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Chiral fermions and a multigrid algorithm
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Lattice regularization of chiral fermions is an important development of the theory of elementary particles.
Nonetheless, brute force computer simulations are very expensive, if not prohibitive. In this Brief Report I
exploit the noninteracting character of the lattice theory in flavor space and propose a multigrid approach for
the simulation of the theory. Already a two-grid algorithm saves an order of magnitude of computer time for
fermion propagator calculations.

PACS number~s!: 12.38.Gc, 11.15.Ha, 11.30.Fs, 11.30.Rd
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After many years of research in lattice QCD, it was po
sible to formulate QCD with chiral fermions on the lattic
@1–4#. The basic idea is an expanded flavor space which m
be seen as an extra dimension with left- and right-han
fermions defined in the two opposite boundaries or walls

Let N be the size of the extra dimension,DW the Wilson-
Dirac operator, andm the bare fermion mass. Then, th
theory with domain wall fermionsis defined by the action
@1,2#

SDWªC̄MC5(
i 51

N

c̄ i@~D uu21!c i1P1c i 111P2c i 21#,

~1!
P1~cN111mc1!50, P2~c01mcN!50,

whereM is the five-dimensional fermion matrix of the reg
larized theory andD uu5M2DW with MP(0,2) being a mass
parameter.

I define also a theory withtruncated overlap fermionsin
complete analogy with the domain wall fermions by subs
tuting @5#

P1c i 11→~D uu11!P1c i 11 ,
~2!

P2c i 21→~D uu11!P2c i 21

while the boundary conditions remain the same as befor
Both theories can be compactified in the walls of the ex

fifth dimension as low energy effective theories~see below!
with the chiral Dirac operatorD satisfying the Ginsparg
Wilson relation@6#

g5D211D21g55ag5R, ~3!

wherea is the lattice spacing andR is a local operator trivial
in the Dirac space~see@5# for R-locality tests!.

I defined truncated overlap fermions such that in the la
N limit one obtains overlap fermions@3# with the Dirac op-
erator given by@7#:

DOV5
11m

2
2

12m

2
g5sgn~H ! ~4!

whereH5g5D uu.
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Until now computations with chiral fermions and standa
algorithms have been very expensive. The extra fermion
vors introduce a large overhead. One multiplication with t
fermion matrix costsO(n) DW multiplications withn;N for
domain wall fermions and much larger for the overlap o
erator@8–10#.

In this paper I propose a multigrid algorithm along th
fifth dimension which makes these simulations much fas
The key observation is the lack of gauge connections al
this dimension. It is well-known that the overhead of su
algorithms scales likeN logN.

Here it is themultigrid algorithm: ALGORITHM1 (Ge-
neric) for solving the system DOVx5b:

Given N, x0 , r 0~5b!, tol, tol1 , set tol051 and iterate:

f or i 51, . . .

tol05tol0tol1

Solve Dy5riÀ1 within tol0

xi5xi 211y

ri5b2DOVxi

if uur i uu2,tol, end f or ~5!

whereo is denoted as a vector with zero entries andtol1 ,tol
are tolerances.tol1 is typically orders of magnitude large
thantol such that the work perDOV inversion is minimized.

Remark 1. Boldface equations represent the coarse g
solution and the fine grid correction of the right-hand sid
The straightforward application of theALGORITHM1gives
a two-grid algorithm. By calling it again in solving th
smaller system and iterating, one obtains a full multig
algorithm.

Remark 2. The corresponding hybrid Monte Carlo~HMC!
algorithm can be obtained by working with an approxima
Hamiltonian in the coarse lattice and by a global correct
on the fine lattice.

In Fig. 1, I compare the norm of the residualr i5b
2DOVxi of the conjugate residual~CR! algorithm ~which is
optimal sinceDOV is normal @11#! and ALGORITHM1. I
gain about an order of magnitude~in average! on 30 44 con-
figurations atb56.0 andm50.1. For the coarse lattice
©2000 The American Physical Society05-1
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usedN56 with the truncated overlap fermions and the Lanczos method to computeDOV @8#.
More on the compactification: I recall the action of the truncated overlap fermions

STOVªc̄1@~D uu21!c11~D uu11!P1c22m~D uu11!P2cN#1 (
i 52

N21

c̄ i@~D uu21!c i1~D uu11!P1c i 111~D uu11!P2c i 21#

1c̄N@~D uu21!cN2m~D uu11!P1c11~D uu11!P2cN21#. ~6!

FIG. 1. Norm of the residual error vs th
number ofDW multiplications on 30 configura-
tions. Circles stand for the straightforward inve
sion with CR and stars for theALGORITHM1.
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Let PT be the matrix representing the unitary transform
tion:

x15P1c11P2cN ,

~7!

x i5P1c i1P2c i 21 , i 52, . . . ,N,

and S the matrix representing the diagonal transformati
x̄ i5c̄ ig5(H21), i 51, . . . ,N. Let also the transfer matrix
along the fifth dimension be defined byT5(11H)/(1
2H).

In the new basis I obtain the following action:

STOV5x̄1@~P12mP2!x12Tx2#1 (
i 51

N21

x̄ i~x i2Tx i 11!

1x̄N@xN2T~P22mP1!x1#. ~8!

Integrating over the Grassmann fields I obtain

detM5det@~P12mP2!2TN~P22mP1!#, ~9!

where I ignore the Jacobian factor coming from the diago
transformation.
01750
-

:
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If M1 is the same matrix asM but with the special
choicem51, I define the effective low energy theory wit
the Dirac operator given by the equation:

D215~PTM 21M1P!1,1 ~10!

where the subscript 1,1 stands for the (1,1) block of anN
3N partitioned matrix along the fifth dimension.

In terms of the transfer matrix the Dirac operator can
written as

D5
11m

2
1

12m

2
g5

12TN

11TN
. ~11!

I can repeat this derivation for the domain wall fermio
with the obvious changes in the action and the transfer
trix, the rest of the formulas remaining the same.

Recently, the possibility of a multigrid algorithm along a
dimensions is raised@12#. In this case a gauge fixing i
needed.

I would like to thank Philippe de Forcrand for suggestio
on how to improve theALGORITHM1which I will consider
in the future, Herbert Neuberger for interesting discussio
after my talk at the Lattice99 conference, and Urs Heller
a number of questions on the first version of this paper. T
author acknowledges PSI where this work was done
SCSC Manno for the allocation of computer time on t
NEC SX4.
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