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Causality and stability of the relativistic diffusion equation
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This paper examines the mathematical properties of the relativistic diffusion equation. The peculiar solution
which Hiscock and Lindblom identified as an instability is shown to emerge from an ill-posed initial value
problem. These do not meet the mathematical conditions required for realistic physical problems and cannot
serve as an argument against the relativistic hydrodynamics of Landau and Lifshitz.

PACS number~s!: 47.75.1f, 05.70.Ln, 95.30.Lz
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I. INTRODUCTION

The relativistic generalization of hydrodynamic theory,
developed by Landau and Lifshitz@1#, leads to differential
equations of the parabolic type. Consider for instance
diffusion equation for viscous shear flow. In a frame
which the background equilibrium state is at rest~‘‘comov-
ing frame’’!, it is

@c22~e1p!] t2h]x
2#dui~x,t !50, ~1!

wheredui with i 5y,z is the perturbation in the transvers
velocity. Equation~1! is the archetype of a parabolic equ
tion. In non-relativistic physics, it provides an excellent d
scription of a wide range of physical phenomena, as cou
less experiments have shown. Within the relativis
framework, however, it seems to fail, as two deficienc
become evident: The first, acausality, refers to the fact
Eq. ~1! allows for propagation of signals with arbitraril
large velocities.~This should be, and indeed has alrea
been, a worry in Galilean hydrodynamics, since one has v
definite ideas of the velocities of the constituent microsco
particles, which represent an upper limit of the signal vel
ity in a dilute system of hard-core interaction.! The second
defect is an instability found by Hiscock and Lindblom@2#,
who showed that Eq.~1! develops a solution that grows ex
ponentially with time in any non-comoving Lorentz frame
It is noteworthy that the growth time scale was found to
microscopically short.

To overcome these deficiencies, extended fluid theo
were put forward which start from hydrodynamic theory b
include additional dynamic variables; see e.g.@3#. The result-
ant larger set of phenomenological coefficients can be c
sen such that all the equations are hyperbolic, ensuring
sality and stability. The price for this is twofold: a rath
more complicated theory and the difficulty of finding a un
versally accepted set of additional variables~except perhaps
in dilute systems!. In fact, recently it has been shown b
Geroch@4# and Lindblom@5# that the complicated dynamica
structure which ensures causality is unobservable. The
lution of any physical fluid state according to any cau
theory results in energy-momentum tensors and particle
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rents that are experimentally indistinguishable from the
spective hydrodynamic expressions.

In this paper, we take a step back and again focus on
simpler and more universal parabolic equation~1!. While
acausality is an expected feature of parabolic differen
equations, already discussed in the non-relativistic con
@6–8#, instability is not. Being absent in a comoving fram
one is astonished at its appearance in non-comoving fram
Our main purpose thus is to examine the origin and phys
relevance of the instability.

The paper is organized as follows: In Sec. II some gene
mathematical aspects of partial differential equations are
viewed. We especially recall the intuitive meaning of t
characteristics. Section III is devoted to the one-dimensio
diffusion equation in a comoving frame. We discuss t
problem of causality and examine the two types of Cauc
problems that can be formulated with respect to a parab
equation. In Sec. IV the discussion is generalized to n
comoving Lorentz frames. We especially scrutinize the so
tion that Hiscock and Lindblom have identified as an ins
bility, and show that it is a result of an ill-posed initial valu
problem. In Sec. V we briefly examine the general case
which the spatial dimension of the diffusion equation
greater than 1.

II. PRELIMINARIES

Let us first review some general aspects of partial diff
ential equations that can be found in standard textbooks
mathematical physics~e.g.@9#!. Consider a linear partial dif-
ferential equation of second order for the unknown funct
q(x,t). It can be written, most generally, in the form

@A]x
212B]x] t1C] t

2#q1F~x,t,q,]xq,] tq!50, ~2!

whereA, B andC are given functions of the two independe
variablesx and t. Depending on the value ofD[B22AC at
a given point, Eq.~2! is referred to as ofelliptic (D,0),
parabolic (D50), or hyperbolic(D.0) type at this point.
In the following we shall restrict ourselves to the cases
which A, B and C are constants. The type of Eq.~2! then
remains unchanged throughout the entire region.

The equation

A~]xw!212B~]xw!~] tw!1C~] tw!250 ~3!
©2000 The American Physical Society03-1
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is called theequation of characteristicsof the partial differ-
ential equation~2!. Correspondingly, the family of curves,

w~x,t !5const, ~4!

with w(x,t) satisfying Eq.~3!, is called the family ofchar-
acteristics. We collect the following facts:

~i! An equation of the hyperbolic type has two distin
families of real characteristics, an equation of the parab
type has only one, and an elliptic equation does not have
characteristics.

~ii ! The equation of characteristics is invariant with r
spect to arbitrary transformations of the independent v
ables,x̃5 x̃(x,t), t̃ 5 t̃ (x,t). This implies that, ifw(x,t) is a
solution of Eq.~3!, and if w(x,t) transforms intow̃( x̃, t̃ ),
then w̃( x̃, t̃ ) is a solution of the equation of characteristi
accompanying the transformed differential equation.

~iii ! The outer real characteristics that pass throug
given point (x0 ,t0) bound thedomain of influenceV0 of this
point. If we consider the variablet as the time and think o
the solutionq(x,t) as a quantity that varies inx space with
time t, then this means that fort.t0 the solution in the
region outsideV0 is not influenced by the initial data give
at (x0 ,t0). As an example, consider the telegraph equatio

] tq2aS ]x
22

1

y2
] t

2D q50, ~5!

with given constantsa,y.0. SinceD5a2/y2.0, it belongs
to the hyperbolic type. Its equation of characteristics
(]xw)22(] tw)2/y250, which gives two families of charac
teristics,

w~x,t !5x6yt5const. ~6!

Taking some point (x0 ,0), the respective domain of influ-
ence is thus bounded byx6yt5x0, implying that the effects
of the initial data propagate at finite velocityy.

For Eq. ~2!, the most generalCauchy problemis formu-
lated in the following way: LetS be some smooth curv
given in the space of the variablesx, t. With each point
(x,t)PS there is associated some directionn not tangent to
S. The problem now consists of finding, in some neighb
hood ofS ~either on one or both sides of the curve!, a solu-
tion q(x,t) which satisfies the prescribedCauchy conditions

quS5Q0~x,t !,
]q

]nU
S

5Q1~x,t !. ~7!

It is important to note that the domain in which the unknow
solution has to be determined is not specified beforehand
generally, the initial manifoldS lies within the domain of
definition of the solution.

A problem is said to bewell posedif it has the following
properties: The solution~i! exists, ~ii ! is uniquely deter-
mined, and~iii ! depends continuously on the assigned da
The last requirement is imposed in connection with the f
that the initial data of physical problems are determined
perimentally and so small errors occur. It is thus necessar
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be sure that the solution does not depend essentially on
measurement errors of these data.

III. THE DIFFUSION EQUATION IN A COMOVING
FRAME

A well-known example of Eq.~2! is given by the para-
bolic diffusion equation

] tq2a]x
2q50, ~8!

where a.0. With A52a and B5C50 its equation of
characteristics~3! takes the form (]xw)250. Hence, the
characteristics are given by the one-parameter family of li

w~x,t !5t5const. ~9!

It is obvious from this that the diffusion equation allows f
the propagation of disturbances with infinite velocity. I
deed, the initial value ofq at the point (x0 ,t0) has influence
on the solutionq(x,t) in the whole semi-infinite regiont
>t0.

This fact, however, does not in practice cause any co
plications: The superluminal propagation speeds are ass
ated only with variations on microscopically small time a
length scales~and with amplitudes of the order of thermod
namic fluctuations!. On these scales a macroscopic descr
tion loses validity, and the diffusion equation and its so
tions break down accordingly. The acausal consequence
therefore precluded by restricting the solutions of Eq.~8! to
the hydrodynamic range of validity,

U ]xq

q2q0
U! 1

j
, U ] tq

q2q0
U! 1

t
, ~10!

with q0 denoting the constant part ofq, andj, t the char-
acteristic distance and time between collisions of particles
elementary excitations. For gases this was first demonstr
by Weymann@6#.

As an example, consider a solution of Eq.~8! that satisfies
the initial conditionqu t505q01(A/d)e2x2/2d2

. It is

q~x,t !5q01~A/Ad212at !e2x2/2(d212at), ~11!

which represents a Gaussian distribution with wid
Ad212at. As can be seen from the first equation of Eq
~10!, this solution is of physical significance only in the in
terval

uxu!d2/j1~2a/j!t. ~12!

The maximum speed at which measurable information
transmitted is thus of the order ofymax;a/j, which is far
less than the speed of light for typical values of the kine
coefficienta and the microscopic lengthj. ~Takinga as the
heat conductivity, one has for iron at room temperaturea
'1025 m2/s andj'1028 m. Soymax'103 m/s, which is of
the order of the speed of sound.!

The most common initial-value problem for Eq.~8! is to
find a solutionq(x,t) for which the Cauchy conditions~7!
are prescribed at the initial manifoldt50. However, since
3-2
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the linet50 is a characteristic here, the Cauchy data can
be prescribed independently, but must satisfy a compatib
condition @9#. For instance, if the Cauchy conditions a
given byqu t505Q0(x) and (] tq)u t505Q1(x), we get from
Eq. ~8!, for t50, Q1(x)5a]x

2Q0(x). The characteristic
Cauchy problemfor the diffusion equation is therefore pose
in the following way: In the regiont.0 find a solution
q(x,t) satisfying the initial condition

qu t505Q0~x!. ~13!

As is generally known@9#, this problem is well posed fo
arbitrary, smooth functionsQ0(x) that have a well-defined
Fourier transform. In the special case of a pure exponen
Q05Aeikx (kPR), the solution takes the form

q~x,t !5Aeikx1Gt, G~k!52ak2, ~14!

which is unique and stable fort.0.
Quite another situation arises when the Cauchy data

prescribed on a non-characteristic curve, say e.g.x1bt50,
with some finitebPR. The diffusion equation then gives tw
modes, one bound and the other divergent withux1btu→`.
A well-known example is the so-called ‘‘sideways pro
lem’’: In the half-spacex.0 (2`,t,`) we seek a func-
tion q(x,t), which satisfies Eq.~8!, and which attains on the
non-characteristic linex50 the Cauchy conditions

qux505Aeivt, ~]xq!ux505Beivt, ~15!

with vPR. As can be easily seen, this problem is genera
solved by

q~x,t !5~dq1e( i 11)L1x1dq2e( i 11)L2x!eivt, ~16!

L1,2~v!56Av/2a, ~17!

which represents a superposition of two modes

q1,2~x,t !5dq1,2~v!ei (6xAv/2a1vt)e6xAv/2a, ~18!

with the amplitudesdq1,2(v) being determined by the two
Cauchy conditions~15!. One has

dq1,2~v!5
1

2
A6

1

4
B~ i 21!A2a/v. ~19!

So, without imposing further restrictions, the general so
tion ~16! explodes exponentially asx increases. Moreover, i
shows a discontinuous dependence on the initial data@10#:
As v→`, Eq. ~16! is bounded on the initial linex50 but
grows like exp(xAv/2a) for any x.0. Consequently, the
non-characteristic Cauchy problem~15! is not well posed.

Recalling the intuitive concept of the characteristics~cf.
Sec. II!, the reason for this becomes obvious. The initial d
given at some point (0,t0) affect the value of the solution
exactly in those points which lie in the domain of influen
V05$(x,t)uxPR,t>t0%. Solving Eqs.~8!,~15! thus yields
the solution forx.0 as well as forx,0. Confer the two
modes of Eq.~18!. They describe damped waves which ca
the initial data given atx50 to the left and to the right
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Physical intuition suggests, however, thatq1 andq2 do exist
only for x,0 andx.0, respectively. A superposition in th
form of Eq. ~16! does not make any physical sense.

Now, the sideways problem will not be well posed unle
the behavior at infinity is prescribed. In fact, the physica
realistic assumption thatq be bounded asx→` @1# leads to
a solution that exists, is unique, and depends continuousl
the initial data given atx50. The correct formulation of the
sideways problem thus is the following: Find the bound
solution of Eq.~8! in the regionx.0 (2`,t,`), satisfy-
ing

qux505Aeivt, vPR. ~20!

Note that the boundedness condition ‘‘replaces’’ the sec
Cauchy condition.

Equation ~15! is an example of a non-characterist
Cauchy problem with the initial data given on a line that
timelike. For the following, it is important to consider als
the case where the Cauchy data are given on a spacelike
As we shall see, this problem is not well posed either.

In the half-space$(x,t)uxPR,ct2bx.0% we seek solu-
tions of Eq.~8! satisfying periodic initial data on the non
characteristic spacelike linect2bx50 (bPR, 0,b,1).
Here c is the speed of light. Withg[(12b2)21/2, xm

5(x,ct), hmn5diag(1,21), and nm52g(b,1), em

5g(1,b) respectively denoting the timelike and spaceli
unit vector normal and parallel to the initial linect2bx
5nmxm50, the general ansatz

q~x,t !;eikemxm1Gnmxm /c, kPR,GPC ~21!

takes the form

q~x,t !;eikg(x2bct)1Gg(t2bx/c), ~22!

with quct2bx50;exp(ikg21x). Inserting Eq.~22! into the dif-
fusion equation~8! yields

ga
b2

c2 G22S 112iga
b

c
kDG2gak21 ibck50. ~23!

For k5” 0 the two rootsG1,2(k) are complex. The real part
are given by

G R1,R25
1

2
C6A1

8
C21A 1

64
C41

1

4
C3g23ak2,

~24!

whereC[(gab2/c2)21. From this one finds the inequalitie

G R11G R25C.0, ~25!

G R1G R25
1

8
C22A 1

64
C41

1

4
C3g23ak2<0, ~26!

which imply that exactly one mode grows exponentially w
time. Now, ask→`, the general solution diverges lik
exp(gAc3/2ab@ t2bx/c#Ak) for any t.bx/c, while the ini-
tial values are bounded ont2bx/c50. Hence small change
3-3



th

an
nt

s
te

e

m
s

r-

ni
y
e

r-

-

qui-
-

the
ed,
s.

and
l re-
ob-
-
the

k-

ve

ed

m,
ini-

o
the

un-
tly
ara-

ly,
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in the initial data would cause considerable changes in
solution, indicating that the problem is not well posed.

IV. THE DIFFUSION EQUATION IN A GENERAL
LORENTZ FRAME

Next we turn our attention to the diffusion equation in
inertial frameK̃, in which the medium moves with consta
velocity v in the negativex direction. Employing the Lorentz
transformation rules ] t5g] t̃2gv] x̃ and ]x5g] x̃
2g(v/c2)] t̃ , we get from Eq.~8! the boosted diffusion
equation

g~] t̃2v] x̃!q2ag2S ] x̃
222

v
c2 ] x̃] t̃1

v2

c4 ] t̃
2Dq50. ~27!

It is straightforward to verify that this equation still belong
to the parabolic type. In a covariant language, it is rewrit
as

um]mq2aDmn]m]nq50, ~28!

whereDmn5hmn1c22umun, um5g(2v,c), ]m5(] x̃ ,]c t̃),
andhmn5diag(1,21). According to Eq.~3!, the equation of
characteristics becomes

g2S ] x̃w̃2
v
c2 ] t̃ w̃ D 2

50, ~29!

so that the family of characteristics comes out as the gen
solution of the ordinary differential equationgvdx̃1gc2d t̃
50 or, equivalently,

umdxm50. ~30!

One finds

w̃~ x̃, t̃ !5g t̃ 1g
v
c2x̃5t5const, ~31!

with t being the proper time measured in a comoving fra
K. Recalling Eq.~9!, we explicitly see that the characteristic
are invariant under Lorentz boosts; cf. Sec. II.

With Eq. ~31!, the relativistic equivalent to the characte
istic Cauchy problem~13! is the following: Find a solution to
Eq. ~27! which satisfies prescribed values at the initial ma
fold t̃ 1(v/c2) x̃50. Clearly, this problem is well posed onl
for t̃ 1(v/c2) x̃.0. Its exponential solution can easily b
found from Eq.~14! by making use of the Lorentz transfo
mation,t5g t̃ 1g(v/c2) x̃ andx5g x̃1gv t̃ .

Now, the solutions of Eq.~27! that Hiscock and Lindblom
@2# examine satisfy periodic initial data;eik̃x̃ ( k̃PR) on the
non-characteristic linet̃ 50. Taking

q~ x̃, t̃ !;eik̃x̃1G̃ t̃ , ~32!

they find the dispersion relation
02300
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v2

c4G̃22S 112iga
v
c2k̃D G̃2ga k̃21 iv k̃50; ~33!

see Eq.~67! of Ref. @2#. For k̃5” 0 the two rootsG̃1,2( k̃) are
complex. The real parts satisfy the conditions

G̃ R11G̃ R25
c4

gav2.0, ~34!

G̃ R1G̃ R252S G I 12
c2k̃

v D 2

<0, ~35!

which imply that one of the two modes diverges ast̃→`.
From this the authors of Ref.@2# conclude that the Landau
Lifshitz theory of relativistic hydrodynamics is unstable~in
the sense that small spatially bounded departures from e
librium will diverge with time! and hence must be aban
doned as a physically realistic theory.

We disagree with this conclusion. The reason is that
above non-characteristic Cauchy problem is not well pos
in complete analogy to its non-relativistic equivalent, Eq
~8!,~22!. @Note that Eq.~23! equals Eq.~33! if b5v/c.# Its
solution does not depend continuously on the initial data
therefore does not meet one of the three mathematica
quirements to be posed with regard to realistic physical pr
lems ~cf. Sec. II!. So it is the type of the initial-value prob
lem here which is physically unacceptable, and not
instability of the resulting solution.

Nevertheless, it is illuminating to interpret the Hiscoc
Lindblom solution in terms of wave propagation@while ig-
noring the fact that the domain of definition of the abo
Cauchy problem is restricted to the half space$( x̃, t̃ )ux̃
PR, t̃>0%]. The general solution consists of two damp
waves traveling to the regionst̃ .0 and t̃ ,0, respectively.
Referring again to the discussion of the sideways proble
Sec. III, this is a consequence to be expected. Since the
tial manifold crosses the characteristics~31!, the information
~given at t̃ 50) propagates~along the characteristic linest̃
1@v/c2# x̃5const) in both directions. One thus gets tw
modes, each transporting the effects of the initial data in
respective region.

It is important to note that the appearance of a mode r
ning backwards in time in non-comoving frames is direc
related to the infinite signal speeds accompanying the p
bolic equation. In fact, it is well known@11# that ‘‘superlu-
minal acausality’’ in a Lorentz frameK causes ‘‘chronologi-
cal acausality’’ in any other Lorentz framesK̃. For example,
consider a process in a frameK whereby an eventP1
5(x,t) causes another eventP25(x1Dx,t1Dt) at superlu-
minal velocity U.c. Let the time difference beDt.0 so
thatDx5UDt.0. Then, in a frameK̃, moving with velocity

v relative to K, we haveD t̃ 5gDt2g(v2/c)Dx5gDt(1
2vU/c2). If c2/U,v,c, this yields D t̃ ,0. This means
that in K̃ the signal goes backward in time or, equivalent
that the responseP2 precedes the stimulusP1.
3-4
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Now, as we have seen in Sec. III, the superluminal ac
sality in K does not lead to any physical consequences;
automatically precluded by a restriction to the hydrodynam
range of validity. Accordingly, we see from Eqs.~34! and
~35! that the damping rate of the mode which propagate
the past is bounded below byG̃ R1>c4/gav2. With t denot-
ing the characteristic microscopic time inK ~referred to as
the collision time in dilute systems! andt̃5gt the respective
time in K̃, we thus have

G̃ R1t̃5
c4t

av2 @1. ~36!

~For instance, takinga as the heat conductivity of a piece o
iron, one hasa'1025 m2/s andt'10212 s, so thatG̃ R1t̃
'10210.! This shows that the mode running backwards
time t̃ decays on a time scale that is much shorter than
microscopic one, and hence is far outside the hydrodyna
regime.

Let us now come back to the non-characteristic Cau
problem. Since the domain of definition of the solution

$( x̃, t̃ )ux̃PR, t̃>0%, the mode reflecting the chronologic
acausality is defined only for positive timest̃ . As a conse-
quence, the superposed solution does not depend con
ously on the initial data, and the problem is ill posed. W
other words, prescribing Cauchy conditions on a no
characteristic hypersurface in a 2-dimensional flat space
does not lead to a realistic physical problem. Such a prob
might be obtained only if one prescribes the value of
solution at infinity~cf. the sideways problem in Sec. III! or if
the Cauchy data are prescribed on one of the characteris

Now, what are the physical conclusions after the ma
ematical ones have been drawn? Given the fact that the s
dard Cauchy problem is ill posed in the Landau-Lifsh
theory, that one cannot arbitrarily prescribe initial data
physical quantities on a boosted time slice, are we to c
clude that the theory is defunct—and to be replaced by
in which the Cauchy problem is well posed? Is the capabi
to accommodate arbitrary initial data on boosted time slice
sine qua nonfor a healthy, physical theory? We believe th
answer is no, for two different reasons, although we conc
that an affirmative answer may also be upheld. Our reas
are the following:

~i! All differential equations belonging the the hydrod
namic theory and accounting for coarse-grained, irrevers
physics—including the diffusion equation—possess a p
ferred inertial system, in which the material is at rest. This
not true with respect to microscopic theories for which t
Cauchy problem is known to be well posed in any inert
frame, consider for instance the vacuum Maxwell equatio

~ii ! More importantly, in our simple example consider
above, we actually know what the initial data on a boos
time slice t̃ 50 correspond to in the rest frame, namely to
ill-posed, sideway problem arising from data on a no
characteristic spacelike linect2g(v/c)x50. This connec-
tion is completely general, and especially independent of
Landau-Lifshitz theory. Therefore, an insistence on the w
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posedness of Cauchy problems for boosted systems amo
to requiring a new type of differential equation for the re
frame, ones for which the sideway problem is well pos
Now, there are few equations in physics which are be
confirmed than the rest frame diffusion equations as
know them: for temperature, velocity and concentration. A
it seems highly unlikely that one can change something
basic as the ill-posedness of the sideway problem with
destroying the agreement with the experiments. Resign
ourselves to the fact that the standard Cauchy problem o
boosted time slice may be ill posed, then clearly there is
reason whatever to abandon the Landau-Lifshitz theory.

V. GENERALIZATION TO CASES OF MORE THAN ONE
SPATIAL DIMENSION

Let us finally examine the general case in which the s
tial dimension of the diffusion equation is greater than
Consider the covariant equation~28!, with m running now
from 1 to 4. As we have seen in Sec. IV, its characterist
are determined by the ordinary differential equation

umdxm50, ~37!

which assigns to each pointxm an infinitesimal characteristic
3-flat normal to the direction of the time-like velocityum at
that point. The crucial point now is that generally these
finitesimal 3-flats do not integrate to 3-surfacesw(xm)
5const.

To see this, let us suppose that a general integralw(xm)
5const exists. Then, we have

dw5~]mw!dxm50 ~38!

and, hence,

]mw5lum , ~39!

with somel5l(xm). Since]m]nw5]n]mw, this yields

]mun2]num5l21~um]nl2un]ml!, ~40!

from which «mnabun]aub50 or

ua~]num2]mun!1um~]aun2]nua!1un~]mua2]aum!50
~41!

results. Equation~41! is a necessary condition for integrabi
ity. It can be proved~see e.g.@12#! that it is also sufficient;
i.e., if it is satisfied, a general integral exists.@Note that Eq.
~41! is identically satisfied fora,m,n51,2. Thus, in the case
of one spatial dimension, characteristics can always
found.#

Multiplying the condition of integrability withua, one
finds

DmaDnb~]aub2]bua!50. ~42!

So characteristic hypersurfaces exist only if the backgro
equilibrium state is non-rotating. This fact has led vario
3-5
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authors to believe that generally the parabolic diffus
equation lacks an initial-value formulation, and hence tu
out not to be viable. This, however, would be true only if t
non-characteristic Cauchy problem is ill posed, just like it
er

02300
s
in the case of one spatial dimension. Unfortunately, v
little seems to be known about the non-characteristic Cau
problem in spacetimes with more than one spatial dimens
Further work should give clarity here.
se
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