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Scalar fields in an anisotropic closed universe
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We study in this article a class of homogeneous, but anisotropic cosmological models in which shear
viscosity is included. Within the matter content we consider a component~the quintessence component!
determined by the baryotropic equations of state,p5ar, with a,0. We establish conditions under which a
closed axisymmetrical cosmological model may look flat at low redshift.

PACS number~s!: 98.80.Cq, 95.35.1d, 97.10.Fy, 98.80.Hw
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I. INTRODUCTION

Current observations of luminosity-redshift relations
type Ia supernovas@1# and measurements of the anisotro
cosmic background radiation and mass power spectrum@2#
provide evidence that the total matter density of the unive
coincides with its critical value. This agrees with the the
retical arguments derived from inflation@3#, where it is sug-
gested that our universe should become flat soon after a s
period of inflation.

Since astronomical observations give rise to the bo
VM&0.3, in which baryons and cold dark matter are
cluded, we are in front of a problematic situation. There ex
a sort of ‘‘missing energy’’ that should represent someth
around 70% of the critical value.

It has been argued that the simplest explication, a cos
logical constant~vacuum energy density! is consistent with
these results@4#. Other alternatives have been consider
For instance, bulk pressure that is significantly negative,
a&21/3, wherep5ar is the effective equation of state, i
which p is the pressure andr is the energy density. Here, th
sort of matter could correspond to a network of topologi
defects@5# ~such that strings or walls! or an evolving scalar
field ~referred as quintessence! @6# Q(t), in which case the
pressure and the energy density become defined bypQ

5 1
2 Q̇2V(Q) and rQ5 1

2 Q̇21V(Q), respectively. Here,
V(Q) represents the scalar potential associated to the s
field Q and the overdots specify derivatives with respect
time.

The main difference between these two sort of mod
i.e., the cosmological constant and the scalar field wit
negative pressure, is that the latter is spatially inhomo
neous and thus can cluster gravitationally, where the for
is totally spatial uniform. In this respect, the fluctuation
the scalar field could have an important effect on large sc
structure of the universe@7#.

*Email address: mcataldo@alihuen.ciencias.ubiobio.cl
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Since the total energy density equals the critical dens
then the spatial part of the metric is supposed to corresp
to a flat Friedmann-Robertson-Walker~FRW! metric. How-
ever, It has been mentioned that the observations referre
above, i.e., those related to type Ia supernovas, do not
out a different type of geometry@8#. There, it was advanced
that these measurements allow an open universe in which
cosmological constant is vanished.

From the theoretical point of view, it seems that quantu
field theory is more consistent on compact spatial surfa
that in hyperbolic spaces@9#. On the other hand, in quantum
cosmology the ‘‘birth’’ of universes have been described u
der the assumption that the three-geometry is character
by a close spatial surface. In this way, motivated by quant
cosmology and by the short period of inflation that the u
verse underwent at early time in its evolution, we describe
this paper the conditions under which a closed unive
model may look flat at low redshift. This kind of situatio
has been considered in the literature@10#. There, a closed
universe withV0,1 was studied. Here,V0 represents the
density parameter associated to the total mass of the
verse. Openness is obtained by adding to the matter den
texture or tangled strings with equation of statep52r/3
@11#. Here, the additional energy density is redshifted asa22,
similar to the curvature term in a closed universe, wherea is
the scale factor. Kolb@12# studied this sort of matter, arisin
to the important conclusion that a closed universe may
pand forever at constant speed.

It is natural to assume the geometry at very early ep
more general than just the isotropic and homogeneous FR
Although the universe, on large scale, seems homogen
and isotropic at present, there is no observational data
guarantees the isotropy in an era prior to the recombinat
In fact, it is possible to begin with an anisotropic univer
which isotropizes during its evolution.

In relation with the matter that we could take into accou
in an anisotropic background, may have many poss
sources. For instance, populations of collisionless partic
gravitons, electric, or magnetic fields, or by topological d
fects @13#.
©2000 The American Physical Society01-1
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MAURICIO CATALDO AND SERGIO DEL CAMPO PHYSICAL REVIEW D62 023501
The anisotropic dynamics can in general encode ei
relative velocity effects or dissipative effects or both@14#. In
this respect, it is possible to start with an anisotropic unive
that eventually isotropizes at later time in the evolution
the universe due to dissipative processes involving the ma
that it contains. Also, this kind of model seems to be m
appropriate when adiabatic theory of galaxy formation
considered@15#. Thus, it seems quite natural to include
this study a matter component with this kind of property,
a background which in essence is anisotropic@16#.

The aim of the present paper is to study a closed an
tropic cosmological model, with a metric corresponding
Kanstowski-Sachs@17#, where the matter content is com
posed by an imperfect fluid together with a scalar fie
whose equation of state parametera remains negative during
the evolution of the universe.

II. THE FIELD EQUATIONS

We start by considering the effective Einstein Lagrang
given by

L5
1

k
R 1

1

2
~]mQ!22V~Q!1LM , ~1!

where,k516pG, with G the Newton’s gravitational con
stant,R the scalar curvature,Q the quintessence scalar fie
with associated potentialV(Q), andLM represents the matte
Lagrangian density. We assume that the matter Lagran
densityLM is associated to a fluid~characterized by the pres
sure and energy densitypM and rM , respectively! which
presents a shear viscosity. By taking a preferred time
vector field~four velocity! ua, which satisfiesuaua51 and
it is a Ricci eigenvector, we can write the following matt
energy-momentum tensor:

Tab5~rM1pM !uaub2pMgab12hMsab , ~2!

wherehM andsab are the shear viscosity~or coefficient of
dynamic viscosity,hM>0) and the traceless shear tens
respectively. The shear tensor has the form

sab5ha
gu(g;d)hb

d 2
1

3
uhab , ~3!

whereu5u ;a
a is the scalar expansion andha g is the projec-

tion tensor defined from the expressionha b5ga b2ua ub ,
with signature for the metric (1,2,2,2).

In this paper we consider a spatially homogeneous ba
ground spacetime of Kantowski-Sachs type, which, as fa
it is known, is the only spatially homogeneous model tha
not included in the Bianchi classification, thus we have

ds25dt22a2~ t !@du21sin2~u!df2#2b2~ t !dr2, ~4!

wherea and b are the scale factors which describe the a
isotropy of the model. This sort of metric combines spheri
symmetry with a translational symmetry in the ‘‘radial’’ d
rection. The metric~4! has been studied by many authors th
have considered different sort of matter components. As
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example it has been considered a homogeneous shea
cosmological model with an imperfect fluid matter conte
@18#. On the other hand, a energy-effective-action related
string theory has been studied@19#. Here, when the pseudo
scalar axion field is time dependent only, it reduces to tha
a stiff perfect-fluid cosmology. Also, a scalar field for a co
vex positive scalar potential@20#, was taken into accoun
among others.

Since the metric~4! is spatially homogeneous the scal
field Q can only depend on time, and thus the time-tim
component of Einstein’s field equations is

S ȧ

a
D 2

1S ȧ

a
D S ḃ

b
D 1

1

a2
5

2k

3
~rM1rQ!, ~5!

where, as was mentioned above, the dots stand for de
tives with respect to the cosmological timet. From the metric
~4!, and considering the comoving frame, i.e.,ua5d0

a , we
find that the components of the shear tensor are given b

s115
2

3
b2S ȧ

a
2

ḃ

b
D ,

s225
1

3
a2S ḃ

b
2

ȧ

a
D , ~6!

s335
1

3
sin2~u! a2S ḃ

b
2

ȧ

a
D .

Here, s0050 and s a
a 50. The other components of Ein

stein’s field equations are

2
ä

a
1S ȧ

a
D 2

1S 1

aD 2

52k~pM1pQ!2
4

3
k hM S ȧ

a
2

ḃ

b
D ,

~7!

and

b̈

b
1

ä

a
1

ȧ ḃ

a b
52k~pM1pQ!1

2

3
k hM S ȧ

a
2

ḃ

b
D . ~8!

In order to solve this set of equations, we need to sup
this set with equation of state for the matter content and
scalar field. We assume that the matter content satisfies
relationpM5grM , whereg may be a time dependent qua
tity and its ~present! value depends on the characteristics
matter content. In the following we assume that this const
lies in the range 0<g<1, where the extremes correspond
dust and stiff fluid, respectively. In the same way, we sh
assume that the scalar fieldQ satisfies a similar effective
equation of state, i.e.,pQ5arQ , where now the parametera
is assumed to be negative.

In order to have a universe which is closed, but still ha
a matter density content corresponding to a flat universe,
impose the following relations:

k r
Q

5 a22 ~9!
1-2
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and

h85h
M

1
1

2

r
Q

s̄
, ~10!

where

s̄5S ȧ

a
2

ḃ

b
D

anda has been chosen to be equal to21/3 @21#. Under these
conditions the Einstein’s field equations become

S ȧ

a
D 2

1S ȧ

a
D S ḃ

b
D 5

2k

3
rM , ~11!

2
ä

a
1S ȧ

a
D 2

52k g rM2
4

3
k h8 s̄, ~12!

and

b̈

b
1

ä

a
1

ȧ

a

ḃ

b
52k g rM1

2

3
k h8 s̄. ~13!

This set of equations is similar to that of a matter flu
with shear viscosity immersed in a background correspo
ing to a flat axisymmetric cosmological model.

III. SOLUTION TO THE FIELD EQUATIONS AND SOME
CONSEQUENCES

In the following we will describe solutions to the set
equations~11!–~13! in the cases in whichh850, i.e., where
there is not generation of entropy andh8Þ0, where exist
generation of entropy. For the former solutions we calcul
the angular distance-redshifts relations~specifically, for the
stiff model with h850) which are compared with its analo
gous results corresponding to the flat spacetime, and for
latter, we calculate the generation of entropy~for the cases in
which h8Þ0).

A. Casesh8Ä0

In this case we describe two possible solutions. One
these is the vacuum Kasner solution in whichpM5rM50,
and a stiff fluid with equation of statepM5rMÞ0, i.e., g
51. In the former case it is found thata(t)5a0 and b(t)
5t are possible solutions to the field equations. Here,
scalar fieldQ remains constant and thusrQ5const5V0 and
pQ52(1/3)V0. On the other hand,hM becomes hM
5 1

2 (V0 /t). It seems that we could have another Kasner
lution, such thata(t)5t2/3 and b(t)5t21/3. However, this
sort of solution gives rise to a shear viscosity which is
sentially negative, sinceh52(1/2k)(1/t1/3). Therefore, we
disregard this type of solution.

In the latter case, in whichpM5rM , i.e.,g51, we find a
possible solution in which

a~ t !5tn, b~ t !5t122n, ~14!
02350
d-

e

he

f

e

-

-

wheren is a positive number. Here, we get

pM5rM5
n~223n!

kt2
~15!

and

hM5
1

2k

1

~123n!

1

t2n21
. ~16!

In order to obtainh.0 we demandn,1/3. Here, it is found
that the scalar field growth as

Q~ t !5AS 2

3k D 1

12n
t12n, ~17!

and its corresponding potential is given by

V~Q!5S 22n21

3k D 1/(12n)

Q22n/(12n). ~18!

Notice that this potential decreases whenQ increases, since
n,1/3.

At this moment, we would like to calculate the luminosi
distancedL(z) as a function of the redshiftz. This concept
plays a crucial role in describing the geometry and ma
content of the universe. From the metric~4! we observe that,
light emitted by the object of luminosityL and located at the
coordinate distanceu, at a timet is received by an observe
~assumed located atu50) at the timet5t0. The time coor-
dinates are related by the cosmological redshiftz in the u
direction by the expression, 11z5a(t0)/a(t) [ a0 /a(t).
The luminosity flux reaching the observer isF5L/4pdL

2 ,
wheredL is the luminosity distance to the object, given b
dL(z)5a0sin@u(z)#(11z).

In order to obtain an explicit expression for the angu
size, let us now consider an object aligned to thef direction
and proper lengthl, so that its ‘‘up’’ and ‘‘down’’ coordi-
nates are (u,f1df,0) and (u,f,0). Theproper length of
the object is obtained by settingt5const in the line-elemen
metric ~4!, ds252 l 252a2(t)sin2(u)df2. Thus, the angular
size becomes

df5
l

dL~z!
~11z!2, ~19!

with dL defined above.
From the solutions represented by Eq.~14! we obtain for

the angular size

dfn5
l

a0

~ 11z !

sinF n

12n

1

a0 H0
@ 12~ 11z!2

12n
n # G , ~20!

whereH0 is a parameter defined byH05n/a0
1/n .

Figure 1 shows the angular size as a function of the r
shift in the range 0.05<z<2.80 for three different values o
the parametersn. Here, we have used the valuea0H0
1-3
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5A2/5. In this plot we have added the graph of the angu
size corresponding to the isotropic closed FRW model, w
a matter dominated by a quintessence component define
a521/3. Notice that, for different values of the parame
n, those curves near to the valuen51/3 become closer to
that corresponding to the isotropic FRW model.

In Fig. 2 we show the angular sizes as a function of
redshift z for flat and closed anisotropic universe mode
Notice that at low redshift both curves become similar. W
could distinguish them atz*0.5.

FIG. 1. This plot shows the angular size~in unit of l /a0) as a
function of the redshiftz, for three different values of the param
etersn, n51/4,1/6,1/8. The dash-dot-dot line corresponds to
isotropic closed FRW model, with a matter component defined
the equation of statea521/3.

FIG. 2. This plot shows the angular size~in unit of l /a0) as a
function of the redshiftsz, for flat and closed anisotropic model
The parametern was chosen to ben51/4. Notice that at low red-
shift the models become indistinguishable.
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B. Casesh8 Å 0

As before, in this case we consider two different so
tions. We start by describing a quasianisotropic and an
ponential growing solutions.

In the former case, we found as a possible solutiona(t)
5t2/3 and b(t)5t2/3@11(t/t0)2n#, wheren and t0 are two
arbitrary constants. Notice that at large timeb(t) approach to
a(t) and thus the universe isotropizes. Thus, asymptotic
the universe approaches to an homogeneous isotropic
universe which is filled by dust, i.e.,b(t);a(t)5t2/3.

For this solution it is found that

rM5
4

3kt2F 12
n

11S t

t0
D nG , ~21!

pM5
2n~12n!

3kt2F 11
n

11S t

t0
D nG , ~22!

and

h
M

5
1

2nkt F nk~n21!1t2/3F 11
n

11S t

t0
D nG G . ~23!

Notice thatg becomes a time dependent quantity in this ca

g~ t !5
n

2~12n! F12n1S t

t0
D nG21

. ~24!

Notice also thatg(t)→0 for t→`, in agreement with the
remark described above.

The effective shear viscosity becomesh85(n21)/2kt,
and in order to be positive the parametern should be
bounded from below, i.e.,n>1. The corresponding solution
for the scalar field is

Q~ t !5A6

kS t

t0
D 1/3

[Q0S t

t0
D 1/3

, ~25!

and the potential becomes

V~Q!5V0S Q0

Q D 4

, ~26!

where the constantV0 is given byV05 1
9 Q0

23. This sort of
solution was described in Ref.@21# where scalar fields in
FRW metric were studied.

A second possible solution is that in which the scale f
tor a grows exponentially, i.e.,

a~ t !5eHt ~27!

and

e
y

1-4
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b~ t !5e2Ht/2 sinS 3Ht

2 D , ~28!

whereH is a constant to be determined later on.
This solution corresponds to a universe filled with a v

cous dust, sincepM50 andh8Þ0 at any time. The energy
density and the effective shear viscosity become

r
M

53H2cotS 3Ht

2 D . ~29!

and

h85
3H

2@cot~~3Ht/2!!21#
, ~30!

respectively.
In order to haveh8>0 we must impose that 0<3Ht/2

<p/4. This result in an age for the universe given byt0
5(p/6) H21, which could be used for fixing the value ofH.

Notice that the solutions~27! and ~28! give rise to the
following Hubble expansion rates:

H15
ȧ

a
5H ~31!

and

H25
ḃ

b
5

H

2 F3cotS 3Ht

2 D21G , ~32!

and thus the Hubble horizon related to theu-f plane remains
constant.

The corresponding scalar field is found to evolve as

Q~ t !5
1

H
A 2

3k
@e2Ht02eHt#1Q0 , ~33!

whereQ0 is the value ofQ(t) at t5t0. The corresponding
scalar potentialV(Q) becomes

V~Q!5 V0 F12A3k

2
~Q2Q0!G , ~34!

whereV0 is a constant defined byV05(2/3k) e22Ht0. From
this expression we see that this potential decreases wheQ
increases, similar to the other case.

It is well known that the production of entropy could b
related to the anisotropy of the universe@22,23#. In the fol-
lowing we proceed to calculate this production in the ca
described above. In order to do this, we introduce the
tropy current four-vectorSm as

Sm5n
b
k

B
lum, ~35!

where as beforeum represents the four-velocity,n
b

the

baryon number density,k
B

is the Boltzmann’s constant, an

l the nondimensional entropy per baryon. It could be sho
that @24#
02350
-

s
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n

Sm
;m5

2h

T
smn smn, ~36!

where in the first case we get

Sm
;m5

2n2~n21!

3kTt3@11~ t/t0!n#2
. ~37!

The left-hand side of this expression gives, in the comov
frame of reference

Sm
;m5k

B
n

b
l̇, ~38!

where we have used the conservation equation for bar
number (n

b
um) ;m50. Thus, we get

l̇5
2n2~n21!

3nbk
B
Tt3@11~ t/t0!n#2

. ~39!

Note that this expression decrease whent increase and be
comes zero fort→`, similar tohM , pM , andrM .

From expression~42! evaluated att5t
1000

~equivalent to

1000 s! and t5t rec ~time at recombination! we get

l̇
1000

l̇ rec

5
nb

rec

nb
1000

Trec

T
1000

S t rec

t
1000

D 3F 11t rec
n /t0

n

11t
1000

n /t0
n

.G 2

~40!

With the data given in Ref.@25# and takingn52, we obtain
for t0 the valuet0'431010 s. This value, together with the
age of the universe,tc'531017 s, allows us to obtain the
ratio between the shear,s, and the scalar expansion,u, given
by

S s

u D
tc

5
n

A3 ~2~ tc /t0!n122n!
'5310215, ~41!

which is inside of the bound expressed by Cosmic Ba
ground Explorer~COBE! measurements, that gives (s/u) tc
<6.9310210 @26,27#.

In the second case, and following a similar process
find that

l̇5
9H3

4nbk
B
kT FcotS 3Ht

2 D21G . ~42!

By using the observational data specified above we get

l̇
1000

l̇ rec

.6310225. ~43!

Thus, the generation of entropy has decreased more than25

times the value at recombination during the period fromt rec
to t.1000 s.
1-5
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IV. CONCLUSIONS

We have studied an anisotropic universe cosmolog
model described by the metric~4!. We included in our mode
negative anisotropic pressures motivated by quintesse
cosmological scenarios. This component was represente
a scalar fieldQ, whose equation of state was considered to
given by p

Q
5a r

Q
, where the parametera was considered

to be equal to21/3.
In order that our closed universe scenario could resem

a flat model, we imposed the conditions specified by Eqs.~9!
and ~10!. Under these conditions, we have determined,
different cases, explicit expressions for the scalar poten
V(Q). In all these cases we have found that this poten
decreases as a function of the scalar fieldQ. In this respect, it
would be interesting to study the cosmological consequen
that this sort of potential may have during the evolution
the universe. Especially, the influence that it carried dur
the rapid expansion~inflation! that the universe is believed t
present at early time of its evolution.
;
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-
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In the cases in which the shear viscosity was vanished
have determined the angular sizes for different values of
parameters. Here, we found, similar to the isotropic case,
our closed model looks similar to a flat model at low re
shifts.

On the other hand, solutions in which the shear viscos
was not vanished, we have determined the generation of
tropy. Here, we have found that our results agree with
bound imposed by the observational data.
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