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Bound states in the three-dimensionalf4 model
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We discuss the spectrum of the three-dimensionalf4 theory in the broken symmetry phase. In this phase the
effective potential between the elementary quanta of the model is attractive and bound states of two or more of
them may exist. We give theoretical and numerical evidence for the existence of these bound states. Looking
in particular at the Ising model realization of thef4 theory we show, by using duality, that these bound states
are in one-to-one correspondence with the glueball states of the gauge Ising model. We discuss some inter-
esting consequences of this identification.

PACS number~s!: 05.50.1q, 11.10.Kk, 75.10.Hk
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Three-dimensional statistical systems with globalZ2 sym-
metry, the Ising model being the classic example, lie in
universality class of thef4 field theory. Critical phenomena
in such systems are known to be accurately described
simple perturbative methods@1#. Given the success of per
turbative methods, the appearance of excited states in
broken symmetry phase of the critical Ising model and in
3D f4 theory, which were found in@2,3#, comes as a sur
prise, since scalar field theory apparently describes only
particle as long as interactions can be treated perturbativ
We shall argue that this is not the case and there is room
a rich spectrum of excitations in the broken symmetry ph
of the f4 theory even if the interaction is weak.

The excited states show up as poles of the correla
functions in the complex momentum plane and give visi
contribution to certain universal quantities. The first excit
state lies just below the two-particle threshold: its mass
M51.83(3)m @2#, wherem is the mass gap. The closene
of M to the threshold suggests the interpretation of this
citation as a weakly coupled bound state of two elemen
excitations.

Indeed, the two-particle forces are attractive in t
broken-symmetry phase of thef4 theory, and bound state
of two or more elementary quanta may in principle
formed. In four dimensions, these states indeed exist in
low-temperature regime, but disappear as the continu
limit is approached@4,5#, in agreement with triviality.

In this Brief Report we address the three-dimensio
case. Numerical simulations show that non-perturba
states survive the continuum limit in 3D@2,3#. We shall ar-
gue that these states can be identified with the multipart
bound states. By considering the Ising realization of thef4

model and using duality we shall also show that there is
exact one-to-one mapping between the bound states o
Ising model~and hence, thanks to universality, also of thef4

theory! and the glueball states of the gauge Ising model.
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BOUND STATES IN THE f4 THEORY

We consider thef4 theory:

S5E d3xF1

2
~]f!21l~f22v2!2G .

The fields5f2v acquires the massm258lv2 at the tree
level and is reasonably weakly coupled in the critical regi
@1#, since the critical value of the dimensionless interact
constant,l/m, is not too big. The forces between elementa
quanta of the fields are attractive: This can be shown b
inspecting the scattering of two non-relativistic particle
There are three leading-order diagrams contributing to
process, shown in Fig. 1.

The contact interaction, diagram (a), contributes212l
to the scattering amplitude. As a first approximation, we c
neglect altogether the momentum flow in diagrams~b! and
(c). In this way, diagrams~b! and ~c! contribute212l and
72l, respectively. Collecting the three terms together, we
for the amplitudeA548l. The positive sign of the ampli-
tude means that the particles attract each other.

In this limit, the non-relativistic Hamiltonian describin
the interaction of two particles is

H5
p1

2

2m
1

p2
2

2m
2

12l

m2
d~x12x2!, ~1!

which reproduces the field-theory scattering amplitude in
Born approximation@6#. Note the factor of 1/(2m)2, which

FIG. 1. Feynman diagrams contributing to the 2→2 amplitude
at the leading order inl.
©2000 The American Physical Society01-1



c
w

at

-

n:

c

on
a

th
w

e
th
ri
d
ca
or

bu
b
d
n

0

ic
ve
th

un
e
3

t

th

is
ex-

en
re-
en-

sfer
ds.
b-
s
ttice
ice
o

by
te.
s in
trac-
ge.
sters
ng

an-
d by
dis-
re

d

uc-
e
2
ther
real-
ee

eo-

p-
. The
nds
his
ed

are
the

rges
we
0

BRIEF REPORTS PHYSICAL REVIEW D 62 017901
accounts for the relativistic normalization of the wave fun
tions in field theory. The quantum-mechanical system of t
dimensional particles interacting via ad-type potential devel-
ops short-distance divergences and requires a regulariz
@7,8#. In our case, the cutoff is proportional tom, because at
momenta of orderm the non-relativistic approximation be
comes inadequate.

The binding energyDm, D!1, is determined by the
Schrödinger equation for the relative motion wave functio

S 2
1

m
]21DmDc~r !5

12l

m2
c~0!d~r !, ~2!

which, after the Fourier transform, gives the consisten
condition

15
12l

m2 E d2p

~2p!2

1

p2/m1Dm
5

3l

pm
ln

L2

Dm2
. ~3!

Taking L25km2, we get, for the binding energy,

D5k expS 2
pm

3l D . ~4!

The constantk cannot be determined in the approximati
used above and requires the inclusion of loop corrections
of the momentum dependence of diagramsb and c. These
corrections can be systematically taken into account in
approach based on the Bethe-Salpeter equation, which
be reported elsewhere@9#; here we only quote the result:k
5(4/9)exp(3/2).

The above discussion tells us that only one bound stat
two elementary quanta may exist in the broken phase of
f4 model in three dimensions. This is in accord with nume
cal simulations@2,3#. However, a rich spectrum of boun
states, with different values of the angular momentum,
be found if we look at the bound states of three or m
elementary quanta. Bound states ofn>2 particles could be
studied in principle within the Bethe-Salpeter approach,
even the non-relativistic approximation described above
comes too complicated as the number of particles involve
the bound state increases. Up to our knowledge, the o
existing result in the literature is a discussion of the1

bound state of three particles which can be found in@10#.
The counterpart of this state is also seen in the numer
simulations@3#. An easier way to understand the qualitati
features of the bound states is to study the Ising model in
low-temperature phase far below criticality.

THE ISING MODEL AT LOW TEMPERATURE

To proceed in understanding the structure of the bo
state spectrum in thef4 theory, let us address the sam
problem in the case of the low temperature phase of the
Ising model. The Ising model and thef4 theory belong to
the same universality class. Therefore they should have
same spectrum in the critical limit. Indeed, in@2,3# it was
shown in a Monte Carlo study that the two models share
same spectrum of non-perturbative states.
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The main advantage of working with the Ising model
that the spectrum can be analyzed in a low temperature
pansion of the transfer matrix~see @11,12#!. The starting
point of this expansion is to ignore the interactions betwe
time-slices. In this approximation, the vectors that cor
spond to a single configuration on a time-slice become eig
vectors of the transfer matrix. The eigenvalues of the tran
matrix are directly given by the number of frustrated bon

In this framework, the bound state of two particles is o
tained by flipping two nearby spins. If we flip two spin
which are separated by a distance of more than one la
spacing, the total number of frustrated bonds is exactly tw
that of a single particle. On the contrary, if we flip tw
nearby spins, the number of frustrated bonds is reduced
two. This difference is the binding energy of the bound sta
The fact that we are constrained to choose the two spin
nearest neighbor sites is another way to state that the at
tive force between the two particles has a very short ran
This procedure can be iterated, and one can construct clu
of k nearby flipped spins which have a non-zero bindi
energy and are related to bound states of higher mass.

It is also possible to select bound states of non-zero
gular momentum. These combinations can be constructe
using standard group-theoretical techniques. They are
cussed in@13#. Let us only recall here two results which a
of interest for the present analysis.

On a~211! dimensional lattice the group of rotations an
parity reflections is reduced to the dihedral groupD4 which
has four one-dimensional and one two-dimensional irred
ible representations. The 01 state is associated with th
trivial one-dimensional irreducible representation. The1

and 22 states are degenerate and correspond to two o
one-dimensional representations. The simplest possible
ization of the 22 state is represented in Fig. 2. At least thr
flipped spins are needed to create such a state~the 21 state
could be also realized in a simpler way, but a general th
rem forces its mass to be the same of the 22 one in the
continuum limit!. Thus we expect that this state should a
pear as a bound state of at least three elementary quanta
last one-dimensional irreducible representation correspo
to the 02 state. The simplest possible representation of t
state is reported in Fig. 3 and requires at least four flipp
spins. Finally, all the states with odd angular momentum
collected in the two dimensional representation. As in
21, 22 case they are all degenerate in parity.

Let us summarize the pattern of bound states as it eme
from these considerations. With two elementary quanta
may only create a bound state with quantum numbers1.
We shall denote it with 01,* to distinguish it from the single

FIG. 2. Operators for 22.
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BRIEF REPORTS PHYSICAL REVIEW D 62 017901
particle excitation which has the same quantum numb
With three quanta we may create a pair of bound states1

and 22 and a new 01 excitation that we shall call 01,** .
With four particles we shall have a 26,* pair, a 01,*** state
and a new state with quantum numbers 02. With five par-
ticles a new pair of states of the type 16 appears, and so on

Let us now make the crucial assumption that the bind
energy is always much smaller that the mass of the cons
ent particles: then the mass of each bound state will be
sentially given by the number of particles needed for its f
mation, minus a small correction given by the bindi
energy. In this way one obtains a detailed prediction of
qualitative features of the spectrum, based only on the in
pretation of the states as bound states and the gr
theoretical facts described above.

Numerical simulations@2,3,9,13# show that not only these
predictions are satisfied, but that the same qualitative
tures of the spectrum survive well beyond the lo
temperature regime and into the scaling region. Conne
correlators of several composite operators are compute
Monte Carlo simulations and used to extract the spectrum
the various angular momentum channels. The meas
masses exactly follow the pattern suggested above. This
strong indication that the spectrum is indeed made of bo
states of the elementary quanta, and that these bound s
survive in the continuum limit.

The fact that states with angular momentum 2 are ligh
than that with angular momentum 02 is rather unexpected in
standard quantum field theory. However, it is a well est
lished feature of the glueball spectrum in~lattice! gauge
theories. This is the first hint that the spectrum of bou
states of the 3D Ising model has something to do with
glueballs of gauge theory. The reason for this is obviou
the duality between spin model and gauge model, that
will now discuss.

DUALITY

Duality is usually expressed as an exact equality betw
partition functions in infinite volume, hence in principle
does not automatically implies that the two theories m
have the same spectrum. However it can be shown that
ality holds not only in the thermodynamic limitbut also for
finite lattices. This correspondence is not trivial and requir
a careful analysis of the boundary conditions of the t
models@9#. Since the approach to the thermodynamic lim
of the finite volume partition function is driven by the fu
spectrum of excited states of the theory, the finite volu

FIG. 3. Operators for 02.
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duality implies that the spectra of the two models must
incide. In particular the bound state of quantum numbersJP

of the Ising spin model coincides~hence has exactly the
same mass! with the JP glueball of the gauge Ising mode
This identification has two interesting consequences. T
first one is that the Bethe-Salpeter approach to the calc
tion of bound states inf4 theory, described above, becom
an analytical tool to evaluate the masses of the first state
the glueball spectrum of the gauge Ising model. In princi
~apart from technical difficulties! this could be extended to
the whole glueball spectrum, and represents a powerful
ternative to the Isgur-Paton model, which in the case of
Ising gauge model gives rather poor result@13#. A second,
more important consequence of this identification is tha
gives a possible explanation for a peculiar degeneracy
served in the Monte Carlo estimates of the glueball masse
the 3D gauge Ising model@13# for which no alternative ex-
planation exists. This intriguing feature of the spectrum c
be immediately appreciated by looking at Table I,~data
taken from@13,14#!. In Table I the asterisks denote the rad
excitations, thus 01 is the lowest state in the family with
quantum numbers 01, 01,* the next one and 01,** the third
one. 01 is related by duality to the single-particle state of t
3D Ising model, 01,* to the first bound state and so on. Th
degeneracy involves the pairs (01,** ,26), (02,26,* ),
(02,* ,16) ~the last one is only roughly established, it hol
within the errors!. Let us stress that this degeneracy has
obvious physical reason. The only one which we would e
pect on physical grounds is the one betweenJ1 and J2

states~for JÞ0) ~see @13# for a discussion of this point!
which is indeed present and has been already taken into
count in Table I. Moreover, itis not explained by the Isgur-
Paton model~last column of Table I!. This degeneracy seem
to be a rather deep phenomenon since it is also present in
glueball spectrum of the SU~2! model in ~211! dimensions.
In the third column of Table I we report the data on SU~2!
obtained by Teper@14# ~the underlined values are our ex
trapolations of the finite-b values reported in@14#!. One can
easily see that the same pattern of degeneracy is present
in the SU~2! and in the Ising gauge spectra. On the contra
all these degeneracies seem to be lost in theSU(N), (N
.2) case~see the data reported in@14#!.

This degeneracy is well explained by the interpretation
the glueballs as bound states of the dual spin model:

TABLE I. Comparison between the Ising, SU~2! and Isgur-
Paton spectra. The masses are measured in units of the string
sion.

JP Ising SU~2! IP

01 3.08~3! 4.718~43! 2.00
01,* 5.80~4! 6.83~10! 5.94
01,** 7.97~11! 8.15~15! 8.35
26 7.98~8! 7.84~14! 6.36
26,* 9.95~20! 9.30(50) 8.76
02 10.0~5! 9.95~32! 13.82
02,* 13.8~6! 11.30(80) 15.05
(1)6 12.7~5! 10.75~50! 8.04
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 62 017901
degenerate glueball states are simply bound states of
same number nc of constituent particles, namelync53,4,5
respectively for the (01,** ,26), (02,26,* ) and (02,* ,16)
degeneracies. In fact, according to the assumption st
above, the major contribution to the mass of the bound s
is given by the number of elementary quanta involved. T
dependence on the various quantum numbers is encode
the binding energiesD which however give only a smal
correction to the mass. This results in the approximate
generacies observed in the simulations. Notice that we do
expect to haveexactdegeneracies, since there is no reason
expect the binding energy to be exactly the same for dif
ent bound states.

CONCLUSIONS

Our analysis shows that bound states are very likely
exist in the broken-symmetry phase of 3Df4 and Ising mod-
els. Their existence can be inferred both from the Bet
Salpeter equation of the field theory and the strong-coup
a
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analysis of the spin model, and is strongly confirmed
numerical simulations.

Duality allows one to apply the same analysis to the gl
ball spectrum of the 3D Ising gauge model, which exac
coincides with the one of the spin model. The interpretat
of the latter as a spectrum of bound states provides a na
explanation for several features of the glueball spectru
such as its peculiar dependence on the angular momen
and its characteristic degeneracies.
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