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Skewness as a probe of non-Gaussian initial conditions
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We compute the skewness of the matter distribution arising from nonlinear evolution and from non-Gaussian
initial perturbations. We apply our result to a very generic class of models with non-Gaussian initial conditions
and we estimate analytically the ratio between the skewness due to nonlinear clustering and the part due to the
intrinsic non-Gaussianity of the models. We finally extend our estimates to higher moments.

PACS number~s!: 98.80.Cq, 98.65.Dx, 98.80.Es
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The source of the initial density fluctuations which ha
led to the formation of structure, observed in the Unive
today, is unknown. Determining its nature will certainly b
of utmost importance for the fruitful relation between hig
energy physics and cosmology.

In models which presently attract the most attention, i
tial density fluctuations are generated during an inflation
phase. In the simplest inflationary models, the initial fluctu
tions obey Gaussian statistics. If this picture is correct,
deviations from Gaussianity we observe today were indu
by nonlinear gravitational instability@1–4#. However, it is
also conceivable that the present deviations from Gaussia
have two components: gravitationally induced and intrins
coming from the initial conditions rather than nonlinear d
namics@5–8#. Here, we investigate to what extent an intri
sic component can be ‘‘washed out’’ by nonlinear dynam
and on which scales it could be either detected or constra
from above in future galaxy surveys.

We start by deriving a general expression for the so-ca
skewness parameterS3 , including the effect of an initial
non-Gaussianity, nonlinear evolution and smoothing.
then estimate the normalizedN-point cumulantSN for a wide
class of models and compare it with the result obtained
Gaussian models due to mild nonlinearities.

If the galaxies trace the spatial mass distribution, gala
surveys@9# can be used to estimate the cumulants of
mass density contrast field, given by

MN~R![^~dR!N~x,h0!&c ~1!

of the smoothed density fielddR(x,h)[*d3x8WR(ux
2x8u)d(x8,h), whered(x,h) is the density contrast,h and
h0 the conformal time and its value today, andWR is a
window function~e.g., Gaussian or top hat! of width R. The
brackets in Eq.~1! denote an ensemble average and the s
script c indicates that we deal with the connected part of
N-point function. For a Gaussian field, all cumulants of ord
N.2 vanish: MN50. M2 is the variance whileM3 is a
measure of the asymmetry of the distribution, known
skewness. We will also use the more common normali
cumulant,

SN~R!5MN~R!/„M2~R!…~N21!.
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In the weakly nonlinear regime, this ratio is time
independent to lowest nonvanishing order in perturbat
theory for all models with Gaussian initial conditions@2–4#.
To calculate the general expression forM3(R) in the weakly
nonlinear regime, we follow the method developed in@4#.
Expandingd(x,h) in a perturbative series,d11d21O(3)
and solving the system of coupled Euler, Poisson, and c
tinuity equations at second order leads, in Fourier space
D1(h,k)5D(h,k) and

D2~h,k!5~2p!23/2E d2qJ~q,k2q!D~h,q!D~h,k2q!

where we consider only the fastest growing modes and
use the convention

DN~h,k!5~2p!23/2E dN~h,x!e2 ik•xd3x.

At late times where a possible source term or seed has
cayed, the time and space dependence of the functionD can
be factorized,D(h,k)5D1(h)e(k), whereD1 is the stan-
dard linear growing mode@1#. Perturbation theory gives@4#

J~k,q!5 2
3 ~11k!1~q/k!P1~m!1 2

3 ~ 1
2 2k!P2~m!, ~2!

where thePl is the Legendre polynomial of orderl, m
[k•q/kq. The quantity k is a weak function of V;
for V.0.01, k'(3/14)V20.03 @3#. The smoothing
applies order by order. In Fourier space, we haveDR(h,k)
5D(h,k)Wk , Wk being the Fourier transform of the win
dow function. To fifth order, the skewness is

M35^dR,1
3 &13^dR,1

2 dR,2&1O~5!. ~3!

We introduce the two-, three-, and four-point power spec
as

^12&[P2~k1!d~k11k2!,

^123&[P3~k1 ,k2!d~k11k21k3!,

^1234&c[P4~k1 ,k2 ,k3!d~k11k21k31k4!. ~4!
©2000 The American Physical Society01-1
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~The Diracd is a simple consequence of statistical homo
neity which we assume throughout.! Here ^12̄ N&
[^D(h,k1)D(h,k2)¯D(h,kN)&. The functionsP2 andP3
are also known as the power spectrum and the bispect
respectively. Inserting the Fourier transforms ofd1 and d2
after smoothing in Eq.~3!, expressing the correlators ofD in
terms of the power spectra~4!, and performing one integra
tion using the Dirac function in Eq.~4!, we obtain

M3~R!5E d3kd3q

~2p!6 P3~k,q!WkWqWuk1qu

1E d3kd3q

~2p!6 P2~k!P2~q!WkWqWuk1quJ~k,q!

1E d3kd3qd3p

~2p!6 P4~k,q2k,p!WqWpWuq1pu

3J~k,q2k!. ~5!

For a Gaussian field,P45P350 and the only nonvanishing
contribution comes from the second term in the above
pression. For a top hat window, this term givesM35(34/7
2g)M2

2, with g52d logM2(R)/d logR @4#. Note also that
g(R) is the logarithmic slope of the two-point correlatio
function of the density fluctuations, the Fourier transform
P2(k). It is usually assumed thatg.0 ~condition of hierar-
chical clustering, see, e.g.,@1#!.

The class of models we want to analyze are those wh
fluctuations in the dark matter are induced by the energy
momentum of an inhomogeneously distributed compon
which contributes only a small fraction to the total ener
momentum tensor and which interacts only gravitationa
with the cosmic fluid. Such a component is denoted
‘‘seed’’ @10#. As stressed above, we need to compute
N-point power spectra of the density field at the end of
linear regime. The comoving linear density fluctuationD of
the cosmic matter-radiation fluid evolves according
@11,10#
a-
to
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a
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D̈1H~126w13cs
2!Ḋ1k2cs

2D

2 3
2 ~118w23w226cs

2!H2D5S~k,h!, ~6!

with S[(11w)4pG( f r13 f P), f r and f P being the inho-
mogeneous energy density and pressure of the seeds. W
the seed is a scalar fieldf with vanishing potential,f r

13 f P5ḟ2. G is Newton’s constant,a denotes the cosmic
scale factor, a dot refers to the derivative with respect
conformal time, H[ȧ/a. The variablesw[P/r and cs

2

[ Ṗ/ ṙ are respectively the enthalpy and the adiabatic so
speed of the cosmic fluid.

Equation~6! can be solved by a Green’s functionG,

D~k,h!5E
h i

h
G~k,h,h8!S~k,h8!dh8, ~7!

whereh i is some early initial time deep in the radiation er
For the linear part of the reducedN-point function we then
obtain

^D~k1 ,h!¯D~kN ,h!&c5E
h i

h
dh1¯dhN

G~k1 ,h,h1!¯G~kN ,h,hN!^S~1!¯S~N!&c , ~8!

where (i )[(k i ,h i). We define the connectedN-point func-
tion of the source by

^S~1!...S~N!&c[FN~k1 ,...kN ;h1 ...hN!dS ( k i D .

Again, thed function of the sum of all momenta is a cons
quence of the statistical homogeneity.

We now assume that the reducedN-point function of the
source can be replaced by its ‘‘perfectly coherent appro
mation’’ given by
FN~k1 ,...,kN21 ;h1 ,...,hN!.sgn~FN!AN uFN~k1 ,...,kN21 ;h1 ,...,h1!...FN~k1 ,...,kN21 ;hN ,...,hN!u ~9!
but

his
-

-
ys
@here and below,kN is always given bykN52(k11¯

1kN21)#. This approximation is exact if the evolution equ
tion for S is linear and the randomness is entirely due
initial conditions. Then the source term is of the for
S(k,h)5R(k)s(k,h), where onlyR is a random variable
ands is a deterministic solution to the linear evolution equ
tion of S which can be taken out of the average^ &. This is
the key property which renders theN-point function decoher-
ent. ThenFN can be written as

FN~k1 ,...,kN21 ;h1 ,...,hN!

.s~1!¯s~N!^R~k1!¯R~kN!&c ~10!
-

which is clearly of the form~9!.
An important example are models with no sources

with non-Gaussian initial conditions forD. Such models,
like, e.g., the recentx2 Peebles model@12#, are always per-
fectly coherent and therefore included in our analysis: in t
caseD(k,h)5R(k)d(k,h), whereR is a non-Gaussian ran
dom variable given by the initial condition andd is a deter-
ministic homogeneous solution of Eq.~6!. Clearly, if we
chooseS(k,h)5R(k)d(h2h in) and G(k,h,h8)5d(k,h),
thenD is of the form~7!. Therefore, models where the non
Gaussianity is purely due to initial conditions are alwa
perfectly coherent. As the equation of motion forD is second
1-2
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order, the homogeneous solution has in principle two mod
D5R1(k)d1(k,h)1R2(k)d2(k,h), but since we shall
evaluate theN-point functions deeply in the matter era, th
decaying mode will have disappeared and may thus be
glected in our analysis.

Models where the source term is due to a scalar fi
which evolves linearly in time are not perfectly cohere
sinceS is given by the components of the energy moment
tensor which are quadratic in the fields. Numerical calcu
tions, however, have shown that this nonlinearity is not
vere and perfect coherence is a relatively good approxi
tion @13,14#. One example of this kind are axionic seeds
pre–big-bang cosmology@15–17# for which decoherence ha
been tested and is found to be on the level of less than
for the cosmic microwave background power spectrum.
Fig. 1 the functionsD2(k,h) andD3(k,k,h) as obtained by
a full numerical calculation are compared to their coher
approximation~9! for the large-N limit of global O(N) sym-
metric scalar fields. This is another example where the sc
field evolution is linear and the only nonlinearity in th
source term is due to the energy momentum tensor b
quadratic in the field@18,14,13#.

For topological defects, especially for cosmic strings,
perfectly coherent approximation misses several impor
features ~like the ‘‘smearing out’’ of secondary acoust
peaks!. However, we believe that our generic scaling res
holds also in this case, as is indicated by numerical sim
tions of global texture: even though global texture show c
siderable decoherence@13#, the same scaling law for highe
moments which we derive below has been discovered
merically @7#.

Under the perfectly coherent approximation, Eq.~8! can
be factorized as the product of theN solutions,
DNj

(k1 ,...,kN21 ,h) of Eq. ~6! with source term

@FN(k1 ,...,kN21 ,h,...,h)#1/N, wherek j is the wave number
k appearing in the termcs

2k2 on the left-hand side of Eq.~6!
and the other wave numbers have to be considered like
rameters of the source term,

^D~k1 ,h!¯D~kN ,h!&c

.F)
j 51

N

DNj
~k1 ,...,kN21 ,h!GdS ( k i D

[PN~k1 ,...,kN21 ,h!dS ( k i D . ~11!

To continue, we assume thatFN is a simple power law in
theki on super-Hubble scales and that it decays after Hub
crossing. This behavior is certainly correct for all examp
discussed in the literature so far. We can then make the
lowing ansatz:

FN.H S )
i 51

N ki
a

k0
a D „f ~h!h…Nh23 if kih<1,; i ,

0, otherwise.

~12!

Here f is a dimensionless function andk0 is an arbitrary
scale. For scale invariant seeds~e.g., topological defects! f is
02130
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just a constant anda50. For axion seeds generated during
pre–big-bang phase,a depends on the spectral index of th
axion field, which in turn is determined by the evolution la
of the extra dimension@16#. For the Peebles modela is given
by the power spectrum of the scalar fieldf and f is a delta
function. SinceFN is symmetrical in the variablesk j we can
order them such thatk1>k2>¯>kN .

Let us discuss the temporal behavior of the variablesDNj
.

As long ask1h,1, the termcs
2kj

2D can be neglected in Eq
~6! and the Green’s function is a power law. Atk1h;1 the
source term decays and as long as a perturbation rem
super horizon, it just grows likeh2, so that for kjh,1

FIG. 1. The coherent approximation~dashed line! and the full
decoherent result~solid line! for the two-~top! and three-point~bot-
tom! functions of the large-N limit of global O(N) symmetric scalar
fields is shown at the end of the radiation era. The sign in
coherent approximation for the three-point function is chosen
agree with the sign for the decoherent three-point function.
1-3
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,k1h,

DNj
'g~1/k1!k1

2213/N~hk1!2)
n51

N

~kn /k0!a

where g~h!5
4pG

h223/N E
h in

h
G~h,h8! f ~h8!h8~223/N!

dh8

h8
,

and we have to take the part of the integral above wh
remains finite whenh in→0.

Once the perturbation enters the horizon it either st
oscillating with roughly constant amplitude or continues
grow }h2, depending on whetherkj enters during the radia
tion or matter dominated era. At late time,h@heq and kh
@1, we therefore obtain

DNj
'g~1/k1!k1

2213/N~k1 /kj !
2

3 )
n51

N

~kn /k0!a/NH S h

heq
D 2

if kjheq.1,

~hkj !
2 if kjheq,1,

where heq is the time of equality between the matter a
radiation densities. Defining 0< j eq<N so thatkjheq.1 for
all j < j eq we obtain for the connectedN-point function

PN~k1 ,...,kN21 ,h!.g~1/k1!Nk1
3h2N

3 )
n51

N S kn

k0
D a

)
j 51

j eq S 1

kjheq
D 2

. ~13!

Using this result for the ordinary power spectrumP2 , we can
expressPN is terms of products ofP2 as

PN~k1 ,...,kN21 ,h!

.k1
3~12N/2!)

j 51

N S AP2~kj ,h!
g~1/kj !k1

3/2

g~1/k1!kj
3/2D . ~14!

For the class of models considered and under the assum
of perfect coherence, we have determined the conne
N-point power spectra in the linear regime which are
input of the skewness~5!.

M3 has two contributions: A linear one due to the initi
non-Gaussianity~contained inP3! and one due to nonlinea
clustering which induces skewness even in an origina
Gaussian distribution of perturbations; it contains a Gaus
part (P2

2) and a non-Gaussian term (P4). We decompose the
skewness asM35M3

(L)1M3
(NL). We want to estimate the

ratio of these two contributions. Under our approximati
~14!, the first term of Eq.~5! reduces to

M3
~L !5E d3qd3q8

~2p!6 WkWqWuk1k8uAP2~k!P2~q!P2~ uk1qu!

3kmax
23/2F g~1/kmax!

3~kquk1qu!3/2

g~1/k!g~1/q!g~1/uk1qu!~kquk1qu)3/2G ,
~15!
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wherekmax[max$k,q,uk1qu%. M3
(NL) is given by the second

and third terms in Eq.~5!.
To estimate analytically the ratio M3

(L)/M3
(NL)

5S3
(L)/S3

(NL) , we make the following approximations:~i! We
assume thatP2 is a simple power law within the range o
scales of interest, namely all the modes which enter the
rizon during the radiation era, this is 0.1h21 Mpc&2p/k
&20h22 Mpc, namelyP2(k)5k23(k/k* )g. ~ii ! We also as-
sume thatg(h)}h r . ~iii ! We replace the window function
by a simple cutoff atk51/R. ~iv! For symmetry reasons w
may integrate over the triangleq<k<R and then multiply
the result by 2.~v! Since in our integration region,q<k, we
replaceuk1qu by k.

With these approximations the angular dependence of
integrand disappears and the integrals overk andq in Eq. ~5!
can be trivially performed leading to

M3
~L !~R!.

4~k* R!23g/2

~2p!43g~31g/21r !

for g.0 and 31g/21r .0,

M3
~NL!~R!.

~k* R!22g

~2p!4g2 for g.0, ~16!

where we have just considered the Gaussian contributionP2
2

to M3
(NL) .

Sincek* is just the scale beyond which the density co
trast^D(x)2&R51/k;P2(k)k3 is larger than unity and nonlin
earities become important, we define the nonlinearity sc
Rlin51/k* . The ratio between the skewness due to the n
Gaussianity in the linear perturbation and the one due
dynamical nonlinearities is then

S3
~L !

S3
~NL! ;

4g

3~31g/22r ! S R

Rlin
D g/2

. ~17!

This is our main result. It is readily checked that the no
Gaussian contributionP4 to M3

(NL) behaves just like the con
tribution M3

(NL) and thus only modifies the prefactor in E
~17!, which should not be taken too seriously in view of th
relatively crude approximations which we have employed
obtain our result.

This computation of the skewness is easily generalized
higher moments. As our computation shows, linear n
Gaussianities scale like

MN
~L !~R!}~R/Rlin!2Ng/2. ~18!

The dominant nonlinear contribution to theconnected
N-point function which is also present in Gaussian theor
contains N22 second order termsD2 @2# and therefore
scales like

MN
~NL,Gauss!~R!}~R/Rlin!2~N21!g. ~19!

The lowest order nonlinearity for a generic non-Gauss
model, however, just comes from the non-Gaussian te
1-4
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with N11 factors ofD. The non-Gaussian nonlinear corre
tions therefore generically scale like

MN
~NL,no Gauss!~R!}~R/Rlin!2~N11!g/2. ~20!

Only for N53 the two terms~19! and~20! scale in the same
way. For all higherN’s the non-Gaussian contribution dom
nates in the mildly nonlinear regime,R>Rlin . From Eq.~20!
we infer that on large scales the ratios for all reducedN-point
functions very generically scale like

SN
~L !~R!/SN

~NL!~R! }~R/Rlin!g/2. ~21!

This expression agrees with other analytic predictions@5# as
well as numerical simulations in a global texture model@7#.
The agreement with the texture simulations which are de
herent suggests that the validity of our result extends bey
the conditions under which Eq.~21! was derived. More im-
portant than decoherence is that the source term deca
late times and therefore the density perturbations just ev
according to the homogeneous solution. This implies tha
late times theN-point functions behave like the homog
neous growing mode to theNth power, while the reduced
N-point function induced by nonlinear clustering fro
Gaussian perturbations scales like the growing mode to
2(N21!th power. Since topological defect sources decay
subhorizon scales, we conclude that the derived scaling
havior is also valid for them~this argument will be expande
in our follow up publication@11#!.

Our result implies that on small scales (R&Rlin), the
dominant contribution to the cumulants comes from non
ear Newtonian gravitational clustering, and the Gauss
term actually dominates. Intrinsic deviations from Gaussi
ity are difficult to detect on small scales. Hence, we sho
look for signs of intrinsic non-Gaussianity at large sca
(R.Rlin). This suggestion was expressed earlier based
se

ro
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qualitative physical arguments@5#; however, our present re
sult is derived from first principles for a specific class
initial conditions—coherent seeds.

If galaxies trace mass, the measurements of the two-p
correlation function suggestRlin;10h21 Mpc and g(R)
'1.8 for 10 kpc&hR&15 Mpc ~hereh is the usual param-
eterization for the Hubble constant in units of 10
km s21 Mpc21!; the slopeg becomes steeper at larger sep
rationsR @1,9#. A frequently considered theoretical possib
ity for long-wave tail of the initial P2(k), called the
Zel’dovich-Harrison spectrum, would giveg54 at large
separations. Hence, we can expect allSN to ‘‘blow up’’ with
increasing scale for the class of non-Gaussian models
sidered here, in contrast with models with Gaussian ini
conditions. The available measurements ofS3(R) andS4(R)
do not show such a rise with scale and have already b
used to constrain texture models@7#. Likewise, there are in-
dications that the existent data from the Automatic Pl
Measuring~APM! Galaxy Survey may already extend to su
ficiently large scales to constrain thex2 Peebles mode
@19,20#. With surveys presently underway like the Sloa
Digital Sky Survey@21#, the prospects for using the approa
outlined here to probe the statistics of the cosmological
tial conditions will become even better.

In this work we derived a scaling law for the ‘‘intrinsic t
induced’’ skewness ratio~17! for coherent seeds. We als
showed how to generalize this law to higher cumulants.
plan to follow these calculations with more detailed pred
tions for coherent seed models and to confront our anal
results with numerical simulations as well as observatio
data from galaxy surveys@11#. Let us also repeat that th
derived scaling laws seem to be more general than their d
vation as they have been obtained numerically for glo
texture which are decoherent seeds. We actually believe
the origin of the scaling laws is not coherence but mainly
decay of the sources at late time and we therefore conjec
that they hold also for topological defects.
no,
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