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Skewness as a probe of non-Gaussian initial conditions
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We compute the skewness of the matter distribution arising from nonlinear evolution and from non-Gaussian
initial perturbations. We apply our result to a very generic class of models with non-Gaussian initial conditions
and we estimate analytically the ratio between the skewness due to nonlinear clustering and the part due to the
intrinsic non-Gaussianity of the models. We finally extend our estimates to higher moments.

PACS numbd(s): 98.80.Cq, 98.65.Dx, 98.80.Es

The source of the initial density fluctuations which haveln the weakly nonlinear regime, this ratio is time-
led to the formation of structure, observed in the Universeéndependent to lowest nonvanishing order in perturbation
today, is unknown. Determining its nature will certainly be theory for all models with Gaussian initial conditiof&—4.
of utmost importance for the fruitful relation between high To calculate the general expression bg(R) in the weakly
energy physics and cosmology. nonlinear regime, we follow the method developed[4n.

In models which presently attract the most attention, ini-Expanding 5(x,#) in a perturbative seriesy;+ 8,+O(3)
tial density fluctuations are generated during an inflationaryand solving the system of coupled Euler, Poisson, and con-
phase. In the simplest inflationary models, the initial fluctua-inuity equations at second order leads, in Fourier space, to
tions obey Gaussian statistics. If this picture is correct, the\,(#5,k)=D(#,k) and
deviations from Gaussianity we observe today were induced
by nonlinear gravitational instability1—4]. However, it is —anf o
also conceivable that the present deviations from Gaussianity 22(7:K)=(2m) J' d“qJ(q,k—=a)D(7,q4)D(n,k—q)
have two components: gravitationally induced and intrinsic,
coming from the initial conditions rather than nonlinear dy-where we consider only the fastest growing modes and we
namics[5—8]. Here, we investigate to what extent an intrin- yse the convention
sic component can be “washed out” by nonlinear dynamics
and on which scales it could be either detected or constrained .
from above in future galaxy surveys. AN(ﬂ'k)Z(ZW)_B/ZJ Sn(m.x)e K xd3x.

We start by deriving a general expression for the so-called

skewness parameted;, including the effect of an initial At |ate times where a possible source term or seed has de-
non-Gaussianity, nonlinear evolution and smoothing. We:ayed, the time and space dependence of the funEtioan
then estimate the normalizédpoint cumulanSy for awide  pe factorizedD (7,k) =D, (1) e(k), whereD , is the stan-

class of models and compare it with the result obtained inyaq linear growing modEL]. Perturbation theory givei!]
Gaussian models due to mild nonlinearities.

If the galaxies trace the spatial mass distribution, galaxy
surveys[9] can be used to estimate the cumulants of the
mass density contrast field, given by

Ik, @) =5(1+x) +(A/K)PL(p) +5(3— 0)Pa(p), (2)

where theP, is the Legendre polynomial of orddr w
=k-g/kg. The quantity « is a weak function of(;

M (R)=((8R)"(X, 70)). D for 0>001, xk~(3/14)2 %% [3]. The smoothing
applies order by order. In Fourier space, we hayg n,k)
of the smoothed density fieldsg(x,7)=/d®x'Wg(|x  =D(%,k)Wy, Wy being the Fourier transform of the win-

—x'|)8(x",n), whered(x, ) is the density contrasty and  dow function. To fifth order, the skewness is

7o the conformal time and its value today, alld; is a

window function(e.g., Gaussian or top hatf width R. The M3=(8% )+ 3(5&10r 2+ O(5). (3
brackets in Eq(1) denote an ensemble average and the sub-

scriptc indicates that we deal with the connected part of thewe introduce the two-, three-, and four-point power spectra
N-point function. For a Gaussian field, all cumulants of orderas

N>2 vanish: My=0. M, is the variance whileM; is a

measure of the asymmetry of the distribution, known as (12)="P,(ky) 8(k,+k»),

skewness. We will also use the more common normalized

cumulant, (123="Ps(ky ko) 8(ky+kotKs),
Sn(R)=My(R)/(M(R)NY. (1234 ;="Py(ky ko, k3) (ks +ky+ Kzt Ky). (4)
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(The Dira95 is a simple consequence of statistical homoge- D+ H(1—6w+3c§)D+kzc§D

neity which we assume throughoutHere (12 --N)

=(D(7,k1)D(7,k,)---D(7,ky)). The functionsP, and P, —3(1+8w—3w?—6cHH?D=85Kk,7), (8

are also known as the power spectrum and the bispectrum,

respectively. Inserting the Fourier transforms&fand 6;  with S=(1+w)4wG(f,+3fp), f, and fp being the inho-

after smoothing in Eq(3), expressing the correlators Bfin - mogeneous energy density and pressure of the seeds. When
terms of the power spectid), and performing one integra- the seed is a scalar fielp with vanishing potentialf,

tion using the Dirac function in Eq4), we obtain +3fp=¢2% G is Newton’s constanta denotes the cosmic
4PKkd? scale factor, a dot refers to the derivative with respect to
Ma(R):f(Z—)qus(kYQ)WquWqu\ conformal time,H=a/a. The variablesw=P/p and cg
aa

=P/p are respectively the enthalpy and the adiabatic sound

d3kd3q speed of the cosmic fluid.
+f (2m)° P2(K) P2 Q) Wi WqWic I (k, @) Equation(6) can be solved by a Green’s functigi
d3kd3qd?® 7
f (ZT(VP“(k’q_k'p)WquWIqupl D(kim)= | G(k,y.n)Skon)d, )
xJ(k,q=k). () where 7; is some early initial time deep in the radiation era.

For a Gaussian field?,=P;=0 and the only nonvanishing E&ratize linear part of the reducedtpoint function we then

contribution comes from the second term in the above ex-
pression. For a top hat window, this term givds = (34/7

—y)M3, with y=—dlogM,(R)/dlogR [4]. Note also that (D(K1,7) DKy, 7))e= ndnl---an

v(R) is the logarithmic slope of the two-point correlation Ki

function of the density fluctuations, the Fourier transform of

P,(K). It is usually assumed that>0 (condition of hierar- G(ky,m,m1) - G(Kn, 7, m0)(S(1)---S(N))e,  (8)

chical clustering, see, e.d1]).

The class of models we want to analyze are those wheréhere ()= (k;,7;). We define the connected-point func-
fluctuations in the dark matter are induced by the energy antion of the source by
momentum of an inhomogeneously distributed component
which contributes only a small fraction to the total energy E k-)
momentum tensor and which interacts only gravitationally He
with the cosmic fluid. Such a component is denoted as
“seed” [10]. As stressed above, we need to compute théigain, the s function of the sum of all momenta is a conse-
N-point power spectra of the density field at the end of thequence of the statistical homogeneity.

(8(1)...S(N))e=Fn(Ky,.. Kn;71...70) 8

linear regime. The comoving linear density fluctuatidrof We now assume that the reducepoint function of the
the cosmic matter-radiation fluid evolves according tosource can be replaced by its “perfectly coherent approxi-
[11,1Q mation” given by
FN(klr---’kN—l;7/11---rnN)zsgr(FN)’\\lAFN(kli---ka—l;771’---1771)'--FN(k11---!kN—l;77N’---177N)| 9
|
[here and belowky is always given byky=—(k;+---  which is clearly of the form(9).

+kn-1)]- This approximation is exact if the evolution equa- ~ An important example are models with no sources but
tion for S is linear and the randomness is entirely due towith non-Gaussian initial conditions fdb. Such models,
initial conditions. Then the source term is of the form jike e.g., the recent? Peebles moddll2], are always per-
S(k,7)=R(k)s(k, ), where onlyR is a random variable fecty coherent and therefore included in our analysis: in this

andsis a deterministic solution to the linear evolution equa- _ : ) ; )
tion of S which can be taken out of the avera@e This is caseD(k., ”)_R(k)d(k’ 7, yvht_ereR IS .anon G§u55|an ran
dom variable given by the initial condition amblis a deter-

Lhnet k—?gepr:,gpeggﬁvézwr{gg::; thepoint function decoher- ministic homogeneous solution of E¢6). Clearly, if we
' N chooseS(k, 7)=R(k) 8(n— 7in) and G(k,»,7")=d(k,7),

Fn(Keseo o Kno 1 710--4070) thenD is of the form(7). Therefore, models where the non-
Gaussianity is purely due to initial conditions are always
=5(1)---s(N)(R(ky) -*R(Kn))c (100 perfectly coherent. As the equation of motion Bis second
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order, the homogeneous solution has in principle two modes, AL B L
D=Ry(K)d;(k, 7) + Ry(k)d,(k,77), but since we shall 1500
evaluate theN-point functions deeply in the matter era, the
decaying mode will have disappeared and may thus be ne-
glected in our analysis.

Models where the source term is due to a scalar field
which evolves linearly in time are not perfectly coherent,
sinceS is given by the components of the energy momentum
tensor which are quadratic in the fields. Numerical calcula-
tions, however, have shown that this nonlinearity is not se-
vere and perfect coherence is a relatively good approxima-
tion [13,14]. One example of this kind are axionic seeds in
pre—big-bang cosmolody 5—17 for which decoherence has
been tested and is found to be on the level of less than 5%
for the cosmic microwave background power spectrum. In
Fig. 1 the function®,(k, ) andD3(k,k, ) as obtained by
a full numerical calculation are compared to their coherent
approximation(9) for the largeN limit of global O(N) sym-
metric scalar fields. This is another example where the scalar
field evolution is linear and the only nonlinearity in the
source term is due to the energy momentum tensor being
quadratic in the field18,14,13.

For topological defects, especially for cosmic strings, the
perfectly coherent approximation misses several important
features (like the “smearing out” of secondary acoustic
peaks. However, we believe that our generic scaling result
holds also in this case, as is indicated by numerical simula-
tions of global texture: even though global texture show con-
siderable decoheren¢#&3], the same scaling law for higher
moments which we derive below has been discovered nu-
merically [7].

Under the perfectly coherent approximation, E8). can
be factorized as the product of thél solutions,
DNj(kl,...,kN,l,n) of Eq. (6) with source term
[Fn(Ki,... Kno1,7,...,m) "N, wherek; is the wave number
k appearing in the termZk? on the left-hand side of E6)
and the other wave numbers have to be considered like pa- : .
rameters of the source term,

0.1 0.2 03 0.4
k [Mpct
(D(ky,m) Dk, m)e (Mpe™]
N FIG. 1. The coherent approximatiddashed ling and the full
- H D (Kpser Kn1:7) 5( 2 ki) decohererlt resu(solid line) fgr Fhe two-(top) and three-pgln(bot-
j=1 i tom) functions of the largeN limit of global O(N) symmetric scalar

fields is shown at the end of the radiation era. The sign in the
2 ki)_ (11 coherent approximation for the three-point function is chosen to
agree with the sign for the decoherent three-point function.

EPN(kl,...,kN—lln)g

To continue, we assume thiag, is a simple power law in
thek; on super-Hubble scales and that it decays after Hubbl
crossing. This behavior is certainly correct for all example
discussed in the literature so far. We can then make the fo
lowing ansatz:

just a constant and=0. For axion seeds generated during a
re—big-bang phasey depends on the spectral index of the

r’;xion field, which in turn is determined by the evolution law

of the extra dimensiofil6]. For the Peebles modelis given

by the power spectrum of the scalar fieldandf is a delta

N e function. SinceFy is symmetrical in the variabldsg we can
(H _'> F(p)pNy~3 if kp<1Vi, order them such thdt;=k,=---=ky.
Fy={ \i=1 kg (12 Let us discuss the temporal behavior of the variagjs
0, otherwise. As long ask; 7<1, the termcZk’D can be neglected in Eq.

(6) and the Green’s function is a power law. Rtn~1 the
Here f is a dimensionless function ark}, is an arbitrary source term decays and as long as a perturbation remains
scale. For scale invariant see@sg., topological defect$is  super horizon, it just grows likej?, so that fork;»n<1
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<k, wherekya=maxk,q,k+q|}. M{Y is given by the second
and third terms in Eq(5).

To estimate analytically the ratio M{P/MMY
=s{M/SNY | we make the following approximation&) We
assume thaf, is a simple power law within the range of

N
D, ~9(2hkpky * (k) ? L1 (kako)®

A7G (7 , . ,(273/N)d77’ scales of interest, namely all the modes which enter the ho-
where g(7)= 7N, Gl n)f(n") 7 7 rizon during the radiation era, this is @.1' Mpc<2n/k

=<20h~2Mpc, namelyP,(k) =k 3(k/k,)”. (i) We also as-
and we have to take the part of the integral above whictsume thatg(#)=#". (i) We replace the window function
remains finite whenyg;,— 0. by a simple cutoff ak=1/R. (iv) For symmetry reasons we
Once the perturbation enters the horizon it either startgnay integrate over the trianglg<k<R and then multiply
oscillating with roughly constant amplitude or continues tothe result by 2(v) Since in our integration regiom,<k, we
grow = %, depending on whethds, enters during the radia- replacelk+g| by k.
tion or matter dominated era. At late timg> 7.4 andkz With these approximations the angular dependence of the
>1, we therefore obtain integrand disappears and the integrals dvandq in Eq. (5)
can be trivially performed leading to
D ~0(1/ky)ky 23Nk, /kj)?
‘ 4(k,R) 372

(L) RY~
N AN M3™(R) (27)*3y(3+ yl2+T)
— if Kj7eq>1,
X IT (knTko)®™§ | 7eq
=1 )
n (nk])Z if kj77eq<11 for ’)’>0 and 3"”}//2+r>0,
. . . k. R) ™27
where 7,4 is the time of equality between the matter and M ND) ~( «R) for y>0, 16

radiation densities. Defining<0je,<N so thatk; 7e.>1 for 3 ( )——(277)472
all j<j¢qWe obtain for the connecteld-point function

where we have just considered the Gaussian contribg®jon

Pu(ky . Kn-1,7)=g(1ky) ki 7 to MY
N ) adeg 2 Sincek, is just the scale beyond which the density con-
x 11 (—”) 1T ( ) . (13 tragt_(D(x)z)Rzl,kaz(k)kg is larger than unity and nonlin-
n=1 | Ko/ =1 | Kj7eq earities become important, we define the nonlinearity scale

) . . Rin=1/k, . The ratio between the skewness due to the non-
Using this result for the ordinary power spectr@iy, we can  Gayssianity in the linear perturbation and the one due to

expressPy Is terms of products o, as dynamical nonlinearities is then
Pn(Ky,eo Kn—1,7) s 4y ( R )7/2
~ o= (17)
2k3(1—N/2)ﬁ Pk, )9(1/kj)k§/2 14 S 3(3+y/2—1) | Ry
R T ki)

This is our main result. It is readily checked that the non-

For the class of models considered and under the assumpti§sRuSsian contributiom, to M{*" behaves just like the con-

of perfect coherence, we have determined the connecteiibution MY and thus only modifies the prefactor in Eq.

N-point power spectra in the linear regime which are the(17), which should not be taken too seriously in view of the

input of the skewnes). relatively crude approximations which we have employed to
M3 has two contributions: A linear one due to the initial obtain our result.

non-Gaussianitycontained inP;) and one due to nonlinear This computation of the skewness is easily generalized to

clustering which induces skewness even in an originallyhigher moments. As our computation shows, linear non-

Gaussian distribution of perturbations; it contains a Gaussiafaussianities scale like

part (P3) and a non-Gaussian terr®{). We decompose the " N2

skewness ad;=M{)+M{NY, We want to estimate the M (R) o (RIRyjin) 7. (18)

ratio of these two contributions. Under our approximation_l_h domi i buti h d
(14), the first term of Eq(5) reduces to e dominant nonlinear contribution to theonnecte

N-point function which is also present in Gaussian theories
) d3qd3q’ containsN—2 second order term®, [2] and therefore
M(3 )= kawqw“ﬁ_kr‘\/Pz(k)Pz(Q)Pz(lk+q|) scales like

9(1Kma 3(kalk+q]) %2 M (LSS R) o (R/Ry,) ~ (N1, (19)

32|
9(1k)g(1/a)g(1/k+ql)(kalk+a]) The lowest order nonlinearity for a generic non-Gaussian
(15 model, however, just comes from the non-Gaussian term

X k—3/2|:

max
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with N+ 1 factors ofD. The non-Gaussian nonlinear correc- qualitative physical argumenf§]; however, our present re-

tions therefore generically scale like sult is derived from first principles for a specific class of
initial conditions—coherent seeds.
M(NLno G Ry o (R/Ry,) ~(N* D772, (20) If galaxies trace mass, the measurements of the two-point

correlation function suggesR;,~10h~*Mpc and y(R)
Only for N=3 the two termg19) and(20) scale in the same ~1.8 for 10kpeshR=15Mpc (hereh is the usual param-
way. For all higheiN's the non-Gaussian contribution domi- €terization for the Hubble constant in units of 100
nates in the mildly nonlinear regimB=R;,,. From Eq.(20)  kms “Mpc ); the slopey becomes steeper at larger sepa-
we infer that on large scales the ratios for all reduiegbint ~ rationsR [1,9]. A frequently considered theoretical possibil-

Zel'dovich-Harrison spectrum, would givee=4 at large
SH(R)/SIY(R) o< (RIRy) 2. (21)  separations. Hence, we can expeciSglito “blow up” with

increasing scale for the class of non-Gaussian models con-
This expression agrees with other analytic predictid@ijsas  sidered here, in contrast with models with Gaussian initial
well as numerical simulations in a global texture moggl  conditions. The available measurement$SgfR) andS,(R)
The agreement with the texture simulations which are decodo not show such a rise with scale and have already been
herent suggests that the validity of our result extends beyongSed to constrain texture mod¢[g. Likewise, there are in-
the conditions under which E¢21) was derived. More im-  dications that the existent data from the Automatic Plate
portant than decoherence is that the source term decays M€asuringAPM) Galaxy Survey may already extend to suf-
late times and therefore the density perturbations just evol\alfc'em'y large scales to constrain the* Peebles model
according to the homogeneous solution. This implies that dr-9,2d: With surveys presently underway like the Sloan
late times theN-point functions behave like the homoge- D|g|_tal Sky Survey21], the prospects for using the approaph
neous growing mode to theith power, while the reduced outlined here to probe the statistics of the cosmological ini-

N-point function induced by nonlinear clustering from tial conditions will become even better.

G ) turbati les like th X de 1o th In this work we derived a scaling law for the “intrinsic to
aussian perturbations scales like the growing mode 10 gy ,caq4” skewness ratigl?7) for coherent seeds. We also

Z(N_l.)th power. Since topological defect sources deqay O howed how to generalize this law to higher cumulants. We
subhorizon scales, we conclude that the derived scaling besja 16 follow these calculations with more detailed predic-
havior is also valid for thenthis argument will be expanded {ions for coherent seed models and to confront our analytic
in our follow up publicatior[11]). results with numerical simulations as well as observational
Our result implies that on small scaleR€R;,), the data from galaxy surveyfll]. Let us also repeat that the

dominant contribution to the cumulants comes from nonlin-derived scaling laws seem to be more general than their deri-
ear Newtonian gravitational clustering, and the Gaussiawation as they have been obtained numerically for global
term actually dominates. Intrinsic deviations from Gaussianiexture which are decoherent seeds. We actually believe that
ity are difficult to detect on small scales. Hence, we shouldhe origin of the scaling laws is not coherence but mainly the
look for signs of intrinsic non-Gaussianity at large scalesdecay of the sources at late time and we therefore conjecture
(R>Rji,). This suggestion was expressed earlier based othat they hold also for topological defects.
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