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Exact U„1… symmetric cosmologies with local mixmaster dynamics
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By applying a standard solution generating technique, we transform an arbitrary vacuum Mixmaster solution
on S33R to a new solution which is spatially inhomogeneous. We thereby obtain a family of exact, spatially
inhomogeneous, vacuum spacetimes which exhibit Belinskii-Khalatnikov-Lifshitz oscillatory behavior. The
solutions are constructed explicitly by performing the transformations on numerically generated, homogeneous
Mixmaster solutions. Their behavior is found to be qualitatively like that seen in previous numerical simula-
tions of genericU(1) symmetric cosmological spacetimes onT33R.

PACS number~s!: 98.80.Hw, 04.20.Jb
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I. INTRODUCTION

Recent numerical studies@1# have provided strong evi
dence thatU(1)-symmetric, vacuum spacetimes onT33R
generically develop Mixmaster-like, oscillatory singulariti
of the type predicted long ago by Belinskii, Khalatnikov, a
Lifschitz ~BKL ! @2–6#. These results confirm numericall
some of the most surprising features of the BKL predictio
namely that nearby spatial points are effectively decoup
in their asymptotic metric evolution and that the metric va
ables at each of these points evolve, at least qualitativ
like those of a Mixmaster spacetime.

Several years ago Grubisˇić and one of us~V.M.! @7# made
an analytical effort to generate some exact vacuum sp
times which were spatially inhomogeneous and which w
expected to exhibit the sort of oscillatory singularities whi
have since been seen in the numerical studies@1#. That effort
was not completed at the time since it was not realized
several seemingly intractable integrals actually cancel in
course of the calculations leaving only elementary compu
tions to be done. We shall therefore complete that pro
here and use the results to compare, in a more quantita
way, the numerical results with some exact oscillatory s
gularities.

To generate new solutions having Mixmaster-like oscil
tions, we begin with the actual Mixmaster solutions and
ply a standard solution generating technique. We choose
of the Killing fields shared by the Mixmaster family and tre
it as the generator of a spacelikeU(1) action onS33R,
ignoring the presence of the other Killing symmetries. W
compute the twist potential associated with the chosen K
ing field and reexpress the field equations, in a well-kno
way @8#, as a Kaluza-Klein reduced system on the base m
fold S23R of theS1 bundleS33R→S23R. The field equa-
tions on the base take the form of 211 Einstein gravity
coupled to a wave map whose target space is the hyperb
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plane,H2. The isometry group of this latter space,SL(2,R),
acts on the base fields in a natural way so as to transform
given solution to a family of potentially inequivalent solu
tions.

By a careful choice of the applied group element one c
arrange that the transformed solution either lifts to the sa
bundle defined for the original spacetime or perhaps t
different one~e.g., the trivial bundle,S23S13R→S23R, or
a ‘‘squashed sphere,’’S3/Zk3R→S23R). Typically, the
new solutions will preserve only the Killing field that gene
ates the commonU(1) action and not preserve those Killin
fields of the seed solutions which fail to commute with t
chosenU(1) generator. Thus the new solutions are expec
to be spatially inhomogeneous and yet to exhibit Mixmast
like oscillations inasmuch as their metrics are parametri
by the same functions appearing in the Mixmaster seed m
rics themselves.

A previous application of this technique involved tran
forming an infinite dimensional family of ‘‘generalize
Taub-NUT’’ ~Newman-Unti-Tamburino! spacetimes defined
on S33R, which have smooth Cauchy horizons at the
‘‘singular’’ boundaries, to a new family of curvature singula
spacetimes defined onS23S13R @9#. Because of the specia
nature of the seed solutions in this case, the transform
solutions developed only velocity dominated singularit
and never exhibited Mixmaster-like oscillations. A new tec
nique based upon expressing the Einstein evolution eq
tions in a so-called Fuchsian form seems capable of sig
cantly enlarging this set of rigorous,U(1)-symmetric,
curvature singular cosmological spacetimes but, so far
also only capable of yielding velocity dominated singula
ties @10,11#. So far as we know the solutions presented
the first time here are the only known exact inhomogene
vacuum spacetimes which exhibit Mixmaster oscillation
Though only a finite dimensional family they presumab
display behavior representative of more gener
U(1)-symmetric vacuum spacetimes and thus warrant c
parison with numerically producedU(1) solutions. Making
such a comparison is the second main aim, after produc
the solutions themselves, of this paper. As a byproduc
©2000 The American Physical Society09-1
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BEVERLY K. BERGER AND VINCENT MONCRIEF PHYSICAL REVIEW D62 023509
this work, we also resolve a potential paradox that w
pointed out in Ref.@7#. There it was shown that ever
U(1)-symmetric vacuum spacetime admits a certain ga
invariant conserved quantity which is expressible purely
cally in terms of the instantaneous Cauchy data for that
lution and serves as a Casimir invariant for theSL(2,R)
action. For genericU(1) solutions this quantity is known to
be non-trivial but, if non-trivial for the Mixmaster subfamily
would seem to contradict the anticipated ‘‘chaos’’ of t
Mixmaster dynamics@12–14#. The only sensible resolution
as was discussed in Ref.@7#, is that the quantity actually
vanishes on the Mixmaster subfamily. This we find to be
case by explicit calculation.

The inhomogeneity in our transformed solutions is p
duced, roughly speaking, by the fact that we choose to
duce with respect to a Killing field which fails to commu
with the remaining Killing fields of the seed metric. This
unavoidable with the generic Mixmaster solution but spec
cases such as the Taub-NUT metrics allow for different p
sibilities. The additional Killing field admitted by Taub spac
commutes with all the generators and is preserved upon
duction with respect to one of these~non-Abelian! genera-
tors. The resulting spacetime has therefore~at least! two
commuting Killing fields and is thus a special case of t
so-called Gowdy family of spacetimes. By contrast o
could instead choose to reduce with respect to the additio
commutative Killing field but, in this case, all the symm
tries are preserved and one arrives, as was first shown
Geroch@15#, at only the Kantowski-Sachs~i.e., locally inte-
rior Schwarzschild! spacetime.

One might wonder if the ‘‘new’’ solutions we produce a
really inhomogeneous at all or perhaps because of their
pression in an unusual gauge, are merely homogeneou
lutions in disguise. We shall use the Gowdy transform
Taub space mentioned above, to show that this is not
case—the new solutions are not in general globally homo
neous.

II. MIXMASTER SPACETIMES

The Mixmaster spacetimes are spatially homogene
vacuum metrics onS33R whose line elements can be wri
ten

ds252N2~ t !dt21A2~ t !~ ŝ1!21B2~ t !~ ŝ2!21C2~ t !~ ŝ3!2.
~1!

Here the$ŝ i% are a global, analytic basis of one-forms onS3

expressible in terms of the usual Euler angle coordina
$x1,x2,x3%5$u,w,c%P$@0,p),@0,2p),@0,4p)% by

ŝ15coswdu1sinu sinw dc,

ŝ252sinwdu1sinu cosw dc,

ŝ35dw1cosu dc. ~2!

These forms, and therefore the above line element, are
variant with respect to theU(1) action onS3 generated by
02350
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the Killing field X̂35]/]c whose orbits yield a Hopf fibra-
tion of S3, i.e., makeS3 into a principal fiber bundle overS2

with bundle projection given by

pc :S3→S2,~u,w,c!°~u,w!. ~3!

Of course the Mixmaster metrics are invariant with r
spect to a fullSU(2) action generated by Killing fields

X̂15cosc
]

]u
1cscu sinc

]

]w
2cotu sinc

]

]c
,

X̂252sinc
]

]u
1cscu cosc

]

]w
2cotu cosc

]

]c
,

X̂35
]

]c
~4!

but, for the transformations we shall consider, only inva
ance with respect toX̂35]/]c will in general be preserved

The equations of motion for the Mixmaster solutions a
most simply expressed in a gauge for whichN5ABC where
they take the form

~ ln A2!,tt5~B22C2!22A4,

~ ln B2!,tt5~C22A2!22B4,

~ ln C2!,tt5~A22B2!22C4, ~5!

and are to be supplemented by the Hamiltonian constrai

A,t

A

B,t

B
1

A,t

A

C,t

C
1

B,t

B

C,t

C
2

1

4
@A41B41C422~A2B2

1B2C21A2C2!#'0. ~6!

In terms of the Misner anistropy variablesa,b1 ,b2 ,

A5ea1b11A3 b2,

B5ea1b12A3 b2,

C5ea22b1, ~7!

and the chosen gauge condition isN5e3a. We now rewrite
the line element in theU(1)-symmetric form developed in
Refs. @8# and @16#. Taking $xa%5$u,w% and noting that the
shift vector vanishes we expressds2 in the form

ds25e22g$2Ñ2dt21g̃abdxadxb%1e2g$dc1cosu dw

1badxa%2, ~8!

wheree2g is the scalar field]/]c•]/]c given explicitly by

e2g5A2sin2u sin2w1B2sin2u cos2w1C2cos2u. ~9!

Sinceg is invariant with respect to theU(1) action gener-
ated byX̂35]/]c it induces a function on the quotient man
fold S33R/U(1)'S23R which ~with a slight abuse of no-
9-2
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EXACT U(1) SYMMETRIC COSMOLOGIES WITH LOCAL . . . PHYSICAL REVIEW D 62 023509
tation! we shall also designate byg. In a similar way one
finds induced upon the quotient manifoldS23R a Lorentz-
ian metric

ds252Ñ2dt21g̃abdxadxb ~10!

and a one-form field

b
>

5badxa ~11!

where $a,b, . . . %5$1,2%. These forms are slightly specia
ized because of the vanishing of the shift vector field inds2.
The most generalU(1)-symmetric line element would yield

ds252Ñ2dt21g̃ab~dxa1Ñadt!~dxb1Ñbdt!

b
>

5badxa1b0dt. ~12!

The explicit formulas for the~211!-Lorentzian metric
ds2 and the one-form potentialb

>
may be read off upon

expressingds2 in the form of Eq.~1!. One finds that

Ñ5Neg,

g̃uu5C2cos2u~A2cos2w1B2sin2w!1A2B2sin2u,

g̃ww5C2sin2u~A2sin2w1B2cos2w!,

g̃uw52C2~A22B2!cosw sinw cosu sinu,

bu5
~A22B2!cosw sinw sinu

e2g
,

bw5S C2cosu

e2g
2cosu D , ~13!

and computes, for example, that

Adet(2)g̃5ABCsinueg. ~14!

As in Refs. @8# and @16# we introduce the moment

$ p̃,ẽa,p̃ab% conjugate to$g,ba ,g̃ab%, which, taken together
parametrize the full~311! spatial metricgi j and its conju-
gate momentump i j . For the case of vanishing shift the fo
mulas relating the momentum variables$ p̃,ẽa,p̃ab% to the
metric variables$g,ba ,g̃ab% are given by

p̃5SA (2)g̃

Ñ
D 4g ,t ,

ẽa5SA (2)g̃

Ñ
D e4gg̃abbb,t ,

p̃ab5SA (2)g̃

Ñ
D 1

2
~ g̃acg̃bd2g̃abg̃cd!g̃cd,t . ~15!
02350
For the Mixmaster metrics one computes that

ẽu5
2 sin2u

N
$BCA,tsinw cosw2ACB,tsinw cosw%,

ẽw5
2 sinu cosu

N
$ABC,t2BCA,tsin2w2ACB,tcos2w%,

p̃5
4ABCsinu

Ne2g
@AA,tsin2u sin2w1BB,tsin2u cos2w

1CC,tcos2u#. ~16!

These momenta~along with p̃ab which we shall not need
explicitly! project to yield smooth tensor densities on t
base manifoldS23R and one easily verifies thatẽ,a

a 50
which is one of the components of the~311!-momentum
constraint.

Note that theU(1) connection one-form onS33R given
by

l
>
ªv̂31b

>
5dc1cosudw1badxa ~17!

does not project to yield a one-form on the base but that
difference between this connection one-form and the re
ence one-formv̂3

ªdc1cosudw does yield a one-form
~namelyb

>
5badxa) which projects to the base. Even thoug

l
>

itself does not project to the base, its exterior derivativedl
>

~i.e., the curvature of the connectionl
>
) does project. Pulling

back the induced two-form to at5const slice of the base
manifold and computing its dual, one gets a scalar densir̃
defined by

r̃ 5Pabla,b5Pabba,b1sinu, ~18!

whose explicit form is

r̃ 5
~A22B2!

~e2g!2
sin3u@B2cos2w2A2sin2w#1

C2sinu

~e2g!2
@A21B2

2C21sin2u~C22A2cos2w2B2sin2w!#. ~19!

One computes on an arbitraryt5const slice of the base
manifold, that

B̂ªE
S2

r̃ 54p. ~20!

The value 4p reflects the particular bundleS33R→S23R
under study and would be the same for a
U(1)-symmeteric metric defined on this bundle.

Taking into account the equationẽ,a
a 50 satisfied byẽa

and the fact thatS23R admits no non-trivial harmonic one
forms, we now introduce the ‘‘twist potential’’ functionv ~a
scalar field onS23R) by imposing
9-3
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BEVERLY K. BERGER AND VINCENT MONCRIEF PHYSICAL REVIEW D62 023509
ẽa5Pabv ,b ,

r̃ 5
A (2)g̃

Ñ
e24gv ,t . ~21!

These equations are self-consistent and yield the solutio

v5
sin2u

N
$2ABC,t1BCA,t sin2w1ACB,t cos2w%1k~ t !,

~22!

which is unique up to the additive constantk0ªk(t0) where
k(t) is the function defined by

k~ t !5k~ t0!1E
t0

t

dt8S N

ABCDC2~A21B22C2!. ~23!

As discussed in Refs.@8# and @16# the fields $g,v,ds25

2Ñ2dt21g̃abdxadxb% induced upon the base manifoldS2

3R satisfy a ~211!-dimensional system of Einstein-wav
map equations for which the target space of the wave ma
hyperbolic two-space~endowed with global coordinate
$g,v% and the natural metricdh254dg21e24gdv2). As a
consequence of theSL(2,R) isometry group of this targe
space the Einstein-wave map system admits three inde
dent constants of the motion which serve as the Hamilton
generators of the action ofSL(2,R) on the phase space o
fields $g,p̃,v, r̃ ,g̃ab ,p̃ab%. These conserved quantities a
given explicitly by the integrals

ÂªE
S2

~2v r̃ 1 p̃!,

B̂ªE
S2

r̃ ,

ĈªE
S2

@ r̃ ~e4g2v2!2 p̃v#, ~24!

and we have already noticed thatB̂54p for the Mixmaster
spacetimes in particular. In factB̂ would take this same valu
for any U(1)-symmetric vacuum metric onS33R but for
other S1 bundles over the same base the value would~as
discussed in Refs.@8# and @16#! be modified toB̂54pn
where n is an integer determining the Chern class of t
bundle. In particular, for solutions on the trivial bundleS2

3S13R, n would vanish whereas ifn52,3, . . . , thebundle
would correspond to various ‘‘squashed spheres’’ rather t
a trueS3.

Note that, in view of the integral expression fork(t) aris-
ing in the formula forv, bothÂ andĈ are non-local in time.
The same feature occurs in more generalU(1) symmetric
solutions but this non-locality cancels from the Casimir
variant

K̂ªÂ214B̂Ĉ, ~25!
02350
is
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n

n

-

which, however, vanishes identically for the Mixmaster fa
ily of solutions ~though not in general!. The vanishing ofK̂
resolves a potential mystery pointed out in Ref.@7# whereby
a non-vanishing, local, constant of the motion for Mixmas
metrics would seem to contradict their empirically observ
‘‘chaotic’’ properties.

More specifically one finds, for the Mixmaster metric
that

Â58pk~ t !18pS ABC

N D S A,t

A
1

B,t

B D ,

B̂54p,

Ĉ52
Â2

16p
, ~26!

so that K̂50. The non-locality ofÂ and Ĉ sidesteps any
conflict with the observed ‘‘chaos’’ in Mixmaster solution
since, in fact, any Hamiltonian system will admit such no
local constants of the motion. To see this~even for a chaotic
system! simply time integrate Hamilton’s equations and e
press the initial values of the canonical variables in terms
time integrals of their driving ‘‘forces.’’

III. THE NEW SOLUTIONS

To generate new solutions of Einstein’s equations from
given one~such as a Mixmaster solution! we choose an ele
mentgPSL(2,R),

g5S a b

c dD , ad2bc51 ~27!

and transform the fields$g,v,p̃, r̃ % according to

e2gg5
e2g

@c2~v21e4g!12cdv1d2#
,

vg5
ac~v21e4g!1~ad1bc!v1bd

@c2~v21e4g!12cdv1d2#
,

p̃g5
$ p̃@c2~v22e4g!12cdv1d2#2 r̃ @4e4g~cd1vc2!#%

@c2~v21e4g!12cdv1d2#
,

r̃ g5 p̃~c2v1cd!1 r̃ @d21c2~v22e4g!12cdv#, ~28!

while leaving$g̃ab ,p̃ab,Ñ,Ña% invariant. The induced trans
formation of the conserved quantitiesÂ,B̂,Ĉ @by the so-
called co-adjoint action ofSL(2,R)] is found to be@9#

Âg5~ad1bc!Â12bdB̂22acĈ,

B̂g5d2B̂2c2Ĉ1cdÂ,

Ĉg5a2Ĉ2b2B̂2abÂ,
9-4
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K̂g5K̂5~Âg!214B̂gĈg . ~29!

To avoid a trivial transformation we shall require thatc be
non-zero and, to ensure that the transformed solution lift
an S1 bundle overS23R, we shall demand that

B̂g54pn, n50,1,2, . . . . ~30!

Defining

l ~ t !ª
ABC

N S A,t

A
1

B,t

B D , ~31!

we see from Eq.~26! that

Â58pk~ t !18p l ~ t !58pk~ t0!18p l ~ t0!58p~k01 l 0!,

B̂54p,

Ĉ524p~k01 l 0!2. ~32!

SettingB̂g54pn, n50,1,2, . . . gives the restriction

@d1c~k01 l 0!#25n>0 ~33!

or, equivalently,

d1c~k01 l 0!56n1/2, ~34!

which can always be solved fork0 sincecÞ0.
Exploiting the fact thatÂ, hence alsok(t)1 l (t), is con-

served one finds that the integral occurring in the formula
k(t) can be expressed as

E
t0

t

dt8S N

ABCDC2~A21B22C2!52@ l ~ t !2 l 0# ~35!

@this is also easily verified upon differentiation by using t
equations of motion~5!#. Using this result, one can easi
show that

~cv1d!56n1/21c
sin2u

N
@2ABC,t1BCA,t sin2w

1ACB,t cos2w#2c
ABC

N S A,t

A
1

B,t

B D . ~36!

With this and Eq.~9! for e2g one easily evaluates the tran
formed field variables$e2gg,vg ,p̃g , r̃ g% using Eq.~28!. The
new spacetime metric thus takes the form

dsg
25e22gg$2Ñ2dt21g̃abdxadxb%1e2gg$dc1n cosudw

1b (g)adxa%2, ~37!

where however,b (g)a remains to be computed. As discuss
in Ref. @8#, b (g)a can be expanded~via the Hodge decompo
sition for a one-form onS2) as
02350
to

r

b (g)a5S g̃ac

Pcd

m̃g
D h ,d1d ,a , ~38!

wherem̃g5A (2)g̃ andh andd are suitable functions define
on S2. The equation forb (g)adxa is

r̃ g5Pabb (g)a,b1n sinu, ~39!

which, upon substitution of the decomposition~38!, becomes

r̃ g2n sinu5~m̃gg̃abh ,a! ,b ~40!

a Poisson equation forh for which the necessary and suffi
cient integrability condition is ensured by Eq.~30!. This
uniquely determinesh, at fixedt, up to an arbitrary additive
constant and leavesd arbitrary. The presence ofd reflects
the freedom to make an arbitrary coordinate transforma
of the formc→c1d without affecting theU(1) form of the
spacetime metric.

The time development ofb (g)a can now be obtained by
integrating the~zero shift! evolution equation

b (g)a,t5S Ñ

m̃g
D e24ggg̃abe(g)

b 5S Ñ

m̃g
D e24ggg̃abPbcvg,c

~41!

with gg ,vg determined as above.
Equations~39! and~41! are consistent with each other b

virtue of the Hamilton equations satisfied byr̃ g ,vg . Note
that whereas we have used the actual metricg̃ab in defining
a Hodge decomposition ofb (g)a , any smooth metric onS2

could have been used instead. Furthermore one could h
used Eq.~40! to determineh at an arbitrary time and then
adjusted the time dependence ofd to impose the zero shif
condition which is implicit in Eq.~41!. In either case the new
metric ~37! will satisfy the vacuum field equations on th
chosenS1 bundle overS23R.

One might still wonder how we know that the tran
formed solutions are genuinely inhomogeneous. Could t
not be merely homogeneous solutions disguised through
choice of a time slicing that is not adapted to the~hypotheti-
cal! homogeneity? To show that this is not the case, in g
eral, we shall examine a special case for which the tra
formed solution has a hypersurface of time symmetry at
5t0, i.e., hasKi j

(g)u t5t0
50. To arrange this, we choose th

seed solution to have this property and make a careful ch
of transformation parameters so that the desired feature is
destroyed by theSL(2,R) transformation. We then show tha
the transformed spatial metricgi j

(g)u t5t0
is not homogeneous

as it would have to be for the resulting spacetime to have
property. The key point here is the fact that on any comp
slice having constant mean curvature, the first and sec
fundamental forms$gi j

(g) ,Ki j
(g)%u t5t0

would both have to be
homogeneous in order that the spacetime have this prop
9-5
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BEVERLY K. BERGER AND VINCENT MONCRIEF PHYSICAL REVIEW D62 023509
Consider a Mixmaster solution for whichȦ(t0)5Ḃ(t0)
5Ċ(t0)50. This spacetime has thet5t0 slice as a surface
of time symmetry and, because of the Hamiltonian co
straint, must satisfy

C~ t0!56@A~ t0!6B~ t0!#,

A~ t0!,B~ t0!,C~ t0!.0. ~42!

To maintain this property we choose the trivial target bun
S23S13R by takingn50. We further simplify the compu-
tations by choosingA(t0)5B(t0).0 and C(t0)52A(t0)
and find that the transformed metric att5t0 satisfies

g̃uuu t5t0
5A4~ t0!~sin2u14 cos2u!,

g̃uwu t5t0
50,

g̃wwu t5t0
54A4~ t0!sin2u,

b
> (g)u t5t0

5b (g)adxau t5t0
52c24A4~ t0!cosu sin2udw,

e2ggu t5t0
5

1

c2A2~ t0!~sin2u14 cos2u!
. ~43!

Thus the new spatial metric induced att5t0 on S23S1 is

dl (g)
2 u t5t0

5c2A2~ t0!~sin2u14 cos2u!$4A4~ t0!sin2udw2

1A4~ t0!~sin2u14 cos2u!du2%

1
1

c2A2~ t0!~sin2u14 cos2u!

3$dc24c2A4~ t0!cosu sin2udw%2. ~44!

A straightforward computation ofRi j R
i j ~the square of the

Ricci tensor of this metric! proves that the resulting spac
time is not homogeneous. Indeed, the only vacuum homo
neous solution onS23S13R is known to be the Kantowski
Sachs universe which does not have a hypersurface of
symmetry. It is possible to get the Kantowski-Sachs me
upon transformation of a Taub metric@i.e., a Mixmaster so-
lution havingA(t)5B(t)] but to do so one must reduce wit
respect to the ‘‘extra’’ Killing field the Taub metric pos
sesses,]/]w, rather than with respect to the common Killin
field ]/]c of the Mixmaster family as we have done. Th
extra Killing field ]/]w commutes with all the Killing sym-
metries of the Taub solution and allows all of these symm
tries to be preserved upon reduction@15#.

The Taub metric used in the example above, is kno
explicitly but exhibits no BKL type oscillations. To see suc
oscillations in an inhomogeneous setting, we combine a
viously developed code for solving the Mixmaster equatio
of motion with the transformations discussed above. Our
sults are discussed in the following section and compa
with results derived from a generalU(1)-syummetric,
vacuum Einstein code.
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IV. NUMERICAL RESULTS

Elsewhere we have shown that even the homogene
Mixmaster model reproduces the local behavior seen in
neric U(1)-symmetric cosmologies@17#. From Eq.~9!, it is
clear thatg is dominated by the largest of the Mixmast
scale factorsA, B, or C. The local oscillations seen ing in
the U(1)-symmetric models are interpreted as follows: A
sume that the BKL approximate description of a homog
neous Mixmaster model as a sequence of Kasner epoc
valid. In a given approximate Kasner epoch assumeA.B
.C and thatA is increasing. Theng,t.0 for A,t.0 while
B,t andC,t are less than zero. The usual Mixmaster boun
changes the sign ofA,t and thus ofg,t . However, after the
bounce, eitherB,t ~within an era! or C,t ~at the end of an era!
becomes positive. When the growing scale factor surpa
the decreasingA, g,t will start to grow again since it will
now track the new dominant scale factor. A similar analy
indicates that the remaining ‘‘dynamical’’ variables,v, p̃,
and r̃ , depend on an order unity ratio of scale factors a
thus do not oscillate, asg does, between order unity an
exponentially small values.~Here we shall use ‘‘order unity’’
to mean some finite value which is not exponentially sma!

In our previous numerical simulations of gener
U(1)-symmetric cosmologies onT33R, we noted that the
oscillations ing could be interpreted as bounces off the p
tentialsV15 1

2 r̃ 2e4g andV25 1
2 g̃g̃abe24gv,av,b . For a Mix-

master solution,V1 is exponentially small unlesse2g is of
order unity whileV2 is exponentially small unless the tw
largest scale factors are approximately equal to each o
@17#. This is clearly consistent with a presumption that t
generic models exhibit local Mixmaster dynamics.

To explore the nature of the new inhomogeneo
U(1)-symmetric models, we note that the transformed va
ablesvg , p̃g , and r̃ g will remain of order unity~i.e., they
will not oscillate between exponentially small and ord
unity values! because the right-hand sides of Eqs.~28b!–
~28d! are always of order unity. On the other hand,gg is
dominated by the behavior of the oscillatoryg since the
denominator on the right-hand side of Eq.~28a! is always
order unity while the numerator oscillates.

To explore the differences between our new solution a
the Mixmaster seed solution, we construct the new soluti
as follows: First use the algorithm of Bergeret al. @18# to
obtain a numericallly generated Mixmaster model. This co
is known to solve the Mixmaster ordinary differential equ
tions with machine-level precision and can follow hundre
of bounces. The presumed stochastic properties of suc
model imply that almost any Mixmaster initial condition
will yield generic Mixmaster behavior. Thus, we need on
consider a single Mixmaster trajectory. Next, Eqs.~9!, ~16!,
~19!, ~22!, ~23!, ~31!, and~35! are used to numerically evalu
ateg, v, p̃, and r̃ from the numerically generated sequen
of values of the BKL scale factors and their time derivative
Finally, for a representative choice of theSL(2,R) param-
eters and, e.g.,n51, the transformed variablesgg , vg , p̃g ,
and r̃ g are computed using Eqs.~28!.

In Figs. 1–3, we compare the Mixmaster and transform
9-6
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g andv at a representative spatial point for typical Mixma
ter seed and set ofSL(2,R) parameters. Note that, in Fig. 1
the original and transformedg ’s become indistinguishable
after only a small number of Mixmaster epochs. It is cle
that this will be so from Eq.~9! for g and Eq.~28a! for the
transformation. Sinceg andgg are found from the logarithm
of Eqs.~9! and ~28a!, both g andgg will be approximately

FIG. 1. Comparison ofg and gg at a typical spatial
point. The Mixmaster seed solution has initi
values b1520.9847899998176387, b250.09987655443789

V528.00000000000000, ḃ1523.632980009876544

ḃ254.58987654433567878, and the Hamiltonian constraint~6!

solved forV̇. TheSL(2,R) parameters area51, b51, c510000,
andd510001.

FIG. 2. Detail of the comparison ofg andgg . To emphasize the
approach ofgg to g, data from later in the simulation of Fig. 1 ar
shown. The actual, saved data values are indicated by the3 and1
symbols.
02350
r

equal to the logarithm of the largest scale factor and dep
only logarithmically on the spatially dependent function a
sociated with it. On a finer scale, in Fig. 2, the differen
between the solutions~especially near the ‘‘bounce’’ where
g'gg'0) may be seen. On the other hand, as is seen in
3, v and vg are always of order unity and may easily b
distinguished.

Figure 4 demonstrates the close link between Mixmas
dynamics and the oscillatory behavior observed in our st
ies of genericU(1)-symmetric models and should be com

FIG. 3. Comparison ofv andvg for the same models as in Fig
1. Note thatvg appears to decrease to zero. This is due to the
that choice ofSL(2,R) parameters causesuvgu'1024 if uvu'1.

FIG. 4. New solution as an inhomogeneousU(1)-symmetric
cosmology. As in previous studies of genericU(1)-symmetric cos-
mologies,w5gg , V1, andV2 are shown at a typical spatial point
9-7
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pared to Figs. 2–6 in@1#. It shows the oscillations ofgg ~or
essentially equivalentlyg), V1, and V2 at a representative
spatial point—reproducing the behavior seen in our simu
tions of genericU(1)-symmetric cosmologies. Since w
know that these oscillations indicate local Mixmaster beh
ior in the new solutions, we can infer that the observed
cillations in the generic models also indicate local Mixmas
dynamics.

Sinceg is the key variable in theU(1)-symmetric models
and g'gg , one may then ask where these ne
U(1)-symmetric models differ from both Mixmaster and g
neric U(1)-symmetric models. First, we emphasize that,
cept at special values of the spatial coordinate angles, t
are no qualitative differences attributable to spatial topolo
The Mixmaster spatial dependence of course represen
realization of the Bianchi-type-IX symmetry. From Eq.~9!, it
is clear that three distinct spatial patterns will appear ing ~in
the logarithm! depending on which scale factor dominates.
Fig. 5, we compare the spatial dependence ofg andgg for
12 epochs of the seed Mixmaster solution. The epochs
arranged according to the dominant scale factor. The num
cal scale in each frame is chosen so that the average val
g or gg is the centroid.~If this were not done, no spatia
dependence would be visible.! From Eqs.~9! and~22!, g and
v have three possible spatial dependences. TheSL(2,R)
transformation of Eqs.~28! clearly mixes the spatial depen
dence ofg andv to form gg andvg . In Fig. 5, we see the
evolving spatial dependence ofgg . This is additional evi-
dence that the new solutions are spatially inhomogeneou

In generic U(1)-symmetric models, one could qualita
tively interpret the asymptotic approach to the singularity
the evolution of a different Mixmaster model at every spa
point. In particular, the Mixmaster epochs have spatially
pendent durations—bounces at different spatial points oc
at different times. In contrast, our new solution is charac
ized as is Mixmaster itself by spatially independent epo
durations since the new solution bounces only when the s
solution does so. While one could modify the spacetime s
ing to yield spatially dependent epoch durations, one wo
expect to be able to detect the difference between a si
underlying Mixmaster seed in the new solutions and a c
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FIG. 5. Evidence for the spatial inhomogeneity of the new
lutions. The spatial dependence ofg and gg is shown for the
(cosu,w) plane in a series of side-by-side frames arranged in th
separate panels. Each pair of frames shows the spatial depend
of g and gg respectively during an approximate Kasner epoch
the seed Mixmaster solution. The panels are grouped accordin
the identity of the dominant scale factor in the spatially homo
neous solution rather than sequentially. According to Eq.~9!, g will
have the spatial dependence ln(sinu sinw), ln(sinu cosw), or
ln(cosu) depending on whetherA, B, or C respectively is dominant.
In each of the three panels, the four left-hand frames reproduce
of these three spatial dependences with, reading from left to ri
B, C, or A dominant. In each case, the accompanying right-ha
frame represents the spatial dependence of the correspondinggg for
that epoch. In every case, the numerical scales forg and gg have
been centered on their average values to enhance the visibilit
the spatial dependence.
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