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A previously found momentum-dependent regularization ambiguity in the third post-Newtonian two point-
mass Arnowitt-Deser-Misner Hamiltonian is shown to be uniquely determined by requiring global Poincare
invariance. The phase-space generators realizing the Poialgatara are explicitly constructed.
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The equations of motion of a gravitationally interacting the point-mass divergencies is manifestly Poincianeari-
two point-mass system have been derived some years ago apd. In such a case thd-body dynamics will be invariant
to the 5/2 post-Newtonia2.5PN approximatiort, in har- ~ under the representation of .the quncgreup induced on
monic coordinate$1—3]. Recently, it has been possible to the dynamical variables, sag,(t), x4(t), a=1,... N, by
derive the third post-Newtoniai8PN) Hamiltonian of a two  the action of the usual linear Poincaransformations. This
point-mass systerf#] within the canonical formalism of Ar-  global Poincaresymmetry has been explicitly checked at the
nowitt, Deser and MisnefADM) [5]. It was found that, at 2PN level in Ref[11] by proving that the 2PNacceleration-
the 3PN level, the use of Dirac-delta-function sources ti€Pendent two-body Lagrangian in harmonic coordinates
model the two-body system causes the appearance of ba 2,2| changed only by a total time derivative under a ge-

: . . ric, infinitesimal Poincargansformation. In this work we
divergent integrals whiclicontrary to what happened at the

) consider the 3PN two-body Hamiltonian derived by Réi.
2.5PN[3,6] and 3.5PN 7] levelg cannot be unambiguously \yithin the ADM canonical formalism. This formalism is not

regularized[4,8,9. The ambiguities in the regularization of manifestly Poincarenvariant because it splits space and
the 3PN divergent integrals are parametrized by two quantitime, and fixes the coordinates by the following gauge con-

ties: wstatic AN winetic- ditions: &; 7' =0, d;(ij — 59ss5;)=0. This lack ofmani-
Prompted by a recent remafR0], the purpose of this festPoincareinvariance is not problemati¢though it intro-
work is to show that requiring th@global) Poincareinvari-  duces some technical complicatipndndeed, we shall

ance of the 3PN ADM Hamiltonian dynamics uniquely de- explicitly show in this paper that the global Poincanam-
termines onéand only ong of these regularization ambigu- metry of the two-body dynamics can be realized in phase
ities: namely, the “kinetic ambiguity” parametemiic.  SPace, albeit by a somewhat complicated, nonlinear action.
[The “static ambiguity” wgic femains unconstrained be- ~ The basic principle that we shall follow to study Poincare
cause it parametrizes @(c~°®) Galileo-invariant additional invariance of the 3PN two-body Hamiltoniati(x,.pa), &

contribution to the 3PN HamiltoniahParallel work in the ~=1,2, with its associated Poisson brackets structure,
harmonic—cpordin_atgs approach to 3PN dynamics has re- dA 9B oA B
cently obtained similar resul{4.8]. {A(X5,Pa),B(Xa,Pa) =2, 2 P el I
Note that general relativity admifsvhen considering iso- a T | dXg 7Pai Pai dx,
lated systemsthe full Poincaregroup as ajlobal symmetry. (1)

Therefore, whatever the coordinate system Ussdong as it s the following: the presence of a Poincasgmmetry is
respects asymptotic flatnesthe general relativistic dynam- equivalent to requiring the existence of “generators”
ics of N-body systems should embody some representatiop~ j»v realized as functionB*(X, ,p.),J**(Xa,p,) on the
of this global Poincaresymmetry. When solving Einstein’s two-body phase-space(,x,,p;,p,), whose Poisson brack-
equation by a weak-field, “post-Minkowskian” expansion, ets (1) satisfy the usual Poincaralgebra(here we sefc
Vg gt = p*r=h*"=G W5+ G?higi+ -, and fixing the =1):

gauge by the “harm_onicity _cond_ition,;?v h#”=0, the_whole [P# P"}=0, (2a)
scheme stays manifestly invariant under the uglinkar
representation of the PoinCageoup: x'#=A* x"+a* (as- {P#,3P7} = — PP+ p*7 PP, (2b)

suming that the regularization procedure used to deal with [JB7 JPTY = — PP JHO 4 kP JVT 4 pTRIPY— pTVIPR (20)

wheren,,=diag (—1,+1,+1,+1).

The functionsP*(x,,pa),J*"(X4,pa) generatein phase
space the infinitesimal Poincareransformations:s,, ,F
={F,a"P,+30*"J,,}. Finite transformations are thém

8rincip|e) defined by exgonentiatin these infinitesimal ac-
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lwe recall that the PN approximation” refers to the terms of
order @/c)?"~(GM/(c?r))" in the equations of motion.
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tions. The satisfaction of the algep(a) ensures that one 1

thereby generates a consistent Poinsymametry. The time H(Xa,Pa) = 2, MaC?+Hy(Xq,Pa) + — Hipn(Xa,Pa)
componentP? (i.e., the total energyis realized as the a c
Hamiltonian H(x,,p,) (including the rest-mass contribu-
tion). The other generators can be decomposef'ashree i (5)
momentun), J'=3¢''J,, (angular momentup and K' c8)’

=J'0 (boost vector. One further decomposes the boost vec- ) ) ]

tor K' (which represents the constant of motion associated 6t the Nevvztonlan order, i.e., when keeping the rest-mass
the center of mass theorénas K'(x,,pa;t)=G'(Xs,p.) term 2 m,c“ and the Newtonian-level Hamiltonian,

1 1
+ gHZPhl(Xaapa)+ EHSPN(Xaapa)"'O

—tP'(X4,ps) so that the total time derivativelK'/dt 2 s
=gK'/ot+{K',H}=—P'+{G',H}=0. Finally, the Poincare Hy(Xepa) =S Pa ELANES MaMy ®)
algebra explicitly reads aral 4 om, 29 652 Tap |

TR (rap=|Xa—Xp|), it is easily checked that the usual Newton-
(P H=1Ji H}=0, (39 ian center-of-mass vector
{Jiypj}zsijk Pk: {‘]i!‘]j}zsijk‘]kl (3b) . .
Ghy(Xa Pa)= 2 MaXy (7)
{Ji ,Gj}ZSijka, (3C) . . . . .
satisfies Eqs3d)—(3f). [Note that, in this approximation, the
_ _p. right-hand side of Eq(3e) yields (X,m,)d;; from the rest-
{Gi Hi=Pi, 30 mass contribution td.] _
s To study the existence d@&' beyond the Newtonian ap-
{Gi,Pj}=c""Hgy, (3¢ proximation, we need the explicit expressions of the 1PN,
2PN and 3PN contributions to the Hamiltoni@h) in an
{Gi.Gj}=—c 2ej k. (3f)  arbitrary reference frame. The 1PN contribution,

As the gauge fixing used in the ADM formalism mani- 1 (pf)2 1 Gmm,
festly respects the Euclidean groymhich means that HipN(Xa.Pa) =~ 3 2 *3
H(X,,pa) is translationally and rotationally invarigntthe B

generators; andJ; are simply realized as 14(p1~ D) s (N12° P1)(Nypr pz)]

2

+

m;m m;m
Pi(xa,pa>=§ Pai» (43 v v

1Gmm, G(m;+m

Z I’l 2 ( : 2)+(1<_)2)' (8)
‘]i(xa-pa):; EikIXaPal (4b) 12 12

has been known for a long time. The operatioti (1< 2)”

in Eqg. (8) denotes the addition for each term in E) (in-

and exactly satisfy Eqg:3a and (3b). The condition(3c)  cluding the ones which are symmetric under label exchange
will also be exactly satisfied i5; is constructed as a three- of another term obtained by the label permutatien 4. The
vector fromx, andp,. Finally, the condition for full Poin- 2PN-accurate explicit expression Ef(x,,p,), in the ADM
care invariance boils down to the existence of a vectorformalism, was derived in Ref13] [Eq. (2.5) therd. [The
Gi(Xa,Pa) satisfying the three non-trivial relatiori8d), (3¢)  corresponding explicit Lagrangiadm,oy (x5 ,X,) is given in
and(3f), in which enters, besidé% andJ; given in Eqs(4a  Ref. [14].] These results corrected earlier results by Ohta
and (4b), the full (3PN-accurateHamiltonian: et al.[15]. The final result reads

1 (p?)® N } Gmym,

(PDH? 11 pip5  (p1-pa)? P (N2 P2)?  (P1-P2) (N2 P1)(NypPo)
HZPN(Xaypa):l_G m5 8 >y - + -

6

; M2 m 2 mm2  mZm2 mam3 m2m3
3 (N1 p1)2(Ni-p)?| 1 G?mym p? p3
E( 12 pl)z( 212 P2) . 21 2 m, 10_12+19_22
mymy EP) my m;
1 27(p1-P2) +6 (Ngp-pp)(Nyy 1 Gmym, G%(m?+5mym,+m?2)
— Z(my+my) (P1-P2) +6 (N12-P1)(N12- Pp) 2 Lbmm, 1 1M+ M, +(152). )
2 m;m, 8 I ra,
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Reference[4] derived the 3PN-accurate ADM Hamil- ADM coordinatesx,, p, (we henceforth drop the primes for

tonian restricted to the center-of-mass reference frapg
+p,=0. For the present work we have generalized R&f.

notational simplicity, the calculation of the 3PNorder-
reducedl Hamiltonian consists in evaluating three very com-

in deriving H;py in an arbitrary reference frame. Our starting plicated integrals:

point for doing this calculation is the improved form of the

3PN Hamiltonian,Hgpy, given in Appendix A of Ref[9]
[Eqgs. (A8)—(A10) therd. Note first thatH spy defined there
denotes thehigher-order Hamiltonian Hzpp(Xa ,Pa »Xa »Pa)
defined by eliminating the field variables]", h" in the
“Routh functional” R(X,.pa.hjj" .hij") mtroduced in Eq.

ij
(33) of Ref.[4]. However, it was shown in Ref9] that one

could reduce the higher-order Hamiltonian
Hapn(Xa:Pa Xa.Pa) to an ordinary  Hamiltonian
Hapn(X4 ,P2), at the price of the following3PN-leve) shift
of phase-space coordinates:

X,=Xa+ dHIdps, PL=Ppa— IH/dX,. (10

After performing the shift(10) with respect to the original

5 (pD* 1 Gmmy| (pi)g+

((py-p2)2+4p3 pz)pl

5
H3PN:_1_28§ (p§)4+f d3X(hr1ed+ h,+hs). (11

The integrand#$, ,h,,h; are given in Eqs(A9) of [9]. The
order-reduced integraritf®® is defined(as shown ir{9]) by
usmg the Newtonian equations of motion to ehmmxe,;eand

pa When computing the time derivative|" (which enters the
last two terms oh;). As explained |r{9] this new form of
the 3PN Hamiltonian is free of “contact term” ambiguities,
and the integrals it contains can all be uniquely defined by
using theRiesz-type regularizatioprocedure explained in
[4]. We have recomputed from scratch all the integrals by
using the generalized Riesz formula giverj4n. This Riesz-
regularized3PN Hamiltonian reads explicitliin an arbitrary
reference frame

(PTP5—2(P1-P2)D(P1-P2)

H3PN(Xa 1 Pa) = 5

32 o m;

128

(pl(n12 P2)?+p3 (N1p P1)? )pl

pl(pl P2)(N12:P1) (N1 pz)

3 3
m1m2 m;m;

p1 (p1-P2)(Ng2 P2)?

mlm2

L pZp3—10(p;-P2)?) N1z 1) (Nyor P

pl(n12 P1)2(Nyy: pz)

mlmz m1m2

(p1 P2)(N12- P1)%(N1p- Po)?

mlm2

p1 (N12°P1)(Ngp- pz)

(n12 p1)3(N1z p2)?

m1m2 m1m2

1 25(py-py)2+371p2 p3 .

17pi(nizpy)? 1

mim3 mim;
GPmamp| 1 )(p1)2 115  pi(p1-p2)
T T I TR

(15p7 (N12P2) +11(py-P2) (N12-P1))(Nyp Py)

—mMm
48 2 m2m2 16 m g ! mm,
5 (N p)? 3 (N p)3(NizP2) 125 (P1-P2) (N2 P1)(Ni2-P2) 10 (N Pp)(Nyp Po)?
T .3 2Mm 3 1o 2 2 T3 m 2 2
m; mjm, mim; mim;
G3m;m, 3 p?
+r—§2 - 466m3+ 473—Zw2 m,m,+ 150m3 m—{rE 77(mi+m3)
1 (P1-p2) 1 3 (N1 pl) 1
2 el 2 S 2 (N12-P1)~
+| 143 27 )mlmz) mm, |16 61mj 43+477 m;m, mi 16 21(m1+m2)
3 (N2 P (N1 po) | 1 G*mym3[ (227 21
co2 - el 22 5 -
+ 119+47T )mlm2> m,m, ) riz 3 4 v m1+m2 +(1 2) (12)

However, it was emphasized in Refd,8,9 that the nature

ambiguitieshave been discussed in Ref4,8], and, in more

of the divergent integrals which had to be regularized todetail, in the Appendix A of9]. We have recomputed, in an
computeH 55k, Eq. (12), was such that the result should be arbitrary reference frame, the various regularized versions of

3PN
considered as being partly ambiguous. Thesgularization

all the momentum-dependent formal “exact divergences”
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(which imposes thaM, be even, and\, odd, underp,

tributions should formally vanish, but their regularized val- _, _, y we did not impose ang priori constraints on the
ues do not vanish and thereby exhibit the regularization amyass dependence of the coefficieatém, ,m,), nor did we

biguities present at 3PN. We fin@n confirmation of the
result given in the Introduction section of Ré#]) that all

use the 12 relabeling symmetry.
The 1PN approximation t&' being well known(see,

the momentum-dependent regularization ambiguities arg g 116]),

equivalent to adding to Eq12) a term of the(specifi¢) form

kinetic

— 1 3 3
H3zpn (Xa;Pa) = + 2 Wiinetic (G” My m2/r12)

X[pi—3(N12 P1)?+p5—3(N12 p2)?], (13
where wyinetic IS @n arbitrary parameter. In addition to this
“kinetic” regularization ambiguity, it was pointed out i8]
and [9] that there is also a ‘“static”(i.e., momentum-
independentregularization ambiguity of the form
SN Xa :Pa) = + ®taicl G* MF M3 (Mg +my)/ri], 14

14

H

wherewgiciS a second arbitrary parameter. Finally, the 3PN

(order-reducedHamiltonian is of the form

Hzpn(Xa,Pa) =H

static

re kinetic
aent Haen +H3PN, (19

and depends on two, up to now undetermined, real param-

eterswyinetic aNd wggatic-

The problem to solve is now the following: does there

exist a(3PN-accuratecenter-of-mass vector, of the generic
form,

Gi<xa,pa>=§ [Ma(Xp . Po) X5+ Na(Xp ,Pp) Pal, (16)

whereM, and N, are scalars that reduce to, and 0, re-

MiPN: %(pi/ml)_ 3(Gmymy,/r ),

(183

Ni"N=0, (180
with M3”N obtained by a -2 relabeling, we started looking
for the most generaB' at the 2PN level. At this level, there
are 20 unknown coefficients,, and Eq.(3d) yields 40 equa-
tions to be satisfied. We found that there is a unique soltition
to these redundant equations, namely

2 2
mp m;

1 (p3)? N } Gmym,

7 (P1-P2)
8 mi 4 P

M iPN: _
m;m;

N (N12°P1)(N12° P2)
mim;

, (193

} 1 Gmym, G(m;+m,)
"2

M2 2

Ni™N=—2G (N1 py), (19b)
with M3 andN3™ obtained by a -2 relabeling.

We havea posteriori checked that this unigue ADM-
gauge, 2PN center-of-mass vector agréter taking into
account the shifka®™ =z,— §*z,(z,z) [13]) both with the

harmonic-gauge 2PNG'(z,,z,) first derived in Ref.[11],

and with the Landau-Lifshitz-likg16], ADM-gauge calcula-
tion of G'(x,,X,) performed in Ref[17]. We have also
checked that the remaining Poincaymmetry constraints,

spectively, in the Newtonian approximation, such that EqsEqgs.(3e) and (3f), are also fulfilled. Concerning E¢3e), it

(3d)—(3f) are fulfilled (within the 3PN accuragywhen the
Hamiltonian is given by inserting Eq$6), (8), (9) and(15)

in Eqg. (5)? We have tackled this problem by the method of
undetermined coefficients, i.e., by writing the most general

is easy to see, in general, that it is equivalent to the constraint

1
g Mo Po) = 5 H(Xo .Py). (20

expressions for the successive PN approximations to the

functionsM 4(Xp ,pp) @andNL(Xy ,Pp),
Ma=m+c 2M™N e M+ e e M,
Na=c 4 N2PN4 ¢ =6 N3PN, (17)
as sums of scalar monomials of the form
Crgnynonangndl 12 (D)™ (P5)"2 (1 P2) "Nz Py)"™
X (N1p-P2)"s,

with positive integersg, . . . ,ns. In addition to dimensional
analysis(which constrains the possible valuesmyf, . . . ,ns
at each given PN ordgrand Euclidean covariance, including

At the 3PN level, the most general ansatzfof” N3PV,
involves 78 unknown coefficients,, while Eq.(3d) yields
138 equations to be satisfied. The quantitye;c param-
etrizing the momentum-dependent regularization ambiguity
(13) in the 3PN Hamiltonian enters the system of equations
for the unknownc,’s. (Indeed, it was recently noticed that
HKID®I s not separately boost-invariafit0].) By contrast,
the other regularization ambiguitg4) drops out of the prob-
lem (becauseH3an"is Galileo invariant We found that there
was auniquevalue of wyjeiic for which the system of equa-
tions to be satisfied was compatible, namelyeiic
=41/24. If wineiic* 41/24, the 3PN Hamiltonian does not
admit a global Poincar@variance. lfwjneic=41/24, there is
a uniquesolution to Eq.(3d), namely,

parity symmetry, we only required time reversal symmetry

°Note in particular the absence of terms miximgand p..

3All the algebraic manipulations reported in this paper were done
with the aid ofMATHEMATICA .
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M3PN_i(pi)3 1 Gmm, (p§)2+(p§)2_llpip§_ (P1-P2)? p%(nlz-p2)2+ p5 (N12-P1)°

116 ms 16 1y md  omd T mimd T mPm2 m2m2 m2m2
: Nyor Ny N P)2(NoPo)?| 1 G2mym 2 2
_12(p1 P2) ( 12 pzl)( 12 P2) _3( 12 pl)z( 212 p2) = 21 2 (112ml+45m2)p—12+(15ml+2m2)p—22
m;m; m;ms; Mo my m;
1 : Nyo Nyoe N> P1)2 (Nyo Po)?
——(20%1+115n2)(p1 P2) —(31m1+5m2)( 12 P1)(N12- P2) +( 122P)° (N2 Po)
2 m;m, m;m, my m,
1 Gmym, G?(m3+5m;m,+ m3)
8 Iy ri,
3PN_ 1 2 2
NI = 3(G/mimy)[ 2 (P1-P2)(N12- P2) — P2 (N12-P1) +3 (N2 P1) (N2 P2) ]
+25(G?/11)[19my (g5 p1) +(130m; +137my) (Ngo o). (21b)

We have then checked that this unique solution does satisfienormalization theopythat we were able to use a non-
the remaining Poincarsymmetry constraints, Eqé3e) and  Poincareinvariant regularization, but them, posteriorj cor-
(3f), or, equivalently, Eq920) and(3f). It is to be noted that rect for it in a unique way. There remains, however, a last
the last two momentum-dependent termsl\/lriPN, propor-  regularization ambiguit§ Eq. (14), which has all the needed
tional to (N1, p1)2/m;— (Ny,- Po)%/m,, are antisymmetric in  global symmetries and cannot be fixed in this way.
the labels 12 and therefore drop out in the constrai20), We thank L. Blanchet for informing us, before completion
which readsvi EPN-{— MgPN: Hopy. IN fact, the Corresponding of our and his work, that he and G. Faye had succeeded in
monomials appear nowhere Hh,py, but must crucially be —determiningwyneic: He communicated to us the numerical
included inM 3PN, value wyineic=1.71.P.J. gratefully acknowledges useful dis-

The main conclusion of this work is therefore that thecussions with Piotr Bizorand Professor Andrzej Staruszk-
necessary existence of a global Poincayenmetry in the 1€wicz. P.J. and G.S. thank the Institut des Hautesdés
two-body problemuniquely fixeghe regularization ambigu- SC|ent|f|q_ues for hospitality dur_mg the realization of this
ity parametemw, ;o to the value 41/24. The explicit realiza- WOrK. This work was supported in part by the KBN Grant 2
tion of this Poincarénvariance is then defined by the phase-P03B 094 17(P.J) and the Max-Planck-Gesellschaft Grant
space generatds'(x,,p,) defined by Eqs(16), (17), (18), 02160-361-TG74G.S).
(19), and(21).

Within the ADM formalism it would be very difficult to
implement a Poincarmvariant regularization procedure. 4ps argued in Ref[8] this “static” regularization ambiguity
(The situation is different in harmonic coordinates, whereseems to be linked to the breakdown of the possibility to use Dirac-
one can conceive a Lorentz-invariant regularizafio8].) It delta functions to model extended objects, such as neutron stars or
is very satisfyingland in keeping with the general lore about black holes.
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