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Kinetically driven quintessence

Takeshi Chiba,* Takahiro Okabe,† and Masahide Yamaguchi‡

Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
~Received 11 November 1999; published 23 June 2000!

Recently, a novel class of models for inflation has been found in which the inflationary dynamics is driven
solely by ~noncanonical! kinetic terms rather than by potential terms. As an obvious extension, we show that
a scalar field with noncanonical kinetic terms alone behaves like an energy component which is time varying
and has negative pressure presently, i.e., quintessence. We present a model which has a constant equation of
state, that is, a ‘‘kinetic’’ counterpart of the Ratra-Peebles model of a quintessence field with a potential term.
We make clear the structure of the phase plane and show that the quintessential solution is a late-time attractor.
We also give a model for the ‘‘phantom’’ component which has an equation of state withw5p/r,21.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Recent indirect or direct observations suggest that
Universe is currently dominated by an energy compon
with negative pressure@1–4#. One possibility for such a
component is the cosmological constant. Another possib
is dynamical vacuum energy or quintessence, a tempo
decreasing and spatially inhomogeneous component
negative pressure@5–18#. Only recently, a more radical can
didate~called a ‘‘phantom’’ component! has been propose
which is ‘‘growing’’ in time @19#.

Two problems arise from such a vacuum energy. The fi
is the fine-tuning problem: The vacuum energy density
order;10247 GeV4 requires the introduction of a new ma
scale about 14 orders of magnitude smaller than the e
troweak scale. The second is the coincidence problem:
conditions in the early universe have to be set very caref
in order for the energy density of the vacuum and that of
matter to be comparable today. These problems are dege
ate for the cosmological constant; however, they are se
rated in quintessence. A class of quintessence can avoid
coincidence problem by means of the attractor solut
@7,13#. It is shown that the quintessence field approache
common evolutionary track for a very wide range of initi
conditions, so that the cosmology is extremely insensitive
the initial conditions.

Usually the quintessence field is modeled by a scalar fi
with a canonical kinetic term and a potential term. Howev
we show that a scalar field with solely kinetic terms c
~even without potential terms!, albeit they are noncanonica
mimic such a~canonical! quintessence field. Our model is
natural extension of the kinetically driven inflation mod
proposed recently@20#. A mechanism is proposed by which
dilaton remains massless@21#. Assuming universality of the
dilaton coupling functions, it has been shown that the dila
evolves cosmologically towards values where it decoup
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from matter~so called ‘‘least coupling principle’’! @21#.
Unlike the usual potentially driven quintessence mo

which automatically satisfies the weak energy condition,
lowing noncanonical kinetic terms enables us to model
missing energy component which violates even the weak
ergy condition~so called ‘‘phantom field’’@19#!. Only re-
cently, Caldwell drew our attention to consider more gene
equation of state withw5p/r,21 @19#. As he noted, since
such a ‘‘phantom’’ equation of state cannot be achieved w
a canonical Lagrangian and Einstein gravity, considering
phantom field requires some extension: either~i! noncanoni-
cal Lagrangian or~ii ! non-Einstein gravity~or both!. The
latter possibility seems unlikely since the deviation fro
general relativity at the present time is strongly constrain
by the solar system experiments@22#. Our attempt is a mini-
mal one: noncanonical kinetic terms without a potential ter
We intend to develop a more general study by includ
potential terms as well in the near future.

The organization of the paper is as follows. In Sec. II, w
present our model. In Sec. III, we start to show the existe
of a scaling solution with a constant equation of state,21
,w,0. Then we show that the scaling solution is a la
time attractor by means of linear and numerical analyses
Sec. IV, we give a model which has a scaling solution with
constant equation of state ofw,21, and show that the scal
ing solution is a late-time attractor. In Sec. V, we make
comment on the possibility of reconstructing Lagrangi
through observational data. Section VI is devoted to the su
mary.

II. BASICS

We consider the following action of a single scalar fieldf
minimally coupled with gravity:

S5E d4xA2gS 1

2k2 R1p~f,¹f! D1SB , ~2.1!

where k2[8pG and SB denotes the action of the back
ground matter and/or radiation. Following@20#, for simplic-
ity, we only consider Lagrangians which depend only on
scalar fieldf and its derivative squared1y,

.u-

1We use the metric signature (2111).
©2000 The American Physical Society11-1
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X[2
1

2
¹mf¹mf. ~2.2!

For the general action of the scalar field Eq.~2.1!, the field
equations are given by

Rmn2
1

2
gmnR5k2S ]p~f,X!

]X
¹mf¹nf1p~f,X!gmn1Tmn

B D
~2.3!

where Tmn
B denotes the energy-momentum tensor of

background. Equation~2.3! shows thatp(f,X) in the action
~2.1! actually corresponds to the ‘‘pressure’’pf of the scalar
field @20#, while the energy densityrf is given by rf
52X]p/]X2p. Hence the extrema ofp(f,X) with respect
to X correspond to the same equation of state as that
cosmological constant:rf1pf52X]p/]X50.

We assume that the universe is described by a flat ho
geneous and isotropic universe model with the scale factoa.
The time coordinate is so normalized thata51 at present.
The field equations are then

H2
ªS ȧ

a
D 2

5
k2

3
~rB1rf!5

k2

3 S rB12X
]p

]X
2pD ,

~2.4!

ä

a
52

k2

6
~rB13pB1rf13pf!, ~2.5!

ṙB523H~rB1pB!5:23H~11wB!rB , ~2.6!

f̈S ]p

]X
1ḟ2

]2p

]X2D 13H
]p

]X
ḟ1

]2p

]X]f
ḟ22

]p

]f
50,

~2.7!

whererB andpB are the energy density and the pressure
the background matter and/or radiation, respectively.

Since we only consider kinetic terms, we must impo
that the functionp(f,X) vanishes whenX→0.2 NearX50,
a generic Lagrangian may be expanded as

p~f,X!5K~f!X1L~f!X21•••. ~2.8!

III. POWER-LAW KINETIC QUINTESSENCE

To see the effect of noncanonical kinetic terms in a c
crete matter, in this section we shall concentrate on the s
plest Lagrangian containing onlyḟ2 and ḟ4 terms, namely

p~f,X!5K~f!X1L~f!X2. ~3.1!

In order to realize a model with negative pressure,K and/or
L should be negative~note thatX>0). However, for the

2This amounts to assuming some resolution of the cosmolog
constant problem. The situation is the same as assuming the m
mum of the potential energy is zero in the~canonical! quintessence
field with a potential term.
02351
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positivity of rf for large X, we assume thatL is always
positive. We thus consider the case ofK,0. By redefining
the scalar field and working with new field variable such th

fnew5Efold
df

L~f!1/2

uK~f!u1/2
, ~3.2!

we rewrite Eq.~3.1! as

p~f,X!5 f ~f!~2X1X2!, ~3.3!

where f[fnew, X[Xnew5(L/uKu)Xold , and f (f)
[K2(fold)/L(fold). We may regard Eq.~3.3! as the basic
Lagrangian. Then the pressurepQ and energy densityrQ of
the quintessence is given by

pQ5 f ~f!~2X1X2!, ~3.4!

rQ52X
]p

]X
2p5 f ~f!~2X13X2!. ~3.5!

A. Scaling solution

We look for scaling solutions which keepwQ[pQ /rQ
constant. Then from Eqs.~3.4! and ~3.5!, X is also found to
be constant:

X5
12wQ

123wQ
. ~3.6!

During the matter or radiation dominated epoch (rB@rQ),
Eq. ~2.7! becomes

ṙQ52
2

t~11wB!
~11wQ!rQ . ~3.7!

Substituting Eqs.~3.5! and~3.6! into the above equation, we
thus obtain

f ~f!}~f2f* !22(11wQ)/(11wB), ~3.8!

wheref* is a constant. For simplicity, we henceforth choo
f* 50.

To summarize, for the scalar field model with the const
equation of statewQ during the matter or radiation domi
nated epoch, the functionf (f) should take the form of Eq
~3.8!. Conversely, if the functionf (f) is given by

f ~f!}f2a, ~3.9!

then there exists a scaling solution such that the equatio
state is characterized by

wQ5
~11wB!a

2
21. ~3.10!

Hence if we require thatwQ,0 during the matter dominate
epoch, then the exponenta should satisfy

a,2. ~3.11!

al
ni-
1-2
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Note that the weak energy condition (wQ>21) can be vio-
lated if a,0. The stability against perturbations is signifie
by the ‘‘speed of sound’’ defined by@20#

cs
25

pQ,X

rQ,X
5

p,X

p,X12Xp,XX
. ~3.12!

For the quartic model Eq.~3.4!, one findscs
25(11wQ)/(5

23wQ), and the model is unstable for perturbations on
length scales if the weak energy condition is violated:wQ
,21. One may wonder this is always the case. Howev
this is not so. In fact, we can consider a more general
grangian of the form@20#

p~f,X!5 f ~f!g~X!, ~3.13!

whereg(X) is an arbitrary function ofX. One can show the
equation of motion Eq.~3.7!, has a solutionX05const. with
the function f (f) being the same form as Eq.~3.8! if X0
satisfies

2
] ln g

] ln X U
X5X0

5
11wQ

wQ
. ~3.14!

Note that Eq.~3.12! involves the second derivativeg,XX(X0).
Therefore, one can always arrange it so thatcs

2.0 for sta-
bility. This may be a concrete realization of the ‘‘phantom
field ~or ‘‘growing lambda’’! using the noncanonical La
grangian@19#. An example of such a phantom field will b
considered in Sec. IV. In this section, we shall limit ou
selves to the case of 0,a,2 so that21,wQ,0.

B. Attractor structure

In the matter or radiation dominated universe, there ex
the scaling solution for the kinetic Lagrangian. Here,
show that this solution is an attractor of the equation of m
tion for the scalar field. WhenrB@rQ , Eq. ~2.7! becomes

f̈~123ḟ2!1
2

t~11wB!
~12ḟ2!ḟ1

f 8

4 f
~223ḟ2!ḟ250.

~3.15!
02351
ll
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Since this equation has reflection symmetryf↔2f, we
mainly consider the case off.0.

Following @7,25#, we make the change of variables as

t[ ln t, ~3.16!

u[
f

fs
, ~3.17!

where the scaling solutionfs is given by

fs5A2~12wQ!

123wQ
t5:jst. ~3.18!

With these changes, Eq.~3.15! becomes

u85v, ~3.19!

v852v1
1

123js
2~v1u!2 F 2

11wB
$2~v1u!1js

2~v1u!3%

2
a

4u
$22~v1u!213js

2~v1u!4%G , ~3.20!

where the prime denotes the derivative with respect tot.
Then one can find three critical points: (u,v)5(0,0),(1,0),
and (21,0). The (21,0) critical point corresponds to th
scaling solution with negative amplitude, while the (0,
critical point is a trivial one in whichX50.

In order to study the stability near the critical points, w
use linear analysis@7,25#. Perturbing about the scaling solu
tion (u,v)5(11du,01dv) and keeping only the terms lin
ear indu anddv, Eqs.~3.19! and ~3.20! become

du85dv, ~3.21!

dv852dv1
2wQ

11wB
~du1dv !

2
11wQ

2~11wB!

223js
2

123js
2
du. ~3.22!

Then the eigenvalues of small perturbations are given by
ecause

lues of
ls
65

2wQ212wB6A~2wQ212wB!218~11wB!$wQ2~11wQ!/~523wQ!%

2~11wB!
. ~3.23!

The necessary and sufficient condition for stability is that the real part of the eigenvalues be negative. Note that b
21,wQ,0, the second term under the square root is always negative. Then the condition for the stability is just 2wQ21
2wB,0. Hence the (1,0) critical point corresponding to the scaling solution is stable. In a similar way, the eigenva
small perturbations near the trivial solution is given by

l t
65

2wQ212wB6A~2wQ212wB!214~11wB!~wQ21!

2~11wB!
. ~3.24!

Then the (0,0) critical point is also stable.
1-3
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CHIBA, OKABE, AND YAMAGUCHI PHYSICAL REVIEW D 62 023511
C. Numerical analysis

We have shown that the scaling solution is stable
small perturbations. In order to analyze the phase plane
solve Eqs.~3.19! and~3.20! numerically. The phase plane
shown in Fig. 1 for the case ofa51 andwB50. This figure
shows the attractor structure of the scaling solutions and
trivial solution: there are trajectories which converge
these solutions asymptotically. The boundaries betw
phase flow, lines (1) and (2) in Fig. 1, correspond to
lines where Eq.~3.20! is singular:

v52u6A 123wQ

6~12wQ!
. ~3.25!

Equation~3.20! is also singular onu50 except for

v5v6ª6A 123wQ

3~12wQ!
. ~3.26!

The trajectories in the region v,2u
1A(123wQ)/6(12wQ) and u.0 approach and pas
through the point (u,v)5(0,v2), then converge on the sca
ing solution with negative amplitude. From Eq.~3.12!, the
requirement for stability against perturbations is not satis
in the region

123wQ

6~12wQ!
,~u1v !2,

123wQ

2~12wQ!
. ~3.27!

These regions correspond to the shaded ones in Fig. 1.

FIG. 1. Phase plane of the quintessence field in the matter d
nated universe. Trajectories in the region between line~1! and ~2!
converge on the trivial solution (u,v)5(0,0). In the region above
line ~1! and u.0 they converge on the scaling solution (1,0) d
rectly, while in the region below line~2! and u.0 they approach
and pass through the point (0,v2), then converge on another scalin
solution (21,0). The speed of sound is imaginary in the shad
region.
02351
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The cosmological evolution of the scalar field is obtain
by solving Eqs.~2.5! and ~2.7! numerically. The initial con-
ditions for the scale factor are so chosen that the Friedm
equation~2.4! is satisfied. Those for the scalar field are ch
sen in the regionu.0 andv.2u1A(123wQ)/2(12wQ)
so thatcs

2.0 initially. In Fig. 2, we show the time evolution
of energy densities of radiation, matter and quintessence
for various initial conditions. The present density parame
of the i th componentV i is defined byV i ,05k2r i

0/(3H0
2).

We chooseVM ,050.25 and seta51. The figure shows tha
for a very wide range of initial conditions, the energy dens
of the quintessence field converges on a common evolut
ary track.

D. Mass scale

In the Ratra-Peebles model of the quintessence fi
driven by a potential term, one can choose a parameter
mass dimension in the potential term to be a typical part
physics scale@13#. We introduce a parameter with mass d
mension in the kinetic Lagrangian as

f ~f!5
M42a

fa
, ~3.28!

then we fix this parameter by requiring that the scalar field
beginning to dominate the energy density of the unive
today (rcrit

0 is the present critical density andf0 is the
present value of the scalar field!

i-

d

FIG. 2. Energy densities of radiationrR , matterrM , and quin-
tessence field for various initial conditionsrQ

( i ) , i 51,2,3, against
the redshift. The initial conditions forrQ

(2) correspond to that of the
scaling solution in the radiation dominated universe. The ini
energy density of the quintessence field which converges on
attractor solution spans more than 10 orders of magnitude.
1-4
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KINETICALLY DRIVEN QUINTESSENCE PHYSICAL REVIEW D62 023511
rQ
0 5 f ~f0!~2X13X2!.rcrit

0 , ~3.29!

and that the scalar field has already reached the attra
solution

f 8

f U
f5f0

.
1

f0
.H0 . ~3.30!

The last condition is obtained from Eq.~3.15!. These condi-
tions fix the mass parameter and the present value of
scalar field as

M;10(43a248)/(42a) @GeV#, ~3.31!

f0;1043 @GeV21#, ~3.32!

respectively.M could be larger than TeV scale whena
*1.3.

IV. PHANTOM FIELD

In this section, we construct a model of a power-la
phantom field which is recently proposed as an alternativ
the dark energy component@19#. In fact, in Ref.@19#, a scalar
field with a kinetic term of inverted sign is introduced as
toy model of such a component: the Lagrangian densit
given by LP51 1

2 ¹mf¹mf2V(f). The concern is the ta
chyonic instability forf. However, as shown in@19#, as long
asV,ff is negative, such an instability is not developed. F
example, for a constant equation of state, one can s
V,ff5 3

2 (12wP)@Ḣ2 3
2 H2(11wP)#, thus it is negative as

long as22,wP,21. Our model will not suffer from such
a restriction even for a constant equation of state.

A. Scaling solution

In the previous section, we have mentioned that a gen
Lagrangian of the form of Eq.~3.13!, p(f,X)5 f (f)g(X),
with the functionf (f) of the form of Eq.~3.9! has scaling
solutions withX5constant. From Eq.~3.10!, the equation of
state is characterized by

wP[
pP

rP
5

~11wB!a

2
21, ~4.1!

then the phantom field which violates the weak energy c
dition, wP,21, corresponds toa,0.

We determine the functiong(X) which has a phantom
solution. We impose the following conditions ong(X) other
thang(X)→0 for X→0 ~vacuum triviality! andg(X).0 for
X→` ~positivity of the energy density for largeX): ~i! the
positivity of the energy densityrP5 f (2Xg,X2g).0 be-
cause we are considering the missing energy component~ii !
the violation of the weak energy condition,rP1pP

52 f Xg,X,0; ~iii ! the stability against perturbations,cs
2

5g,X /(g,X12Xg,XX).0.
In terms ofḟ ~so thatX5ḟ2/2) these conditions are re

written as: (i8) g,ḟḟ2g.0, which is geometrically inter-
preted as the intersection of the tangent to the curveg
02351
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5g(ḟ) at the pointḟ with the vertical axis is negative; (ii8)

ḟg,ḟ,0; (iii 8) g,ḟ /(ḟg,ḟḟ).0. Thus, for ḟ.0, g(ḟ)
should satisfyg,ḟ,0 and g,ḟḟ,0. Therefore,g(ḟ) must
have at least three extrema forḟ.0 and hence be an eighth
order function ofḟ. We parametrizeg(ḟ) as3

g~ḟ !5E
0

ḟ
ḟ~ ḟ22b2!~ḟ22c2!~ḟ22d2!dḟ

5:
1

8
ḟ82

1

6
Aḟ61

1

4
Bḟ42

1

2
Cḟ2, ~4.2!

whereb, c, andd are constants corresponding to the extre
of g(ḟ) as shown in Fig. 3. A sketch ofg(ḟ) which satisfies
the above conditions (i8), (ii9), and (iii8) is shown there. In
the shaded regions,cs

2,0 so that the solution is unstable fo
perturbations on all length scale. From the above equat
the scaling solutions satisfy

wP5
Cḟ2/22Bḟ4/41Aḟ6/62ḟ8/8

Cḟ2/223Bḟ4/415Aḟ6/627ḟ8/8
. ~4.3!

Then there are six scaling solutions at most.

B. Attractor structure

We show that the phantom solution is an attractor of
equation of motion for the scalar field by means of the line
analysis employed in the previous section. From Eq.~4.2!,
the equation of motion~2.7! becomes

3We take negative sign for the coefficient ofḟ2 as a minimal
extension of the quartic model Equation~3.3!. If we take positive
sign, then the polynomial should be at least of tenth order.

FIG. 3. A sketch of the functiong(ḟ). cs
2,0 in the shaded

regions. The phantom solution is one of the solutions of Eq.~4.3! at

which ḟg,ḟ,0 andg,ḟ /ḟg,ḟḟ.0 and the intersection of the tan
gent with the vertical axis is negative.
1-5
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f̈~C23Bḟ215Aḟ427ḟ6!1
2

t~11wB!
~C2Bḟ21Aḟ42ḟ6!ḟ1

f 8

f S 1

2
Cḟ22

3

4
Bḟ41

5

6
Aḟ62

7

8
ḟ8D50, ~4.4!

whenrB@rP . We make the change of variables as Eq.~3.16! and

u[
f

fP
5:

f

jPt
, ~4.5!

wherejP is determined by one of the solutions of Eq.~4.3! corresponding to the phantom solution. With these changes,
~4.4! becomes

u85v, ~4.6!

v852v1
1

C23BjP
2 ~v1u!215AjP

4 ~v1u!427jP
6 ~v1u!6 F 2

11wB
$2C~v1u!1BjP

2 ~v1u!32AjP
4 ~v1u!51jP

6 ~v1u!7%

2
a

u H 2
1

2
C~v1u!21

3

4
BjP

2 ~v1u!42
5

6
AjP

4 ~v1u!61
7

8
jP

6 ~v1u!8J G , ~4.7!

where the prime denotes the derivative with respect tot. Then one can find seven critical points at most; (u,v)5(0,0),
(61,0) and others.

Perturbing about the phantom solution (u,v)5(11du,01dv) and keeping only the terms linear indu anddv, Eqs.~4.6!
and ~4.7! become

du85dv, ~4.8!

dv852dv1
2wP

11wB
~du1dv !2

2~11wP!

11wB
Sdu, ~4.9!

where

S5
C/223BjP

2 /415AjP
4 /627jp

6/8

C23BjP
2 15AjP

4 27jp
6

~4.10!

5
1

jP
2

ḟg,ḟ2g

g,ḟḟ
U

ḟ5jP

. ~4.11!

Then the eigenvalues of small perturbations are given by

lP
65

2wQ212wB6A~2wP212wB!218~11wB!$wP2~11wP!S%

2~11wB!
. ~4.12!
-
t
t

en
i

b

lu-
,
or
een

cto-

as-

ed

n,
Since we imposerP.0 andg,ḟḟ,0 on the phantom solu
tion, S,0. Then the second term under the square roo
negative. Therefore the (1,0) critical point corresponding
the phantom solution is stable. In a similar way, the eig
values of small perturbations near the trivial solution (0,0)
given by Eq.~3.24! but wQ is replaced withwP since the
phase structure around the trivial solution is determined
the lowest kinetic term. The trivial solution is also stable.

C. Numerical analysis

In Fig. 4, the phase plane for the case ofa521 and
wB50 is shown by solving Eqs.~4.6! and~4.7! numerically.
We chooseb251/2, c251 and d252 ~or A57/2, B57/2,
02351
is
o
-

s

y

C51). There are one trivial solution and six scaling so
tions. The shaded regions correspond to those in Fig. 3cs

2

,0. Equation~4.7! is singular on the dashed lines except f
the points represented by cross. The boundaries betw
phase flow correspond to these singular lines. The traje
ries in the region above line~1! and u.0 converge on the
scaling solutions. In the region between line~1! and~2!, they
converge on the trivial solution. In the region below line~2!
andu.0, trajectory approaches a point on the boundary
ymptotically.

The cosmological evolution of the scalar field is obtain
by solving Eqs.~2.5! and ~2.7! numerically. In Fig. 5, we
show the time evolution of energy densities of radiatio
1-6
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matter and phantom field for various initial conditions. W
chooseVM ,050.25 and seta521. Since the scaling solu
tion is growing in time and bounded by the instability r
gions ~in which w.21) as shown in Fig. 3, the initial en
ergy density should be chosen to be below the present en
scale.4 Hence, there remains a severe fine-tuning problem
the initial conditions. One may expect that including pote
tial terms or introducing additional fields may allow initiall
decaying solutions. We note, however, that the condition~ii !,
r1p52 f Xg,X,0, remains unchanged even if we includ
potential terms.

V. RECONSTRUCTING P„f,X…

It has been shown that the effective potential of a sca
field with a canonical kinetic term can be determined
using the magnitude-redshift relation of distant type Ia sup
novae@23,24#. In a similar way, we consider the possibilit
of reconstructingp as a function off andX through obser-
vational data. The pressure and density of the quintess
or phantom component can be written in terms of the co
dinate distance to redshiftz,r (z) @which is related to the
luminosity distance,dL(z)5(11z)r (z)# as

k2pf5k2p~f,X!52
3

~dr/dz!2
22~11z!

d2r /dz2

~dr/dz!3
,

~5.1!

4It is even possible to start from zero energy density with a fi
tuning of the initial conditions.

FIG. 4. Phase plane of the phantom field in the matter do
nated universe. We setb251/2, c251, and d252. The scaling
solutions are represented by open circle. Equation~4.7! is singular
on the dashed lines except for the points represented by cross. I
shaded regions corresponding to those in Fig. 3,cs

2,0. Trajectories
in the region between line~1! and ~2! converge on the trivial solu-
tion. In the region above line~1! and u.0, they converge on the
scaling solutions. In the region below line~2! andu.0, trajectory
approaches a point on the boundary asymptotically.
02351
rgy
of
-

r

r-

ce
r-

k2rf5k2S 2X
]p

]X
2pD5

3

~dr/dz!2
23H0

2VM ,0~11z!3,

~5.2!

From Eq.~5.1!, we find thatp(f,X) is written as a function
of z. In order to reconstructp(f,X), we further need to
rewritef ~or X5ḟ2/2) as a function ofz. One might expect
that this may be done using Eq.~5.2!. Indeed, it is possible
for the case of the quintessence field with a canonical kin
term and a potential term, wherep(f,X)5X2V(f) and
r(f,X)5X1V(f). By summing up Eqs.~5.1! and ~5.2!, X
can be described as a function ofz. IntegratingX with respect
to z enables us to rewritef as a function ofz. Then, by
subtracting Eq.~5.1! from Eq. ~5.2!, V(f) can be described
as a function ofz, that is,f. However, in our case,p(f,X)
is an arbitrary function of bothf and Xso that it is impos-
sible to rewritef or X as a function ofz without identifing
the combination off andX in p(f,X).5

Of course, once one specifies the functional form
p(f,X), the reconstruction is possible like the case of t
quintessence field with a canonical kinetic term and a pot
tial term. For example, for the case of our model, Eq.~3.3!,
we can writef (f) andX in terms of observable quantities i
the following manner: Take the ratio of Eq.~5.2! to Eq.
~5.1!. ThenX is written as a function ofz. IntegratingX with
respect toz, f can be written as a function ofz. Once again

-

5We also note that the reconstruction method fails if the sca
field has a multicomponent or is nonminimally coupled@15,16# to
the curvature.

FIG. 5. Energy densities of radiationrR , matterrM , and phan-
tom field for various initial conditionsrP

( i ) , i 51,2,3, against the
redshift. The initial conditions forrP

(2) correspond to that of the
phantom solution in the radiation dominated universe. The ini
energy density of the phantom field which converges on the ph
tom solution spans more than 10 orders of magnitude.

i-

the
1-7
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using Eq.~5.1! together with the results obtained, we c
rewrite f as a function ofz. Hence we can reconstruc
f , f (f)5 f „f(z)….

VI. SUMMARY

We have shown that a scalar field with only noncanoni
kinetic terms can, without the help of potential terms, beh
like quintessence or phantom energy component.

We have presented a kinetic counterpart of the Ra
Peebles model and investigated the structure of the p
plane and shown that the quintessential solution is a late-
attractor. The phase area of the initial conditions for the s
lar field which converge on the quintessential solution
smaller than that of the Ratra-Peebles model since there
trivial solution as well as the scaling solutions in the kine
Lagrangian. However, for very wide ranges of initial ener
density, these energy components converge on common
lutionary tracks.

We have also given a model of a power-law ‘‘phantom
field with arbitraryw of w,21 which is stable against per
turbation, and have shown that the phantom solution i
late-time attractor. In our model of the phantom field, t
in

y

s

et

02351
l
e

-
se
e

a-
s
e a

vo-

a

initial conditions have to be set carefully because there a
number of scaling solutions. Moreover, the initial ener
density should be chosen to be below the present en
scale because the decaying lambda region corresponds t
unstable region. Therefore, there remains a fine-tuning p
lem of the initial conditions, which is no more severer th
that of the cosmological constant. The situation may be
proved by including potential terms or by introducing add
tional fields.

The violation of the weak energy condition is required
construct wormholes@26#. Our model of a phantom field
may be used to explore such a fascinating possibility.
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