially flat Robertso
Walker metric:

ds25dt22a2~ t !dxW2. ~2.2!

We now derive the equations of motion for a real sca
field with Lagrangian

L5
1

2
¹mF~x!¹mF~x!2V@F~x!;t#, ~2.3!

within the self-consistent Hartree approximation@22#. We
break up the fieldF into its expectation value plus a fluc
tuation about this value:

F~xW ,t !5f~ t !1c~xW ,t !, ~2.4!

f~ t ![^F~xW ,t !&. ~2.5!

Here, f depends only on time due to space translation
variance as is consistent with the metric~2.2!. By definition

^c(xW ,t)&50.
The Hartree approximation consists of replacingc2n by

c1^c
2&n21c21c2^c

2&n andc2n11 by c3^c
2&nc, where the

ci are constant factors whose values are determined
Wick’s Theorem. This Hartree factorization may be summ
rized as follows:

c2n→ ~2n!!

2n~n21!!
^c2&n21c22

~2n!! ~n21!

2nn!
^c2&n,

c2n11→ ~2n11!!

2nn!
^c2&nc. ~2.6!

Given this factorization, any functionF(F) becomes

F~f1c!5 (
n50

`
1

n! S ^c2&
2 D nH F (2n)~f!1cF (2n11)~f!

1
1

2
@c22^c2&#F (2n12)~f!J , ~2.7!

where we use the notation

F (n)~f![
dn

dfn
F~f!. ~2.8!

Note that the latter two terms on the right hand side of E
~2.7! have zero expectation value. We therefore find that
expectation value of a function factorizes as
02352
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^F~f1c!&5 (
n50

`
1

n! S ^c2&
2 D n

F (2n)~f!. ~2.9!

The equations of motion for the mean fieldf are given by
the tadpole condition̂c&50 @23#:

f̈~ t !13
ȧ~ t !

a~ t !
ḟ~ t !1 (

n50

`
1

n! S ^c2&
2 D n

V(2n11)~f!50,

~2.10!

where we have used the metric~2.2! and have factorized the
expectation valuêV8(F)& according to Eq.~2.9!. We define
the Fourier transform of the Wightman function by the e
pression

G~xW ,t;xW8,t8!5E d3k

~2p!3
eikW•(xW2xW8)Gk~ t,t8!,

where we have used the property of space translation inv
ance. The quantitŷc2(t)&[2 iG(x,x) is constructed from
the mode functions obeying the equation

@Gk~ t,t !#21f k~ t !50, ~2.11!

together with the appropriate closed time path boundary c
ditions @24#. The operator@Gk#

21 is given by the quadratic
form appearing in the generating functional. Explicitly, th
f k(t) obey

F d2

dt2
13

ȧ~ t !

a~ t !

d

dt
1

k2

a2~ t !
1 (

n50

`
1

n! S ^c2&
2 D n

V(2n12)~f!G f k~ t !

50, ~2.12!

where we have again used the factorization~2.9! to express
the potential term̂V9(F)&.

As mentioned above, the quantitŷc2& is determined
from the mode functionsf k combined with closed time path
boundary conditions appropriate to the chosen initial sta
For an initial state in thermal equilibrium at an initial tem
peratureT, we have

^c2~ t !&5E d3k

~2p!3
u f k~ t !u2cothS vk

2TD . ~2.13!

Note that in the zero temperature vacuum state given by
T→0 limit, the hyperbolic cotangent has the value 1. T
frequencyvk appearing here is given by

vk
25k21a2~ t0! (

n50

`
1

n! S ^c2~ t0!&
2 D n

V(2n12)
„f~ t0!….

~2.14!

For the case of thelF4 theory, there is an additional term
proportional to the Ricci scalar2a2(t0)R(t0)/6 which ap-
pears on the right hand side of this expression forvk . This
term arises when one considers initial conditions correspo
ing to the adiabatic vacuum state in conformal time@25,26#,
which is necessary if we wish our initial vacuum state
0-3
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
match the Minkowski vacuum in the limita(t)→1. How-
ever, this term is not necessary if the scalar field is taken
be part of a low energy effective theory, such as is the c
with the natural inflation case we analyze below.

Using the vacuum state for the mode functions defined
the initial frequency spectrum of Eq.~2.14! leads to the fol-
lowing initial conditions on thef k(t):

f k~ t0!5
1

A2vk

,

ḟ k~ t0!5S 2
ȧ~ t0!

a~ t0!
2 ivkD f k~ t0!. ~2.15!

A final note is that the initial frequenciesvk given by Eq.
~2.14! may be imaginary for lowk modes. In this case th
initial conditions~2.15! need to be modified for lowk. This
may be done in a variety of ways with little effect on resu
@16#. Here, we choose a smooth interpolation between lok
modes with modified frequencies and the highk modes
which remain in the conformal vacuum state with freque
ciesvk ~2.14!:

vk
2[k21M 2tanhS k21M 2

uM 2u
D , ~2.16!

where

M 2[a2~ t0! (
n50

`
1

n! S ^c2~ t0!&
2 D n

V(2n12)
„f~ t0!….

~2.17!

This completes our set of equations of motion of the m
ter fields within the Hartree approximation.

B. Gravitational dynamics

We will treat gravity in the semi-classical approximatio
in which the expectation value of the full quantum energ
momentum tensor acts as a classical source to the Ein
gravitational tensor. The semi-classical Einstein’s equa
reads

Gn
m

8pGN
1

L

8pGN
1~higher derivatives!52^Tn

m&,

~2.18!

where GN51/M Pl
2 is ~bare! Newton’s constant,L is the

~bare! cosmological constant and the components of the E
stein curvature tensor using the metric~2.2! are

G0
0523

ȧ2

a2
, ~2.19!

Gm
m52R526S ä

a
1

ȧ2

a2D .

~2.20!
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The higher derivative terms included in Eq.~2.18! are
needed for renormalization purposes; Newton’s constant
the cosmological constant will also be renormalized~see be-
low!.

Once again, we use the factorization~2.9! to determine
the right hand side of Eq.~2.18!. Defining the additional
integrals

^ċ2~ t !&5E d3k

~2p!3
u ḟ k~ t !u2cothS vk

2TD , ~2.21!

^„¹W c~ t !…2&5E d3k

~2p!3
k2u f k~ t !u2cothS vk

2TD ,

~2.22!

we find for the energy density« and the traceT of the energy
momentum tensor:

«5^T0
0&5

1

2
ḟ21

1

2
^ċ2&1

1

2a2
^~¹W c!2&

1 (
n50

`
1

n! S ^c2&
2 D n

V(2n)~f!, ~2.23!

T5^Tm
m&52ḟ22^ċ2&1

1

a2
^~¹W c!2&

14(
n50

`
1

n! S ^c2&
2 D n

V(2n)~f!. ~2.24!

The pressurep is arrived at from these expressions throu
the relationp5(«2T )/3. The equation of state of the sys
tem is characterized by the quantityw5p/«.

The semi-classical approximation to gravity is fully co
sistent with the mean field treatment of the inflaton fie
described in the preceding subsection, and with the assu
tions of the Robertson-Walker metric~2.2! and space trans
lation invariance. It also allows us to analyze the metric p
turbation spectrum resulting from the dynamics, as
provides a classical background about which to expand
determine the power spectrum of perturbations relevan
observations of the cosmic microwave background.

The extent to which this approximation will be valid in
realistic situation is tied to the extent to which the glob
average value of the energy density is correlated with
local value in our particular Hubble domain. If we were
use the classical effective potential, we would come to
conclusion that large field fluctuations imply large dens
fluctuations on scales very much greater than the Hub
distance; it is this assumption upon which the stochastic
flation program@7# is based. If such were indeed the case,
semi-classical approximation would be expected to br
down as soon as the dynamics became nonperturbative.

However, as we shall see in Sec. IV, there is a tende
for field fluctuations to have the effect of flattening the p
tential along which the actual non-equilibrium evolutio
takes place. This tendency implies that large field fluct
0-4
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
tions are in fact consistent with having only small dens
fluctuations even on global scales, consistent with se
classical gravity. Such a possibility is striking as it wou
imply that what have come to be standard pictures of
global inflationary universe@6# may be incorrect. Forma
verification of this possibility is unfortunately beyond th
scope of the present article. A few possible avenues of
proach to attacking this problem will be presented in o
conclusions.

C. Regularization and renormalization

The mode integrals appearing in Eqs.~2.13!, ~2.21!, and
~2.22! are formally divergent and must be regularized in
der to perform any practical computation.

In the special case of a renormalizable potentialV(F), for
example in thelF4 model, we would like to fully renormal-
ize the theory. Our choice of renormalization procedure
somewhat limited by the requirement that the dynamics
amenable to numerical analysis. However, a number
groups have recently addressed this problem either by m
of adiabatic regularization with a simple cutoff at large m
mentum@27,25,28#, as was first developed by Anderson@29#,
or by using a scheme based on dimensional regulariza
@30#.

In practice, we use the simple scheme developed by
Pittsburgh-Paris Collaboration. This scheme has the ad
tage of being very easy to implement and it has the attrac
feature that all subtractions are absorbed into counterte
renormalizing the bare couplings in the equation of mot
and the Friedmann equation~the latter must be extended t
include a cosmological constant and a higher order curva
term!. However, we mention that it does not include t
finite subtractions which would be necessary to give the c
rect conformal anomaly. These terms, the finite subtracti
detailed in@27# and @28#, are formally important, but in the
present context, as the inflaton self-coupling is typically
quired to be of order 10212 or smaller, such terms will have
absolutely no influence on numerical simulations as th
contributions are much smaller than the numerical accur
of the computations. In fact, although we do not do so he
it is normally safe to drop the logarithmically diverge
terms from the simulations as well without influencing t
results. The simulations are checked after the fact to ve
that they satisfy the covariant conservation of the ener
momentum to within their numerical accuracy, and to ens
that the results are independent of the value of the mom
tum cutoff.

For models with non-renormalizable potentials, such
natural inflation, we have to satisfy ourselves with the tre
ment of the model as a low energy effective theory with
well defined cutoff. Again, we implement the regularizati
by means of a large momentum cutoff.

III. EARLY TIME DYNAMICS AND REASSEMBLY

As mentioned above, the initial linear dynamics in sp
odal models of inflation is well understood. This period
characterized by exponential growth of both the mean fielf
and those mode functionsf k with physical wavelength
02352
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greater than the Hubble distance, that is,k/a(t)!H(t)
[ȧ(t)/a(t). Since H(t) is approximately constant durin
inflation while a(t) is growing exponentially, clearly more
and more modes satisfy this condition at each subseq
time. However, the very long wavelength modes whi
crossed the horizon very early on in the evolution will te
to dominate the quantitŷc2& of Eq. ~2.13! simply because
they have experienced the spinodal instability for the long
time. This is a very important characteristic of spinodal
flation which sets it apart from other models: the dynamics
driven by a super-horizon scale quasi-particle condens
On scales smaller than the horizon, it is not possible to d
tinguish such a condensate from a purely homogene
background field. Any possible measurement will determ
only the combined properties of the condensate and the m
field.

Given the assumption of initial conditions near the loc
maximum of the potential, and provided with a finite reno
malized or regularized two-point function along with ve
small values for the higher order couplings in the Lagran
ian, the early dynamics is well approximated by a line
analysis. The equation for the mean field for any potentia
the form ~2.1! is simply

f̈~ t !13H~ t !ḟ~ t !2m2f~ t !50. ~3.1!

To this order, we may take the Hubble parameter to be c
stant,H(t)5H0, in which case the solutions to this equatio
are simple exponentials. Only the growing term is releva
so that we have the early time solution

f~ t !'f0expF S n2
3

2DH0t G , n5A9

4
1

m2

H0
2
. ~3.2!

The value off0 depends on the precise initial conditions f
f and ḟ.

The mode functions obey the similar equation

f̈ k~ t !13H~ t ! ḟ k~ t !1S k2

a2~ t !
2m2D f k~ t !50, ~3.3!

which for constantH(t)5H0 and corresponding exponentia
a(t)5exp(H0t) has the solutions

f k~ t !'expS 2
3

2
H0t D FAkJnS k

H0
e2H0tD

1BkJ2nS k

H0
e2H0tD G . ~3.4!

The constantsAk and Bk are determined by the initial con
ditions on the mode functions. These solutions oscillate w
an envelope proportional to 1/a for sub-horizon modes~with
k/a.H0), but the solutions are growing and decaying exp
nentials in the opposite limitk/a!H0, leading to the state-
ment that super-horizon modes have an exponential insta
ity. In this limit, we may again discard the exponential
decaying term. We then have for super-horizon modes
0-5
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
f k!aH~ t !'
Ck

kn23/2
expF S n2

3

2DH0t G . ~3.5!

Here,Ck is roughly equal to the value of the modef k evalu-
ated at the timet(k) that the mode crosses the horizon
determined by the conditionk5exp@H0t(k)#H0. For modes
initially far within the horizon the general dependence ofCk
on k may be estimated from the initial behavior of the mo
functions f k;k21/2 and the decay of the envelope of th
Bessel solutions which provides the standard result thatCk
}k23/2. We note that while the exponential form~3.5! is only
an asymptotic solution for small arguments of the Bes
functions of Eq.~3.4!, due to the exponential behavior of th
argument it very accurately describes the evolution of a
mode function within a Hubble time of horizon crossing.

We are now in position to compute an expression for
condensatêc2&. By separating the momentum space in
gral over super- and sub-horizon modes respectively, we
take advantage of the expression~3.5! to find for early times

^c2&5exp@~2n23!H0t#E
0

aH d3k

2~2p!3

uCku2

k2n23
1^c2&k.aH .

~3.6!

The latter, sub-horizon term contains all subtractions due
renormalization. After a few Hubble times, it is safe to n
glect this term compared to the exponentially growing sup
horizon contribution. To determine which modes are m
important to the evolution, it is convenient to examine t
contribution of each squared mode per logarithmic mom
tum interval,dk/k. Using thek23/2 behavior ofCk , we find
for modes which are originally far inside the horizon, b
which have since crossed outside, that this contribution
proportional tok2(2n23). Since 2n.3, the integral is domi-
nated by those modes which crossed the horizon the ear
This is important for any numerical analysis as it allows o
in practice to set a cutoff in the calculation of^c2& with well
controlled errors, avoiding the problem of including a nu
ber of mode functions which grows exponentially with t
scale factor.

As a consequence of the formation of the condensat
becomes possible to form an accurate and simple mode
the complete system, in which the full two-point fluctuatio
^c2& is replaced by a nearly homogeneous, and effectiv
classical field. This produces a model in which two effe
tively homogeneous classical fields, the mean field coup
to a fluctuation field, accurately describe the dynamics. T
condensate field is defined as

s~ t ![A^c2~ t !&k,aH. ~3.7!

For early times, it is given by the first term on the right ha
side of Eq.~3.6!. The square root of the value of the fir
integral of Eq.~3.6! a few Hubble times after the beginnin
of inflation provides an effective initial condition ons. For a
zero temperature initial state, which for simplicity we take
be the case in what follows, this is found numerically to
of orderH/2p @16#. The effect of a finite temperature initia
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state is to increase this value by a factor ofAT/m without
modifying any of the qualitative features described in th
study. The dynamics modeled by this classical field will
accurate up to perturbatively small corrections to the dyna
ics due to the sub-horizon modes contained in the final te
of Eq. ~3.6!.

This system of effective homogeneous fields is referred
as a reassembled system. We will refer to thef field, the
expectation value of the full quantum field, as the mean fie
while we refer to the semi-classicals field as the fluctuation
or condensate field.

While this condensate forms during the linear regim
eventually the dynamics becomes non-linear. It is this n
linear evolution which we wish to study. We will be particu
larly interested in examining how the interaction of the co
densate with the mean field can influence the dynamics.

We consider primarily the dynamics of single field mo
els ~the largeN case was studied previously@16#!. Here, the
interactions of the condensate and the mean field will be s
to lead to a complicated evolution in which initial condition
play a primary role.

IV. NON-LINEAR DYNAMICS

We begin with an analysis of the stationary solutions
the mean field, which obeys the equation of motion~2.10!.
There are two primary late time solutions. The first is t
trivial solution with f(t)50, which will be the solution for
a system without symmetry breaking. The other soluti
relevant for spinodal inflation, is given by the condition

^V8„f~ t !1c~xW ,t !…&a5 (
n50

`
1

n! S ^c2&a

2 D n

V(2n11)~fa!50,

~4.1!

where the subscripta indicates the asymptotic solution. Un
like the sum rule in the largeN limit @16#, this condition does
not correspond to massless field modes@31#. Rather, for a
bounded potential of the form~2.1! with a definite minimum
at finite values forF, the effective mass of particle mode
appearing in Eq.~2.12! will be positive. Asymptotically, we
therefore expect the field modes to be redshifted away du
expansion of the universe such that the quantity^c2& be-
comes small and may be neglected in Eq.~4.1!. In this case,
the expression for the stationary solution becomes simpl

V8~fa!50, ~4.2!

and the effective mass of the field modes is

Me f f
2 5V9~fa!. ~4.3!

These, of course, are just the classical vacuum solution
the symmetry broken phase.

The task is to connect the early time solutions of E
~3.2! and ~3.4! and the late time solutions provided by Eq
~4.2! and ~4.3!. It is convenient to introduce the effectiv
condensate field defined as in Eq.~3.7!. Doing so, and ne-
glecting the exponentially suppressed gradient term in
expression for the energy density~2.23!, leads to the follow-
0-6
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
ing equations of motion for the mean fieldf, the condensate
field s, and the scale factora:

f̈13
ȧ

a
ḟ1 (

n50

`
1

2nn!
s2nV(2n11)~f!50, ~4.4!

s̈13
ȧ

a
ṡ1 (

n50

`
1

2nn!
s2n11V(2n12)~f!50, ~4.5!

ȧ2

a2
5

8pGN

3 F1

2
ḟ21

1

2
ṡ21 (

n50

`
s2n

2nn!
V(2n)~f!G . ~4.6!

Remarkably, these equations are just those one would de
from a classical system of two homogeneous fields with
potential

V~f,s!5 (
n50

`
1

2nn!
s2nV(2n)~f!. ~4.7!

An important property of this potential is that, for inte
acting fields, it doesnot depend symmetrically uponf and
s. This means that, in contrast to the largeN case@16#, it is
not possible to combine the mean and condensate fields
a singleeffective classical inflaton. The fieldsf ands have
different dynamics and properties.

The initial conditions(t0).H0/2p results in two distinct
regimes. In the classical regime, characterized byf(t0)
@H0/2p the dynamics is dominated by the evolution off
and is effectively independent ofs. This follows from the
fact that s never grows to be particularly large beforef
reaches its classical minimum. However, in the fluctuat
dominated regime wheref(t0)!H0/2p, s has a significant
effect on the evolution off and dramatically modifies the
overall inflationary dynamics from naive expectations.

Before moving on to specific examples, let us exam
some general features of the fluctuation dominated regi
At intermediate times the dynamics of the reassembled fi
will be primarily dictated by the equation of motion ofs,
due to the fact thats@f and that both fields contribute t
the equations of motion in a similar way. The dynamics w
therefore approach a quasi-equilibrium regime for which
third term in Eq.~4.5! becomes small:

V,s~f,s!→0, ~4.8!

where the comma represents the partial derivative. Retur
to the equation of motion for the mode functions~2.12!, we
discover that this condition corresponds to effectively ma
less quanta. What we are seeing is the rapid departure o
inflaton field from the unstable regime for which its fie
quanta have a negative mass squared into a physical re
of massless quanta. This flattening of the unphysical reg
into a form for which particles become well defined is rem
niscent of the famous Maxwell construction describing
convexity of the thermodynamical equilibrium free energy
a system. The behavior described here is the out of equ
rium analog of such a construction@15#.
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We note, however, that this condition~4.8! does not cor-
respond to the late time classical solutions~4.1! we expect; it
is only a quasi-equilibrium for which the mean fieldf con-
tinues to evolve toward the true minimum, as is clear fro
Eq. ~4.4!.

To understand the implications of this behavior better
is useful to work with definite models. We now turn to co
crete examples which will allow us to follow the dynamics
detail.

A. New inflation

The simplest spinodal model of inflation is new inflatio
for which the scalar potential~2.1! is truncated at quartic
order with the cosmological constant contributionK
53m4/2l:

V~F!5
3m4

2l
2

1

2
m2F21

l

24
F4. ~4.9!

This model is of particular importance due to its renormal
ability.

The reassembled equations of motion are

f̈13
ȧ

a
ḟ2m2f1

l

6
f31

l

2
s2f50, ~4.10!

s̈13
ȧ

a
ṡ2m2s1

l

2
s31

l

2
f2s50, ~4.11!

ȧ2

a2
5

8pGN

3 F1

2
ḟ21

1

2
ṡ21

3m4

2l
2

1

2
m2~f21s2!

1
l

24
~f413s416f2s2!G . ~4.12!

The reassembled two field potential for this model is the
fore

V~f,s!5
3m4

2l
2

1

2
m2~f21s2!1

l

24
~f413s416f2s2!.

~4.13!

A plot of this two dimensional potential is shown in Fig. 2.
is characterized by a local maximum atf50,s50, a saddle
point at f50,s5mA2/l, and minima atf56mA6/l,s
50.

As we discussed above, there are two dynamical regim
determined by the initial value off. In the classical regime
s never plays a significant role and the fieldf acts as an
ordinary classical field in alf4 potential~4.9!. However, in
the fluctuation dominated regime, the evolution procee
first through an inflationary phase with energy density co
tribution given by the tree level potential, but then enter
second regime for which the condition~4.8! is satisfied.

For this potential, we have in the quasi-equilibrium r
gime the sum rule
0-7
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2m21
l

2
s21

l

2
f250, ~4.14!

which we recognize as the condition for massless qua
This expression may then be substituted back into the e
tion of motion for thef field ~4.4!, where we find

f̈13
ȧ

a
ḟ2

l

3
f350. ~4.15!

Here we see that the potential energy contribution to
equation of motion forf appears at the cubic order. Th
field f therefore evolves as a field with an effective squa
mass given by2lf2/3. As this is typically much smaller~in
absolute value! thanm2, what we observe is that the potenti
becomes flattened as a consequence of the non-perturb
growth of fluctuations.

We can also use the condition~4.14! to determine the
value of the potential energy~4.13! during this phase. We
find simply

V~f,s!→ m4

l
2

l

12
f4, ~4.16!

as is consistent with the effective mass forf. We see that the
growth of fluctuations has produced an effective dynam
corresponding to a very flat potential forf with a cosmo-
logical constant contribution to the energy densitym4/l
which is 2/3 of the value appearing in the original potenti
We therefore arrive at a second stage of inflation with
expansion rate related to the original stage by a facto
A2/3.

We note, however, that there is a continued instability
f with the consequence that eventually the condition

FIG. 2. The two dimensional potential which may be used
describe the full non-linear field dynamics in alF4 new inflation
phase transition in terms of effectively classical fieldsf and s.
Axes are scaled such that the true minima of the potential occu
f561.
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f2>fs
252m2/l, ~4.17!

is met and it becomes impossible to satisfy the sum r
~4.14!. At this point, the second inflationary stage ends,
fluctuation fields decays away and the fieldf evolves to its
classical minimum.

B. Natural inflation

The natural inflation potential is derived from the vacuu
manifold of a complex scalar field spontaneously broken
the Planck scale and with explicit symmetry breaking at
grand unified scale. It may be written in the form

V~F!5L4@11cos~F/ f !#, ~4.18!

where L;MGUT and f ;M Pl are constants. Expansion o
the cosine reveals that this potential is of the form~2.1! with
m2[L2/ f andl[L4/ f 4.

The reassembled equations of motion become

f̈13Hḟ2
L4

f
sinS f

f DexpS 2
s2

2 f 2D 50, ~4.19!

s̈13Hṡ2
L4

f 2
cosS f

f DexpS 2
s2

2 f 2D s50,

~4.20!

ȧ2

a2
5

8pGN

3 F1

2
ḟ21

1

2
ṡ21L4F11cosS f

f DexpS 2
f2

2 f 2D G G .

~4.21!

We recognize these equations as those of two homo
neous classical scalar fields with potential

V~f,s!5L4F11cosS f

f DexpS 2
s2

2 f 2D G . ~4.22!

We provide a plot of this two field potential in Fig. 3. A
expected, for any integerj, we have degenerate maxima
f52 j p f ,s50 and degenerate minima atf5(2 j 11)p f ,
s50. The feature to notice, however, is that the poten
quickly becomes very flat ass/ f becomes greater than 1.

Again, we concern ourselves with the fluctuation dom
nated regime. We find that the sum rule~4.8! results in the
condition

L4

f 2
cosS f

f DexpS 2
s2

2 f 2D→0, ~4.23!

which for f,p f becomes satisfied ass grows large. The
effective mass term forf in Eq. ~4.19! becomes exponen
tially suppressed as well, again indicating that the growth
fluctuations of the field results in a flattening of the potenti
The potential itself clearly goes to the valueL4 which is
precisely half of the value of the original cosmological co
stant contribution. This state of affairs will continue untilf

at
0-8
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
>fs5pf, at which point the fluctuations represented bys
become massive and begin to decay away.

As in thelF4 model, we expect two stages of inflatio
this time with the expansion rate of the second stage redu
from that of the first by the factorA2.

V. METRIC PERTURBATIONS

The possible link between inflationary expansion of t
universe at grand unified energy scales and the observa
of fluctuations in the cosmic microwave background~CMB!
temperature of order 1025 is remarkable@32#. The fact that
we are now in the process of observing the details of
temperature spectrum through a number of ground-, air-,
space-based experiments, presents an amazing opport
for probing details of what the universe was like at tim
inaccessible through any other means@33#.

In order to take full advantage of this opportunity, how
ever, it is important that we are careful in connecting t
observations to the theoretical models of the dynamical p
cesses of the early universe which may have led to the C
anisotropies. We have already presented a detailed ana
of the cosmological dynamics of scalar fields undergo
inflationary phase transitions. Here, we provide compu
tions of the primordial spectra of density perturbations wh
arise from such phase transitions.

By computing the spectrum of scalar perturbations,
explicitly show that coherent effects due to large wavelen
fluctuations of the inflaton field could have significant impa
on observational features of the temperature spectrum
CMB anisotropies. Particular features of interest inclu
scales on which there is deviation from a flat Harriso
Zel’dovich primordial power spectrum with power increa
ing as one moves to smaller scales. Such a spectrum, ref
to as having a blue tilt~corresponding to a scalar tilt param
eter ns.1), was previously thought only to be possible
more complicated, multi-field models of inflation. Here, w

FIG. 3. The two field classical potential for natural inflatio
Axes are scaled such that the true minima of the potential occu
f5(2 j 11)p.
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find that it is indeed possible to produce such a spectrum
the length scales relevant to CMB anisotropy observati
from the simplest of single field models.

Another significant feature of the spectra produced
phase transitions is the possible decrease in the amplitud
the primordial perturbations on the scales of interest rela
to the predictions of an analysis assuming a classical ev
tion for the inflationary field. This may somewhat allevia
the fine tuning problem, although we find in practice that t
effect is relatively minor, allowing perhaps a dimensionle
quartic coupling for the field one or two orders of magnitu
larger than previously thought. Since this coupling is ty
cally thought to be restricted to be less than 10214, we still
require the inflationary models to be highly fine tuned.

A final feature of the spectra is their dependence on
precise initial state of the inflationary field in the region co
responding to today’s observational universe. It is found t
a universe which began the inflationary phase in a stron
classical state will show none of the exotic features descri
here. This strongly contrasts with the case of initial states
which quantum fluctuations of the field are of the same or
as the classical field value. In this latter case, the primor
spectrum may depend quite strongly on precisely h
‘‘quantum’’ the particular initial state is.

We begin with a computation of the amplitude of sca
and tensor metric perturbations resulting from spinodal in
tion. For the specific models discussed above, we prov
details of the resulting power spectrum as a function of sc
We also include plots of the amplitude and tilt in the pow
spectrum as a function of the initial state of the scalar fi
for a choice of scale consistent with those observed by
cosmic background explorer@32#. Finally, we provide ex-
amples of theCl temperature anisotropy spectra@19# that
result from particularly interesting examples of spinodal
flationary effects to allow comparison with other theoretic
plots of theCl spectrum and with the observed spectrum

Note that in what follows, we use the normalizations
the scalar and tensor amplitudes of Ref.@18#.

VI. THE PRIMORDIAL SPECTRUM

Our starting point for the computation of primordial de
sity perturbations is the expression for the average ene
density~2.23!. To compute the average fluctuation we defi

d«[^~dT0
0!2&1/2,

where the variation of the energy density yields the expr
sion

~dT0
0!5~ḟ1ċ !ċ1

1

a2
~¹W c¹W !c1

dV~f1c!

dc
c.

~6.1!

It is convenient to introduce the Fourier variable

ck5
k3/2

A2p
f k ,

at
0-9
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
defined such that

^c2&5E dk

k
ucku2.

In Fourier space, we find the following expression for t
average energy density fluctuation on a scale correspon
to a wave numberk:

^~dT0
0!~dT0

0!&k5uċku2~ḟ21^ċ2&!1~ckċk* 1ċkck* !

3 K ~ḟ1ċ !
dV~f1c!

dc L
1ucku2K S dV~f1c!

dc D 2L , ~6.2!

where terms proportional to 1/a2 have been neglected. No
mally during inflation, the third term on the right hand sid
of Eq. ~6.2! dominates, which is equivalent to the stateme
that the usual slow roll conditions are satisfied during
evolution.
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Using the above expression, the density contrast at
horizon crossing is

udk5aHu25
1

r2
^~dT0

0!~dT0
0!&. ~6.3!

Here, we note that we have used the important relation
tween the gauge invariant Bardeen variable representing
scalar metric perturbation and the energy density fluctua
at horizon crossing to allow us to write down this apparen
simple expression. As the density perturbations are adiab
~recall that there is only one scalar field with one set
fluctuations!, the super-horizon evolution of the metric pe
turbation up to the second horizon crossing is specified
the conservation of a single parameterj as defined in Ref.
@18#. Following the procedure of Ref.@18#, we arrive at the
expression for the density contrast at mode re-entry in te
of the scaled mode functionsck :
udh~k!u25

F ~ḟ21^ċ2&!uċku21 K ~ḟ1ċ !
dV~f1c!

dc L ~ckċk* 1ċkck* !1 K S dV~f1c!

dc D 2L ucku2G
25~ḟ21^ċ2&!2

, ~6.4!
ua-

ity

m

in
er,

ion
t-
where each quantity is evaluated at the time when the co
sponding mode first crosses the horizon, i.e. whenk5aH.

In what follows, we will assume that the third term in E
~6.2! dominates over the first two terms, as this is an exc
lent approximation in the models in which we are interest
Equation~6.4! becomes simply

udh~k!u2.
ucku2K S dV~f1c!

dc D 2L
25~ḟ21^ċ2&!2

. ~6.5!

This can be simplified further by recognizing that at fi
horizon crossing the quantityucku2 is given approximately
by (H/2p)2 @34#. This may be seen directly from th
asymptotic solutions of the mode functions for large m
menta. As the expansion is rapid, these asymptotic solut
remain approximately valid all the way tok;aH. Combin-
ing this with the ~semi-classical! Friedmann equation an
using the inflationary condition̂V&@ḟ21^ċ2&, we reach
the result

udh~k!u2.
2

75p

^V&^V,c
2 &

M Pl
2 ~ḟ21^ċ2&!2

. ~6.6!
e-

l-
.

t

-
ns

If we were to make the further assumption that the fluct
tions are always small withc!f andċ!ḟ, then we would
arrive at the standard slow roll expression for the dens
contrast:

udh~k!u5A6p
8

5

V3/2

uV8uM Pl
3

. ~6.7!

We will continue, however, with the more general for
~6.6!.

The computation of the tilt parameterns21 is straightfor-
ward, given Eq.~6.6!. We define

ns21[
d„lnudh~k!u…

dln~k!
U

k5aH

. ~6.8!

As is common practice, we could rewrite this expression
terms of partial derivatives of the field variables. Howev
since we have dependence both uponf and the fluctuations
c, such a procedure results in a complicated express
which is not particularly instructive. We will therefore sa
isfy ourselves with Eq.~6.8!, which is used directly to com-
pute the tilt parameter in the numerical examples.
0-10
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
A. lF4 spinodal inflation

Using Eq.~6.6!, we now compute the expression for th
primordial spectrum of scalar metric perturbations specific
the lF4 model of spinodal inflation. In terms of the rea
sembled variablesf ands, the result is

udh~k!u5A 2

75p

1

M Pl~ḟ21ṡ2!
F3m4

2l
2

1

2
m2~f21s2!

1
l

24
~f416f2s213s4!G1/2Fm4~f21s2!

2
lm2

3
~f416f2s213s4!1

l2

36
~f6115f4s2

145f2s4115s6!G1/2

. ~6.9!

Again, we point out that all expressions are to be evalua
when the given scalek crosses the horizon.

B. Natural inflation

For natural inflation, the relevant expression is

udh~k!u5
L6

A75pM Pl f ~ḟ21ṡ2!
„12cos~2f/ f !

3e22s2/ f 2
…

1/2
„11cos~f/ f !e2s2/2f 2

…

1/2.

~6.10!

C. Gravitational wave perturbations

It is also of interest to examine the spectrum of gravi
tional wave perturbations resulting from spinodal inflatio
As such perturbations do not directly interact with the infl
ton field, they may be related directly to the expansion r
during any inflationary stages. During such regimes, the
plitude of gravitational waves is simply@18#

udg~k!u5
2

A3p

Hk

M Pl
, ~6.11!

whereHk is the value of the expansion rate when the scak
first crosses the horizon,k5aHk .

As we have discussed, spinodal inflation may involve t
distinct inflationary stages. The relevant amplitude of
gravitational waves is therefore typically determined
which stage is in effect 60–50e-folds before the end o
inflation, when the relevant length scales exit the horiz
However, the transition period between inflationary sta
may also be relevant.

The spectrum in the transition period depends upon
details of the transition, but clearly must smoothly interp
late between the two major regimes. The important facto
whether the characteristic accelerated expansion continu
hold throughout the transition or if the transition includes
short period of deceleration. In the former case, the transi
02352
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is smooth and straightforward, following Eq.~6.11! through-
out, while in the latter case, the amplitude of the mod
crossing the horizon during the transition has an oscillat
nature@18#.

As we will see, the former, smooth transition without a
oscillation of the gravitational wave amplitude is typical
spinodal inflation, with the result that the spectrum may ha
at most a single feature indicative of the transition from t
initial inflationary phase to the spinodal phase.

D. Notes on metric perturbations

It is worth taking a moment to examine the significance
the expressions for the amplitudes of the metric perturbati
in some detail. The first feature to notice is that the sca
amplitude depends directly upon both the average field va
f and the typical fluctuation represented bys. As we have
seen, the end of inflation depends upon the evolution off,
occurring whenf reaches the spinodal valuefs . When the
influence of the field fluctuations are neglected, the value
f 60 e-folds before the end of inflation,f60, which we will
take to be the largest scale measured by the Cosmic B
ground Explorer~COBE!, is a well defined quantity and cor
responds to a well defined scalar amplitudeud60u independent
of the initial conditions.

However, we see here that the dynamics of the field fl
tuationss may influence the evolution off. The net result is
that the precise values off60, s60, and thereforeud60u oc-
curring when the relevant mode crosses the horizon d
generally depend upon the initial conditions for the inflato

This leads to an extremely important result:The spectrum
of primordial metric perturbations resulting from a give
model of inflation depends upon the initial state of the infl
ton field.

A second significant feature coming as a result of th
more general expressions for the perturbation amplitud
that udh(k)u is not necessarily a monotonically increasin
function of length scale. In contrast to the case in which
influence of the field fluctuations are neglected, there may
periods of time during whichudh(k)u increases as eve
shorter length scales cross the horizon.

This leads to a result previously thought to be impossi
in such simple, single field inflationary models:Inflation may
result in a blue spectral tilt in the primordial spectrum o
scalar perturbations.

E. The Cl spectrum

As a final note in this section, we recall that none of t
parameters of the primordial spectrum written down to t
point are directly observable. Rather, this primordial sp
trum becomes processed by the evolution of the late t
universe, after corresponding length scales have re-ent
the particle horizon. The most important set of observa
parameters is theCl spectrum of the cosmic microwav
background map of temperature variations.

Standard techniques of computing theCl ’s from the pri-
mordial parameters assume a scale independent tiltns ,
which does not generally apply here. It is, of course, poss
to compute theCl spectrum for a more general primordi
0-11
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
spectrum, but to do so is far beyond the scope of the pre
work. We therefore use a standard approximation which
lates the tilted spectrumCl

(t i l t ) to the tilted scalar perturba
tion amplitudeudh(k) t i l t u evaluated on the scalek5 lH * /2
whereH* is the inverse Hubble radius today relative to t
respective quantities where a flat spectrum (ns51) is as-
sumed@35#:

Cl
(t i l t )5Cl

( f lat) udh~k5 lH * /2! t i l t u2

udh~k5 lH * /2! f latu2
. ~6.12!

Assuming the spectrumCl
( f lat) used here is properly COBE

normalized, we require that the flat and tilted primordial a
plitude match for the lowl scales corresponding to COBE

This will allow us to present an approximate plot of th
Cl spectrum resulting from spinodal effects which may
compared to standardCl spectra.

VII. CONCRETE EXAMPLES AND RESULTS

We now put all the pieces of the previous sections
gether in numerical simulations of the full dynamical equ
tions of motion of the spinodal system. A note is in ord
regarding these simulations. In certain cases it was impra
cal to run numerical simulations using the full field theo
equations of motion. These include plots showing quanti
as a function of the initial condition forf as well as the plot
of the scalar tilt as a function of the initial Hubble paramet
In these cases, we turned to the classical 2-field models
scribed above, using the approximate initial conditi
s(t0)5H0/2p. All such figures specify in the caption tha
they result from the classical models. All other figures we
produced from full field theory simulations.

A. New inflation

We begin with thelF4 system, which we first examine
in this context in Ref.@17#. We show the dynamics of th
mean fieldf, the fluctuation̂ c2&1/2, each of which is scaled
by the factorf [mA6/l, and the expansion rateH for each of
three examples, corresponding to~a! f(t0)@H0/2p, ~b!
f(t0).H0/2p, and~c! f(t0)!H0/2p.

In the first of these,~a!, shown in Fig. 4, the evolution
proceeds exactly as would be expected from a purely cla
cal analysis of the dynamics. The two-point fluctuation^c2&
remains small and does not have a noticeable effect on
evolution off, which in turn simply follows the contour o
the tree-level effective potentialV(f). As ^c2& remains
small, the expressions for the amplitude of primordial me
perturbations~6.4! reduces to the usual slow roll expressi
~6.7! and we arrive at the standard results forudh(k)u, ns
21, and udgu. These quantities are depicted in Fig. 5 as
function of N, the number ofe-folds before the end of infla
tion at which the corresponding length scale crosses the
rizon.

Example~b!, Fig. 6, is an intermediate example for whic
the fluctuation becomes large for a short time, inducing
spinodal phase during the period of evolution for which t
length scales of relevance to CMB observations cross
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horizon. This example is of further importance because
depicts the case in which the initial classical value of t
inflaton field is of the same order as its initial vacuum flu
tuations. As is clearly shown, the growth of the two-po
fluctuation has a significant influence on the evolution of
mean fieldf, resulting as well in a modified behavior for th
expansion.

The result for the metric perturbations are provided in F
7, where we see some remarkable features. First, we no
that the amplitude ofudh(k)u is reduced and that its shape
significantly changed by the spinodal dynamics. The sign
cance of the shape is further emphasized by the scala
ns21. Here, we see that for some scales of observatio

FIG. 4. The mean fieldf(t)/ f , the fluctuation̂ c2(t)&1/2/ f , and
the Hubble parameterH(t)/m vs t for the lF4 model with f(t0)

55.0H0/2p, ḟ(t0)50, H052m, l/8p2510216, and f [mA6/l.

FIG. 5. The scalar amplitudedh , the scalar tiltns21, and the
tensor amplitudedg vs N corresponding to the evolution of Fig. 4
0-12
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
relevance between 60 and 50e-folds before the end of infla
tion, the scalar tilt parameterns21 is positive. This corre-
sponds to a blue tilt in the power spectrum and was, u
now, considered to be unattainable in inflation models c
sisting of only a single scalar field. Finally, the tensor amp
tude clearly follows the behavior of the expansion rateH as
expected.

To show why this is the case, we plot in Fig. 8 the equ
tion of statew[p/r as a function of time. We see that in th
transition region between the initial and spinodal phases
inflation, there is little departure from the de Sitter equat
of statep52r and that, in particular,p,2r/3 through to
the end of the second inflationary stage. This means tha

FIG. 6. The mean fieldf(t)/ f , the fluctuation̂ c2(t)&1/2/ f , and
the Hubble parameterH(t)/m vs t for the lF4 model with f(t0)

50.4H0/2p, ḟ(t0)50, H052m, l/8p2510216, and f [mA6/l.

FIG. 7. The scalar amplitudedh , the scalar tiltns21, and the
tensor amplitudedg vs N corresponding to the evolution of Fig. 6
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condition for accelerated expansionä.0 is satisfied the
whole time, resulting in the simple behavior of the tens
amplitude.

Case~c!, Fig. 9 shows the other extreme case when
initial classical value of the field is significantly smaller tha
the effective quantum fluctuation. Here,^c2& reaches the
spinodal whilef remains small, resulting in a very lon
spinodal phase in which the mean fieldf evolves slowly
along the spinodal line. The results for the metric parame
are provided in Fig. 10.

To add completeness to this picture, it is useful to plot
scalar amplitude and tilt as a function of the log of the init

FIG. 8. The equation of statew(t)[p(t)/«(t) vs t for the pa-
rameters corresponding to the evolution of Fig. 6. The expan
region shows the transition between the initial and spinodal pha
of inflation.

FIG. 9. The mean fieldf(t)/ f , the fluctuation̂ c2(t)&1/2/ f , and
the Hubble parameterH(t)/m vs t for the lF4 model with f(t0)

50.05H0/2p, ḟ(t0)50, H052m, l/8p2510216, and f [mA6/l.
0-13
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
valuef(t0) over the range of the differing regimes. This
done for the particular scale crossing the horizon 60e-folds
before the end of inflation~Fig. 11!. This figure provides a
nice summary of our primary results.

In the classical regimef(t0)@H0/2p, the results are in-
dependent of initial conditions, but asf(t0) becomes of or-
der H0/2p there is a distinct transition regime in which th
amplitude drops by up to a couple of orders of magnitu
~possibly alleviating the fine tuning problem of inflation to
minor degree!, while there is a spike for which the tilt be
comes positive. While this region appears rather restricte
the parameter space of initial values forf, we remind the
reader that we plot here on alog scale the ratio off(t0) to
m/2p so that the region in question effectively covers t
entire range for whichf(t0) and H0/2p are of the same
order of magnitude.

Finally, we see distinct regions for which there is a lo
spinodal phase. In this case,^c2& has a significant effect long
before the relevant scales cross the horizon. The mean
evolves slowly along the spinodal line to the spinodal po
As the sum rule~4.8! is in place during this phase, the ev
lution of f in the latter stages is always the same, and
therefore expect thatud60u and n6021 become constan
throughout this regime, as is indeed the case.

It is worth mentioning how these results depend upon
other parameters of the model, such as the magnitude o
quartic couplingl and the ratio of the initial expansion ra
to the mass scaleH0 /m.

Increasing the value ofl while keepingH0 /m fixed only
acts to modify the value of the vacuum expectation value
the spinodal point to be smaller as both of these quant
are proportional to 1/Al. This simply reduces the amount o
time the fields evolve, but does not change any of the f
tures described above, with the exception that the scalar
plitude udh(k)u scales, as usual, asAl.

FIG. 10. The scalar amplitudedh , the scalar tiltns21, and the
tensor amplitudedg vs N corresponding to the evolution of Fig. 9
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Modification of the ratioH0 /m ~keepingl fixed!, on the
other hand has a more complex influence on the behav
The results for the scalar amplitude and tilt as a function
initial conditions for three values ofH0 /m are shown in Figs.
11. Here, we see that increasing the parameter has the e
of reducing the amplitudes of the features in the transit
region.

Note that in the case ofH0 /m51 the approximations we
have used to compute the metric perturbation spectrum b
down in the transition region, where we see that the sc
tilt spikes to a very large value, and therefore this compu
tion is unreliable for that small range of initial condition
However, as long as the transition period does not oc
within the last 60e-folds of inflation, and in particular for the
spinodal region forf(t0)!H0/2p, the slow roll conditions
are satisfied throughout the relevant period of evolution s
that the portions of this plot away from the transition regi
are reliable.

Finally, we mention a somewhat unexpected feature
the results for the spinodal regime with small initialf(t0). In
Fig. 12, we plot the scalar tilt parameterns21 as a function
of the value of the initial Hubble parameterH0 /m and com-
pare it to the result in the classical regime for whichns21
5m2/3H0

2. The result is remarkable. Over a large range
initial expansion rates, there is very little change in the va
of the scalar tilt. It seems that the tilt due to a long spino
phase of inflation is relatively independent of the parame
of the model, with an empirical prediction over the range
tested parameters of 0.94,ns,0.98. While extension to
even larger values ofH0 /m may bring the upper limit toward
1.0, it seems likely that the lower limit will remain solid. Th
consequence is that a future measurement which restrict

FIG. 11. The scalar amplituded60 and the scalar tiltn6021
corresponding to the scale crossing the horizon 60e-folds before
the end of inflation vs 2pf(t0)/m for lF4 new inflation using the

classical two field model withḟ(t0)50, l/8p2510216 and several
values ofH0.
0-14
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
tilt to ns,0.94 would seem to rule out a spinodal phase
inflation.

B. Natural inflation

Due to its popularity, we examine one other spinodal
flation model in detail: natural inflation. The qualitative b
havior is in many ways quite similar to that of thelF4

model described above, so we will focus on the distingui
ing features. The primary difference occurs during the sp
odal phase. In thelF4 model, the spinodal condition of Eq
~4.8! simply results in the lowest order contribution to th
effective mass squared of the true zero modef being of
order 2lf2, thus slowing the evolution off. In natural
inflation, however, the spinodal condition for natural infl
tion yields an effective mass which isexponentiallysup-
pressed by the growth of the fluctuations. Hence, the ev
tion of the zero mode can come to practically a stands
The net result is that the spinodal phase in natural infla
models is significantly longer than a correspondinglF4

model.
We provide results for two examples corresponding to

intermediate case withf(t0).H0/2p shown in Figs. 13 and
14 and the fully fluctuation dominated case off(t0)
!H0/2p as depicted in Figs. 15 and 16. We see the sa
features that appeared in the previous model, with the o
ous difference that the spinodal phase of Fig. 15 is extrem
long even forf(t0) not much smaller thanH0/2p.

It is worth examining this point further by plotting th
number of e-folds of inflation as a function of the initia
condition onf. This is shown in Fig. 17 where we see
dramatic dependence which contrasts very sharply with
logarithmic dependence of the same quantity on initial c
ditions in the classical regime.

FIG. 12. The scalar tiltn6021 corresponding to the scale cros
ing the horizon 60e-folds before the end of inflation vsH0 /m for
lF4 new inflation using the classical two field model and spino
initial conditions,f(t0)!H0/2p.
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Once again, it is enlightening to examine the depende
of the quantitiesud60u andn6021 as a function of the initial
state. These are depicted in Figs. 18 where we see agai
clear transition regime aroundf(t0);H0/2p separating the
classical and fluctuation dominated regimes.

C. Example Cl spectrum

Finally, we present an exampleCl spectrum resulting
from spinodal inflation, shown in Fig. 19. We plot the tilte
Cl spectrum corresponding to the natural inflation case
Fig. 13 as well as a standard flatCl spectrum for comparison
The ‘‘flat’’ spectrum was produced using the progra

l

FIG. 13. The mean fieldf(t)/ f , the fluctuation̂ c2(t)&1/2/ f , and
the Hubble parameterH(t)/m vs t for the natural inflation model

with f(t0)5H0/2p, ḟ(t0)50, H052m, andL4/4p2f 4510216.

FIG. 14. The scalar amplitudedh , the scalar tiltns21, and the
tensor amplitudedg vs N corresponding to the evolution of Fig. 13
0-15
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
CMBFAST version 2.4.1@36# using the defaults of a standar
cold dark matter cosmology with a tiltless adiabatic pow
spectrumns51, while the ‘‘curved’’ spectrum was repro
duced from the flat one using the approximate relat
~6.12!.

The primary feature of interest is that while the spinod
inflation spectrum is shifted downward for the modes 1
, l ,1000, the spectrum approaches its flat counterpart
high l. This is indicative of the shift of the spectrum from re
to blue over the range of observable scales.

FIG. 15. The mean fieldf(t)/ f , the fluctuation̂ c2(t)&1/2/ f , and
the Hubble parameterH(t)/m vs t for the natural inflation mode

with f(t0)50.5H0/2p, ḟ(t0)50, H052m, and L4/4p2f 4

510216.

FIG. 16. The scalar amplitudedh , the scalar tiltns21, and the
tensor amplitudedg vs N corresponding to the evolution of Fig. 15
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VIII. CONCLUSIONS

Whether one studies QCD, ferromagnetism, or ordin
gases, non-linear, long wavelength effects are seen to ha
dramatic impact on the properties of the physical syste
Without close contact between the observation and theor
these systems, there is good reason to doubt whether
respective phenomena of confinement, ferromagnetism
the liquid-gas phase transition would be as well underst
as they are today. But that is precisely the challenge be
us if we wish to understand the dynamics of phase transiti
in the very early stages of the universe.

FIG. 17. The total number ofe-folds of inflation N vs
2pf(t0)/H0 for natural inflation using the classical two field mod

with ḟ(t0)50, L4/4p2f 4510216, andH052L2/ f .

FIG. 18. The scalar amplituded60 and the scalar tiltn6021 vs
2pf(t0)/H0 for natural inflation using the classical two field mod

with ḟ(t0)50, L4/4p2f 4510216 andH052L2/ f .
0-16
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SPINODAL DECOMPOSITION AND INFLATION: . . . PHYSICAL REVIEW D62 023520
If we expect to be able to proceed, then it will be nec
sary to return to those systems that we believe we un
stand, say in condensed matter physics, and examine
techniques, approximations, and concepts which have le
consistent and accurate theoretical descriptions. Lookin
any statistical physics text we immediately notice that th
are a few general concepts and techniques which have
found to be particularly rewarding for a variety of differe
systems.

One of these is mean field theory, where complex det
of a system are replaced by simple averages. It is in m
ways a very naive approach and often provides quantita
results which are only roughly correct. But the real power
mean field theory lies not only in its quantitative prediction
rather in the qualitative pictures it paints, allowing us, f
example, to explain the liquid-gas phase transition in ter
of a system as simple as that given by the van der W
equation of state.

Another powerful concept is the convexity of the therm
dynamical free energy function for any equilibrium syste
and the simple rules for writing down such a function pr
vided by the Maxwell construction. The story being told
these concepts is that theoretical energy curves with con
portions describe ‘‘unphysical’’ states, and that the dynam
of the corresponding system will act to transform any su
state into a physical state described by a purely convex
ergy function.

This report is an attempt to understand the system o
inflationary phase transition in the context of these powe
concepts. The initial state is unphysical, described by a c
cave effective potential, the analog of the equilibrium fr
energy, with quanta corresponding to imaginary mass sta
Such a system must decay into physical states, which we
from the exponential growth of long wavelength fluctuation
This decay continues until a non-perturbative state is reac

FIG. 19. The standard CDMCl spectrum of temperature
anisotropies vsl for a flatns51 spectrum and the curved spectru
corresponding to the evolution of Fig. 13.
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for which the corresponding quanta are physical with
strictly real or zero mass.

There are two possible ways to reach such a state.
first is simply to provide a significant bias to the state su
that the mean value of the field~i.e. the order parameter!
reaches its true vacuum value where the field quanta are
defined.

The second way, appropriate for systems with small or
parameter, is to allow the system to phase separate into
mains for which the field has either positive or negati
value. Rather than the order parameter moving along
potential energy diagram~see Fig. 1!, the field drops down
into the center of the diagram to the spinodal line. At t
spinodal line, the field quanta are massless and physical,
this state of affairs may be relatively long lasting, endi
only when one phase becomes so much more prevalent
the other that the system may relax into a definite vacu
state throughout the system.

We therefore have arrived at a consistent physical pict
of inflationary phase transitions based upon mean fi
theory. Already, at this naive level, we have seen new p
nomena which impact not only the evolution of the inflat
field but also have important implications for the interpre
tion of recent and soon to come observational data.

As a final note, we emphasize that the techniques u
here are really only a first—or, rather, a second
approximation to a very complicated system of interact
between an unstable scalar field and gravity at very h
energies. There are a number of possible avenues w
might be taken to improve upon these results for the dyna
ics and, in particular, for the predictions of observation
quantities.

One direction is to move beyond mean field theo
Gravitationally, this means doing something more sophi
cated than semi-classical gravity. There has been recent w
in this regard within the context of perturbation theory up
two loop order @37#, and interest in this area has grow
somewhat due to the possibility of new phenomena in
context of preheating@38#. However, the non-perturbativ
dynamics of the scalar field studied here corresponds to n
perturbative departures of the gravitational dynamics fr
that of a purely classical background field so that techniq
based upon perturbative expansions are of little help.

In terms of the scalar field dynamics, one possible ave
that has received attention is the 1/N expansion of theO(N)
vector model, which includes contributions beyond me
field theory at next to leading order~this approximation is
also promising as it might be consistently implemented
gravity as well! @39#. Another alternative approach is to us
variational methods to compute the dynamics of the sys
@40#, a technique which might also be combined with the 1N
expansion. However, significant hurdles remain before eit
of these techniques will be implementable for interest
field theory problems.

The primary alternative to these semi-analytic approac
is to look to lattice simulations. As the interesting pheno
ena occur out of equilibrium, fully quantum simulations a
ruled out and our only alternative is to examine real tim
simulations of a classical scalar coupled to classical grav
0-17
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D. CORMIER AND R. HOLMAN PHYSICAL REVIEW D62 023520
This approach has led, in particular, to improvements in
understanding of preheating dynamics@10,41#. However, ex-
tending these methods to interesting problems in inflation
dynamics will be a challenge requiring a fully general re
tivistic lattice coupled to the inflaton field, a way to proper
deal with an exponentially changing scale, and a method
introducing classical fluctuations consistent with the clas
calization of quantum, sub-horizon field modes as they cr
the horizon.

The challenges are great, but we should be encoura
both by the improved physical picture presented here and
o
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the incredible fact that inflationary theory is on the verge
becoming an observational science.
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