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Kinetically driven quintessence
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Recently, a novel class of models for inflation has been found in which the inflationary dynamics is driven
solely by (noncanonicalkinetic terms rather than by potential terms. As an obvious extension, we show that
a scalar field with noncanonical kinetic terms alone behaves like an energy component which is time varying
and has negative pressure presently, i.e., quintessence. We present a model which has a constant equation of
state, that is, a “kinetic” counterpart of the Ratra-Peebles model of a quintessence field with a potential term.
We make clear the structure of the phase plane and show that the quintessential solution is a late-time attractor.
We also give a model for the “phantom” component which has an equation of statewsitt/p<<—1.

PACS numbd(s): 98.80.Cq

[. INTRODUCTION from matter(so called “least coupling principle/’[21].
Unlike the usual potentially driven quintessence model
Recent indirect or direct observations suggest that thahich automatically satisfies the weak energy condition, al-
Universe is currently dominated by an energy componean'Ug noncanonical kinetic terms _enables us to model the
with negative pressurél—4]. One possibility for such a Missing energy component which violates even the weak en-
component is the cosmological constant. Another possibilinfdy condition(so called “phantom field”[19]). Only re-
is dynamical vacuum energy or quintessence, a tempora ntIy_, Caldwell dre_w our attention to consider more general
decreasing and spatially inhomogeneous component wit quation of state witw=p/p< —1 [19]. As he noted, since

negative pressur—18). Only recently, a more radical can- >U¢ .ph?ntom equanor:joflstate_ cannot be ach!((javgd W';]h
didate (called a “phantom” componeithas been proposed a canonica Lagran'glan an Emstem grav!ty, considering the
o L phantom field requires some extension: eitfienoncanoni-

which is “growing” in time [19].

X ._cal Lagrangian or(ii) non-Einstein gravity(or both. The

_ Two problems arise from such a vacuum energy. The firsf, e goss?bility sr(egms unlikely sigce ;[K(e devig)tion from
is the f|ne:£L7Jn|ng problem: The vacuum energy density Ofyeneral relativity at the present time is strongly constrained
order~10 %" GeV* requires the introduction of a new mass py the solar system experimeri22]. Our attempt is a mini-
scale about 14 orders of magnitude smaller than the eleGnal one: noncanonical kinetic terms without a potential term.
troweak scale. The second is the coincidence problem: ThWe intend to deve|0p a more genera] study by inc|uding
conditions in the early universe have to be set very carefullyotential terms as well in the near future.
in order for the energy density of the vacuum and that of the The organization of the paper is as follows. In Sec. II, we
matter to be comparable today. These problems are degengresent our model. In Sec. I, we start to show the existence
ate for the cosmological constant; however, they are sepaf a scaling solution with a constant equation of statd,
rated in quintessence. A class of quintessence can avoid thew<0. Then we show that the scaling solution is a late-
coincidence problem by means of the attractor solutiortime attractor by means of linear and numerical analyses. In
[7,13). It is shown that the quintessence field approaches &ec. IV, we give a model which has a scaling solution with a
common evolutionary track for a very wide range of initial constant equation of state wf< —1, and show that the scal-
conditions, so that the cosmology is extremely insensitive tdng solution is a late-time attractor. In Sec. V, we make a
the initial conditions. comment on the possibility of reconstructing Lagrangian

Usually the quintessence field is modeled by a scalar fieldhrough observational data. Section VI is devoted to the sum-
with a canonical kinetic term and a potential term. However,May-
we show that a scalar field with solely kinetic terms can
(even without potential termgsalbeit they are noncanonical,
mimic such a(canonical quintessence field. Our model is a  We consider the following action of a single scalar figld
natural extension of the kinetically driven inflation model minimally coupled with gravity:
proposed recently20]. A mechanism is proposed by which a 1
dilaton remains massle$21]. Assuming universality of the _ 4
dilaton coupling functions, it has been shown that the dilaton S= f d X\/__Q(ZZR+ P($.V )| +Ss, @D

evolves cosmologically towards values where it decouples ) ,
where k“=87G and Sz denotes the action of the back-

ground matter and/or radiation. Following0], for simplic-
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1
X=— 5V oV .. (2.2

For the general action of the scalar field EB.1), the field
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positivity of p, for large X, we assume thakt is always

positive. We thus consider the caseko& 0. By redefining
the scalar field and working with new field variable such that

equations are given by doa  L(p)¥?
¢new:f d¢ 72 (3.2
1 L[ 9P(6.X) . [K(o)]
R,uv_ Eg;.LVR:K a—xvy¢vv¢+p(¢vx)guv+1—uv X
we rewrite Eq.(3.1) as
(2.3
= _ 2
where Tﬁv denotes the energy-momentum tensor of the P(¢,X)=T($)(=X+X), 33
background. Equatio(2.3) shows thap(¢,X) in the action  where ¢= ¢y, X=Xpew=(L/|K)Xgq, and f()

(2.1) actually corresponds to the “pressurg’; of the scalar
field [20], while the energy density, is given by p,
=2Xdpl/dX—p. Hence the extrema qf(,X) with respect

=K%(o)/L(dog). We may regard Eq(3.3) as the basic
Lagrangian. Then the pressysg and energy densitpg of
the quintessence is given by

to X correspond to the same equation of state as that of a

cosmological constangi,+ p,=2Xdp/dX=0. pQ:f(¢)(—X+X2), (3.9
We assume that the universe is described by a flat homo-

geneous and isotropic universe model with the scale factor p )

The time coordinate is so normalized thet 1 at present. PQZZXﬂ_p:f(¢)(_X+3X ). 3.9

The field equations are then

A 2 2 2 ap A. Scaling solution
2| | = [ L
H%=| 7] =3 (Petpy)= 5| Pe+2X55 p), We look for scaling solutions which keepo=pq/pg
(2.4  constant. Then from Eq$3.4) and(3.5), X is also found to
be constant:
Bt 3pat oyt 2 1-w
a2 E(PB Pt pet3Py), (2.9 X = Q ) (3.6)
1-3wq
pe=—3H(pg+pe)=:=3H(1+weg)ps. (2.6  pyring the matter or radiation dominated epoghs¥ po),
5 5 Eqg. (2.7) becomes
) &—p+¢2&—p 1an Py TP épz—a—pzo
aX NG axX X ap -
2.7 PQ= " {(Trwg) T WelPe: S

wherepg andpg are the energy density and the pressure ofSybstituting Eqs(3.5) and(3.6) into the above equation, we
the background matter and/or radiation, respectively. thus obtain

Since we only consider kinetic terms, we must impose
f(p)(p— ) "2 W),

that the functiorp(¢,X) vanishes wheiX— 0.2 NearX=0,
a generic Lagrangian may be expanded as
whered, is a constant. For simplicity, we henceforth choose
P($,X)=K($)X+L(p)X>+---. ¢, =0.
To summarize, for the scalar field model with the constant
equation of statavg during the matter or radiation domi-

_ o ) nated epoch, the functiof{ ¢) should take the form of Eq.
To see the effect of noncanonical kinetic terms in a con<3.g). Conversely, if the functiori(¢) is given by

crete matter, in this section we shall concentrate on the sim-
plest Lagrangian containing onky? and ¢* terms, namely

P(,X)=K(p)X+L(p)X2.

In order to realize a model with negative pressieand/or
L should be negativénote thatX=0). However, for the

(3.9

(2.9

IIl. POWER-LAW KINETIC QUINTESSENCE

f()=p™*,

then there exists a scaling solution such that the equation of
state is characterized by

(3.9
(3.2

wQ=W—1. (3.10

“This amounts to assuming some resolution of the cosmologicaence if we require thatio<<0 during the matter dominated
constant problem. The situation is the same as assuming the mingpoch, then the exponeat should satisfy
mum of the potential energy is zero in tfeanonical quintessence

field with a potential term. a<2.

(3.11
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Note that the weak energy conditiow§=—1) can be vio- Since this equation has reflection symmetpy-— ¢, we
lated if «<0. The stability against perturbations is signified mainly consider the case @>0.

by the “speed of sound” defined bj20] Following [7,25], we make the change of variables as
=Int, (3.16
g Po, X _ P x (3.12
Pox Pxt2Xpxx’ P
) ] u=s—, (3.17
For the quartic model Eq3.4), one f|ndscs=(1+wQ)/(5 os

—3Wg), and the model is unstable for perturbations on all
length scales if the weak energy condition is violatag;

<—1. One may wonder this is always the case. However, 2(1-wo)
this is not so. In fact, we can consider a more general La- hs= mt=i§st- (3.18

grangian of the fornj20]

where the scaling solutiot is given by

With these changes, E¢3.15 becomes

P, X)=f($)9(X), 3.13 , (3.19
u =vo, .
whereg(X) is an arbitrary function oX. One can show the
equation of motion Eq(3.7), has a solutiorX,= const. with , 1 ) 3
th(i_ f?nctionf(cﬁ) being the same form as E€3.9) if X, ¢ —v7T 1-38(0+u)? 1+WB{—(U+U)+§S(U+U) 1
satisfies
o
dlng _1two (3.14 —E{—Z(v+u)2+3§§(v+u)4} : (3.20
dInX x=x, Wo

where the prime denotes the derivative with respect-.to
Note that Eq(3.12 involves the second derivatigeyx(X). ~ Then one can find three critical pointss,¢)=(0,0),(1,0),
Therefore, one can always arrange it so &t 0 for sta- and (=1,0). The (-1,0) critical point corresponds to the
bility. This may be a concrete realization of the “phantom” scaling solution with negative amplitude, while the (0,0)
field (or “growing lambda”) using the noncanonical La- critical point is a trivial one in whictX=0.
grangian[19]. An example of such a phantom field will be  In order to study the stability near the critical points, we
considered in Sec. IV. In this section, we shall limit our- use linear analysig7,25|. Perturbing about the scaling solu-

selves to the case of<0a<2 so that—1<wq<0. tion (u,v)=(1+ 6u,0+ Sv) and keeping only the terms lin-
ear indu and v, Egs.(3.19 and(3.20 become
B. Attractor structure ou'=6bv, (3.21)

In the matter or radiation dominated universe, there exists

the scaling solution for the kinetic Lagrangian. Here, we = Sp+ 2Wo n
show that this solution is an attractor of the equation of mo- ov ov 1+WB(5U o)
tion for the scalar field. Whepg>pq, Eq.(2.7) becomes 5
y 42 2 f’ 2y 42 _ C2(1+wg) 1 ngéu. 3.22
_ g) 1—
H(1=3¢7)+ (s (1= #D) bt 27 (237 67= :

(3.15  Then the eigenvalues of small perturbations are given by

. _2wo—l-wgt V(2wo—1—-wg)?+8(1+wg){wo— (1+wq)/(5— 3wQ)}
s 2(1+wpg)

(3.23

The necessary and sufficient condition for stability is that the real part of the eigenvalues be negative. Note that because
—1<wq<0, the second term under the square root is always negative. Then the condition for the stability veqtist 2
—wg<0. Hence the (1,0) critical point corresponding to the scaling solution is stable. In a similar way, the eigenvalues of
small perturbations near the trivial solution is given by

2wo— 1—wg*\(2wo—1—wp)?+4(1+wg)(Wo— 1)

A= 2(1+ Wg) (3.24

Then the (0,0) critical point is also stable.
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log,,(0/ P
o

u=¢/¢ log,,(1+2)

FIG. 1. Phase plane of the quintessence field in the matter domi- FIG. 2. Energy densities of radiatigs , matterpy , and quin-
nated universe. Trajectories in the region between (ipeand (2)  tessence field for various initial conditionsy , i=1,2,3, against
converge on the trivial solutionu(v)=(0,0). In the region above the redshift. The initial conditions fqrg) correspond to that of the
line (1) andu>0 they converge on the scaling solution (1,0) di- scaling solution in the radiation dominated universe. The initial
rectly, while in the region below lin€2) andu>0 they approach €nergy density of the quintessence field which converges on the
and pass through the point (Q,), then converge on another scaling attractor solution spans more than 10 orders of magnitude.
solution (—1,0). The speed of sound is imaginary in the shaded

region. The cosmological evolution of the scalar field is obtained

by solving Eqgs(2.5 and(2.7) numerically. The initial con-
. o ditions for the scale factor are so chosen that the Friedmann
We have shown that the scaling solution is stable forequation(2.4) is satisfied. Those for the scalar field are cho-

small perturbations. In order to analyze the phase plane, W§en in the regiom>0 andv>—u+ V(1= 3wg)/2(1—wg)
solve Egs(3.19 and(3.20 numErlcaIIy. Th_e phase plane is g4 thatc2>0 initially. In Fig. 2, we show the time evolution
shown in Fig. 1 for the case af=1 ande—O. Th!S figure of energy densities of radiation, matter and quintessence field
SthS the attractor structure c_)f the_scallng solutions and th]EE)r various initial conditions. The present density parameter
trivial solution: there are trajectories which converge ON ¢ the ith component?; is defined by<; o= szio/(ng)'

these solutions asymptotically. The boundaries betwee - - -
phase flow, lines (1) and (2) in Fig. 1, correspond to theove choosdyy c=0.25 and setv=1. The figure shows that

lines where Eq(3.20 is singular: for a very wide range'of initial conditions, the energy dens.|ty
of the quintessence field converges on a common evolution-

\/1_73\,\,Q 2 ary track.
= —+ - <
v u=x 6(1—WQ)' (3.29

Equation(3.20 is also singular ou=0 except for

C. Numerical analysis

D. Mass scale

In the Ratra-Peebles model of the quintessence field

Dy =t 1-3wg _ (3.26 driven by a potential term, one can choose a parameter with
- 3(1-wg) mass dimension in the potential term to be a typical particle
physics scal¢13]. We introduce a parameter with mass di-
The trajectories in the region v<-U  mension in the kinetic Lagrangian as
+ \/(1—3WQ)/6(1—WQ) and u>0 approach and pass
through the point§,v)=(0uv _), then converge on the scal- 4
ing solution with negative amplitude. From E@®.12), the f(¢)= , (3.28
requirement for stability against perturbations is not satisfied o
in the region
1-3wg (Ut v)2< 1-3wg 39 then we fix this parameter by requiring that the scalar field is
6(1—wg) (u+v) 2(1-wg) " (3.27) beginning to dominate the energy density of the universe

today (Dgrit is the present critical density ang, is the
These regions correspond to the shaded ones in Fig. 1.  present value of the scalar figld

023511-4



KINETICALLY DRIVEN QUINTESSENCE PHYSICAL REVIEW D62 023511

po= (o) (—X+3X2)=pdy, (3.29 g(9)

and that the scalar field has already reached the attractor
solution
f/ 1 ]

f b=dq bo

Ho. (3.30

The last condition is obtained from EB.15. These condi-
tions fix the mass parameter and the present value of the
scalar field as

M ~ 1043« 48)/(4=a) [ GeV], (3.30)
$o~ 10" [GeV 1], (3.32
respectively.M could be larger than TeV scale when

FIG. 3. A sketch of the functiom(¢). c2<0 in the shaded
regions. The phantom solution is one of the solutions of(E® at
which ¢g'¢,<0 andg,¢/¢g,¢¢>0 and the intersection of the tan-
gent with the vertical axis is negative.

=1.3.

IV. PHANTOM FIELD

In this section, we construct a model of a power-law . .
phantom field which is recently proposed as an alternative te=g(¢) at the pointe with the vertical axis is negative; ()i
the dark energy componeft9]. In fact, in Ref[19], ascalar ;.. g (jji’ 1(d «)>0. Thus. for $>0 .
field with a kinetic term of inverted sign is introduced as a¢r?'¢|d ’ t(' ) ,g’<‘f’o(¢ga¢¢), ,<'0 H ’ ¢ $>0, 9(¢>)t
toy model of such a component: the Lagrangian density jghould sa Isyg,4 andg,g¢="Y. There ore.g(¢) m.us
given by Lp=+ %V#¢V”¢—V(¢)- The concern is the ta- have at least three extrema f¢r>0 and hence be an eighth-
chyonic instability for¢. However, as shown ifL9], as long  order function of. We parametrize(¢) as
asV 44 is negative, such an instability is not developed. For
example, for a constant equation of state, one can show

V. 46=3(1—wp)[H—3H?(1+wp)], thus it is negative as
long as—2<wp<<—1. Our model will not suffer from such
a restriction even for a constant equation of state.

A. Scaling solution

In the previous section, we have mentioned that a gener

Lagrangian of the form of Eq3.13, p(¢,X)=f($)g(X),
with the functionf(¢) of the form of Eq.(3.9) has scaling
solutions withX= constant. From Eq3.10), the equation of
state is characterized by

o= 2
P pp

(1+WB)a _

5 , 4.1

then the phantom field which violates the weak energy con-

dition, wp<—1, corresponds tar<<0.

We determine the functiog(X) which has a phantom
solution. We impose the following conditions giiX) other
thang(X)—0 for X—0 (vacuum triviality) andg(X) >0 for
X— oo (positivity of the energy density for larg¥): (i) the
positivity of the energy densitpp=Tf(2Xgx—g)>0 be-
cause we are considering the missing energy compofient;
the violation of the weak energy conditiongp+pp
=2fXg x<0; (iii) the stability against perturbations,§
:g,x/(g,x+2x9,xx)>0- .

In terms of ¢ (so thatX= ¢?/2) these conditions are re-
written as: (f) g'¢¢—g>0, which is geometrically inter-
preted as the intersection of the tangent to the cugve

g<¢>=J:éb(ézsz—b2><¢2—c2><¢2—d2>d¢

_.1'8 1A6 1B4 1c2 4.2
=gt gAYt 1B —5Co% (4.2

Ayhereb, ¢, andd are constants corresponding to the extrema

of g(¢) as shown in Fig. 3. A sketch of( ¢) which satisfies
the above conditions (), (ii"), and (iii") is shown there. In
the shaded regions2<0 so that the solution is unstable for
perturbations on all length scale. From the above equation,
the scaling solutions satisfy

C¢%2— B4+ AdeI6— 28
We= o ap 4 "6/ 7 18/a
Cp2/2—3B*/4+5AH016— 7 ¢%/8

4.3

Then there are six scaling solutions at most.

B. Attractor structure

We show that the phantom solution is an attractor of the
equation of motion for the scalar field by means of the linear
analysis employed in the previous section. From &),
the equation of motiori2.7) becomes

3We take negative sign for the coefficient ¢f as a minimal
extension of the quartic model Equati@®.3). If we take positive
sign, then the polynomial should be at least of tenth order.
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fI

. : : : : o 1 ., 3 ., 5 .. 7.
¢(C—3|3¢2+5A¢>4—7¢>6)+m(c—B¢>2+A¢>4—¢>6)¢+T Ec¢2—ZB¢>“+ 6Aqsﬁ— §¢8 =0, (4.9

when pg>pp. We make the change of variables as E16 and

$_.9%
¢p " Ept’

whereép is determined by one of the solutions of E4.3) corresponding to the phantom solution. With these changes, Eq.
(4.4) becomes

u

(4.5

u' =v, (4.6)

1

_ B 2 3_A 4 5 6 7
+C—38§§,(v+u)2+5A§é(u+u)4—7§‘,i(v+u)6 {=C(v+u)+Bé&(v+u) Ep(vtu)+E(v+u)’}

vV =~V

1+wg

, (4.7)

a 1 3 5 7
__l_= 2. % Qe 4_ 2 N 6., | 6 8
0 2C(v-l-u) +4B§P(v+u) 6A§P(v+u) +8§P(v+u)

where the prime denotes the derivative with respect.t@hen one can find seven critical points at most;v() = (0,0),
(%£1,0) and others.

Perturbing about the phantom solutiam ¢) = (1+ éu,0+ dv) and keeping only the terms linear &u and év, Eqs.(4.6)
and(4.7) become

ou’'=év, 4.9

2We st sp)— 2EEWR) o 5 4.9
1+WB( u+ év)— ———Séu, (4.9

r— _ +
ov ) Trwg

where

C/2—3B&R/A+5AER6—T£)8

(4.10
C—3B&+5AL—TE)
1 ¢g -

== ¢g"f’_ 3. (4.1

&p U4 b=ép

Then the eigenvalues of small perturbations are given by
2Wo—1—Wg* V(2wp—1—wWg)2+8(1+wg){wp— (1+WwWp)S

A= Q B \/( P B) ( s {Wp—( p) } 4.12

P 2(1+wg)

Since we imposg@p>0 andg ;;<0 on the phantom solu- C=1). There are one trivial solution and six scaling solu-
tion, S<0. Then the second term under the square root isions. The shaded regions correspond to those in Fig? 3,
negative. Therefore the (1,0) critical point corresponding to< . Equation(4.7) is singular on the dashed lines except for
the phantom solution is stable. In a similar way, the eigenthe points represented by cross. The boundaries between
values of small perturbations near the trivial solution (0,0) isphase flow correspond to these singular lines. The trajecto-
given by Eq.(3.24 but wg is replaced withwp since the  yies in the region above linél) andu>0 converge on the
phase structure around the trivial solution is determined b3écaling solutions. In the region between lidg and(2), they

the lowest kinetic term. The trivial solution is also stable. converge on the trivial solution. In the region below lif&

. ) andu>0, trajectory approaches a point on the boundary as-
C. Numerical analysis ymptotically.

In Fig. 4, the phase plane for the case @ —1 and The cosmological evolution of the scalar field is obtained
wg=0 is shown by solving Eq€4.6) and(4.7) numerically. by solving Egs.(2.5) and (2.7) numerically. In Fig. 5, we
We chooseb?=1/2,c?=1 andd?=2 (or A=7/2,B=7/2, show the time evolution of energy densities of radiation,
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\I’\\i}/l T I T T T l T T T I T T T
- g i
20 —
1 L i
om r 1
on i ]
- F 0 :
" 0 3 r ]

> EE ok

phantom :pl("l) ]
solution L A
-1+ —-10 [-p@ I
L (1) : p{f’) :

B 1 1 1 I 1 1 1 I 1 1 1 I Il 1 1
-1 0 1 () 6 4 2 0

u = ¢/¢, log,(1+2)

FIG. 4. Phase plane of the phantom field in the matter domi- FI!G. 5. Energy densities of radiatigrk , matterpy, , and phan-
nated universe. We sé=1/2, c2=1, andd?=2. The scaling tom field for various initial conditiong), i=1,2,3, against the
solutions are represented by open circle. Equaiibi is singular redshift. The initial conditions fopg) correspond to that of the
on the dashed lines except for the points represented by cross. In th@antom solution in the radiation dominated universe. The initial
shaded regions corresponding to those in Fig23;0. Trajectories ~ €nergy density of the phantom field which converges on the phan-
in the region between linél) and(2) converge on the trivial solu- oM solution spans more than 10 orders of magnitude.
tion. In the region above lin€l) andu>0, they converge on the
scaling solutions. In the region below liig) andu>0, trajectory (

2

3
approaches a point on the boundary asymptotically. K2p¢: K = 3H(2)QM’O(1+ 2)3,
z

matter and phantom field for various initial conditions. We (5.2
choose()), ,=0.25 and setxr=—1. Since the scaling solu-
tion is growing in time and bounded by the instability re- , , ) .
gions (in which w>—1) as shown in Fig. 3, the initial en- From Eq.(5.1), we find thatp(¢,X) is written as a function
ergy density should be chosen to be below the present ener@f Z In order to reconstrucp(¢,X), we further need to
scale? Hence, there remains a severe fine-tuning problem ofewrite ¢ (or X= ¢?/2) as a function of. One might expect
the initial conditions. One may expect that including poten-that this may be done using Et.2). Indeed, it is possible
tial terms or introducing additional fields may allow initially for the case of the quintessence field with a canonical kinetic
decaying solutions. We note, however, that the condiiion  term and a potential term, wheng(¢,X)=X—V(¢) and
p+p=2fXgx<0, remains unchanged even if we include p(¢,X)=X+V(¢). By summing up Eqs(5.1) and(5.2), X
potential terms. can be described as a functionofntegratingX with respect
to z enables us to rewritep as a function ofz. Then, by
V. RECONSTRUCTING P(¢,X) subtracting Eq(5.1) from Eq. (5.2), V(¢) can be described

It has been shown that the effective potential of a scalaas a function of, that is,¢. However, in our casey(¢,X)
field with a canonical kinetic term can be determined byis an arbitrary function of botlpp and Xso that it is impos-
using the magnitude-redshift relation of distant type la supersible to rewrite¢p or X as a function oz without identifing
novae[23,24. In a similar way, we consider the possibility the combination ofp and X in p(¢,X).°
of reconstructing as a function ofp andX through obser- Of course, once one specifies the functional form of
vational data. The pressure and density of the quintessengg 4, x), the reconstruction is possible like the case of the
or phantom component can be written in terms of the cooryyintessence field with a canonical kinetic term and a poten-
dinate distance to redshitt,r(z) [which is related to the tigl term. For example, for the case of our model, E43),
luminosity distanced (z)=(1+2)r(z)] as we can writef (¢) andX in terms of observable quantities in
42 /d 2 the following manner: Take the ratio of E¢5.2) to Eq.
_ _ 7 (5.1). ThenX is written as a function of. IntegratingX with

(dr/dz)? (dr/dz)®’ respect taz, ¢ can be written as a function af Once again

(5.9

K*py=K*p(p,X)=

SWe also note that the reconstruction method fails if the scalar
‘It is even possible to start from zero energy density with a fine-field has a multicomponent or is nonminimally coupldd,16 to
tuning of the initial conditions. the curvature.
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using Eq.(5.1) together with the results obtained, we caninitial conditions have to be set carefully because there are a
rewrite f as a function ofz. Hence we can reconstruct number of scaling solutions. Moreover, the initial energy
f.f(p)=1(4(2)). density should be chosen to be below the present energy
scale because the decaying lambda region corresponds to the
VI. SUMMARY unstable region. Therefore, there remains a fine-tuning prob-

em of the initial conditions, which is no more severer than

We have shown that a scalar field with only noncanonica{hat of the cosmological constant. The situation may be im-
kinetic terms can, without the help of potential terms, behave . 0109 . ' . ay .
roved by including potential terms or by introducing addi-

like quintessence or phantom energy component. P .
a P 9y b tional fields.

We have presented a kinetic counterpart of the Ratra S o .
Peebles model and investigated the structure of the phase 1 N€ violation of the weak energy condition is required to

plane and shown that the quintessential solution is a late-timgonstruct wormhole$26]. Our model of a phantom field

attractor. The phase area of the initial conditions for the sca@y be used to explore such a fascinating possibility.

lar field which converge on the quintessential solution is

smaller than that of the Ratra-Peebles model since there are a

trivial solution as well as the scaling solutions in the kinetic ACKNOWLEDGMENTS
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