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Spinodal decomposition and inflation: Dynamics and metric perturbations
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We analyze the dynamics of spinodal decomposition in inflationary cosmology using the closed time path
formalism of out of equilibrium quantum field theory combined with the non-perturbative Hartree approxima-
tion. In addition to a general analysis, we compute the detailed evolution of two inflationary models of
particular importancex®* new inflation and natural inflation. We compute the metric fluctuations resulting
from inflationary phase transitions in the slow roll approximation, showing that there exists a regime for which
guantum fluctuations of the inflaton field result in a significant deviation in the predictions of the spectrum of
primordial density perturbations from standard results. We provide case examples for which a blue tilt to the
power spectrunii.e. ng>1) results from the evolution of a single inflaton field, and demonstrate that field
fluctuations may result in a scalar amplitude of fluctuations significantly below standard predictions, resulting
in a slight alleviation of the inflationary fine-tuning problem. We show explicitly that the metric perturbation
spectrum resulting from inflation depends upon the state at the outset of the inflationary phase.

PACS numbes): 98.80.Cq

[. INTRODUCTION quasi-classical description of the inflaton field up to a pertur-
batively small component of field fluctuations with wave-
In recent years, there has been strong interest irdyhe lengths inside the de Sitter horiz¢@]. However, it is im-
namicsof quantum fields in the early universe. This interestportant to emphasize that the validity of a classical evolution
has led to a better understanding of a number of processes the inflaton field alone doerot justify the use of the
including the formation of topological defects during early classical effective potential for a non-linear dynamical sys-
phase transitiongl], the reheating of the universe after in- tem. As has been shown quite clearly by the classical field
flation [2], and the dynamics of inflation itse[3]. In the  theory simulations of the early stages of reheating, the full
particular case of inflationary reheating, our improved undernon-linear dynamics of even a purely classical system de-
standing has been revolutionary and has significantly repends strongly on coherent effects of backreaction due to the
shaped the subje¢t]. field's fluctuationd 10]. It is then not unreasonable to expect
The lessons provided by these studies are varied. Onhat non-linear field fluctuations during inflation could result
crucial aspect is the importance of using time-dependenih a departure from the dynamics derived directly from the
techniques to study processes of the early universe. It hadassical effective potential.
been repeatedly shown that classical and one-loop effective In this report we address these issues using the techniques
potentials are poorly defined and of little use in dynamicalof out-of-equilibrium quantum field theory. We examine a
systems; they should only be used to determine static quartiass of models in which strongly quenched inflaton evolves
tities such as the ground state of the syst&h Another  under the influence of a negative mass squared in the poten-
common theme is the importance of non-linear corrections tdial, a process which, following the terminology of such
the linear dynamics. These corrections have been found to fghase transitions in condensed matter physics, we refer to as
quite dramatic in studies of phase transitions and reheatingspinodal decompositiofil1]. This class of inflation models
Despite these important advances in studies of quanturincludes new 12] and natural inflatiof13], as well as many
fields in the early universe, it is still widely believed that models of hybrid inflatiorj14]. Such inflation models are of
these techniques have little to add to our understanding gdarticular interest in the present study because the evolution
the inflationary phase itself. The belief that the inflaton fol-from the initial to the final state of the system is necessarily
lows a classical trajectory determined from the classical efa non-linear process.
fective potential with only perturbatively small quantum cor-  The particular case in which the inflaton field is treated as
rections [6] is still widely held. While the techniques of a component of ar©O(N) vector in the largeN limit has
stochastic inflation7] allow these corrections to add up, already been detailed for the case of new inflation, where it
they do so in an incoherent fashion through a repeated sumwas found that the full non-perturbative quantum dynamics
mation of one-loop effects without self-consistent inclusiondoes in fact reproduce an effectively classical trajectory for
of higher order correctioni3]. the evolution of the inflaton. The growth of quantum fluctua-
Much work has been done to verify that the dynamics oftions results in a dynamical flattening of the poten i),
the inflaton field is predominantly classical. The existence ofan analogue of the Maxwell construction commonly used in
a particle horizon and the natural squeezing of states due &tudies of the equilibrium properties of phase transitions. In
the near exponential redshifting of field modes justifies athis earlier work, it was found that the effectively classical
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trajectory of the inflaton field, a result of the phenomenon
known as zero mode reconstruction, is a consequence o
Goldstone’s theoreril6].

However, the case of a single, real inflaton field is quite
different. Here, the long wavelength quantum fluctuations of
the field also reassemble themselves into a semi-classice
field, but in this case the assembled fieldes notobey the
classical equations of motion of the original potential.
Rather, the inflaton may be broken up into two components.
The first is the mean fiel¢p and obeys the classical equation
of motion expected from the original potential except that it
is coupled to a second field. This second fieldconstructed
through the assembly of quantum fluctuations, obeys a modi-
fied equation of motion. The result is an effectively classical
theory of two coupled fields, referred to siginodal inflation
[17].

The observational consequences are dramatic. As there : - . .

. - : . FIG. 1. A typical potential with a region of negative curvature.
are effectively two fields, the evolution becomes quite com-

. - - The dashed line is the spinodal line, separating the unphysical spin-
plicated and depends on the initial conditions. There are tWa 4o region(above the lingfrom the physical regioiat and below

regimes._ In the first, the mean infla_ton field, def_in_e_d as th%e line. The exact shape of the dotted portion of the curves de-
expectation value of the quantum field, has an initial valuependS upon the higher order terms in E2.1).

greater than the expansion ratét,) >H /27 and the semi-

classical fieldo never becomes dynamically relevant. The ¢, gpectra[19] for a particularly interesting example is
evolution reproduces all of the standard results for that parshown to allow for the direct relation of spinodal effects to
ticular model of inflation and we can think of this as the gpservation. Here we see explicitly the exciting features pos-

classicalregime. In the second, quantum, regime for whichgjpe through the dynamics of spinodal inflation.
¢(to)<Hy/2m, the influence of ther field is quite impor-

tant. In this case, observational quantities such as the ampli-
tude and spectrum of primordial density fluctuations depend
not only on the parameters of the model, but also on the We envision the evolution of a scalar field near the top of
particular value of the initial mean fiel@(t). a potential of the form sketched in Fig. 1. The potential may

A simple single field model can therefore produce a rangde expanded in the form
of observational results for any given choice of parameters.
In fact, due to the effective two field dynamics, it is possible
to produce observational features not possible in the simple
classical, single field version of the same theory, such as the
generation of a blue primordial power spectrum; this carwhere the cosmological constant contributiknis chosen
occur much in the same way as it does in hybrid inflation. such that the potential is zero in the true vacuum, alds

We begin with a short introduction to spinodal models of positive.
inflation and the need for a fully out-of-equilibrium and non- Initially, the field will “roll” slowly toward one of the
perturbative description of the dynamics. We write down theminima of the potential. This is the regime in which inflation
self-consistent Hartree equations of motion for a generaill take place. To a first approximation, we ignore the quar-
spinodal potential, followed by an explanation of the assemtic term and see that the initial evolution follows that of a
bly of qguantum fluctuations and how this results in an effec{ree field in an inverted harmonic potential. This evolution
tively classical two field model. Next, we move on to a de-has been studied in great detail in the context of inflationary
tailed analysis of the two most important spinodal models oftosmology[20]. For early times, the field grows exponen-
inflation, A\®* new inflation and natural inflation. tially. Eventually the higher order terms in the potential be-

Having determined the evolution of the field, we wish to come important, with the result that any perturbative analysis
examine the observational consequences of spinodal inflaxf the dynamics will break down and must be augmented by
tion. Beginning with the gauge invariant formulation of some non-perturbative technique.
gravitational perturbations of Mukhanov, Feldman, and Our choice of approximation is further restricted by the
Brandenbergelrl8], we note that while the effective dynam- fact that the system we wish to study is not in thermal equi-
ics is that of two fields, returning to the full quantum theory librium, thus leading us to real-time methods. We emphasize
we see that only one set of field fluctuations couples to gravthat equilibrium constructs, such as the effective potential,
ity perturbations. are completely inadequate tools for this problem.

We then provide a complete and detailed numerical analy- The simplest approximation satisfying the requirements is
sis of the dynamics of spinodal inflation in single field mod-the Gaussian variational approximation, in which the quan-
els, including computations of the primordial spectrum oftum density matrix is restricted to take on a Gaussian form.
scalar and tensor perturbations which result. The consequeAtso known as the time dependent Hartree-Fock approxima-

V(@)

II. SPINODAL MODELS OF INFLATION

1 A
V(¢)=K—§M2q>2+ Eq)4+"" (2.9
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tion, such mean field techniques have been utilized in quan- (42
tum mechanics dating back to Dirg21]. It is a standard (F(p+ )= E ( ) FCY( ). (2.9
technique in chemistry, condensed matter physics, and

nuclear physics and has led to a better understanding of the

structure of a number of phase transitions. The equations of motion for the mean fieldare given by

the tadpole conditioqy) =0 [23]:

A. Real scalar field: Hartree dynamics ( ). <¢2> ni)
n+1
In what follows, we assume a spatially flat Robertson- ¢(1)+3 (t)d’(t) 2 n! ( ) v (¢)=0,
Walker metric: (2.10
ds?=dt?—a?(t)dx2. (2.2 where we have used the met(iz.2) and have factorized the

expectation valuéV' (®)) according to Eq(2.9). We define
We now derive the equations of motion for a real scalarthe Fourier transform of the Wightman function by the ex-
field with Lagrangian pression

1 L
L=35VEO(X)V,P(x) V[P (X):t], 2.3 G(X,t;x',t')= f ek =X, (1,t),

(2m)3

within the self-consistent Hartree approximatif?2]. We  \yhere we have used the property of space translation invari-
break up the fieldD into its expectation value plus a fluc- ance. The quantityy?(t))=—iG(x,x) is constructed from

tuation about this value: the mode functions obeying the equation
D (X,t)= (1) + Y(X,1), (2.4 [Gi(t, )] (1) =0, (2.1
¢>(t)E(<D(>?,t)). 2.5 together with the appropriate closed time path boundary con-

ditions [24]. The operatof G,] ! is given by the quadratic
Here, ¢ depends only on time due to space translation Inform appearing in the generating functional. Explicitly, the
variance as is consistent with the metf&2). By definition  fk(t) obey

x,t))y=0. : ®

<w(The))Hartree approximation consists of replacifig' by d_2 (_t) E K* (@) V(2n+2)(¢)1fk(t)
ci(?)" Ly + Co(yA)" and 2"t by ca(y?)"y, where the | dt*a(t) dt 2
c; are constant fac_tors whose valyes_ are determined by -0 (2.12
Wick’s Theorem. This Hartree factorization may be summa- ' ’

rized as follows: where we have again used the factorizati@rd) to express
the potential terr{V"(®P)).

az(t) n=o Nn!

g (2n (W~ 1y _ (@nm)t(n— 1)< g As mentioned above, the quantity®) is determined
2"(n— 1)| 2'n1 from the mode function§, combined with closed time path
boundary conditions appropriate to the chosen initial state.
(2n+1)! For an initial state in thermal equilibrium at an initial tem-
PP o (P (2.6)  peratureT, we have
n!
. . A ) . 2 d3k 2 Wy
Given this factorization, any functioR(®) becomes (e(t))= W|fk(t)| cot 7] (2.13
a
2
F(¢p+ )= z <¢ >) [F(zn)(¢)+ YFE@FD) () Note that in the zero temperature vacuum state given by the
2 T—0 limit, the hyperbolic cotangent has the value 1. The

frequencyw, appearing here is given by

27 . 1(@/ (t o>>)

+%[¢2—<¢2>]F<2”+2>(¢> ,

w§=k2+a2(t E o
where we use the notation n=

VETA((t0)).
(2.14

(2.9 For the case of tha®* theory, there is an additional term
proportional to the Ricci scalar a?(to)R(to)/6 which ap-
pears on the right hand side of this expressiondgr This

Note that the latter two terms on the right hand side of Eqterm arises when one considers initial conditions correspond-

(2.7) have zero expectation value. We therefore find that théng to the adiabatic vacuum state in conformal tif28,26],

expectation value of a function factorizes as which is necessary if we wish our initial vacuum state to

FO(¢)=
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match the Minkowski vacuum in the limé(t)—1. How-  The higher derivative terms included in E@.18 are
ever, this term is not necessary if the scalar field is taken tmeeded for renormalization purposes; Newton's constant and
be part of a low energy effective theory, such as is the casthe cosmological constant will also be renormaliZeele be-
with the natural inflation case we analyze below. low).

Using the vacuum state for the mode functions defined by Once again, we use the factorizatih9) to determine
the initial frequency spectrum of E€R.14) leads to the fol- the right hand side of Eq(2.18. Defining the additional

lowing initial conditions on the(t): integrals
1 ) dsk . f(wk)
T h = | ——If(t)|*coth 5= 2.2
flto)= = g P OTE P
y a(tO) . - _ d3k Wy
fk“o):( " alt) "“’k) flto. (219 (o) [ <zw>ak2”k<”'2c°“<ﬁ)’

A final note is that the initial frequencies, given by Eq. (822
(2.14 may be imaginary for lovk modes. In this case the we find for the energy density and the trac& of the energy
initial conditions(2.15 need to be modified for lok. This  momentum tensor:

may be done in a variety of ways with little effect on results

[16]. Here, we choose a smooth interpolation betweenKow o L., 1., 1 -,
modes with modified frequencies and the highmodes e=(To)= 50"+ 5(¥ >+E<(V¢) )
which remain in the conformal vacuum state with frequen-
cieka (2.14): * 1 <¢2> n
+ 2 —.(—) vE(g), (2.23
K24+ M2 n=o n! 2
wg=k?+ M?tanf ————]|, (2.16
|M2 o 1 .
T=(Th)=—=*—(¥*)+ —((V§)?)
where a
o * 2\\ n
1 (((t))|" 1N e
Mzzaz(to)nzo nT(TO V(2n+2)(¢(t0)). +4nZo ni 2 yien (¢) (224)
(2.17

The pressurg is arrived at from these expressions through

This completes our set of equations of motion of the matthe relationp=(e —77)/3. The equation of state of the sys-

ter fields within the Hartree approximation. tem is characterized by the quantity=p/s.
The semi-classical approximation to gravity is fully con-

sistent with the mean field treatment of the inflaton field
described in the preceding subsection, and with the assump-
~ We will treat gravity in the semi-classical approximation, tions of the Robertson-Walker metri2.2) and space trans-

in which the expectation value of the full quantum energy-|ation invariance. It also allows us to analyze the metric per-
momentum tensor acts as a classical source to the Einstejfirbation spectrum resulting from the dynamics, as it
gravitational tensor. The semi-classical Einstein’s equatiopyrovides a classical background about which to expand to

B. Gravitational dynamics

reads determine the power spectrum of perturbations relevant to
G- observations of the cosmic microwave background.
+ + (higher derivatives= — (T*), Th(a_ exyent _to vv_h|c_h this approximation W|II_ be valid in a
87Gy  87Gy (hig = —(T0) realistic situation is tied to the extent to which the global

(2.18 average value of the energy density is correlated with the

5 , ) local value in our particular Hubble domain. If we were to
where Gy=1/Mp, is (barg Newton's constantA is the se the classical effective potential, we would come to the
(barg cosmological constant and the components of the Eingonclusion that large field fluctuations imply large density
stein curvature tensor using the metf&2) are fluctuations on scales very much greater than the Hubble
distance; it is this assumption upon which the stochastic in-

Go— _ 32 2.19 flatiqn progran[?] is ba_sed._ If such were indeed the case, the
0 a2’ ' semi-classical approximation would be expected to break
down as soon as the dynamics became nonperturbative.
sy However, as we shall see in Sec. IV, there is a tendency
Gt=—R=-6 §+a_ _ for field fluctuations to have the effect of flattening the po-
a a? tential along which the actual non-equilibrium evolution

(2.20  takes place. This tendency implies that large field fluctua-
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tions are in fact consistent with having only small densitygreater than the Hubble distance, that kga(t)<H(t)

fluctuations even on global scales, consistent with semi=ga(t)/a(t). Since H(t) is approximately constant during
classical gravity. Such a possibility is striking as it would jnflation while a(t) is growing exponentially, clearly more
imply that what have come to be standard pictures of theynd more modes satisfy this condition at each subsequent
global inflationary univers¢6] may be incorrect. Formal time. However, the very long wavelength modes which
verification of this possibility is unfortunately beyond the crossed the horizon very early on in the evolution will tend
scope of the pre;ent a_rticle. A few possible avenues of ary dominate the quantityy?) of Eq. (2.13 simply because
proach to attacking this problem will be presented in ourthey have experienced the spinodal instability for the longest

conclusions. time. This is a very important characteristic of spinodal in-
flation which sets it apart from other models: the dynamics is
C. Regularization and renormalization driven by a super-horizon scale quasi-particle condensate.

The mode integrals appearing in Eq8.13, (2.23), and On scales smaller than the horizon, it is not possible to dis-
(2.22 are formally divergent and must be regularized in or-finguish such a condensate from a purely homogeneous

der to perform any practical computation. background field. Any possible measurement will determine
In the special case of a renormalizable potenti@b), for only the combined properties of the condensate and the mean
’ field.

example in thev®* model, we would like to fully renormal- ; . N "
ize the theory. Our choice of renormalization procedures is GIVen the assumption of initial conditions near the local
somewhat limited by the requirement that the dynamics b&@ximum of the potential, and provided with a finite renor-

amenable to numerical analysis. However, a number oft@lized or regularized two-point function along with very

groups have recently addressed this problem either by meag§'@ll values for the higher order couplings in the Lagrang-
of adiabatic regularization with a simple cutoff at large mo-ian; the early dynamics is well approximated by a linear
mentum[27,25,28, as was first developed by Anders@®, analysis. The _eqqatlon for the mean field for any potential of
or by using a scheme based on dimensional regularizatiof{'® form(2.1) is simply

[30]. . .
In practice, we use the simple scheme developed by the B(1)+3H(1) p(1) — u?p(1) =0. 3.1
Pittsburgh-Paris Collaboration. This scheme has the advan- , .
tage of being very easy to implement and it has the attractiv o this order, we may take the Hubble parameter to be con-

feature that all subtractions are absorbed into counterterm%ant’H(t):Ho’ in which case the solutions to this equation

renormalizing the bare couplings in the equation of motion® © simple exponentials. Only the growing term is relevant,

and the Friedmann equatidthe latter must be extended to so that we have the early time solution
include a cosmological constant and a higher order curvature

term). However, we mention that it does not include the ( 3) ; /9 K2

finite subtractions which would be necessary to give the cor- PO~ Poexq | v 2 Hot|,  v= 4 * Ho. 3.2
rect conformal anomaly. These terms, the finite subtractions

detailed in[27] and[28], are formally important, but in the The value ofé, depends on the precise initial conditions for
present context, as the inflaton self-coupling is typically re-¢ and ¢.

quired to be of order 10'? or smaller, such terms will have ~ The mode functions obey the similar equation
absolutely no influence on numerical simulations as their

contributions are much smaller than the numerical accuracy ) )

of the computations. In fact, although we do not do so here, fk(t)+3H(t)fk(t)+<
it is normally safe to drop the logarithmically divergent

terms from the simulations as well without influencing the _ )
results. The simulations are checked after the fact to verifyVNich for constanti(t) =H, and corresponding exponential
that they satisfy the covariant conservation of the energy@(t)=€xpHat) has the solutions

momentum to within their numerical accuracy, and to ensure

2

- [f()=0, (3.3

a’(t)

that the results are independent of the value of the momen- fk(t)%ex% — §H0t) AkJV(LeHOt)
tum cutoff. 2 Ho
For models with non-renormalizable potentials, such as K
natural inflation, we have to satisfy ourselves with the treat- +BJ_, _eHot> } (3.4
ment of the model as a low energy effective theory with a Ho

well defined cutoff. Again, we implement the regularization

by means of a large momentum cutoff. The constant#\, and By are determined by the initial con-

ditions on the mode functions. These solutions oscillate with
an envelope proportional tod for sub-horizon mode&with
k/a>H,), but the solutions are growing and decaying expo-

As mentioned above, the initial linear dynamics in spin-nentials in the opposite limik/a<H,, leading to the state-
odal models of inflation is well understood. This period is ment that super-horizon modes have an exponential instabil-
characterized by exponential growth of both the mean ffeld ity. In this limit, we may again discard the exponentially
and those mode function$, with physical wavelength decaying term. We then have for super-horizon modes

Ill. EARLY TIME DYNAMICS AND REASSEMBLY
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state is to increase this value by a factor\F/ x without
. (3.5  modifying any of the qualitative features described in this
study. The dynamics modeled by this classical field will be

, accurate up to perturbatively small corrections to the dynam-
Here,Cy is roughly equal to the value of the mofigevalu- o5 que to the sub-horizon modes contained in the final term
ated at the time(k) that the mode crosses the horizon asy Eqg. (3.6).
determined by the conditioh=exgHqt(k)]Ho. For modes This system of effective homogeneous fields is referred to
initially far Withir_l the horizon the_g_e_neral dependenc@qf as a reassembled system. We will refer to thdield, the
onk may be es:ul/mzated from the initial behavior of the modeeypectation value of the full quantum field, as the mean field,
functions f, ~k™"“ and the decay of the envelope of the hjle we refer to the semi-classicalfield as the fluctuation
Bessel solutions which provides the standard result @at o, condensate field.
k™2 We note that while the exponential for®.5) is only While this condensate forms during the linear regime,
an asymptotic solution for small arguments of the Bessebyentually the dynamics becomes non-linear. It is this non-
functions of Eq/(3.4), due to the exponential behavior of this |inear evolution which we wish to study. We will be particu-
argument it very accurately describes the evolution of anygr|y interested in examining how the interaction of the con-
mode function within a Hubble time of horizon crossing.  gensate with the mean field can influence the dynamics.

We are now in position to compute an expression fqr the  we consider primarily the dynamics of single field mod-
condensatd ¢°). By separating the momentum space inte-g|s (the largeN case was studied previougly6]). Here, the
gral over super- and sub-horizon modes respectively, we caRteractions of the condensate and the mean field will be seen
take advantage of the expressi@b) to find for early times g |ead to a complicated evolution in which initial conditions

play a primary role.

Ce 3
fk<aH(t)~kT3,2€'X v—5|Hot

d*k [Cy?
2(277)3 k2V*3

+<¢2>k>aH .

(3.6

aH
2\ _
<¢ > ex(2v 3)Hot]Jo IV. NON-LINEAR DYNAMICS
We begin with an analysis of the stationary solutions for
e mean field, which obeys the equation of mot{@ril0).

The latter, sub-horizon term contains all subtractions due t X . ) NI
here are two primary late time solutions. The first is the

renormalization. After a few Hubble times, it is safe to ne- ™ | soluti ith B hich will be the solution f
glect this term compared to the exponentially growing super!Vial SO UUO,nhW't ¢(t)=0, whic I‘("," € :] e s% ution | or
horizon contribution. To determine which modes are mosf SyStem without symmetry breaking. The other solution,
important to the evolution, it is convenient to examine the'€/€vant for spinodal inflation, is given by the condition
contribution of each squared mode per logarithmic momen- ©

2 n
tum interval,dk/k. Using thek *? behavior ofCy, we find (/7 (4(t) + (X, 1)))a= D i(%) V@l )=,
for modes which are originally far inside the horizon, but & i=ontl 2 a
which have since crossed outside, that this contribution is (4.1

proportional tok~(?*~3)_ Since 2> 3, the integral is domi- o . .
nated by those modes which crossed the horizon the earlie%’il:.(here the subscript indicates the asymptotic solution. Un-

This is important for any numerical analysis as it allows one! <€ the sum ru(;e in the IalrgN Ii]Eniltd[16], tgis condri]tionfdoes
in practice to set a cutoff in the calculation @§2) with well ~ NOt corréspond to massiess fie mo(@8s]. Rather, for a

controlled errors, avoiding the problem of including a num-boundEd potential of the forit2.1) with a definite minimum

ber of mode functions which grows exponentially with the at finitg va!ues ford, thg effectivg.mass of particle modes
scale factor. appearing in Eq(2.12 will be positive. Asymptotically, we

As a consequence of the formation of the condensate Hwerefore expect the field modes to be redshifted away due to

becomes possible to form an accurate and simple model &XPansion of the universe such that the quantip) be-
the complete system, in which the full two-point fluctuation ©OMeS small and may be neglected in Eqjl). In this case,

(42 is replaced by a nearly homogeneous, and effectivel);he expression for the stationary solution becomes simply

classical field. This produces a model in which two effec- V' (¢)=0 4.2
tively homogeneous classical fields, the mean field coupled a ’ '
to a fluctuation field, accurately describe the dynamics. Thnd the effective mass of the field modes is
condensate field is defined as

o ()= V(¥ (1) Jk<an- (3.7)
These, of course, are just the classical vacuum solutions in

For early times, it is given by the first term on the right handthe symmetry broken phase.

side of Eq.(3.6). The square root of the value of the first  The task is to connect the early time solutions of Egs.
integral of Eq.(3.6) a few Hubble times after the beginning (3.2 and(3.4) and the late time solutions provided by Egs.
of inflation provides an effective initial condition an Fora  (4.2) and (4.3). It is convenient to introduce the effective
zero temperature initial state, which for simplicity we take tocondensate field defined as in E8.7). Doing so, and ne-
be the case in what follows, this is found numerically to beglecting the exponentially suppressed gradient term in the
of orderH/27r [16]. The effect of a finite temperature initial expression for the energy densi®.23), leads to the follow-

M2=V"(ba). 4.3
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ing equations of motion for the mean fiedd the condensate We note, however, that this conditigA.8) does not cor-

field o, and the scale facta respond to the late time classical solutigdsl) we expect; it
is only a quasi-equilibrium for which the mean fiefdcon-
LA oo 1 tinues to evolve toward the true minimum, as is clear from
$+310+ 2 ot VE(4)=0, (449 Eq. (4.4

To understand the implications of this behavior better, it
is useful to work with definite models. We now turn to con-

o

. a. 1 ich wi ics i
a 2n+1y(20+2)( 1y — crete examples which will allow us to follow the dynamics in
o+3-0+ HZO i (¢)=0, 49 et
52 * 2n A. New inflation
& _87Cy 3¢2+ 1&2+ > 7 Ve ()|, (4.6 . . e o
a2 3 |2 2 n=02"n! The simplest spinodal model of inflation is new inflation

for which the scalar potential2.1) is truncated at quartic
Remarkably, these equations are just those one would derivasder with the cosmological constant contributiof
from a classical system of two homogeneous fields with the= 3u*/2\:
potential 4
3wt 1 o, Moy
o V((D):K_EM 0} +ﬂ.q) . (4.9
V(g,0)= 2 ———o®"VC (). (4.7)

n=0 2"n!

This model is of particular importance due to its renormaliz-
ability.

An important property of this potential is that, for inter- The reassembled equations of motion are

acting fields, it doesot depend symmetrically upog and

o. This means that, in contrast to the lafgease[16], it is

not possible to combine the mean and condensate fields into
a singleeffective classical inflaton. The fields and o have
different dynamics and properties.

The initial conditiono(tg) =H /27 results in two distinct a \ N
regimes. In the classical regime, characterized ¢ft) o+3—0—plo+ =0+ = ¢p?c=0, (4.1
>Hy/27 the dynamics is dominated by the evolution ¢f a 2 2
and is effectively independent @f. This follows from the _
fact that ¢ never grows to be particularly large befode a? 8mGy[1. , 1., 3ut 1 s o o
reaches its classical minimum. However, in the fluctuation 2~ 3 |2%° T 37 F 5 T 3# (¢°+0%)
dominated regime wheré(ty) <<Hq/27, o has a significant
effect on the evolution oty and dramatically modifies the N
overall inflationary dynamics from naive expectations. + 2—4(¢4+ 30"+ 6¢%0?)

Before moving on to specific examples, let us examine
some general features of the fluctuation dominated regimer. o a5sembled two field potential for this model is there-
At intermediate times the dynamics of the reassembled f'eldfsore
will be primarily dictated by the equation of motion of,

;})+3é<}5— 2¢+5¢3+§02¢=0 (4.10
a? P ? T2 ’ '

. (4.12

due to the fact thatr> ¢ and that both fields contribute to 344 1 N
the equations of motion in a similar way. The dynamics Will /(¢ )= S — = 4 2($2+ 02) + —($*+ 30+ 6$202).
therefore approach a quasi-equilibrium regime for which the 2n 2 24
third term in Eq.(4.5 becomes small: (4.13
V ,(¢,0)—0, 4.9 A plot of this two dimensional potential is shown in Fig. 2. It

is characterized by a local maximumet0,0=0, a saddle
where the comma represents the partial derivative. Returningoint at ¢=0,0=pu2/\, and minima atp=+ u 6\,
to the equation of motion for the mode functiof®s12, we  =0.
discover that this condition corresponds to effectively mass- As we discussed above, there are two dynamical regimes
less quanta. What we are seeing is the rapid departure of thietermined by the initial value ap. In the classical regime,
inflaton field from the unstable regime for which its field o never plays a significant role and the figfdacts as an
quanta have a negative mass squared into a physical reginsedinary classical field in a ¢* potential(4.9). However, in
of massless quanta. This flattening of the unphysical regiméhe fluctuation dominated regime, the evolution proceeds
into a form for which particles become well defined is remi- first through an inflationary phase with energy density con-
niscent of the famous Maxwell construction describing thetribution given by the tree level potential, but then enters a
convexity of the thermodynamical equilibrium free energy ofsecond regime for which the conditiga.8) is satisfied.
a system. The behavior described here is the out of equilib- For this potential, we have in the quasi-equilibrium re-
rium analog of such a constructi¢h5]. gime the sum rule
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,;‘;\ ¢°=pz=2p°IN, (4.17)
SS
S
N ""’; ;\i\ is met and it becomes impossible to satisfy the sum rule
"’ ' R (4.14). At this point, the second inflationary stage ends, the
0.8 l’l ""' fluctuation fieldo- decays away and the fielfl evolves to its
!gl!"‘ [] classical minimum.
0.6 i /
04] “:&‘ X B. Natural inflation
65 \‘(‘é,&"‘ The natural inflation potential is derived from the vacuum
’ S manifold of a complex scalar field spontaneously broken at
the Planck scale and with explicit symmetry breaking at the

grand unified scale. It may be written in the form
V(®)=A1+cogd/f)], (4.18

where A~Mgyt and f~Myp, are constants. Expansion of
the cosine reveals that this potential is of the fdgl) with
w?=A?f andA=A%/f4,

The reassembled equations of motion become

¢ o?
T) exp( — ﬁ) =0, (4.19

. . AY o) a?
oc+3Ho— —cog - |exp ——|o=0,
f2 f 2f2
(4.20

¢ P?
1+cos(? exp( - F)

FIG. 2. The two dimensional potential which may be used to
describe the full non-linear field dynamics ima* new inflation
phase transition in terms of effectively classical fielgisand o. 4
Axes are scaled such that the true minima of the potential occur at £2>+ 3H ¢— Tsin
d==1.

N, O\
— P+ so’+ Eqszzo, (4.19

2
which we recognize as the condition for massless quanta.

This expression may then be substituted back into the equa? 87Gy

tion of motion for the¢ field (4.4), where we find = 3
a

1. 1.
Ltoo Lo s
2¢ +20' +A

.oa. A\
¢+35¢—§¢3=o. (4.15

V(¢,0)=A*

(4.2)
We recognize these equations as those of two homoge-
neous classical scalar fields with potential
Here we see that the potential energy contribution to the
equation of motion for¢p appears at the cubic order. The b o2
field ¢ therefore evolves as a field with an effective squared 1+cos( —) exp( - —2) 1 (4.22
mass given by- \ ¢?/3. As this is typically much smallgin f 2f
absolute valugthanu?, what we observe is that the potential ) ) ) S
becomes flattened as a consequence of the non-perturbati¥ée Provide a plot of this two field potential in Fig. 3. As
growth of fluctuations. expeqted, for any integgr we have Qegeneratg maxima at
We can also use the conditid@.14) to determine the ¢=2j7f,0=0 and degenerate minima gt=(2j+1)=f,
value of the potential energ§t.13 during this phase. We a=_o. The feature to notice, however, is that the potential
find simply quickly becomes very flat as/f becomes greater than 1.
Again, we concern ourselves with the fluctuation domi-
nated regime. We find that the sum r#8) results in the
condition

4

A
V(o) = Tt

(4.16
. . . . A4 2
as is consistent with the effective mass §farWe see that the —cos( _) exd — —1| -0
growth of fluctuations has produced an effective dynamics f2 f 2f2 '
corresponding to a very flat potential fgr with a cosmo-
logical constant contribution to the energy densiiy/\ which for ¢<=7f becomes satisfied as grows large. The
which is 2/3 of the value appearing in the original potential.effective mass term for in Eq. (4.19 becomes exponen-
We therefore arrive at a second stage of inflation with artially suppressed as well, again indicating that the growth of
expansion rate related to the original stage by a factor ofluctuations of the field results in a flattening of the potential.
J2/3. The potential itself clearly goes to the valug* which is
We note, however, that there is a continued instability inprecisely half of the value of the original cosmological con-
¢ with the consequence that eventually the condition stant contribution. This state of affairs will continue unil

(4.23
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find that it is indeed possible to produce such a spectrum on
the length scales relevant to CMB anisotropy observations
from the simplest of single field models.

Another significant feature of the spectra produced in
phase transitions is the possible decrease in the amplitude of
the primordial perturbations on the scales of interest relative
to the predictions of an analysis assuming a classical evolu-
tion for the inflationary field. This may somewhat alleviate
the fine tuning problem, although we find in practice that this
effect is relatively minor, allowing perhaps a dimensionless
quartic coupling for the field one or two orders of magnitude
larger than previously thought. Since this coupling is typi-
cally thought to be restricted to be less than ¥ we still
require the inflationary models to be highly fine tuned.

A final feature of the spectra is their dependence on the
precise initial state of the inflationary field in the region cor-
responding to today’s observational universe. It is found that
a universe which began the inflationary phase in a strongly

FIG. 3. The two field classical potential for natural inflation. classical_state will show none O.f the exotic feat_ur_e_s describgd
Axes are scaled such that the true minima of the potential occur a{?er_e. This strongly conf[rasts with t_he case of initial states in
b=(2j+1). which quantgm flgctuatlons of th(_a field are of the same ord_er
as the classical field value. In this latter case, the primordial
spectrum may depend quite strongly on precisely how
“quantum” the particular initial state is.

=¢=mnf, at which point the fluctuations represented doy

become massive and begin to decay away. g . .
As in the \d* model, we expect two stages of inflation, We begin with a computation of the amplitude of scalar

this time with the expansion rate of the second stage reducé'ﬂ‘d tensor metric p(_erturbations _resulting from spinodal infl_a—
from that of the first by the factoy2 tion. For the specific models discussed above, we provide

details of the resulting power spectrum as a function of scale.
We also include plots of the amplitude and tilt in the power
V. METRIC PERTURBATIONS spectrum as a function of the initial state of the scalar field
The possible link between inflationary expansion of thefor a _choice of scale consistent w_ith those obser_ved by the
universe at grand unified energy scales and the observati&i®Smic background explordB2]. Finally, we provide ex-
of fluctuations in the cosmic microwave backgrou@MB)  amples of theC, temperature anisotropy specfa9] that
temperature of order 18 is remarkablg32]. The fact that res_ult from particularly interesting exam_ples of spmodal_ in-
we are now in the process of observing the details of thidlationary effects to allow comparison with other theoretical
temperature spectrum through a number of ground-, air-, anBlots of theC, spectrum and with the observed spectrum.
space-based experiments, presents an amazing opportunityNOte that in what foIIow_s, we use the normalizations of
for probing details of what the universe was like at timesthe scalar and tensor amplitudes of Réf].
inaccessible through any other me483].
In order to take full advantage of this opportunity, how- VI. THE PRIMORDIAL SPECTRUM
ever, it is important that we are careful in connecting the _ _ ) . _
observations to the theoretical models of the dynamical pro-_ OUr starting point for the computation of primordial den-
cesses of the early universe which may have led to the CMEILY Perturbations is the expression for the average energy
anisotropies. We have already presented a detailed analy{€nsity(2.23. To compute the average fluctuation we define

of the cosmological dynamics of scalar fields undergoing

. . . . — 0\2\1/2

inflationary phase transitions. Here, we provide computa- de=((6Tg)")™",

tions of the primordial spectra of density perturbations which o o

arise from such phase transitions. where the variation of the energy density yields the expres-

By computing the spectrum of scalar perturbations, weSIONn
explicitly show that coherent effects due to large wavelength
fluctuations of the inflaton field could have significant impact 0 T SN(p+ )
on observational features of the temperature spectrum of (5TO)=(¢+¢)¢+¥(V¢V)¢/;+5—¢¢.
CMB anisotropies. Particular features of interest include 6.1)
scales on which there is deviation from a flat Harrison- '
Zel’dovich primordial power spectrum with power increas- |, is convenient to introduce the Fourier variable
ing as one moves to smaller scales. Such a spectrum, referred’

to as having a blue tilicorresponding to a scalar tilt param- 312
eterng>1), was previously thought only to be possible in o= — T,
more complicated, multi-field models of inflation. Here, we V2m
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defined such that Using the above expression, the density contrast at first
horizon crossing is

dk
WA= | Slw

In Fourier space, we find the following expression for the |5k:aH|2:i<(5T8)(5T8)>- 6.3
average energy density fluctuation on a scale corresponding p?
to a wave numbek:

(ST (ST = 2(d2+ (W2)) + (b + ety Here, we note that we have used the important relation be-
(bt tween the gauge invariant Bardeen variable representing the
X < (p+ ) —> scalar metric perturbation and the energy density fluctuation
24 at horizon crossing to allow us to write down this apparently
SN(p+ )2 simple expression. As the density perturbations are adiabatic
+|¢k|2<<5—¢ > (6.2 (recall that there is only one scalar field with one set of

fluctuations, the super-horizon evolution of the metric per-
where terms proportional to d7 have been neglected. Nor- turbation up to the second horizon crossing is specified by
mally during inflation, the third term on the right hand side the conservation of a single parameteas defined in Ref.

of Eq. (6.2 dominates, which is equivalent to the statement18]. Following the procedure of Ref18], we arrive at the
that the usual slow roll conditions are satisfied during theexpression for the density contrast at mode re-entry in terms
evolution. of the scaled mode functiong:

. o L N(+ ) L N(p+ )2
(&H%MWH%@+@—§LK%WW+WWH<—41£J%wﬂ
| 84(K)|?= idd idd (6.9
: 2SR -

where each quantity is evaluated at the time when the corrdf we were to make the further assumption that the fluctua-

Sponding mode first crosses the horizon, i.e. wkeraH. tions are a|WayS small W|tu/<¢ and ¢< (.;b, then we would

In what follows, we will assume that the third term in Eq. arrive at the standard slow roll expression for the density
(6.2) dominates over the first two terms, as this is an excelggntrast:

lent approximation in the models in which we are interested.

Equation(6.4) becomes simply
3/2

8
|8a(K)|= V67 = : (6.7)
[ Vbt )\ h > V' IMz,
[ <( 50 ) >
2__
|9n(k)|= 25(¢2+<¢2>)2 6.5 We will continue, however, with the more general form

(6.6).
The computation of the tilt parameteg— 1 is straightfor-
This can be simplified further by recognizing that at firstward, given Eq(6.6). We define

horizon crossing the quantityy,|? is given approximately
by (H/2w)? [34]. This may be seen directly from the
asymptotic solutions of the mode functions for large mo- 1= d(infsh(k)1)
menta. As the expansion is rapid, these asymptotic solutions S din(k) |, .,
remain approximately valid all the way to~aH. Combin-
ing this with the (semi-classical Friedmann equation and
using the inflationary conditiofV)> $2+ (%), we reach AS is common practice, we could rewrite this expression in
the result terms of partial derivatives of the field variables. However,

since we have dependence both upibland the fluctuations

¢, such a procedure results in a complicated expression

(6.9

2 (V)(V2) which is not particularly instructive. We will therefore sat-
|84(K)|2= oo —— (6.6) isfy ourselves with Eq(6.8), which is used directly to com-
h 757 M2.( b2+ (42))2 ) : _
M5 (¢ +(¥%)) pute the tilt parameter in the numerical examples.
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A. A®* spinodal inflation is smooth and straightforward, following E@.11) through-
Using Eq.(6.6), we now compute the expression for the out, while in the latter case, the amplitude of the modes

primordial spectrum of scalar metric perturbations specific tf"0SSing the horizon during the transition has an oscillatory

the \&* model of spinodal inflation. In terms of the reas- nature(18]. L
sembled variabless and o, the result is As we will see, the former, smooth transition without any

oscillation of the gravitational wave amplitude is typical of

2 1 3t spinodal inflation, with the result that the spectrum may have
|60(K) =\ s—————— | =— — zu(P*+?) at most a single feature indicative of the transition from the
h 757 2,02y 2n  2M R :
Mp(p°+09) initial inflationary phase to the spinodal phase.

Y 1/2]
+ ﬂ(¢4+ 64202+ 30%) [/_L4(¢2+ a?) D. Notes on metric perturbations
It is worth taking a moment to examine the significance of

the expressions for the amplitudes of the metric perturbations

in some detail. The first feature to notice is that the scalar

amplitude depends directly upon both the average field value

6.9 ¢ and the typical fluctuation represented &y As we have
seen, the end of inflation depends upon the evolutiog of
occurring wheng reaches the spinodal valy,. When the

Again, we point out that all expressions are to be evaluatethfluence of the field fluctuations are neglected, the value of

Ap? 2 2 \? 6 2
— 53 (¢"+6¢%0%+30") + 2 (¢°+ 15¢%0

12
+45¢%c*+150°)

when the given scalk crosses the horizon. ¢ 60 e-folds before the end of inflatiorpeg, Which we will
take to be the largest scale measured by the Cosmic Back-
B. Natural inflation ground Explore(COBE), is a well defined quantity and cor-

responds to a well defined scalar amplitlidg)| independent

For natural inflation, the relevant expression is of the initial conditions.

6 However, we see here that the dynamics of the field fluc-
|8,(K)| = —(1—cog2¢/f) tuationso may influence the evolution @f. The net result is
V757Mp f( %+ 0?) that the precise values @fgg, g9, and therefore gy oc-
9o i curring when the relevant mode crosses the horizon does
X e 27 VA1 4 cog ¢/ f)e” 772, generally depend upon the initial conditions for the inflaton.
(6.10 This leads to an extremely important resdlhie spectrum

of primordial metric perturbations resulting from a given
model of inflation depends upon the initial state of the infla-
C. Gravitational wave perturbations ton field.

It is also of interest to examine the spectrum of gravita- A second significant feature coming as a result of these
tional wave perturbations resulting from spinodal inflation.more general expressions for the perturbation amplitude is
As such perturbations do not directly interact with the infla-that | 8,(k)| is not necessarily a monotonically increasing
ton field, they may be related directly to the expansion ratdunction of length scale. In contrast to the case in which the
during any inflationary stages. During such regimes, the aminfluence of the field fluctuations are neglected, there may be

plitude of gravitational waves is simp[yL.8] periods of time during WhiCh| 5h(k)| increases as ever
shorter length scales cross the horizon.
Hy This leads to a result previously thought to be impossible
| 8(k)|= N (6.12  in such simple, single field inflationary modelsflation may

result in a blue spectral tilt in the primordial spectrum of

) ) scalar perturbations.
whereH, is the value of the expansion rate when the skale P

first crosses the horizok=aH,.

As we have discussed, spinodal inflation may involve two
distinct inflationary stages. The relevant amplitude of the As a final note in this section, we recall that none of the
gravitational waves is therefore typically determined byparameters of the primordial spectrum written down to this
which stage is in effect 60—56-folds before the end of point are directly observable. Rather, this primordial spec-
inflation, when the relevant length scales exit the horizontrum becomes processed by the evolution of the late time
However, the transition period between inflationary stagesiniverse, after corresponding length scales have re-entered
may also be relevant. the particle horizon. The most important set of observable

The spectrum in the transition period depends upon th@arameters is theéC;, spectrum of the cosmic microwave
details of the transition, but clearly must smoothly interpo-background map of temperature variations.
late between the two major regimes. The important factor is Standard techniques of computing t@¢s from the pri-
whether the characteristic accelerated expansion continues toordial parameters assume a scale independentmdilt
hold throughout the transition or if the transition includes awhich does not generally apply here. It is, of course, possible
short period of deceleration. In the former case, the transitioto compute theC, spectrum for a more general primordial

E. The C, spectrum
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spectrum, but to do so is far beyond the scope of the presen ' T ' I
work. We therefore use a standard approximation which re- 1=
lates the tilted spectrurg{"'" to the tilted scalar perturba- & I 1
tion amplitude|s,(k)!"| evaluated on the scale=IH, /2 < 05 .
whereH, is the inverse Hubble radius today relative to the i il
respective quantities where a flat spectrum=1) is as- o) : : :
sumed[35]: “F ' ! :
Sﬁ 0.08 N 7
_ tilt 2 0.06 - —
C,‘“'t)ch”at)|5h(k_|H*/2) | . (6.12 ‘“% 004 ]
| Sn(k=1H,/2)"a|2 Vo ooo2f .
L |
Assuming the spectrur@{"'@) used here is properly COBE ° - . - -
normalized, we require that the flat and tilted primordial am- T ]
plitude match for the low scales corresponding to COBE. = LSE ]
This will allow us to present an approximate plot of the &  ![~ ]
C, spectrum resulting from spinodal effects which may be 0.5 -
compared to standai@, spectra. 0' - ! s ' .

(=]

50 100
n;

VIl. CONCRETE EXAMPLES AND RESULTS . )
FIG. 4. The mean field(t)/f, the fluctuation{ ?(t))*%f, and

We now put all the pieces of the previous sections tothe Hubble parameted (t)/u vst for the A®* model with ¢(to)
gether in numerical simulations of the full dynamical equa-=5.0H,/27, ¢(to)=0, Hy=2u, \/872=10"16, andf=u\/6Ix.
tions of motion of the spinodal system. A note is in order
regarding these simulations. In certain cases it was impractiygrizon. This example is of further importance because it
cal to run numerical simulations using the full field theory gepicts the case in which the initial classical value of the
equations of motion. These include plots showing quantitiegnfiaton field is of the same order as its initial vacuum fluc-
as a function of the initial condition fop as well as the plot  ations. As is clearly shown, the growth of the two-point
of the scalar tilt as a function of the initial Hubble parameter f|ctyation has a significant influence on the evolution of the
In these cases, we turned to the classical 2-field models dnean fieldg, resulting as well in a modified behavior for the
scribed above, using the approximate initial conditiongypansion.
o(to) =Hof/2m. All such figures specify in the caption that  The result for the metric perturbations are provided in Fig.
they result from the classical models. All other figures werez \yhere we see some remarkable features. First, we notice

produced from full field theory simulations. that the amplitude of5;,(k)| is reduced and that its shape is
significantly changed by the spinodal dynamics. The signifi-
A. New inflation cance of the shape is further emphasized by the scalar tilt

We begin with thexd* system, which we first examined n,—1. Here, we see that for some scales of observational

in this context in Ref[17]. We show the dynamics of the

mean fieldg, the fluctuation¢?)*2, each of which is scaled 10°g 2
by the factorf= 1 \/6/\, and the expansion rakéfor each of 10 .
three examples, corresponding (a) ¢(tg)>Hq/27, (b) = el =
¢(to) =Ho/2m, and(c) ¢(to)<Ho/2m. 10—65_ _.

In the first of these(a), shown in Fig. 4, the evolution
proceeds exactly as would be expected from a purely classi 10
cal analysis of the dynamics. The two-point fluctuat{git)
remains small and does not have a noticeable effect on tht
evolution of ¢, which in turn simply follows the contour of . -o1
the tree-level effective potentiaV(¢). As (¢?) remains
small, the expressions for the amplitude of primordial metric
perturbationg6.4) reduces to the usual slow roll expression
(6.7 and we arrive at the standard results fép(k)|, ng
—1, and|&y|. These quantities are depicted in Fig. 5 as a _
function of N, the number oe-folds before the end of infla- 2%, ;4¢
tion at which the corresponding length scale crosses the ho
rizon. 1x10™°

Example(b), Fig. 6, is an intermediate example for which
the fluctuation becomes large for a short time, inducing a
spinodal phase during the period of evolution for which the FIG. 5. The scalar amplitudé,, the scalar tiltn,— 1, and the
length scales of relevance to CMB observations cross theensor amplitude’, vs N corresponding to the evolution of Fig. 4.

-0.2

3x10°

1 L 1 L 1 L =
0 20 40 60 80 100

N
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FIG. 6. The mean field(t)/f, the fluctuation(t))*%f, and FIG. 8. The equation of staw@(t)=p(t)/e(t) vst for the pa-
the Hubble parametet (t)/u vst for the A\d* model with ¢(t,) rameters corresponding to the evolution of Fig. 6. The expanded
=0.4H /27, $(to)=0, Ho=2p, \/82=10"16 andf=p6I\. region shows the transition between the initial and spinodal phases
of inflation.

:glev?r?ce beltwetﬁtn 60 andtéﬂo_ldls _before_t_the e_P: of infla- condition for accelerated expansi@r>0 is satisfied the
lon, the scafar it parametets IS PosIlive. ThIS COITe- ol time, resulting in the simple behavior of the tensor
sponds to a blue tilt in the power spectrum and was, unt'%mplitude

now, considered to be unattainable in inflation models con- Case(cj Fig. 9 shows the other extreme case when the

ts%tlngl of ?nlfy ﬁ‘ smgtlﬁ Sgaﬁr f!eld. th|rr]1aIIy, the t?”s‘:étamp"'inma| classical value of the field is significantly smaller than
ude clearly toflows the behavior of the expansion 1tas — he effective quantum fluctuation. Heréy?) reaches the

expected. ; . . AL
To show why this is the case, we plot in Fig. 8 the equa_splnodal while ¢ remains small, resulting in a very long

. _ . . . spinodal phase in which the mean fiedd evolves slowly
tion qf.statevv__ p/pasa functlo_n .O.f time. We. see that in the long the spinodal line. The results for the metric parameters
transition region between the initial and spinodal phases o

. : o . > -are provided in Fig. 10.
inflation, there is little departure_ from the de Sitter equation To add completeness to this picture, it is useful to plot the
of statep=—p and that, in particularp<<— p/3 through to

) ! ) scalar amplitude and tilt as a function of the log of the initial
the end of the second inflationary stage. This means that the P 9

T I T I T I T
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107 E = 0 ) ) :
i ] ' | ' | ' | '
107 0.6 ]
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1x10 . t s ! s | s | —— ut
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N FIG. 9. The mean field(t)/f, the fluctuation{ 4?(t))*%f, and

FIG. 7. The scalar amplitudé, , the scalar tiltn,—1, and the ~ the Hubble parametér(t)/x vs t for the Ad* model with $(to)
tensor amplitudeSy vs N corresponding to the evolution of Fig. 6. =0.05H/2m, ¢(tg)=0, Ho=2u, N872=10"1%6 andf=u/6/\.
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FIG. 10. The scalar amplitud&, , the scalar tiling—1, and the FIG. 11. The scalar amplitudég, and the scalar tilingg— 1

tensor amplitudeSy vs N corresponding to the evolution of Fig. 9. corresponding to the scale crossing the horizone@0lds before
the end of inflation vs Z¢(to)/u for \®* new inflation using the
classical two field model witkp(to) =0, N/87%=10"® and several

value ¢(t,) over the range of the differing regimes. This is Values ofHo.

done for the particular scale crossing the horizone@06lds
before the end of inflatiofFig. 11). This figure provides a
nice summary of our primary results. Modification of the ratioHy/u (keeping\ fixed), on the

In the classical regime(to)>H/2, the results are in- other hand has a more complex influence on the behavior.
dependent of initial conditions, but a5t,) becomes of or- The results for the scalar amplitude and tilt as a function of
der Hy/27 there is a distinct transition regime in which the initial conditions for three values ¢,/ u are shown in Figs.
amplitude drops by up to a couple of orders of magnitudell. Here, we see that increasing the parameter has the effect
(possibly alleviating the fine tuning problem of inflation to a of reducing the amplitudes of the features in the transition
minor degreg while there is a spike for which the tilt be- region.
comes positive. While this region appears rather restricted in Note that in the case dfiy/u=1 the approximations we
the parameter space of initial values fér we remind the have used to compute the metric perturbation spectrum break
reader that we plot here onlag scale the ratio ofs(ty) to  down in the transition region, where we see that the scalar
ul27 so that the region in question effectively covers thetilt spikes to a very large value, and therefore this computa-
entire range for whichg(ty) and Ho/27 are of the same tion is unreliable for that small range of initial conditions.
order of magnitude. However, as long as the transition period does not occur

Finally, we see distinct regions for which there is a longwithin the last 60e-folds of inflation, and in particular for the
spinodal phase. In this cage}?) has a significant effect long spinodal region forg(to) <H /27, the slow roll conditions
before the relevant scales cross the horizon. The mean fielbe satisfied throughout the relevant period of evolution such
evolves slowly along the spinodal line to the spinodal point.that the portions of this plot away from the transition region
As the sum rulg4.8) is in place during this phase, the evo- are reliable.
lution of ¢ in the latter stages is always the same, and we Finally, we mention a somewhat unexpected feature of
therefore expect thaidg and ng;—1 become constant the results for the spinodal regime with small initig(t,). In
throughout this regime, as is indeed the case. Fig. 12, we plot the scalar tilt parametey—1 as a function

It is worth mentioning how these results depend upon thef the value of the initial Hubble parametd, /« and com-
other parameters of the model, such as the magnitude of thgare it to the result in the classical regime for whith-1
quartic coupling\ and the ratio of the initial expansion rate :M2/3H§_ The result is remarkable. Over a large range of
to the mass scalely/ u. initial expansion rates, there is very little change in the value

Increasing the value of while keepingH,/u fixed only  of the scalar tilt. It seems that the tilt due to a long spinodal
acts to modify the value of the vacuum expectation value anghase of inflation is relatively independent of the parameters
the spinodal point to be smaller as both of these quantitiesf the model, with an empirical prediction over the range of
are proportional to 3/\. This simply reduces the amount of tested parameters of 0.841,<0.98. While extension to
time the fields evolve, but does not change any of the feaeven larger values dfl,/u may bring the upper limit toward
tures described above, with the exception that the scalar anl-0, it seems likely that the lower limit will remain solid. The
plitude | 5,(k)| scales, as usual, ad\. consequence is that a future measurement which restricts the
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FIG. 12. The scalar tilhgy— 1 corresponding to the scale cross-  FIG. 13. The mean fiele(t)/f, the fluctuation{ ?(t))*%f, and
ing the horizon 6Ce-folds before the end of inflation d,/u for the Hubble parametad(t)/u vst for the natural inflation model
A®* new inflation using the classical two field model and spinodalwith ¢(to)=Hq/2m, é(t;)=0, Ho=2u, andA*/4m2f4=10"16.
initial conditions, ¢(ty) <Ho/27r.

Once again, it is enlightening to examine the dependence
tilt to ng<0.94 would seem to rule out a spinodal phase ofof the quantitieg g andngo—1 as a function of the initial
|nf|at|0n_ state. These are depicted in Figs. 18 where we see again the

clear transition regime aroundl(ty) ~H /27 separating the

B. Natural inflation classical and fluctuation dominated regimes.

Due to its popularity, we examine one other spinodal in-
flation model in detail: natural inflation. The qualitative be-
havior is in many ways quite similar to that of theb* Finally, we present an exampl€; spectrum resulting
model described above, so we will focus on the distinguishfrom spinodal inflation, shown in Fig. 19. We plot the tilted
ing features. The primary difference occurs during the spinCi spectrum corresponding to the natural inflation case of
odal phase. In tha ®* model, the spinodal condition of Eq. Fig. 13 as well as a standard flag spectrum for comparison.
(4.8) simply results in the lowest order contribution to the The “flat” spectrum was produced using the program
effective mass squared of the true zero mafideing of
order —\ ¢?, thus slowing the evolution ofs. In natural 10°
inflation, however, the spinodal condition for natural infla- P
tion yields an effective mass which Exponentiallysup- =
pressed by the growth of the fluctuations. Hence, the evolu-~ 4
tion of the zero mode can come to practically a standstill.

The net result is that the spinodal phase in natural inflation 10

C. Example C, spectrum

models is significantly longer than a correspondindg* o1k
model. -

We provide results for two examples corresponding to the 7. or
intermediate case witth(ty) =Hq/27 shown in Figs. 13 and —01}

14 and the fully fluctuation dominated case @f(to)
<Hy/27 as depicted in Figs. 15 and 16. We see the same
features that appeared in the previous model, with the obvi-
ous difference that the spinodal phase of Fig. 15 is extremely 3107 -
long even forg(tg) not much smaller thahl /277 - .
It is worth examining this point further by plotting the 210
number ofe-folds of inflation as a function of the initial 16 . I . | . L . L .
condition on¢. This is shown in Fig. 17 where we see a 0 20 40 60 80 100
dramatic dependence which contrasts very sharply with the N
logarithmic dependence of the same quantity on initial con- FIG. 14. The scalar amplitud8,, the scalar tiln,— 1, and the
ditions in the classical regime. tensor amplitudeS, vs N corresponding to the evolution of Fig. 13.

ax10®F T T T T T T T T
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FIG. 17. The total number ofe-folds of inflation N vs

2w é(tg)/Hy for natural inflation using the classical two field model
with ¢(to) =0, A4m24=10"16 andH,=2A%/1.

VIIl. CONCLUSIONS

CMBFAST version 2.4.1[36] using the defaults of a standard ~ Whether one studies QCD, ferromagnetism, or ordinary
cold dark matter cosmology with a tiltless adiabatic powergases, non-linear, long wavelength effects are seen to have a
spectrumng=1, while the “curved” spectrum was repro- dramatic impact on the properties of the physical system.
duced from the flat one using the approximate relationWithout close contact between the observation and theory of
(6.12. these systems, there is good reason to doubt whether the
The primary feature of interest is that while the spinodal’espective phenomena of confinement, ferromagnetism, or
inflation spectrum is shifted downward for the modes 100the liquid-gas phase transition would be as well understood
<1<1000, the spectrum approaches its flat counterpart fofS they are today. But that is precisely the challenge before

highl. This is indicative of the shift of the spectrum from re

to blue over the range of observable scales.

in the very early stages of the universe.

g us if we wish to understand the dynamics of phase transitions

_4 i T
10°E E 1e—05

10755' = — [ ]
= F 3 w” i ]
10‘6! - 1e—06§— _§
10—(; [ I 1 |

T T T T e L L

~ — ——
T 01 s -
01 _
02 ~ 005 -
8 B .

. T . , . T . T . K

3x10° — o -
5 - 005 -
e - 3

- 1 1 L 1 L1l I 1 1 1 1 1 L1 I

2x10°° — -01 I 0

. 1 \ 1 \ 1 . 1 \ -
0 20 40 60 80 100 oHy

N FIG. 18. The scalar amplitud&;, and the scalar tilhgy—1 vs

FIG. 16. The scalar amplitudd,, the scalar tilns—1, and the 27 ¢(to)/H, for natural inflation using the classical two field model
tensor amplitudes, vs N corresponding to the evolution of Fig. 15. with ¢(to)=0, A%/4m?f4=10"1° andH,=2A%/f.
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6 T T T T T for which the corresponding quanta are physical with a
strictly real or zero mass.

There are two possible ways to reach such a state. The
first is simply to provide a significant bias to the state such
that the mean value of the field.e. the order parameter
reaches its true vacuum value where the field quanta are well
defined.

The second way, appropriate for systems with small order
parameter, is to allow the system to phase separate into do-
mains for which the field has either positive or negative
value. Rather than the order parameter moving along the
potential energy diagrar(see Fig. 1, the field drops down
into the center of the diagram to the spinodal line. At the
spinodal line, the field quanta are massless and physical, and
this state of affairs may be relatively long lasting, ending
only when one phase becomes so much more prevalent than
500 1000 1500 the other that the system may relax into a definite vacuum
state throughout the system.

We therefore have arrived at a consistent physical picture

FIG. 19. The standard CDMC, spectrum of temperature Of inflationary phase transitions based upon mean field
anisotropies vs for a flatng=1 spectrum and the curved spectrum theory. Already, at this naive level, we have seen new phe-
corresponding to the evolution of Fig. 13. nomena which impact not only the evolution of the inflaton

field but also have important implications for the interpreta-
tion of recent and soon to come observational data.

If we expect to be able to proceed, then it will be neces- As a final note, we emphasize that the techniques used
sary to return to those systems that we believe we undelhere are really only a first—or, rather, a second—
stand, say in condensed matter physics, and examine tlaoproximation to a very complicated system of interaction
techniques, approximations, and concepts which have led toetween an unstable scalar field and gravity at very high
consistent and accurate theoretical descriptions. Looking ienergies. There are a number of possible avenues which
any statistical physics text we immediately notice that theranight be taken to improve upon these results for the dynam-
are a few general concepts and techniques which have be&s and, in particular, for the predictions of observational
found to be particularly rewarding for a variety of different quantities.
systems. One direction is to move beyond mean field theory.

One of these is mean field theory, where complex detail$&ravitationally, this means doing something more sophisti-
of a system are replaced by simple averages. It is in mangated than semi-classical gravity. There has been recent work
ways a very naive approach and often provides quantitativen this regard within the context of perturbation theory up to
results which are only roughly correct. But the real power oftwo loop order[37], and interest in this area has grown
mean field theory lies not only in its quantitative predictions,somewhat due to the possibility of new phenomena in the
rather in the qualitative pictures it paints, allowing us, forcontext of preheating38]. However, the non-perturbative
example, to explain the liquid-gas phase transition in termslynamics of the scalar field studied here corresponds to non-
of a system as simple as that given by the van der Waalperturbative departures of the gravitational dynamics from
equation of state. that of a purely classical background field so that techniques

Another powerful concept is the convexity of the thermo-based upon perturbative expansions are of little help.
dynamical free energy function for any equilibrium system In terms of the scalar field dynamics, one possible avenue
and the simple rules for writing down such a function pro-that has received attention is théNléxpansion of th&(N)
vided by the Maxwell construction. The story being told by vector model, which includes contributions beyond mean
these concepts is that theoretical energy curves with concavild theory at next to leading ordéthis approximation is
portions describe “unphysical” states, and that the dynamicslso promising as it might be consistently implemented for
of the corresponding system will act to transform any suchgravity as well [39]. Another alternative approach is to use
state into a physical state described by a purely convex ensariational methods to compute the dynamics of the system
ergy function. [40], a technigue which might also be combined with thd 1/

This report is an attempt to understand the system of aexpansion. However, significant hurdles remain before either
inflationary phase transition in the context of these powerfubf these techniques will be implementable for interesting
concepts. The initial state is unphysical, described by a corfield theory problems.
cave effective potential, the analog of the equilibrium free The primary alternative to these semi-analytic approaches
energy, with quanta corresponding to imaginary mass stateis to look to lattice simulations. As the interesting phenom-
Such a system must decay into physical states, which we sema occur out of equilibrium, fully quantum simulations are
from the exponential growth of long wavelength fluctuations.ruled out and our only alternative is to examine real time
This decay continues until a non-perturbative state is reachesimulations of a classical scalar coupled to classical gravity.

I+1)C/6C,
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This approach has led, in particular, to improvements in outhe incredible fact that inflationary theory is on the verge of

understanding of preheating dynamj&®,41. However, ex-

becoming an observational science.

tending these methods to interesting problems in inflationary

dynamics will be a challenge requiring a fully general rela-
tivistic lattice coupled to the inflaton field, a way to properly
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