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We study in this article a class of homogeneous, but anisotropic cosmological models in which shear
viscosity is included. Within the matter content we consider a compofibat quintessence compongnt
determined by the baryotropic equations of state,ap, with «<0. We establish conditions under which a
closed axisymmetrical cosmological model may look flat at low redshift.

PACS numbegps): 98.80.Cq, 95.35-d, 97.10.Fy, 98.80.Hw

I. INTRODUCTION Since the total energy density equals the critical density,
then the spatial part of the metric is supposed to correspond
Current observations of luminosity-redshift relations ofto a flat Friedmann-Robertson-WalkgfRW) metric. How-
type la supernovagl] and measurements of the anisotropy ever, It has been mentioned that the observations referred to
cosmic background radiation and mass power specf@im ahove, i.e., those related to type la supernovas, do not rule
provide evidence that the total matter density of the universg; 3 different type of geometiyB]. There, it was advanced

coincides with its critical value. This agrees with the theo-ihat these measurements allow an open universe in which the
retical arguments derived from inflatiB], where it is sug-  cosmological constant is vanished.

period of inflation. field theory is more consistent on compact spatial surfaces
Since a_stron(_)mical observations give rise to the bognqhat in hyperbolic spacd®]. On the other hand, in quantum
1y=0.3, in which baryons and cold dark matter are in-cosmology the “birth” of universes have been described un-
cluded, we are in front of a problematic situation. There exlsﬁer the assumption that the three-geometry is characterized
a sort of “missing energy” that should represent somethingpy 5 close spatial surface. In this way, motivated by quantum
around 70% of the critical value. o cosmology and by the short period of inflation that the uni-
It has been argued that the simplest explication, a cosmayerse underwent at early time in its evolution, we describe in
logical constan{vacuum energy densityis consistent wWith  thjs paper the conditions under which a closed universe
these result§4]. Other alternatives have been consideredodel may look flat at low redshift. This kind of situation
For instance, bulk pressure that is significantly negative, i.e5as peen considered in the literatdig®]. There, a closed
a=—1/3, wherep=ap is the effective equation of state, in ynjiverse with(),<1 was studied. HereQ), represents the
whichpis the pressure anglis the energy density. Here, this gensity parameter associated to the total mass of the uni-
sort of matter could correspond to a network of topologicalerse. Openness is obtained by adding to the matter density
Qefects[S] (such tha'; strings or wallsor an evplving scalar texture or tangled strings with equation of state — p/3
field (referred as quintessencs] Q(t), in which case the [11]. Here, the additional energy density is redshifted a&,
pressure and the energy density become defineddy similar to the curvature term in a closed universe, wheie
=1Q-V(Q) and pQ=%Q2+V(Q), respectively. Here, the scale factor. Kollp12] studied this sort of matter, arising
V(Q) represents the scalar potential associated to the scalty the important conclusion that a closed universe may ex-
field Q and the overdots specify derivatives with respect topand forever at constant speed.
time. It is natural to assume the geometry at very early epoch
The main difference between these two sort of modelsmore general than just the isotropic and homogeneous FRW.
i.e., the cosmological constant and the scalar field with &lthough the universe, on large scale, seems homogeneous
negative pressure, is that the latter is spatially inhomogeand isotropic at present, there is no observational data that
neous and thus can cluster gravitationally, where the formeguarantees the isotropy in an era prior to the recombination.
is totally spatial uniform. In this respect, the fluctuation of In fact, it is possible to begin with an anisotropic universe
the scalar field could have an important effect on large scalevhich isotropizes during its evolution.
structure of the universg]. In relation with the matter that we could take into account
in an anisotropic background, may have many possible
sources. For instance, populations of collisionless particles,
*Email address: mcataldo@alihuen.ciencias.ubiobio.cl gravitons, electric, or magnetic fields, or by topological de-
TEmail address: sdelcamp@ucv.cl fects[13].
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The anisotropic dynamics can in general encode eitheexample it has been considered a homogeneous shear-free
relative velocity effects or dissipative effects or bftd]. In  cosmological model with an imperfect fluid matter content
this respect, it is possible to start with an anisotropic univers¢l8]. On the other hand, a energy-effective-action related to
that eventually isotropizes at later time in the evolution ofstring theory has been studi€td]. Here, when the pseudo-
the universe due to dissipative processes involving the mattexcalar axion field is time dependent only, it reduces to that of
that it contains. Also, this kind of model seems to be morea stiff perfect-fluid cosmology. Also, a scalar field for a con-
appropriate when adiabatic theory of galaxy formation isvex positive scalar potentidR0], was taken into account
considered 15]. Thus, it seems quite natural to include in among others.
this study a matter component with this kind of property, in ~ Since the metriq4) is spatially homogeneous the scalar
a background which in essence is anisotrdfig]. field Q can only depend on time, and thus the time-time

The aim of the present paper is to study a closed anisoccomponent of Einstein’s field equations is
tropic cosmological model, with a metric corresponding to N

1RH
— + —
a a

Kanstowski-Sach$17], where the matter content is com-
where, as was mentioned above, the dots stand for deriva-

posed by an imperfect fluid together with a scalar field
whose equation of state parameteremains negative during

tives with respect to the cosmological timd-rom the metric
[l. THE FIELD EQUATIONS (4), and considering the comoving frame, i.a%= &5, we

the evolution of the universe.
Hfind that the components of the shear tensor are given by

b

b

1 _2K
+;_?(PM+I)Q)1 )

We start by considering the effective Einstein Lagrangia

iven b ;
g y 2b a b
1.1 7173 a b/
. o 1 .,b a
where, k=167G, with G the Newton’s gravitational con- 0=z 55/ (6)

stant,R the scalar curvature the quintessence scalar field
with associated potenti&(Q), andLy, represents the matter .
Lagrangian density. We assume that the matter Lagrangian o =Esin2(6) az(E_E)
densityL), is associated to a fluicharacterized by the pres- 373 b '

sure and energy densifyy, and p,,, respectively which

presents a shear viscosity. By taking a preferred timelikélere, ogo=0 and o ,=0. The other components of Ein-
vector field(four velocity) u®, which satisfiesi®u,=1 and  stein’s field equations are

it is a Ricci eigenvector, we can write the following matter

energy-momentum tensor: a 2

4 a b
a :_K(pM+pQ)_§K7IM 2 b
Top=(pm+PMUUg—PMuTapt 27M0 g, 2 7

whereny, and o,z are the shear viscositypr coefficient of 54
dynamic viscosity,,,=0) and the traceless shear tensor,
respectively. The shear tensor has the form b a ab b

2 a
5 atap KPutPo) T3k 77'\"(5_5 :

®

1
Tap=hlUg, 5hh— 3Map €
In order to solve this set of equations, we need to supply
this set with equation of state for the matter content and the
scalar field. We assume that the matter content satisfies the
relationpy = ypnm , Wherey may be a time dependent quan-
tity and its (present value depends on the characteristics of
matter content. In the following we assume that this constant
es in the range & y<1, where the extremes correspond to
Sdust and stiff fluid, respectively. In the same way, we shall
assume that the scalar fiel@ satisfies a similar effective
d?=dt?—a?(t)[d 6%+ sirR(9)dp?]—b2(1)dr?,  (4) _equation of state, i.epQ=_ apq, Where now the parameter
is assumed to be negative.
wherea and b are the scale factors which describe the an- |n order to have a universe which is closed, but still have
isotropy of the model. This sort of metric combines sphericaf® matter density content corresponding to a flat universe, we
symmetry with a translational symmetry in the “radial” di- impose the following relations:
rection. The metri¢4) has been studied by many authors that 72
have considered different sort of matter components. As an KpPq ©)

wheref=u“ , is the scalar expansion aing ,, is the projec-
tion tensor defined from the expressibp ;=g, s—U, Ug,
with signature for the metric{,—,—,—).

In this paper we consider a spatially homogeneous bac
ground spacetime of Kantowski-Sachs type, which, as far
it is known, is the only spatially homogeneous model that i
not included in the Bianchi classification, thus we have
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and
ey 452 10
7=t = (10)
where
_[a b
32" b

and« has been chosen to be equaHd/3[21]. Under these
conditions the Einstein’s field equations become

a 2+ al\(b _2K 11
al *\a/lp/=7em -
2é+ 2 2— S kn'T 12
a a =—KYPMm §K77 g, ( )

and
b a ab 2 - 12
B+a+56_—;<yp,v|+§x7] a. (13

This set of equations is similar to that of a matter flui
with shear viscosity immersed in a background correspond

ing to a flat axisymmetric cosmological model.

Ill. SOLUTION TO THE FIELD EQUATIONS AND SOME
CONSEQUENCES
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wheren is a positive number. Here, we get

n(2—3n)

kt? 19

Pm=pm=

and

1 1 1

™= (1-3m) 2n1° (16

In order to obtainy>0 we demana<1/3. Here, it is found
that the scalar field growth as

_ 2 1 1-n 1
Q(t)=/ 3 Tt (17
and its corresponding potential is given by
22n71 1/(1—n)
V(Q)=( ) Q- av=m, (18)

Notice that this potential decreases wh@rincreases, since
n<1/3.
At this moment, we would like to calculate the luminosity

ddistancedL(z) as a function of the redshift This concept

plays a crucial role in describing the geometry and matter
content of the universe. From the met{#) we observe that,
light emitted by the object of luminositg and located at the
coordinate distancé, at a timet is received by an observer
(assumed located #=0) at the timet=ty. The time coor-
dinates are related by the cosmological redshifit the 6

In the following we will describe solutions to the set of direction by the expression, fiz=a(to)/a(t) = ag/a(t).

equationg11)—(13) in the cases in whicly’' =0, i.e., where
there is not generation of entropy and+0, where exist

The luminosity flux reaching the observer &&= £/4md?
whered, is the luminosity distance to the object, given by

generation of entropy. For the former solutions we calculatel, (z) =agsin 6(2)](1+2).

the angular distance-redshifts relatiospecifically, for the

In order to obtain an explicit expression for the angular

stiff model with " =0) which are compared with its analo- size, let us now consider an object aligned to ¢ghdirection
gous results corresponding to the flat spacetime, and for thend proper length, so that its “up” and “down” coordi-

latter, we calculate the generation of entrdfoy the cases in
which 5’ #0).

A. Casesp'=0

nates are §,¢+ 6¢,0) and @, ¢,0). Theproper length of
the object is obtained by setting- const in the line-element
metric (4), ds’= —1%=—a?(t)sir(#) 6¢°. Thus, the angular
size becomes

In this case we describe two possible solutions. One of

these is the vacuum Kasner solution in whigly=p\=0,
and a stiff fluid with equation of statpy=pu#0, i.e.,y
=1. In the former case it is found thai(t)=a, and b(t)

(1+2)?, (19

%= 4.2

with d, defined above.

=t are possible solutions to the field equations. Here, the E.om the solutions represented by Etd) we obtain for

scalar fieldQ remains constant and thpg = const=V, and
po=—(1/3)Vy. On the other hand,, becomes 7y

=2(V,/t). It seems that we could have another Kasner so- |

lution, such thata(t)=t%3 and b(t)=t~ 3. However, this

sort of solution gives rise to a shear viscosity which is es-

sentially negative, sincg= — (1/2«)(1t*3). Therefore, we
disregard this type of solution.

In the latter case, in whichy,=py, i.e.,y=1, we find a
possible solution in which

a(t)=t", b(t)=tt"2", (14)

the angular size

(1+2z2)

(20

o Q .| N 1 1—(142)" 1n
PR
whereH, is a parameter defined by,=n/al".

Figure 1 shows the angular size as a function of the red-
shift in the range 0.05z=2.80 for three different values of
the parametersr. Here, we have used the valueyH,
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FIG. 1. This plot shows the angular sige unit of I/a,) as a
function of the redshiftz, for three different values of the param-

etersn, n=1/4,1/6,1/8. The dash-dot-dot line corresponds to the
isotropic closed FRW model, with a matter component defined by

the equation of state=—1/3.

=./2/5. In this plot we have added the graph of the angular
size corresponding to the isotropic closed FRW model, with
a matter dominated by a quintessence component defined by
a=—1/3. Notice that, for different values of the parameter

n, those curves near to the valme=1/3 become closer to
that corresponding to the isotropic FRW model.

In Fig. 2 we show the angular sizes as a function of the
redshift z for flat and closed anisotropic universe models.
Notice that at low redshift both curves become similar. We

could distinguish them at=0.5.

30
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FIG. 2. This plot shows the angular sige unit of I/ay) as a
function of the redshiftg, for flat and closed anisotropic models.
The parameten was chosen to ba=1/4. Notice that at low red-
shift the models become indistinguishable.
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B. Casesp’' # 0

As before, in this case we consider two different solu-
tions. We start by describing a quasianisotropic and an ex-
ponential growing solutions.

In the former case, we found as a possible solutfr)
=t?% andb(t)=t?*[1+(t/ty) "], wheren andt, are two
arbitrary constants. Notice that at large tibye) approach to
a(t) and thus the universe isotropizes. Thus, asymptotically
the universe approaches to an homogeneous isotropic flat
universe which is filled by dust, i.eb(t)~a(t) =t%3,

For this solution it is found that

4 1 n (21
pPm= 2 - t nij»
3kt 1+(_
to
2n(1—n)
pM_ ’ (22)
n
3kt?| 1+ .-
+ —
! (to
and
7 ==——| nk(n—1)+t?? 14— (23
M 2nkt t\"| |’

1+

to

Notice thaty becomes a time dependent quantity in this case

n}—l
Notice also thaty(t)—0 for t—o, in agreement with the
remark described above.

The effective shear viscosity becomes=(n—1)/2«t,
and in order to be positive the parametershould be

bounded from below, i.en=1. The corresponding solution
for the scalar field is

(29)

t
1—n+(—

_ n
O=57" &

\F t 1/3 t 1/3
Q)= ;(%) EQo(g) ; (29
and the potential becomes
_ @)4
V(Q)—Vo< Q) (26)

where the constar¥, is given byVy= $Q53. This sort of
solution was described in Reff21] where scalar fields in
FRW metric were studied.

A second possible solution is that in which the scale fac-
tor a grows exponentially, i.e.,
Ht

(27)

a(t)=e

and
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3Ht 2

b(t) =e‘H"2sin(T) , (28) S =, o, (36)

whereH is a constant to be determined later on. where in the first case we get
This solution corresponds to a universe filled with a vis-
cous dust, sincgy =0 andn’'#0 at any time. The energy 2n%(n—1)
density and the effective shear viscosity become = . (37
HOBkTE[1+ (t/t)"]?
, [3Ht
p,=3H cot( T) (29 The left-hand side of this expression gives, in the comoving
frame of reference
and
3H S = anbA, (38
' (30)

7’ = 1
2[cot((3H1/2)) —1] where we have used the conservation equation for baryon

my =
respectively. number hbu ).»=0. Thus, we get

In order to haven’'=0 we must impose that<93Ht/2
<m/4. This result in an age for the universe given gy : 2n*(n—1)
=(m/6) H™1, which could be used for fixing the value Hif A= 3Nk TE[1+ (t/tg)"]2’

Notice that the solution$27) and (28) give rise to the ®%s 0
following Hubble expansion rates:

(39

Note that this expression decrease whencrease and be-
comes zero fot—oo, similar to 7y, pm, andpy, .
H,=—=H (31 From expressiori42) evaluated at=t (equivalent to
1000 9 andt=t, (time at recombinationwe get
and
A 118

1+t /th
1000

1000
00T

t
1000

3Ht ;
3CO< —) — 1}, (32) )\rec n

\ rec
)\1000_ Ny rec( trec

2
b H (40)
HZ:B: E 1000

2

and thus the Hubble horizon related to the plane remains ~ With the data given in ReO(.ZS] and takingn=2, we obtain
constant. for t, the valueto~4x 10" s. This value, together with the

. . . . N 7 .
The corresponding scalar field is found to evolve as ~ @ge of the universe,~5x10'"s, allows us to obtain the
ratio between the shear, and the scalar expansiofi, given

Q(t)= i\/—2 [e”Mo—e"]+Q (33 >
H V3« 0
. B . (3) - n ~5%x10°15,  (41)
where Qg is the value ofQ(t) att=t,. The corresponding 0 5 ’_3(2(tC/to)”+2—n) '

scalar potentiaV(Q) becomes
which is inside of the bound expressed by Cosmic Back-
, (34 ground ExplorefCOBE) measurements, that givee/(e)IC

3k
1- \/7(Q_Qo)
<6.9x 10 1°[26,27.

V(Q)= Vo

whereV, is a constant defined by,= (2/3x) e~ "%, From In the second case, and following a similar process we
this expression we see that this potential decreases @hen find that

B 3Ht
related to the anisotropy of the univerg@?2,23. In the fol- A= anpk kT cot ——| 1. (42
lowing we proceed to calculate this production in the cases

increases, similar to the other case. 5
It is well known that the production of entropy could be : 9H

described above. In order to do this, we introduce the eng, sing the observational data specified above we get that

tropy current four-vectoB* as

S/*znka)\u", (35 )\1000

=6x10 25, (43

where as beforeu” represents the four-velocityy, the rec

baryon number densitk is the Boltzmann’s constant, and Thus, the generation of entropy has decreased more ttfan 10
\ the nondimensional entropy per baryon. It could be showriimes the value at recombination during the period frigg
that [24] to t=1000 s.
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IV. CONCLUSIONS In the cases in which the shear viscosity was vanished we

have determined the angular sizes for different values of the

mo\{jv; dh:svcerit?éltjjdtl)edthaenmz?rlqzc))tr\(/)v[:ﬁnglnulggzjsfn gﬁf?‘nzlggl'c%arameters. Here, we found, similar to the isotropic case, that
y ' our closed model looks similar to a flat model at low red-

negative anisotropic pressures motivated by quintessencsef1ifts
cosmological scenarios. This component was represented by -~

a scalar fieldQ, whose equation of state was considered to be On the other hand, solutions in which the shear viscosity
. ' q . was not vanished, we have determined the generation of en-
given by P,=ap where the parameter was considered

tropy. Here, we have found that our results agree with the

to be equal to-1/3. _ _ bound imposed by the observational data.
In order that our closed universe scenario could resemble
a flat model, we imposed the conditions specified by E®js. ACKNOWLEDGMENTS
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