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Poincaré invariance in the ADM Hamiltonian approach to the general relativistic
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A previously found momentum-dependent regularization ambiguity in the third post-Newtonian two point-
mass Arnowitt-Deser-Misner Hamiltonian is shown to be uniquely determined by requiring global Poincare´
invariance. The phase-space generators realizing the Poincare´ algebra are explicitly constructed.

PACS number~s!: 04.25.Nx, 04.20.Fy, 04.30.Db, 97.60.Jd
g
o

to

t
a
e

y
f
n

e-
-

-

r

-
tio
s
n,

i

he

s
e-

t
d

on-

se
n.
re

s’’

-

f

The equations of motion of a gravitationally interactin
two point-mass system have been derived some years ag
to the 5/2 post-Newtonian~2.5PN! approximation,1 in har-
monic coordinates@1–3#. Recently, it has been possible
derive the third post-Newtonian~3PN! Hamiltonian of a two
point-mass system@4# within the canonical formalism of Ar-
nowitt, Deser and Misner~ADM ! @5#. It was found that, at
the 3PN level, the use of Dirac-delta-function sources
model the two-body system causes the appearance of b
divergent integrals which~contrary to what happened at th
2.5PN@3,6# and 3.5PN@7# levels! cannot be unambiguousl
regularized@4,8,9#. The ambiguities in the regularization o
the 3PN divergent integrals are parametrized by two qua
ties: vstatic andvkinetic.

Prompted by a recent remark@10#, the purpose of this
work is to show that requiring the~global! Poincare´ invari-
ance of the 3PN ADM Hamiltonian dynamics uniquely d
termines one~and only one! of these regularization ambigu
ities: namely, the ‘‘kinetic ambiguity’’ parametervkinetic.
@The ‘‘static ambiguity’’ vstatic remains unconstrained be
cause it parametrizes aO(c26) Galileo-invariant additional
contribution to the 3PN Hamiltonian.# Parallel work in the
harmonic-coordinates approach to 3PN dynamics has
cently obtained similar results@18#.

Note that general relativity admits~when considering iso-
lated systems! the full Poincare´ group as aglobal symmetry.
Therefore, whatever the coordinate system used~as long as it
respects asymptotic flatness!, the general relativistic dynam
ics of N-body systems should embody some representa
of this global Poincare´ symmetry. When solving Einstein’
equation by a weak-field, ‘‘post-Minkowskian’’ expansio
Ag gmn2hmn[hmn5G h(1)

mn1G2 h(2)
mn1•••, and fixing the

gauge by the ‘‘harmonicity condition,’’]n hmn50, the whole
scheme stays manifestly invariant under the usual~linear!
representation of the Poincare´ group: x8m5Ln

m xn1am ~as-
suming that the regularization procedure used to deal w

1We recall that the ‘‘nPN approximation’’ refers to the terms o
order (v/c)2n;„GM/(c2r )…n in the equations of motion.
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the point-mass divergencies is manifestly Poincare´ invari-
ant!. In such a case theN-body dynamics will be invariant
under the representation of the Poincare´ group induced on
the dynamical variables, sayxa

i (t), ẋa
i (t), a51, . . . ,N, by

the action of the usual linear Poincare´ transformations. This
global Poincare´ symmetry has been explicitly checked at t
2PN level in Ref.@11# by proving that the 2PN~acceleration-
dependent! two-body Lagrangian in harmonic coordinate
@12,2# changed only by a total time derivative under a g
neric, infinitesimal Poincare´ transformation. In this work we
consider the 3PN two-body Hamiltonian derived by Ref.@4#
within the ADM canonical formalism. This formalism is no
manifestly Poincare´ invariant because it splits space an
time, and fixes the coordinates by the following gauge c
ditions: d i j p

i j 50, ] j (gi j 2
1
3 gssd i j )50. This lack ofmani-

fest Poincare´ invariance is not problematic~though it intro-
duces some technical complications!. Indeed, we shall
explicitly show in this paper that the global Poincare´ sym-
metry of the two-body dynamics can be realized in pha
space, albeit by a somewhat complicated, nonlinear actio

The basic principle that we shall follow to study Poinca´
invariance of the 3PN two-body HamiltonianH(xa ,pa), a
51,2, with its associated Poisson brackets structure,

$A~xa ,pa!,B~xa ,pa!%[(
a

(
i

S ]A

] xa
i

]B

]pai
2

]A

]pai

]B

]xa
i D ,

~1!

is the following: the presence of a Poincare´ symmetry is
equivalent to requiring the existence of ‘‘generator
Pm,Jmn, realized as functionsPm(xa ,pa),Jmn(xa ,pa) on the
two-body phase-space (x1 ,x2 ,p1 ,p2), whose Poisson brack
ets ~1! satisfy the usual Poincare´ algebra ~here we setc
51):

$Pm,Pn%50, ~2a!

$Pm,Jrs%52hmrPs1hms Pr, ~2b!

$Jmn,Jrs%52hnr Jms1hmr Jns1hsmJrn2hsnJrm, ~2c!

wherehmn5diag (21,11,11,11).
The functionsPm(xa ,pa),Jmn(xa ,pa) generate~in phase

space! the infinitesimal Poincare´ transformations:da,vF
5$F,amP 1 1 vmn J %. Finite transformations are then~in
m 2 mn
principle! defined by exponentiating these infinitesimal ac-

©2000 The American Physical Society01-1
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DAMOUR, JARANOWSKI, AND SCHÄFER PHYSICAL REVIEW D62 021501~R!
tions. The satisfaction of the algebra~2! ensures that one
thereby generates a consistent Poincare´ symmetry. The time
componentP0 ~i.e., the total energy! is realized as the
Hamiltonian H(xa ,pa) ~including the rest-mass contribu
tion!. The other generators can be decomposed asPi ~three
momentum!, Ji[ 1

2 « ikl Jkl ~angular momentum!, and Ki

[Ji0 ~boost vector!. One further decomposes the boost ve
tor Ki ~which represents the constant of motion associate
the center of mass theorem! as Ki(xa ,pa ;t)[Gi(xa ,pa)
2t Pi(xa ,pa) so that the total time derivativedKi /dt
5]Ki /]t1$Ki ,H%52Pi1$Gi ,H%50. Finally, the Poincare´
algebra explicitly reads

$Pi ,H%5$Ji ,H%50, ~3a!

$Ji ,Pj%5« i jk Pk , $Ji ,Jj%5« i jkJk , ~3b!

$Ji ,Gj%5« i jkGk , ~3c!

$Gi ,H%5Pi , ~3d!

$Gi ,Pj%5c22Hd i j , ~3e!

$Gi ,Gj%52c22« i jk Jk . ~3f!

As the gauge fixing used in the ADM formalism man
festly respects the Euclidean group@which means that
H(xa ,pa) is translationally and rotationally invariant#, the
generatorsPi andJi are simply realized as

Pi~xa ,pa!5(
a

pai , ~4a!

Ji~xa ,pa!5(
a

« iklxa
kpal , ~4b!

and exactly satisfy Eqs.~3a! and ~3b!. The condition~3c!
will also be exactly satisfied ifGi is constructed as a three
vector fromxa andpa . Finally, the condition for full Poin-
caré invariance boils down to the existence of a vec
Gi(xa ,pa) satisfying the three non-trivial relations~3d!, ~3e!
and~3f!, in which enters, besidesPi andJi given in Eqs.~4a!
and ~4b!, the full ~3PN-accurate! Hamiltonian:
02150
-
to

r

H~xa ,pa!5(
a

mac21HN~xa ,pa!1
1

c2
H1PN~xa ,pa!

1
1

c4
H2PN~xa ,pa!1

1

c6
H3PN~xa ,pa!1OS 1

c8D . ~5!

At the Newtonian order, i.e., when keeping the rest-m
term Samac2 and the Newtonian-level Hamiltonian,

HN~xa ,pa!5(
a

pa
2

2ma
2

1

2 (
a

(
bÞa

Gmamb

r ab
, ~6!

(r ab[uxa2xbu), it is easily checked that the usual Newto
ian center-of-mass vector

GN
i ~xa ,pa![(

a
maxa

i ~7!

satisfies Eqs.~3d!–~3f!. @Note that, in this approximation, th
right-hand side of Eq.~3e! yields ((ama)d i j from the rest-
mass contribution toH.#

To study the existence ofGi beyond the Newtonian ap
proximation, we need the explicit expressions of the 1P
2PN and 3PN contributions to the Hamiltonian~5! in an
arbitrary reference frame. The 1PN contribution,

H1PN~xa ,pa!52
1

8

~p1
2!2

m1
3

1
1

8

Gm1m2

r 12
F212

p1
2

m1
2

114
~p1•p2!

m1m2
12

~n12•p1!~n12•p2!

m1m2
G

1
1

4

Gm1m2

r 12

G~m11m2!

r 12
1~1↔2!, ~8!

has been known for a long time. The operation ‘‘1(1↔2)’’
in Eq. ~8! denotes the addition for each term in Eq.~8! ~in-
cluding the ones which are symmetric under label exchan!
of another term obtained by the label permutation 1↔2. The
2PN-accurate explicit expression ofH(xa ,pa), in the ADM
formalism, was derived in Ref.@13# @Eq. ~2.5! there#. @The
corresponding explicit LagrangianL2PN

ADM(xa ,ẋa) is given in
Ref. @14#.# These results corrected earlier results by O
et al. @15#. The final result reads
H2PN~xa ,pa!5
1

16

~p1
2!3

m1
5

1
1

8

Gm1m2

r 12
F5

~p1
2!2

m1
4

2
11

2

p1
2 p2

2

m1
2m2

2
2

~p1•p2!2

m1
2m2

2
15

p1
2 ~n12•p2!2

m1
2m2

2
26

~p1•p2! ~n12•p1!~n12•p2!

m1
2m2

2

2
3

2

~n12•p1!2~n12•p2!2

m1
2m2

2 G1
1

4

G2m1m2

r 12
2 Fm2S 10

p1
2

m1
2

119
p2

2

m2
2D

2
1

2
~m11m2!

27~p1•p2!16 ~n12•p1!~n12•p2!

m1m2
G2

1

8

Gm1m2

r 12

G2~m1
215m1m21m2

2!

r 12
2

1~1↔2!. ~9!
1-2
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Reference@4# derived the 3PN-accurate ADM Hami
tonian restricted to the center-of-mass reference frame: p1
1p250. For the present work we have generalized Ref.@4#
in derivingH3PN in an arbitrary reference frame. Our startin
point for doing this calculation is the improved form of th
3PN Hamiltonian,H̃3PN, given in Appendix A of Ref.@9#

@Eqs. ~A8!–~A10! there#. Note first thatH̃3PN defined there
denotes thehigher-order Hamiltonian H̃3PN(xa ,pa ,ẋa ,ṗa)
defined by eliminating the field variableshi j

TT , ḣi j
TT in the

‘‘Routh functional’’ R(xa ,pa ,hi j
TT ,ḣi j

TT) introduced in Eq.
~33! of Ref. @4#. However, it was shown in Ref.@9# that one
could reduce the higher-order Hamiltonian
H̃3PN(xa ,pa ,ẋa ,ṗa) to an ordinary Hamiltonian
H3PN(xa8 ,pa8), at the price of the following~3PN-level! shift
of phase-space coordinates:

xa85xa1]H̃/]ṗa , pa85pa2]H̃/] ẋa . ~10!

After performing the shift~10! with respect to the origina
t
e

02150
ADM coordinatesxa , pa ~we henceforth drop the primes fo
notational simplicity!, the calculation of the 3PN~order-
reduced! Hamiltonian consists in evaluating three very com
plicated integrals:

H3PN52
5

128 (
a

~pa
2!41E d3x~h1

red1h21h3!. ~11!

The integrandsh1 ,h2 ,h3 are given in Eqs.~A9! of @9#. The
order-reduced integrandh1

red is defined~as shown in@9#! by

using the Newtonian equations of motion to eliminateẋa and
ṗa when computing the time derivativeḣi j

TT ~which enters the
last two terms ofh1). As explained in@9#, this new form of
the 3PN Hamiltonian is free of ‘‘contact term’’ ambiguities
and the integrals it contains can all be uniquely defined
using theRiesz-type regularizationprocedure explained in
@4#. We have recomputed from scratch all the integrals
using the generalized Riesz formula given in@4#. This Riesz-
regularized3PN Hamiltonian reads explicitly~in an arbitrary
reference frame!
H3PN
reg ~xa ,pa!52

5

128

~p1
2!4

m1
7

1
1

32

Gm1m2

r 12
F214

~p1
2!3

m1
6

14
„~p1•p2!214 p1

2 p2
2
…p1

2

m1
4m2

2
1

„p1
2 p2

222 ~p1•p2!2
…~p1•p2!

m1
3m2

3

210
„p1

2 ~n12•p2!21p2
2 ~n12•p1!2

…p1
2

m1
4m2

2
124

p1
2 ~p1•p2!~n12•p1!~n12•p2!

m1
4m2

2
12

p1
2 ~p1•p2!~n12•p2!2

m1
3m2

3

1
~7 p1

2 p2
2210~p1•p2!2!~n12•p1!~n12•p2!

m1
3m2

3
16

p1
2 ~n12•p1!2~n12•p2!2

m1
4m2

2
115

~p1•p2!~n12•p1!2~n12•p2!2

m1
3m2

3

218
p1

2 ~n12•p1!~n12•p2!3

m1
3m2

3
15

~n12•p1!3~n12•p2!3

m1
3m2

3 G1
G2m1m2

r 12
2 F 1

16
~m1227m2!

~p1
2!2

m1
4

2
115

16
m1

p1
2 ~p1•p2!

m1
3m2

1
1

48
m2

25~p1•p2!21371p1
2 p2

2

m1
2m2

2
1

17

16

p1
2~n12•p1!2

m1
3

2
1

8
m1

~15p1
2 ~n12•p2!111~p1•p2! ~n12•p1!!~n12•p1!

m1
3m2

1
5

12

~n12•p1!4

m1
3

2
3

2
m1

~n12•p1!3~n12•p2!

m1
3m2

1
125

12
m2

~p1•p2! ~n12•p1!~n12•p2!

m1
2m2

2
1

10

3
m2

~n12•p1!2~n12•p2!2

m1
2m2

2 G
1

G3m1m2

r 12
3 F2

1

48S 466m1
21S 4732

3

4
p2Dm1m21150m2

2D p1
2

m1
2

1
1

16S 77~m1
21m2

2!

1S 1432
1

4
p2Dm1m2D ~p1•p2!

m1m2
1

1

16S 61m1
22S 431

3

4
p2Dm1m2D ~n12•p1!2

m1
2

1
1

16S 21~m1
21m2

2!

1S 1191
3

4
p2Dm1m2D ~n12•p1!~n12•p2!

m1m2
G1

1

8

G4m1m2
3

r 12
4 F S 227

3
2

21

4
p2Dm11m2G1~1↔2!. ~12!
n
s of
s’’
However, it was emphasized in Refs.@4,8,9# that the nature
of the divergent integrals which had to be regularized
computeH3PN

reg , Eq. ~12!, was such that the result should b
considered as being partly ambiguous. Theseregularization
o
ambiguitieshave been discussed in Refs.@4,8#, and, in more
detail, in the Appendix A of@9#. We have recomputed, in a
arbitrary reference frame, the various regularized version
all the momentum-dependent formal ‘‘exact divergence
1-3
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DAMOUR, JARANOWSKI, AND SCHÄFER PHYSICAL REVIEW D62 021501~R!
D31,D32, . . . ,D38 defined in Appendix A of@9#. These con-
tributions should formally vanish, but their regularized va
ues do not vanish and thereby exhibit the regularization
biguities present at 3PN. We find~in confirmation of the
result given in the Introduction section of Ref.@4#! that all
the momentum-dependent regularization ambiguities
equivalent to adding to Eq.~12! a term of the~specific2! form

H3PN
kinetic~xa ,pa!51 1

2 vkinetic~G3 m1 m2/r 12
3 !

3@p1
223~n12•p1!21p2

223~n12•p2!2#, ~13!

where vkinetic is an arbitrary parameter. In addition to th
‘‘kinetic’’ regularization ambiguity, it was pointed out in@8#
and @9# that there is also a ‘‘static’’~i.e., momentum-
independent! regularization ambiguity of the form

H3PN
static~xa ,pa!51vstatic@G4 m1

2 m2
2 ~m11m2!/r 12

4 # ,
~14!

wherevstatic is a second arbitrary parameter. Finally, the 3P
~order-reduced! Hamiltonian is of the form

H3PN~xa ,pa!5H3PN
reg 1H3PN

kinetic1H3PN
static, ~15!

and depends on two, up to now undetermined, real par
etersvkinetic andvstatic.

The problem to solve is now the following: does the
exist a~3PN-accurate! center-of-mass vector, of the gener
form,

Gi~xa ,pa!5(
a

@Ma~xb ,pb!xa
i 1Na~xb ,pb! pa

i #, ~16!

whereMa and Na are scalars that reduce toma and 0, re-
spectively, in the Newtonian approximation, such that E
~3d!–~3f! are fulfilled ~within the 3PN accuracy! when the
Hamiltonian is given by inserting Eqs.~6!, ~8!, ~9! and ~15!
in Eq. ~5!? We have tackled this problem by the method
undetermined coefficients, i.e., by writing the most gene
expressions for the successive PN approximations to
functionsMa(xb ,pb) andNa(xb ,pb),

Ma5ma1c22 Ma
1PN1c24 Ma

2PN1c26 Ma
3PN;

Na5c24 Na
2PN1c26 Na

3PN, ~17!

as sums of scalar monomials of the form

cn0n1n2n3n4n5
r 12

2n0~p1
2!n1 ~p2

2!n2 ~p1•p2!n3~n12•p1!n4

3~n12•p2!n5,

with positive integersn0 , . . . ,n5. In addition to dimensiona
analysis~which constrains the possible values ofn0 , . . . ,n5
at each given PN order!, and Euclidean covariance, includin
parity symmetry, we only required time reversal symme

2Note in particular the absence of terms mixingp1 andp2.
02150
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~which imposes thatMa be even, andNa odd, underpa

→2pa). We did not impose anya priori constraints on the
mass dependence of the coefficientscn(m1 ,m2), nor did we
use the 1↔2 relabeling symmetry.

The 1PN approximation toGi being well known~see,
e.g.,@16#!,

M1
1PN5 1

2 ~p1
2/m1!2 1

2 ~Gm1m2/r 12! , ~18a!

N1
1PN50, ~18b!

with M2
1PN obtained by a 1↔2 relabeling, we started looking

for the most generalGi at the 2PN level. At this level, there
are 20 unknown coefficientscn , and Eq.~3d! yields 40 equa-
tions to be satisfied. We found that there is a unique soluti3

to these redundant equations, namely

M1
2PN52

1

8

~p1
2!2

m1
3

1
1

4

Gm1m2

r 12
F25

p1
2

m1
2

2
p2

2

m2
2

17
~p1•p2!

m1m2

1
~n12•p1!~n12•p2!

m1m2
G1

1

4

Gm1m2

r 12

G~m11m2!

r 12
, ~19a!

N1
2PN52 5

4 G ~n12•p2!, ~19b!

with M2
2PN andN2

2PN obtained by a 1↔2 relabeling.
We havea posteriori checked that this unique ADM

gauge, 2PN center-of-mass vector agrees~after taking into
account the shiftxa

ADM5za2d* za(z,ż) @13#! both with the

harmonic-gauge 2PNGi(za ,ża) first derived in Ref.@11#,
and with the Landau-Lifshitz-like@16#, ADM-gauge calcula-
tion of Gi(xa ,ẋa) performed in Ref.@17#. We have also
checked that the remaining Poincare´-symmetry constraints
Eqs.~3e! and ~3f!, are also fulfilled. Concerning Eq.~3e!, it
is easy to see, in general, that it is equivalent to the constr

(
a

Ma~xb ,pb!5
1

c2
H~xb ,pb!. ~20!

At the 3PN level, the most general ansatz forMa
3PN,Na

3PN,
involves 78 unknown coefficientscn , while Eq. ~3d! yields
138 equations to be satisfied. The quantityvkinetic param-
etrizing the momentum-dependent regularization ambigu
~13! in the 3PN Hamiltonian enters the system of equatio
for the unknowncn’s. ~Indeed, it was recently noticed tha
H3PN

kinetic is not separately boost-invariant@10#.! By contrast,
the other regularization ambiguity~14! drops out of the prob-
lem ~becauseH3PN

static is Galileo invariant!. We found that there
was auniquevalue ofvkinetic for which the system of equa
tions to be satisfied was compatible, namely,vkinetic
541/24. If vkineticÞ41/24, the 3PN Hamiltonian does no
admit a global Poincare´ invariance. Ifvkinetic541/24, there is
a uniquesolution to Eq.~3d!, namely,

3All the algebraic manipulations reported in this paper were do
with the aid ofMATHEMATICA .
1-4
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M1
3PN5

1

16

~p1
2!3

m1
5

1
1

16

Gm1m2

r 12
F9

~p1
2!2

m1
4

1
~p2

2!2

m2
4

211
p1

2 p2
2

m1
2m2

2
22

~p1•p2!2

m1
2m2

2
13

p1
2 ~n12•p2!2

m1
2m2

2
17

p2
2 ~n12•p1!2

m1
2m2

2

212
~p1•p2! ~n12•p1!~n12•p2!

m1
2m2

2
23

~n12•p1!2~n12•p2!2

m1
2m2

2 G1
1

24

G2m1m2

r 12
2 F ~112m1145m2!

p1
2

m1
2

1~15m112m2!
p2

2

m2
2

2
1

2
~209m11115m2!

~p1•p2!

m1m2
2~31m115m2!

~n12•p1!~n12•p2!

m1m2
1

~n12•p1!2

m1
2

~n12•p2!2

m2
G

2
1

8

Gm1m2

r 12

G2~m1
215m1m21m2

2!

r 12
2

, ~21a!

N1
3PN5 1

8 ~G/m1m2!@2 ~p1•p2!~n12•p2!2p2
2 ~n12•p1!13 ~n12•p1!~n12•p2!2#

1 1
48 ~G2/r 12!@19m2 ~n12•p1!1~130m11137m2!~n12•p2!#. ~21b!
tis

he

-
-
e

.
r
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-
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n
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2
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ac-
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We have then checked that this unique solution does sa
the remaining Poincare´-symmetry constraints, Eqs.~3e! and
~3f!, or, equivalently, Eqs.~20! and~3f!. It is to be noted that
the last two momentum-dependent terms inM1

3PN, propor-
tional to (n12•p1)2/m12(n12•p2)2/m2, are antisymmetric in
the labels 1↔2 and therefore drop out in the constraint~20!,
which readsM1

3PN1M2
3PN5H2PN. In fact, the corresponding

monomials appear nowhere inH2PN, but must crucially be
included inMa

3PN.
The main conclusion of this work is therefore that t

necessary existence of a global Poincare´ symmetry in the
two-body problemuniquely fixesthe regularization ambigu
ity parametervkinetic to the value 41/24. The explicit realiza
tion of this Poincare´ invariance is then defined by the phas
space generatorGi(xa ,pa) defined by Eqs.~16!, ~17!, ~18!,
~19!, and~21!.

Within the ADM formalism it would be very difficult to
implement a Poincare´-invariant regularization procedure
~The situation is different in harmonic coordinates, whe
one can conceive a Lorentz-invariant regularization@18#.! It
is very satisfying~and in keeping with the general lore abo
02150
fy
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renormalization theory! that we were able to use a non
Poincare´-invariant regularization, but then,a posteriori, cor-
rect for it in a unique way. There remains, however, a l
regularization ambiguity,4 Eq. ~14!, which has all the needed
global symmetries and cannot be fixed in this way.

We thank L. Blanchet for informing us, before completio
of our and his work, that he and G. Faye had succeede
determiningvkinetic. He communicated to us the numeric
valuevkinetic.1.71.P.J. gratefully acknowledges useful di
cussions with Piotr Bizon´ and Professor Andrzej Staruszk
iewicz. P.J. and G.S. thank the Institut des Hautes E´ tudes
Scientifiques for hospitality during the realization of th
work. This work was supported in part by the KBN Grant
P03B 094 17~P.J.! and the Max-Planck-Gesellschaft Gra
02160-361-TG74~G.S.!.

4As argued in Ref.@8# this ‘‘static’’ regularization ambiguity
seems to be linked to the breakdown of the possibility to use Dir
delta functions to model extended objects, such as neutron sta
black holes.
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