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Chiral fermions and a multigrid algorithm

Artan Borig *
Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
(Received 14 July 1999; published 12 June 2000

Lattice regularization of chiral fermions is an important development of the theory of elementary particles.
Nonetheless, brute force computer simulations are very expensive, if not prohibitive. In this Brief Report |
exploit the noninteracting character of the lattice theory in flavor space and propose a multigrid approach for
the simulation of the theory. Already a two-grid algorithm saves an order of magnitude of computer time for
fermion propagator calculations.

PACS numbdps): 12.38.Gc, 11.15.Ha, 11.30.Fs, 11.30.Rd

After many years of research in lattice QCD, it was pos- Until now computations with chiral fermions and standard
sible to formulate QCD with chiral fermions on the lattice algorithms have been very expensive. The extra fermion fla-
[1-4]. The basic idea is an expanded flavor space which mayors introduce a large overhead. One multiplication with the
be seen as an extra dimension with left- and right-handefermion matrix cost€)(n) D\, multiplications withn~N for
fermions defined in the two opposite boundaries or walls. domain wall fermions and much larger for the overlap op-

Let N be the size of the extra dimensiddy, the Wilson-  erator[8—10!.

Dirac operator, andn the bare fermion mass. Then, the In this paper | propose a multigrid algorithm along the
theory with domain wall fermionds defined by the action fifth dimension which makes these simulations much faster.
[1,2] The key observation is the lack of gauge connections along
this dimension. It is well-known that the overhead of such
— — algorithms scales lik& log N.
SDW:‘I’M‘I’:; Uil(DI=1) i+ Py g +P_gia], Here it is themultigrid algorithm: ALGORITHM1 (Ge-
1) neric) for solving the system 3x="hb:

N

Prldneatmiy) =0, P (ot M) =0, Given N, xq, ro(=b), tol, tol,, settolp,=1 and iterate:
where M is the five-dimensional fermion matrix of the regu-
larized theory an®!!=M — D, with M e (0,2) being amass for i=1,...
parameter.
| define also a theory witltruncated overlap fermionms tolg=tolgtoly
complete analogy with the domain wall fermions by substi-

tuting [5] Solve Dy=r;_; within tol,
Pty 1— DI+ )Py, X=X 1ty
)
P_yji1—~(DI+1)P_y;, fi=b—DoyX

while the boundary conditions remain the same as before. it [rll.<tol df 5

Both theories can be compactified in the walls of the extra lIril[o<tol, end for )
fifth dimension as low energy effective theorigge below
with the chiral Dirac operatoD satisfying the Ginsparg-
Wilson relation[6]

whereo is denoted as a vector with zero entries &ol ,tol
are tolerancestol; is typically orders of magnitude larger
thantol such that the work pdD,, inversion is minimized.
ysD 14D lys=aysR, 3) Rgmark 1 Boldface gquations_represent t_he coarse _grid
solution and the fine grid correction of the right-hand side.
wherea is the lattice spacing anfdis a local operator trivial  The straightforward application of th®L GORITHM1gives
in the Dirac spacésee[5] for R-locality tests. a two-grid algorithm. By calling it again in solving the
| defined truncated overlap fermions such that in the larggmaller system and iterating, one obtains a full multigrid
N limit one obtains overlap fermior@] with the Dirac op- ~ algorithm.

erator given by[7]: Remark 2 The corresponding hybrid Monte CarldMC)
algorithm can be obtained by working with an approximate
1+m 1-m Hamiltonian in the coarse lattice and by a global correction
Dov=-—%—— 5 7sSgr(H) @ on the fine lattice.
In Fig. 1, | compare the norm of the residugl=b
whereH = ysDll. —DoyX of the conjugate residudCR) algorithm (which is

optimal sinceDgy is normal[11]) and ALGORITHM1 |
gain about an order of magnitudie averageon 30 4' con-
*Email address: Artan.Borici@psi.ch figurations atB=6.0 andm=0.1. For the coarse lattice |
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FIG. 1. Norm of the residual error vs the
7 number of Dy, multiplications on 30 configura-
tions. Circles stand for the straightforward inver-
sion with CR and stars for theLGORITHM1
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usedN=6 with the truncated overlap fermions and the Lanczos method to corbpiit€8].
More on the compactificatiori recall the action of the truncated overlap fermions

N—1

Srov=¢al(DI'=1)yyy+ (DI + )P o=@+ DP_y]+ 2 yil(D=1)gi+ DI+ 1P g1+ DI+ Py ]

+yn[ (DI =1)yy—m(DII+ 1) P, gy + (DI + 1)P_ gy 4] (6)

Let PT be the matrix representing the unitary transforma- If M, is the same matrix as\ but with the special

tion: choicem=1, | define the effective low energy theory with
the Dirac operator given by the equation:
Xi=PidatP-yn, D~ 1=(PTM *M;P)y, (10
] @) where the subscript 1,1 stands for the (1,1) block of\an
Xi=Pihi+P_thi_q, i=2,.. N, x N partitioned matrix along the fifth dimension.

In terms of the transfer matrix the Dirac operator can be
and S the matrix representing the diagonal transformationwritten as

Xi=tiys(H—1), i=1,... N. Let also the transfer matrix B N
along the fifth dimension be defined by=(1+H)/(1 _dm im0
—H). 2 2 1+TN

In the new basis | obtain the following action:

(11)

| can repeat this derivation for the domain wall fermions
with the obvious changes in the action and the transfer ma-

N—1
— — trix, the rest of the formulas remaining the same.
Srov=xal(P+=mP_)x; = Txo]+ 21 Xi(xi— TXi+1) Recently, the possibility of a multigrid algorithm along all
dimensions is raisedl12]. In this case a gauge fixing is
+xnlxn—T(P-=mP.)x,]. (8  needed.
I would like to thank Philippe de Forcrand for suggestions
Integrating over the Grassmann fields | obtain on how to improve théALGORITHM1which | will consider

in the future, Herbert Neuberger for interesting discussions
detM=def(P.—mP_)—TN(P_—mP,)] (9) after my talk at the Lattice99 conference, and Urs Heller for
i - - e a number of questions on the first version of this paper. The

. . . . uthor acknowledges PSI where this work was done and
where I ignore the Jacobian factor coming from the diagonakcsc Manno for the allocation of computer time on the
transformation. NEC SXA4.
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