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Causality and stability of the relativistic diffusion equation
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This paper examines the mathematical properties of the relativistic diffusion equation. The peculiar solution
which Hiscock and Lindblom identified as an instability is shown to emerge from an ill-posed initial value
problem. These do not meet the mathematical conditions required for realistic physical problems and cannot
serve as an argument against the relativistic hydrodynamics of Landau and Lifshitz.

PACS numbgs): 47.75:+f, 05.70.Ln, 95.30.Lz

[. INTRODUCTION rents that are experimentally indistinguishable from the re-
spective hydrodynamic expressions.

The relativistic generalization of hydrodynamic theory, as In this paper, we take a step back and again focus on the
developed by Landau and Lifshifd], leads to differential simpler and more universal parabolic equatidn. While
equations of the parabolic type. Consider for instance thecausality is an expected feature of parabolic differential
diffusion equation for viscous shear flow. In a frame inequations, already discussed in the non-relativistic context
which the background equilibrium state is at réstomov-  [6—8], instability is not. Being absent in a comoving frame,
ing frame”), it is one is astonished at its appearance in non-comoving frames.
Our main purpose thus is to examine the origin and physical
relevance of the instability.

The paper is organized as follows: In Sec. Il some general
mathematical aspects of partial differential equations are re-

where su' with i=y,z is the perturbation in the transverse viewed. We especially recall the intuitive meaning of the

velocity. Equation(1) is the archetype of a parabolic equa- characteristics. Section Ill is devoted to the one-dimensional

tion. In non-relativistic physics, it provides an excellent de-diffusion equation in a comoving frame. We discuss the

scription of a wide range of physical phenomena, as countProblem of causality and examine the two types of Cauchy

less experiments have shown. Within the relativisticProblems that can be formulated with respect to a parabolic

framework, however, it seems to fail, as two deficienciesequation. In Sec. IV the discussion is generalized to non-

become evident: The first, acausality, refers to the fact thag¢omoving Lorentz frames. We especially scrutinize the solu-

Eq. (1) allows for propagation of signals with arbitrarily tion that Hiscock and Lindblom have identified as an insta-

large velocities.(This should be, and indeed has alreadybility, and show that it is a result of an ill-posed initial value

been, a worry in Galilean hydrodynamics, since one has verproblem. In Sec. V we briefly examine the general case, in

definite ideas of the velocities of the constituent microscopidvhich the spatial dimension of the diffusion equation is

particles, which represent an upper limit of the signal velocgreater than 1.

ity in a dilute system of hard-core interactiphe second

defect is an instability found by Hiscock and Lindblda, Il PRELIMINARIES

who showed that Eq.1) develops a solution that grows ex-

ponentially with time in any non-comoving Lorentz frames. Let us first review some general aspects of partial differ-

It is noteworthy that the growth time scale was found to beential equations that can be found in standard textbooks on

microscopically short. mathematical physic&.g.[9]). Consider a linear partial dif-
To overcome these deficiencies, extended fluid theorieferential equation of second order for the unknown function

were put forward which start from hydrodynamic theory but 9(x,t). It can be written, most generally, in the form

include additional dynamic variables; see ¢3j. The result-

ant larger set of phenomenological coefficie'nts can t_Je cho- [A,;»)Z(+ 2B, o+ caf]f}+ F(x,t,9,0,9,0:9)=0, (2)

sen such that all the equations are hyperbolic, ensuring cau-

sality and stability. The price for this is twofold: a rather . , .

more complicated theory and the difficulty of finding a uni- WhereA, B andC are given functions of the two |£1dependent

versally accepted set of additional variablegcept perhaps Vvariablesx andt. Depending on the value @=B“—AC at

in dilute systems In fact, recently it has been shown by @ given point, Eq(2) is referred to as olliptic (D<0),

Geroch[4] and Lindblom[5] that the complicated dynamical Parabolic (D=0), or hyperbolic(D>0) type at this point.

structure which ensures causality is unobservable. The evd? the following we shall restrict ourselves to the cases in

lution of any physical fluid state according to any causawhich A, B and C are constants. The type of E(®) then

theory results in energy-momentum tensors and particle ch—e”_:_?]i”S uncthanged throughout the entire region.
e equation

[c2(e+p)d— ndz]du'(x,1)=0, (1)
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is called theequation of characteristicef the partial differ-  be sure that the solution does not depend essentially on the
ential equation2). Correspondingly, the family of curves, measurement errors of these data.

¢(x,1)=const, (4) IIl. THE DIFFUSION EQUATION IN A COMOVING

with ¢(x,t) satisfying Eq.(3), is called the family ofchar- FRAME

acteristics We collect the following facts: A well-known example of Eq(2) is given by the para-
(i) An equation of the hyperbolic type has two distinct holic diffusion equation
families of real characteristics, an equation of the parabolic
type has only one, and an elliptic equation does not have real 90— aa§ﬁ=0, (8
characteristics. i . )
(i) The equation of characteristics is invariant with re-where >0. With A=—a and B=C=0 its equation of

spect to arbitrary transformations of the independent varicharacteristics(3) takes the form ¢x¢)*=0. Hence, the
ablesX=X(x.t), T=T(x,t). This implies that, ifp(x,t) is a characteristics are given by the one-parameter family of lines

solution of Eq.(3), and if ¢(x,t) transforms intop(X, 1), o(x,t)=t=const. 9)
then ¢(x,t) is a solution of the equation of characteristics . ) ] o ]
accompanying the transformed differential equation. It is obvious from this that the diffusion equation allows for

(i) The outer real characteristics that pass through &€ Propagation of disturbances with infinite velocity. In-
given point o,t,) bound thedomain of influencé), of this ~ deed, the initial value of) at the point &o,to) has influence
point. If we consider the variableas the time and think of ©n the solutiond(x,t) in the whole semi-infinite regiom

the solutiond(x,t) as a quantity that varies xspace with =to. ) .
time t, then this means that far>t, the solution in the This fact, however, does not in practice cause any com-

region outside), is not influenced by the initial data given plications: The superluminal propagation speeds are associ-

at (xo,ty). As an example, consider the telegraph equation ated only with varia_tions on microscopically small time and
length scalegsand with amplitudes of the order of thermody-

namic fluctuations On these scales a macroscopic descrip-
9=0, (5) tion loses validity, and the diffusion equation and its solu-
tions break down accordingly. The acausal consequences are

therefore precluded by restricting the solutions of Ej.to
with given constants,v>0. SinceD = «?/1*>0, it belongs the hydrogynamic ran)ée of valid?ty B

to the hyperbolic type. Its equation of characteristics is
(d4¢)2— (d,¢)*/v*=0, which gives two families of charac- 0,
teristics, 9— 9,

ﬂtﬂ_ o

1
2 2
dy— —d
X ‘l}2t

1
<-, (10)
T

<1 3
£ |9-9

¢(x,1)=x*vt=const. ®  With 9, denoting the constant part &, and¢, = the char-

acteristic distance and time between collisions of particles or
elementary excitations. For gases this was first demonstrated
by Weymann 6].

As an example, consider a solution of E8) that satisfies

Taking some pointX;,0), therespective domain of influ-
ence is thus bounded byt vt =X, implying that the effects
of the initial data propagate at finite velocity

For Eq.(2), the most generaCauchy problenis formu- o v I S
lated in the following way: LetS be some smooth curve the initial conditiondl,_o= 9o+ (A/d)e -Itis
given in the space of the variables t. With each point 22
(x,t) € S there is associated some directiomot tangent to DX, 1) = Jo+ (A/Jd?+2at)e AL+ 2e0, (1D
S The problem now consists of finding, in some neighbor—Which
hood of S (either on one or both sides of the cuxva solu-
tion 9(x,t) which satisfies the prescrib&thuchy conditions

represents a Gaussian distribution with width
Jd?+2at. As can be seen from the first equation of Egs.
(10), this solution is of physical significance only in the in-
terval

ﬁ|S:®O(X!t)’ :l(Xit)' (7)

anlg IX|<d% &+ (2al )t (12)
It is important to note that the domain in which the unknownThe maximum speed at which measurable information is
solution has to be determined is not specified beforehand. Stransmitted is thus of the order @f,,~ «/§, which is far
generally, the initial manifoldS lies within the domain of less than the speed of light for typical values of the kinetic

definition of the solution. coefficientae and the microscopic length (Taking « as the
A problem is said to bevell posedf it has the following  heat conductivity, one has for iron at room temperature
properties: The solutior(i) exists, (i) is uniquely deter- ~10 °m?/s andé~10"8 m. Sovma.e~10> m/s, which is of

mined, and(iii) depends continuously on the assigned datathe order of the speed of souid.

The last requirement is imposed in connection with the fact The most common initial-value problem for E@®) is to
that the initial data of physical problems are determined exfind a solution9(x,t) for which the Cauchy condition§&)
perimentally and so small errors occur. It is thus necessary tare prescribed at the initial manifokd=0. However, since
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the linet=0 is a characteristic here, the Cauchy data cannoPhysical intuition suggests, however, thigtand -, do exist

be prescribed independently, but must satisfy a compatibilityonly for x<<0 andx>0, respectively. A superposition in the
condition [9]. For instance, if the Cauchy conditions are form of Eq.(16) does not make any physical sense.

given by 9|i—o=0,(x) and @;9)]i=o=0(x), we get from Now, the sideways problem will not be well posed unless
Eq. (8), for t=0, @,(x)=ad?0y(x). The characteristic the behavior at infinity is prescribed. In fact, the physically
Cauchy problenfor the diffusion equation is therefore posed realistic assumption that be bounded ag— [1] leads to

in the following way: In the regiont>0 find a solution a solution that exists, is unique, and depends continuously on

&(x,t) satisfying the initial condition the initial data given ak=0. The correct formulation of the
sideways problem thus is the following: Find the bounded
i=0=00(x). (13 solution of EqQ.(8) in the regionx>0 (—x<t<w), satisfy-
As is generally knowr{9], this problem is well posed for n9
arbitrary, smooth function®,(x) that have a well-defined ,3|X=0=Aeiwt, weR. (20)
Fourier transform. In the special case of a pure exponential,
0,=Aé"* (ke R), the solution takes the form Note that the boundedness condition “replaces” the second
) Cauchy condition.
F(x,H)=A L T(k)=—ak?, (14) Equation (15) is an example of a non-characteristic

Cauchy problem with the initial data given on a line that is

which is unique and stable far>0. timelike. For the following, it is important to consider also

Quite another situation arises when the Cauchy data arfe case where the Cauchy data are given on a spacelike line.
prescribed on a non-characteristic curve, say eigbt=0,

_ o oo _ x As we shall see, this problem is not well posed either.
with some finiteb € R. The diffusion equation then gives two In the half-space(x,t)|x € R,ct— 8x>0} we seek solu-

modes, one bound and the other divergen‘t‘ Withbt| . ions of Eq.(8) satisfying periodic initial data on the non-
A well-known example is the so-called “sideways prob- .p5racteristic spacelike linet— Bx=0 (BeR, 0<B<1).
lem™: In the half-spacex>0 (- <t<w) we seek a func-  pare ¢ is the speed of light. Withy=(1—pg2)" Y2, x»
tion 9(x,t), which satisfies Eq8), and which attains on the =(x,ct), 7*’=diag(l—1), and n“=—v(8,1) ’ et
non-characteristic lin&=0 the Cauchy conditions =v(1,8) respectively denoting the timelike and spacelike
I g=Adet (5,9 —Bd*!, 15 unit vector normal and parallel to the initial linet— 8x
Ix=0 (9 0)lc=0 (19 =n#x,=0, the general ansatz

with w € R. As can be easily seen, this problem is generall )
So|ved by y p g y ﬁ(x,t)"’elkeMXMJrrnMXM /C, ke R,F eC (21)

I(x,t)=(89,el T DAX 4 59, eliTDAxX)glot - (16) takes the form

— aiky(x—Bct)+ T y(t— Bx/c)
A fw)=*Vol2ea, (17 dixt)~e ' (22
with ﬁ|ct,ﬁxzo~exp6ky*1x). Inserting Eq(22) into the dif-
fusion equation(8) yields

D1 A%, 1) = 507 f w)e/ (XeRatahgmxivlza - (1g) 32 P
'ya?Fz— ( 1+2i 'yaEk) I'— yak?+iBck=0. (23

which represents a superposition of two modes

with the amplitudess¥; w) being determined by the two

Cauchy condition¢15). One has For k#0 the two rootsl’; (k) are complex. The real parts

are given by

51‘}12(w)——A+ B(I—l)\/2alw (19)

1 1

So, without imposing further restrictions, the general solu- 1 r1, RZZ—C+ \/ C?+ &C“r chf%vkz,
tion (16) explodes exponentially asincreases. Moreover, it (24)
shows a discontinuous dependence on the initial fb@&
As w—, EQ. (16) is bounded on the initial lin&k=0 but  whereC=(yaB?/c?) 1. From this one finds the inequalities
grows like expkyw/2a) for any x>0. Consequently, the
non-characteristic Cauchy problefi5) is not well posed. I'ritI'ge=C>0, (25

Recalling the intuitive concept of the characteristick
Sec. ), the reason for this becomes obvious. The initial data
given at some point (€,) affect the value of the solution
exactly in those points which lie in the domain of influence
Qo={(x,t)|xe R,t=1,}. Solving Egs.(8),(15) thus yields which imply that exactly one mode grows exponentially with
the solution forx>0 as well as forx<0. Confer the two time. Now, ask—, the general solution diverges like
modes of Eq(18). They describe damped waves which carry exp(y\/c3/2a B[t — Bx/c]\/k) for anyt> Bx/c, while the ini-
the initial data given ak=0 to the left and to the right. tial values are bounded dnr- 8x/c=0. Hence small changes

1
rerR2=§c2 c4+ C37 Sak?<0, (26

64
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in the initial data would cause considerable changes in the U2~2 _ v\ Y
solution, indicating that the problem is not well posed. ya gl —(1+2|7ac7k I'—yak+ivk=0; (33
IV. THE DIFFUSION EQUATION IN A GENERAL see Eq.(67) of Ref.[2]. Fork+0 the two rootd"; (k) are

LORENTZ FRAME complex. The real parts satisfy the conditions

Next we turn our attention to the diffusion equation in an .
inertial frameK, in which the medium moves with constant T ot e c ~0 (34)
velocity v in the negativex direction. Employing the Lorentz RLTT R2 27
transformation  rules d,=ydi—vyvdy and dy=ydy
—y(vlc?)d;, we get from Eq.(8) the boosted diffusion %K\ 2
equation Tl ro=— ( | T) <0, (35)

2
U 2 ~
&% |9=0. 27 \which imply that one of the two modes divergestas «.
From this the authors of Reff2] conclude that the Landau-
It is straightforward to verify that this equation still belongs Lifshitz theory of relativistic hydrodynamics is unstattle

to the parabolic type. In a covariant language, it is rewritterthe sense that small spatially bounded departures from equi-

2 U
Wo—vR) V= ay?| =2+

(@]

as librium will diverge with timg and hence must be aban-
doned as a physically realistic theory.
Uk, 9—alr9,0,9=0, (29 We disagree with this conclusion. The reason is that the
above non-characteristic Cauchy problem is not well posed,
where A#*= p’+c~2uku”, u*=y(—v,c), 9,=(%,0c0), in complete analogy to its non-relativistic equivalent, Eqgs.
and »**=diag(1~1). According to Eq(3), the equation of ~ (8),(22). [Note that Eq.(23) equals Eq(33) if B=v/c ] Its
characteristics becomes solution does not depend continuously on the initial data and

therefore does not meet one of the three mathematical re-
.o~ v~ 2 quirements to be posed with regard to realistic physical prob-
Y <9§<<P— gzﬂt'@) =0, (29 lems(cf. Sec. I). So it is the type of the initial-value prob-
lem here which is physically unacceptable, and not the
gpstability of the resulting solution.
Nevertheless, it is illuminating to interpret the Hiscock-
Lindblom solution in terms of wave propagatipwhile ig-

so that the family of characteristics comes out as the gener
solution of the ordinary differential equatioyp dx+ yc2dt

=0 or, equivalently, noring the fact that the domain of definition of the above
u,dx*=0. (30) Cauchy problem is restricted to the half spade, 1)[x
e R,t=0}]. The general solution consists of two damped
One finds waves traveling to the regiorts>0 andt<0, respectively.

Referring again to the discussion of the sideways problem,
~ e v~ Sec. lll, this is a consequence to be expected. Since the ini-
P(x,1) = yt+y Zx=t=const, (D tial manifold crosses the characteristigd), the information

(given att=0) propagategalong the characteristic lings

with t being the proper time measured in a comoving frame+ [,/c2]x=const) in both directions. One thus gets two
K. Recalling Eq(9), we explicitly see that the characteristics modes, each transporting the effects of the initial data in the
are invariant under Lorentz boosts; cf. Sec. Il. respective region.

With Eqg. (31), the relativistic equivalent to the character- Itis important to note that the appearance of a mode run-
istic Cauchy problenf13) is the following: Find a solutionto  ning backwards in time in non-comoving frames is directly
Eq. (27) which satisfies prescribed values at the initial mani-related to the infinite signal speeds accompanying the para-
fold T+ (v/c?)x=0. Clearly, this problem is well posed only bolic equation. In fact, it is well knowfi11] that “superlu-
for T+ (v/c?)x>0. Its exponential solution can easily be Minal acausality” in a Lorentz framk causes “chronologi-
found from Eq.(14) by making use of the Lorentz transfor- cal acausality” in any other Lorentz fram&s For example,
mation,t= yt+ y(v/c?)x andx= yx+ yvt. consider a process in a fram¢ whereby an eventP;

Now, the solutions of Eq27) that Hiscock and Lindblom = (X,t) causes another eveRp=(x+ Ax,t+At) at superlu-

[2] examine satisfy periodic initial data e/ (ke R) on the minal velocity U>c. Let.the t|me~d|ffere'nce pat>0 §o
non-characteristic liné=0. Taking thatAx=UAt>0. Then, in a~fram¢(, moving with velocity
v relative to K, we haveAt=yAt— y(v?/c)Ax=yAt(1

9(XT)~el Tt 32 —vU/cd). If c¥U<v<c, this yieldsAT<0. This means
that inK the signal goes backward in time or, equivalently,
they find the dispersion relation that the respons®, precedes the stimulus;.
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Now, as we have seen in Sec. lll, the superluminal acauposedness of Cauchy problems for boosted systems amounts
sality in K does not lead to any physical consequences; it i$o requiring a new type of differential equation for the rest
automatically precluded by a restriction to the hydrodynamidrame, ones for which the sideway problem is well posed.
range of validity. Accordingly, we see from Eg84) and  Now, there are few equations in physics which are better
(35) that the damping rate of the mode which propagates irtonfirmed than the rest frame diffusion equations as we
the past is bounded below Byr.,=c* yav?2. With 7 denot-  know them: for temperature, velocity and concentration. And

ing the characteristic microscopic time i (referred to as it seems highly unlikely that one can change something as

the collision time in dilute systemand7= yr the respective basic as the ill-posedness of the S|dewa)_/ problem W.'thC.)Ut
L destroying the agreement with the experiments. Resigning
time in K, we thus have

ourselves to the fact that the standard Cauchy problem on a
boosted time slice may be ill posed, then clearly there is no

4 . .
c reason whatever to abandon the Landau-Lifshitz theory.

~ ~ T
FR+T=a—Uz>1. (36)

V. GENERALIZATION TO CASES OF MORE THAN ONE
(For instance, takingr as the heat conductivity of a piece of SPATIAL DIMENSION

i ~ —5 2 ~ —12 T - . . . .
[01”6328 _?ﬁ.sawhlo n; /s indT le S. SO éhatlf R+g . Let us finally examine the general case in which the spa-
- ) This shows that the mode running backwards "Ntial dimension of the diffusion equation is greater than 1.

time t decays on a time scale that is much shorter than thgonsider the covariant equatid@8), with w running now
microscopic one, and hence is far outside the hydrodynamiom 1 to 4. As we have seen in Sec. IV, its characteristics

regime. o are determined by the ordinary differential equation
Let us now come back to the non-characteristic Cauchy
problem. Since the domain of definition of the solution is u,dx*=0, (37)

{(x,1)[xe R, t=0}, the mode reflecting the chronological

acausality is defined only for positive timés As a conse- Which assigns to each poi_m‘ an infini_tesimal chara_cteristic

quence, the superposed solution does not depend conting=1at normal to the direction of the time-like velocig* at

ously on the initial data, and the problem is ill posed. Withthat point. The crucial point now is that generally these in-

other words, prescribing Cauchy conditions on a nondfinitesimal 3-flats do not integrate to 3-surfacegx”)

characteristic hypersurface in a 2-dimensional flat spacetimg const. .

does not lead to a realistic physical problem. Such a problem T0 see this, let us suppose that a general integ(al)

might be obtained only if one prescribes the value of the™Cconst exists. Then, we have

solution at infinity(cf. the sideways problem in Sec.)libr if

the Cauchy data are prescribed on one of the characteristics. de=(d,e)dx*=0 (38)
Now, what are the physical conclusions after the math-

ematical ones have been drawn? Given the fact that the staAnd: nence,

dard Cauchy problem is ill posed in the Landau-Lifshitz

theory, that one cannot arbitrarily prescribe initial data of

physical quantities on a boosted time slice, are we to con-

clude that the theory is defunct—and to be replaced by on¥’

in which the Cauchy problem is well posed? Is the capability

to accommodate arbitrary initial data on boosted time slices a

sine qua norfor a heal'ghy, physical theory? We believe thefrom whichg*"’“ﬁuvaauﬁ=0 or

answer is no, for two different reasons, although we concede

that an affirmative answer may also be upheld. Our reason _ . _ _

are the following: | | U (IU,, = 3,U,) + U, (94U, = U,) +U,(9,U—daU,,) (4%
(i) All differential equations belonging the the hydrody-

namic theory and accounting for coarse-grained, irreversiblgagits. Equatiort41) is a necessary condition for integrabil-
physics—including the diffusion equation—possess a prejty. |t can be provedsee e.g[12]) that it is also sufficient;
ferred inertial system, in which the material is at rest. This isj g if it is satisfied, a general integral exisfislote that Eq.

not true with respect to microscopic theories.for wh!ch t_he(41) is identically satisfied foer, u,»=1,2. Thus, in the case
Cauchy problem is known to be well posed in any inertialof one spatial dimension, characteristics can always be
frame, consider for instance the vacuum Maxwell equationsggng]

(if) More importantly, in our simple example considered  \ytiplying the condition of integrability withu®, one
above, we actually know what the initial data on a boostegijgs
time slicet =0 correspond to in the rest frame, namely to an
ill-posed, sideway problem arising from data on a non- A““AVB(&auﬁ—aﬁua)zo. (42
characteristic spacelike linet— y(v/c)x=0. This connec-
tion is completely general, and especially independent of th&o characteristic hypersurfaces exist only if the background
Landau-Lifshitz theory. Therefore, an insistence on the wellequilibrium state is non-rotating. This fact has led various

d,p=N\U,, (39
ith some\ =\ (x*). Sinced ,d,¢=4d,d,,¢, this yields

—y 1
d,u,—d,u,=N""(u,d,N—Uu,d,N\), (40)
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authors to believe that generally the parabolic diffusionin the case of one spatial dimension. Unfortunately, very
equation lacks an initial-value formulation, and hence turndittle seems to be known about the non-characteristic Cauchy
out not to be viable. This, however, would be true only if the problem in spacetimes with more than one spatial dimension.
non-characteristic Cauchy problem is ill posed, just like it isFurther work should give clarity here.
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