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Maximal neutrino mixing from a minimal flavor symmetry
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We study a number of models, based on a non-Abelian discrete group, that successfully reproduce the
simple and predictive Yukawa textures usually associated with U~2! theories of flavor. These models allow for
solutions to the solar and atmospheric neutrino problems that do not require altering successful predictions for
the charged fermions or introducing sterile neutrinos. Although Yukawa matrices are hierarchical in the models
we consider, the mixing between second- and third-generation neutrinos is naturally large. We first present a
quantitative analysis of a minimal model proposed in earlier work, consisting of a global fit to fermion masses
and mixing angles, including the most important renormalization group effects. We then propose two new
variant models: The first reproduces all important features of the SU(5)3U(2) unified theory with neither
SU~5! nor U~2!. The second demonstrates that discrete subgroups of SU~2! can be used in constructing viable
supersymmetric theories of flavor without scalar universality even though SU~2! by itself cannot.

PACS number~s!: 11.30.Hv, 12.15.Ff, 12.60.Jv, 14.60.Pq
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I. INTRODUCTION

It is possible that the observed hierarchy of fermi
masses and mixing angles originates from the spontan
breakdown of a new symmetryGf that acts horizontally
across the three standard model generations. Ideally
Yukawa couplings except that of the top quark are forbidd
by Gf invariance at high energies; the remaining ones
generated when a set of fieldsf that transform nontrivially
under Gf develops vacuum expectation values~VEVs!. A
hierarchy in couplings is obtained ifGf is broken sequen
tially at energy scalesm i through a series of nested su
groupsHi , such that

Gf→
m1

H1→
m2

H2→
m3

••• for m1.m2.m3•••. ~1.1!

At each stage of the symmetry breaking there is an ass
ated small dimensionless parameter^f i&/M f , wheref i is a
‘‘flavon’’ field whose VEV is responsible for the breakin
Hi 21→Hi , and whereM f is the ultraviolet cutoff of the
Gf-invariant effective theory. The ratiosf i /M f appear in
higher-dimension operators that contribute to Yukawa c
plings in the low-energy theory. For example, the super
tential term

1

M f
Q3HDfbD3 ~1.2!

leads to a bottom quark Yukawa coupling of order^fb&/M f .
The most general set of operators involving the fields of
minimal supersymmetric standard model~MSSM! and thef
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fields must provide for Yukawa textures that are phenome
logically viable. If flavor universality of scalar superpartn
masses is not simply a consequence of the mechanism
which supersymmetry breaking is mediated@1–4#, then a
successful model must also explain why these scalars do
contribute to flavor-changing neutral current processes at
acceptable levels.

Models with horizontal symmetries have been propos
with Gf either gauged or global, continuous or discrete, Ab
lian or non-Abelian, or some appropriate combinati
thereof@5,6#. Abelian flavor symmetries have been used s
cessfully to explain the absence of supersymmetric flav
changing processes by aligning the fermion and sferm
mass matrices@5#. However, the freedom to choose a numb
of new U~1! charges for each MSSM matter field represe
so much freedom that these models seemad hoc, at least
from a low-energy point of view. Non-Abelian symmetrie
are more restrictive, as the Yukawa matrices generally
compose into a smaller number of irreducibleGf representa-
tions. Thus, it is not unreasonable to expect that minim
models exist that are both successful and aesthetically c
pelling. This is the primary motivation for the current wor

In non-Abelian flavor models, the existence of three ge
erations of matter fields, the heaviness of the top quark,
the absence of supersymmetric flavor-changing processe
gether suggest a2% 1 representation structure for the MSS
matter fields. With this choice it is not only possible to di
tinguish the third generation, but also to achieve an ex
degeneracy between superparticles of the first two gen
tions whenGf is unbroken. In the low-energy theory, th
degeneracy is lifted by the same small symmetry-break
parameters that determine the light fermion Yukawa c
plings, so that flavor changing neutral current~FCNC! ef-
fects remain adequately suppressed, even with superpa
masses less than 1 TeV.

A particularly elegant model of this type considered in t
literature assumes the continuous, global symmetryGf
©2000 The American Physical Society09-1
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5U(2) @8–10#. Quarks and leptons are assigned to2% 1 rep-
resentations, so that in tensor notation one may represen
three generations of any matter field byFa1F3, wherea is a
U~2! index, andF is Q, U, D, L, or E. A set of flavons is
introduced consisting offa , Sab , and Aab , wheref is a
U~2! doublet, andS(A) is a symmetric~antisymmetric! U~2!
triplet ~singlet!. The doublet and triplet flavons acquire th
VEVs

^f&
M f

5S 0

e D and
^S&
M f

5S 0 0

0 e D , ~1.3!

the most general set of nonvanishing entries consistent
an unbroken U~1! symmetry that rotates all first generatio
fields by a phase. This residual U~1! symmetry is broken at a
somewhat lower scale by the flavonA:

^A&
M f

5S 0 e8

2e8 0 D , ~1.4!

wheree8,e. Thus, the sequential breaking

U~2!→
e

U~1!→
e8

nothing ~1.5!

yields a Yukawa texture for the down quarks, for example
the form

YD'S 0 d1e8 0

2d1e8 d2e d3e

0 d4e d5

D j, ~1.6!

whered1 , . . . ,d5 are O(1) coefficients. With the choicee
'0.02 ande8'0.004, this texture achieves the correct hi
archy in down quark mass eigenvalues and gives contr
tions of the appropriate size to entries of the Cabib
Kobayashi-Maskawa~CKM! matrix. TheO(1) coefficients
may be determined from a global fit, as in Ref.@10#. The
ratio mb /mt is assumed to be unrelated to U~2! symmetry
breaking, and is simply put into the low-energy theory
hand. This is accomplished by choosing the free parametj
in Eq. ~1.6!.

While the form ofYD is viable, U~2! symmetry by itself
cannot explain the differences between the hierarchies wi
YD and YU . Quark mass ratios renormalized at the gra
unified scale are given approximately by@7#

md ::ms ::mb5l4::l2::1, ~1.7!

while

mu ::mc ::mt5l8::l4::1, ~1.8!

wherel'0.22 is the Cabibbo angle. Clearly, an addition
suppression factorr is required inYU for those elements tha
contribute most significantly to the up and charm quark m
eigenvalues,
01600
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YU'S 0 u1e8r 0

2u1e8r u2er u3e

0 u4e u5

D , ~1.9!

whereu1 , . . . ,u5 are O(1) coefficients. By embedding th
U~2! model in a grand unified theory it is possible to obta
r'e naturally; the model can then accommodate all the
sired fermion mass hierarchies for choices of the coefficie
ui and di that are all of order 1@10#. For example, in an
SU~5! grand unified theory~GUT!, YU is associated with the
coupling10-10-5, where the10’s represent matter fields, an
the 5 is the Higgs fieldH. However,

10^ 1055̄s% 45a% 50s, ~1.10!

where the subscripts indicate symmetry or antisymmetry
der interchange of the two10’s. If we assume that the anti
symmetric flavonA is an SU~5! singlet, the productAH is a
5a , and does not contribute toYU . Similarly, if the flavonS
is a 75 with a VEV in the hypercharge direction in SU~5!
space, then the part ofSH that contains the Higgs double
field transforms as a45s , which again does not contribute t
YU . To obtain nonvanishing couplings of the right size
the upper 232 block ofYU one introduces a singlet flavonS
that transforms as an SU~5! adjoint. The VEV ofS implies
that the breakings of both U~2! to U~1! and SU~5! to the
standard model gauge group are associated with VEVs
ordere. Thus, it is natural to assume^S&'e, which provides
exactly the desired value ofr in Eq. ~1.9!. Moreover, the
SU~5! assignments forA andSprovide for a Georgi-Jarlskog
mechanism@11#, so that unified U~2! models successfully
account for the charged lepton mass spectrum as well.

While the textures that follow from the simple two-ste
breaking of a U~2! flavor symmetry are indeed minimal, th
original symmetry group is not. It is natural to ask wheth
there are small discrete groups that work equally well
horizontal symmetries. It was shown in Ref.@12# that the
charged fermion Yukawa textures usually associated w
U~2! models may be reproduced assuming the symm
Gf5T83Z3, and the breaking pattern

T8^ Z3→
e

Z3
D→

e8
nothing. ~1.11!

Here,T8 is the double tetrahedral group, a discrete subgro
of SU~2! corresponding to the symmetry of a regular tet
hedron. The factorZ3

D is the diagonal subgroup of aZ3,T8
and the additionalZ3 factor ~see Sec. IV!. Since U~2! is
isomorphic to SU(2)3U(1), it is not surprising that our dis
crete symmetry is a product of a discrete subgroup of SU~2!
and a discrete subgroup of U~1!. Moreover, it was argued in
Ref. @12# that this symmetry isminimal in the sense that

~i! T8 is the smallest discrete subgroup of SU~2! ~and in
fact the smallest group of any kind! with 1-, 2- and
3-dimensional representations and the multiplication rule2
^ 253% 1. These two ingredients are necessary to reprod
the successful U~2! textures.
9-2
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MAXIMAL NEUTRINO MIXING FROM A MINIMA L . . . PHYSICAL REVIEW D 62 016009
~ii ! Z3 is the smallest discrete subgroup of U~1! that al-
lows Gf to contain a subgroup forbidding all orderO(e8)
entries in the Yukawa textures.

The latter statement applies to models in whichT8 is a
discrete gauge symmetry~see Sec. II!; models with a global
T8 symmetry do not require any additional Abelian facto
as we demonstrate in Sec. VII. The use of a discrete ga
rather than global symmetries is motivated by various ar
ments that the latter are violated at order 1 by quantum gr
tational effects@13#. In two of the models we present,T8 is
an anomaly-free discrete gauge symmetry, while the a
tional Zn factor is not. As in many of the Abelian mode
described in the literature@5#, we simply assume that theZn

factor may be embedded in a U~1! gauge symmetry whos
anomalies are cancelled by the Green-Schwarz mecha
@14#. Thus, our models may be viewed as consistent lo
energy effective theories for flavor symmetries that are lo
in a complete, high-energy theory.

On a more practical level, the different representat
structure ofT8 allows for elegant solutions to the solar an
atmospheric neutrino problems that do not alter the pre
tive quark and charged lepton Yukawa textures, nor req
the introduction of sterile neutrinos. While similar results c
be obtained in some SO(10)3U(2) models@15#, we obtain
our successful solutions using a much smaller symm
structure.1 One goal of this paper is to study these solutio
at a level of quantitative detail not presented in our ear
work.

In addition, we propose two new models involvingT8
symmetry. The first model, based on the discrete gauge s
metry T83Z6, reproduces all important features of th
SU(5)3U(2) model without requiring a field-theoretic
grand unified theory. In other words, the suppression ofmu
and mc in the SU(5)3U(2) theory described earlier i
achieved inT83Z6 without SU~5!. In addition, the ratio
mb /mt , which is not explained in SU(5)3U(2), is predicted
in our model to be ofO(e)'0.02 for tanb;O(1), where
tanb is the ratio of Higgs field VEVŝHU&/^HD&. In a sec-
ond model, we consider the implications ofT8 as a purely
global flavor symmetry. Although in this case the symme
may not be fundamental, it could still arise as an accide
symmetry at low energies. We show that it is possible
construct a viable model based onT8 alone, with no addi-
tional Abelian factors. While it is well known that supersym
metric models with a continuous SU~2! flavor symmetry and
a 2% 1 representation structure do not have viable Yuka
textures, our globalT8 model demonstrates that discrete su
groups of SU~2! remain viable alternatives.

Our paper is organized as follows. In the next section,
discuss the meaning of discrete gauge symmetries and
relevant anomaly-cancellation constraints in the low-ene
effective theory. In Secs. III and IV, we review the grou
theory of T8 and present the minimal model described
Ref. @12#. In Sec. V we fit predictions of the model t
charged fermion and neutrino masses and mixing angles

1For a similar approach, see Ref.@16#.
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cluding the most significant renormalization group effects.
Sec. VI, we present theT83Z6 model that reproduces th
important features of the SU(5)3U(2) model with neither
SU~5! nor U~2!. In Sec. VII, we show how to construct
viable globalT8 model with no Abelian factors. In Sec. VII
we comment on one scenario involving sterile neutrinos, a
in the final section we summarize our conclusions.

II. WHAT IS A DISCRETE GAUGE SYMMETRY?

Let us define a discrete gauge symmetry provisionally
a discrete remnant of a spontaneously broken continu
gauge symmetry. Below the breaking scaleL of the continu-
ous symmetry, the low-energy effective Lagrangian has
teractions that are invariant under the unbroken disc
group, no massless gauge fields, and derivatives that tr
form trivially. It would seem then that this effective theory
identical to one with a purely global discrete symmetry.
this section, we review the arguments suggesting that th
not the case. We first illustrate how gauge invariance o
theory spontaneously broken to a discrete subgroup dict
the form of all terms in the low-energy effective theory, a
thus renders its discrete invariance immune to wormhole
namics. We then show that a theory with a discrete ga
symmetry predicts topological defects not present in a the
with a global symmetry, and that these play an important r
in demonstrating that discrete gauge charges leave quan
mechanical hair on black holes. Both observations sugg
that discrete gauge symmetries are viable as candidate
fundamental symmetries of nature. After reviewing these
guments we summarize the anomaly-cancellation constra
relevant to low-energy theories with discrete gauge symm
tries. We use these constraints in constructing mod
throughout this paper.

Following a discussion by Banks@17#, let us consider the
low-energy effective theory that results from spontaneou
breaking a U~1! gauge symmetry to a discrete subgroup. T
full theory consists of two scalar fieldsx and f with U~1!
chargesq and 1, respectively, whereq is an integer. The
Lagrangian is the usual one for an Abelian Higgs model:

L52
1

4g2
FmnFmn1u]mx2 iqAmxu21u]mf2 iAmfu2

1V~x†x!. ~2.1!

The potentialV is such that thex field acquires a vacuum
expectation valueL. Let us rewrite the Lagrangian using th
nonlinear field redefinitionx5(L1s)eiu/A2. This yields

L52
1

4g2
FmnFmn1

1

2
]ms]ms1

1

2
~L1s!2~]mu2qAm!2

1u]mf2 iAmfu21V~s!, ~2.2!

wheres is the Higgs field andu is the would-be longitudinal
component of the U~1! gauge boson in unitary gauge. W
choose to construct a low-energy effective theory in wh
the s field, which has a mass of orderL, is integrated out.
9-3
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ARANDA, CARONE, AND LEBED PHYSICAL REVIEW D62 016009
However, we retain the gauge fieldAm as well as the un-
physical scalar fieldu. Although the gauge symmetry i
spontaneously broken, the Lagrangian of the theory rem
invariant under the local U~1! transformation

f→eia(x)f, Am→Am1]ma~x!, u→u1q a~x!.
~2.3!

The low-energy effective Lagrangian then consists of the
netic terms

L52
1

4g2
FmnFmn1u]mf2 iAmfu21

1

2
L2~]mu2qAm!2,

~2.4!

as well as the most general set of gauge-invariant opera
involving the fieldsf, eiu, and covariant derivatives, with
powers ofL included to obtain the correct mass dimensio
We can classify the interactions in the effective Lagrang
that involvef into two types: terms that are invariant und
global U~1! transformations onf alone~with the other fields
held fixed! and those that are not. A typical term of the fir
type isf†f; terms of the second type necessarily involve
U~1! gauge-invariant product

e2 iufq ~2.5!

or similar products with derivatives. Such terms are invari
under aZq phase rotation of the fieldf alone. Thus, gauge
invariance of the low-energy theory implies that it must ha
an unbrokenZq symmetry. Since this is a consequence o
local symmetry, it cannot be violated by wormhole dyna
ics.

We now show that information on discrete gauge char
is not lost when a charged particle falls into a black hole.
do so, first note that the Abelian Higgs model has sta
cosmic string solutions. In the case wheref50, the kinetic
energy terms in Eq.~2.4! are minimized when

Am5
1

q
]mu. ~2.6!

For nonsingular gauge field configurations, this is related
Am50 by a gauge transformation. However, singular so
tions also exist; a cosmic string along thex3 axis corresponds
to

Ai5
1

q
e i j

xj

x1
21x2

2
, i , j 51,2, u5arctan~x2 /x1!.

~2.7!

If one couples the gauge field to a classical currentj m, then
the change in the action by adding one such cosmic strin

dS5~1/q!E ]mu j m, ~2.8!

which follows from Eq.~2.6!. Taking j m to be the current of
a particle with unit U~1! charge~and hence nontrivialZq
charge! that circles the string, one finds that
01600
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dS5
2p

q
. ~2.9!

This implies an observable Aharanov-Bohm effect in t
scattering of particles with discrete gauge charge off cos
strings. Krauss and Wilczek@18# use this observation to ar
gue that the scattering of a cosmic string off a particle w
discrete gauge charge that is falling into a black hole is
sensitive to the point at which the particle crosses the ev
horizon. Thus, the discrete charge of the particle is not lo
and the black hole grows quantum-mechanical hair.

It is interesting to note that the discussion above may
rephrased in unitary gauge by making the initial repla
ments

Bm5Am2~1/q!]mu, and F5e2 iu/qf, ~2.10!

in Eq. ~2.2!, which then becomes

L52
1

4g2
FmnFmn1

1

2
]ms]ms1

1

2
~L1s!2q2BmBm

1u]mF2 iBmFu21V~s!. ~2.11!

Unlike the previous approach, all the fields above are ga
invariant; one may integrate outBm ands, and obtain all the
possibleZq-invariant interactions involving the light fieldF.
This formulation of the low-energy theory is peculiar in th
the periodicity ofu implies that

e2np i /qF[F, for all integers n. ~2.12!

Thus, the field manifold off is not the complex planeC, but
rather the orbifoldC/Zq : Field configurations connected b
Zq transformations are identified, and hence are physic
redundant, the hallmark of a gauge symmetry. Given t
manifold, the fieldF has a conical singularity at the origin i
field space; strings in unitary gauge correspond toF field
configurations that wrap around this singularity as the a
muthal angle varies from 0 to 2p.

As the previous U~1! →Zq example demonstrates, a di
crete gauge symmetry can arise in a renormalizable fi
theory when a continuous gauge symmetry is spontaneo
broken by a Higgs field VEV that leaves a discrete symme
unbroken. The same can occur for non-Abelian symmet
as well. For example, one may break a gauged SU~2! sym-
metry with a Higgs field transforming as a7 ~which contains
a T8 singlet!, leaving the theory invariant underT8. On the
other hand, the U~1! →Zq example suggests how a discre
symmetry may be defined without an explicit embedding i
continuous group. In string theory, the discrete symme
may be a remnant of general coordinate invariance, ordin
gauge invariance, or the larger gauge symmetry of str
theory @17#. For our purposes, however, the nature of t
high energy theory is irrelevant.

It is worth mentioning in passing that spontaneous
broken discrete gauge symmetries have domain walls
are not topologically stable. Holes bounded by strings m
spontaneously nucleate, allowing the walls to tear the
selves to pieces while dissipating energy through grav
9-4
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MAXIMAL NEUTRINO MIXING FROM A MINIMA L . . . PHYSICAL REVIEW D 62 016009
tional radiation@19#. The effectiveness of this mechanism
avoiding cosmological problems is not relevant to our d
cussion since the flavor-symmetry-breaking scale in
models is high enough~of order the unification scale! that all
topological defects are eliminated by inflation.

Finally, it is relevant to consider whether there are a
constraints on the low-energy particle content of theor
with discrete gauge symmetries. Since continuous ga
symmetries must satisfy anomaly-cancellation conditio
the particle content of low-energy theories with discre
gauge symmetries is restricted. Iba´ñez and Ross@20# were
the first to consider the constraints on a discrete gaugedZq
symmetry, and their results were refined by Banks and D
@21#: Let G0 be a simple factor of the continuous group
which a discrete gauge symmetry is embedded, and letGA
and GN represent the unbroken Abelian and non-Abel
gauge symmetries of the low-energy effective theory. C
cellation of theG0GN

2 anomaly is the only new requiremen
for consistency of the low-energy theory; all other anoma
cancellation constraints involvingG0 can be satisfied by the
introduction of heavy states. Banks and Dine point out t
this requirement, termed the linear Iba´ñez-Ross condition, is
equivalent to demanding discrete gauge invariance of n
perturbative interactions generated by instantons of the
broken continuous gauge groups. This observation dem
strates that consistency of a discrete gauge symmetry at
energies can be established without reference to any par
lar embedding.

III. GROUP T8

All of the symmetries described in this paper containT8,
the double tetrahedral group.2 Geometrically,T8 is defined
as the group of all 24 proper rotations in three dimensi
leaving a regular tetrahedron invariant in the SU~2! double
covering of SO~3!. This perhaps opaque definition may b
understood in the following way. There exists a group of
elements called the tetrahedral groupT, consisting of all
proper rotations in three dimensions leaving a regular te
hedron invariant~Fig. 1!. It is constructed by parametrizin
the group SO~3! of all proper rotations in three dimension

2For a review of basic terms of discrete group theory, see R
@22#, Appendix A.

FIG. 1. Geometrical illustration of the groupT8 or T. The rota-
tions C2 andC3 generate all other rotations in each group.
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in terms of familiar Euler angles, and then restricting th
values to those describing rotations taking a regular tetra
dron into coincidence with itself. The same Euler angles
scribe rotations in SU~2! space, since SU~2! and SO~3! are
locally isomorphic, so thatT8 is the subgroup of SU~2! cor-
responding to the same Euler angles asT,SO(3). One
therefore expects that even-dimensional representation
T8 are spinorial, i.e., are multiplied by21 under a 2p rota-
tion ~called R in the literature!, while odd-dimensional rep-
resentations ofT8 coincide with those ofT and are invariant
under this rotation, as may be verified by the character ta
Table I.

T8 is generated by the rotationsC2 and C3 depicted in
Fig. 1. Because of the double-valued nature ofT8 rotations,
these elements actually have orders 4 and 6, respectively
reasons to be described below, it turns out to be conven
to present explicit representations~reps! for an element of
order 4~such asC2) and one of order 3~such asC3R). We
label these elements asg5 and g9, respectively;3 then T8 is
defined by the multiplication rulesg9

35g5
451, g9g5

25g5
2g9,

andg5g9
21g55g9g5g9. One may then show that each of th

24 elements may be written uniquely in the canonical fo
g9

pg5
qg9

r , wherep50,61, and ifq50 or 2, thenr 50, while
if q561, thenr 50,61.

The groupT8 is central to our model building since it i
the smallest with 1-, 2-, and 3-dimensional reps and the m
tiplication rule 2^ 253% 1. T8 models therefore allow for
flavons that perform the same roles asfa , Sab and Aab in
the U~2! model. The only other 24-element group that h
reps of the same dimensions is the octahedral groupO
~which is isomorphic toS4). In this case, however, the prod
uct of two doublet reps does not contain a triplet, and
analogy to U~2! is lost.

More specifically,T8 has three singlets10 and16, three
doublets,20 and 26, and one triplet,3. The triality super-
script provides a concise way of stating the multiplicati
rules for these reps: With the identification of6 as 61,

f.

3The element labels are chosen to coincide with those of Tho
and Wood@23#, whereT8 is seen to be isomorphic to SL2(F3), the
group of 232 unimodular matrices whose elements are added
multiplied as integers modulo 3.

TABLE I. Character table of the double tetrahedral groupT8.
The phaseh is exp(2pi/3).

Sample element E R C2 ,C2R C3 C3
2 C3R C3

2R

Order of class 1 1 6 4 4 4 4
Order of element 1 2 4 6 3 3 6
10 1 1 1 1 1 1 1
11 1 1 1 h h2 h h2

12 1 1 1 h2 h h2 h
20 2 22 0 1 21 21 1
21 2 22 0 h 2h2 2h h2

22 2 22 0 h2 2h 2h2 h
3 3 3 21 0 0 0 0
9-5
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ARANDA, CARONE, AND LEBED PHYSICAL REVIEW D62 016009
trialities add under addition modulo three, and the followi
rules hold:

1^ R5R^ 15R for any repR, 2^ 253% 1,

2^ 353^ 2520
% 21

% 22, 3^ 353% 3% 10
% 11

% 12.

~3.1!

Note that trialities flip sign under Hermitian conjugation,
that 21

^ 2253% 10 while (21)†
^ 2253% 11.

The multiplication of T8 representations may be mad
explicit by the use of Clebsch-Gordan matrices. For
ample, let the fieldsx and c be column vectors that trans
form as21 and 22 underT8, respectively. From the rule
above, we know that the product of these reps contain
trivial singlet, the10, but it is not immediately clear how to
construct this representation out of the given fields. F
mally, we seek a matrixM such that the product

xTMc→xTMc ~3.2!

under the transformationsx→R(g)x andc→R(g)x, where
R is a two-dimensional matrix rep, andg runs over all ele-
ments of the group. From our earlier discussion, it is o
necessary that we consider transformations associated
the defining elements,g5 andg9, to solve for the form ofM;
in the present case, one finds thatM is proportional to the
Pauli matrixs2. This algebraic procedure is easily gener
ized to products of other reps. Explicit matrix representatio
for the generating elementsg5 and g9, as well as the com-
plete set of Clebsch-Gordan matrices for combiningT8 reps
are provided in the Appendix. The reader should keep
mind that these Clebsch-Gordan matrices must be taken
account if one is to reproduce the Yukawa textures prese
later in this paper. For example, without the factor ofs2, one
might not realize that a VEV in the first component ofx
couples only to the second component ofc.

As mentioned in the Introduction, we also require that o
discrete flavor symmetry contain a subgroup that rota
first-generation matter fields by a phase. This subgroup p
the same role as the intermediate U~1! symmetry in the U~2!
model, and must forbid all entries in the first row and colum
of each Yukawa matrix. The smallest discrete subgroup
one might consider is aZ2 that flips the sign of all first
generation matter fields. Unfortunately, such a transform
tion leaves the 11 entry of each Yukawa matrix invaria
~two sign flips!, so that the up and down quarks could,
principle, acquire masses that are too large. AZ3 phase ro-
tation, on the other hand, does not lead to the same prob
and aZ3 subgroup ofT8 is generated by the elementg9
defined previously. From the Appendix, we see that the tw
dimensional representation matrices for the elementg9 are
given by
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g9~20!5S h2 0

0 h D , g9~21!5S 1 0

0 h2D ,

g9~22!5S h 0

0 1D , ~3.3!

whereh[exp(2pi/3). If matter fields of the first two genera
tions are assigned to the22 rep, one then obtains the desire
phase rotation under theZ3 subgroup. This observation is a
the heart of the globalT8 model presented in Sec. VII.4

As we see below, however, models in whichT8 is free of
discrete gauge anomalies are much easier to construct if
ter fields are assigned to the20 rep instead. In this case, let u
consider extending the flavor symmetry group toT83Z3.
We identify a new triality index 0,1 and 2 with the Z3
phase rotations 1,h, andh2, respectively. Like theT8 indi-
ces, theZ3 trialities also combine via addition modulo 3
Reps ofT83Z3 are denoted by affixing this additional tria
ity as a superscript, e.g.,212. We now identify the desired
intermediate symmetry as the diagonal subgroup of the or
nal Z3, generated by the elementg9, and the newZ3 factor.
We call this subgroupZ3

D henceforth. It is easy to see that th
rep 202 transforms underZ3

D by the matrix

S h 0

0 1D ~3.4!

which is simply the product ofg9(20) and h2. The matter
field assignments202

% 100, and the breaking patternT8
3Z3→Z3

D→nothing are at the heart of the minimal flavo
model discussed in the next section. It is worth pointing o
that the reps100, 112, 121, 202, 211 and220 are special in
that these singlet reps and the second component of the
blets remain invariant underZ3

D . Thus any2% 1 combination
of these reps is potentially useful in building models w
U~2!-like textures.

Finally, we return to the issue of anomaly cancellatio
We pointed out in Sec. II that consistency of a discrete ga
symmetry at low energies only requires the cancellation
anomalies that~1! involve the unbroken non-Abelian con
tinuous gauge groups and~2! are linear in a continuous
group in which the discrete group is embedded. If we emb
T8 in SU~2!, then these constraints are satisfiedautomati-
cally, providing that the particle content of a given mod
fills complete SU~2! representations. Let us therefore co
sider the embedding ofT8 in SU~2! in more detail.

The group SU~2! has one rep of each nonnegative integ
dimensionn @the spin (n21)/2 rep#, while T8 has only sin-
glet, doublet, and triplet reps. It must be the case that la
SU~2! reps break up into a number ofT8 reps with the same
total dimension. To see this decomposition, consider
characteristic polynomial of matrices in each of theT8 reps

4One can also imagine models in which the symmetry gro
breaks to a non-Abelian subgroup; however, in this case the sim
rephasing of multiplet components under the subgroup is not g
anteed.
9-6
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TABLE II. Decomposition of SU~2! reps into reps ofT8. N is any non-negative integer.

SU~2! rep multiplicity T8 rep decomposition

12N 2N$20
% 21

% 22%
12N11 10

% N$10
% 11

% 12
% 3•3%

12N12 20
% 2N$20

% 21
% 22%

12N13 3% N$10
% 11

% 12
% 3•3%

12N14 $21
% 22% % 2N$20

% 21
% 22%

12N15 $11
% 12

% 3% % N$10
% 11

% 12
% 3•3%

12N16 (2N11)$20
% 21

% 22%
12N17 $10

% 2•3% % N$10
% 11

% 12
% 3•3%

12N18 20
% (2N11)$20

% 21
% 22%

12N19 $10
% 11

% 12
% 2•3% % N$10

% 11
% 12

% 3•3%
12N110 $21

% 22% % (2N11)$20
% 21

% 22%
12N111 $11

% 12
% 3•3% % N$10

% 11
% 12

% 3•3%
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for any two rotations that generate the full group. The sa
can be done for the full SU~2! group restricted to the particu
lar Euler angles that giveT8. Then a large rep matrix o
SU~2! is block diagonalizable into smaller blocks corr
sponding to rep matrices ofT8; in particular, the character
istic polynomial of the SU~2! matrix is the product of those
of the T8 matrices. It is then possible to extract whichT8
reps appear in a given SU~2! rep, as well as their multiplici-
ties. The results of this decomposition are summarized
Table II. There we see that the10, 20, and 3 reps of T8
correspond to the complete1, 2, and 3 reps of SU~2!. It
follows, for example, thatT8 is non-anomalous in all model
utilizing the 202

% 100 representation structure for the matt
fields ~with Higgs fields as singlets!. Note that there is no
meaningful low-energy constraint on theZ3 charges since
Abelian factors may be embedded at high energies in U~1!
gauge groups whose anomalies are cancelled by the Gr
Schwarz mechanism@14#.

IV. MINIMAL MODEL

In this section we review the minimalT83Z3 model pre-
sented in Ref.@12#, which we study in quantitative detail in
Section V. The three generations of matter fields are assig
to theT83Z3 reps202

% 100 while the Higgs fieldsHU,D are
taken to be pureGf singlets. Given these assignments, it
easy to obtain the transformation properties of the Yuka
matrices:

YU,D,L;S @32
% 102# @201#

@201# @100#
D . ~4.1!

Equation~4.1! indicates the flavon reps needed to constr
the fermion mass matrices, namely,102, 201, and32, which
we callA, f, andS, respectively. Once these flavons acqu
VEVs, the flavor group is broken. We are interested in
two-step breaking

T8^ Z3→
e

Z3
D→

e8
nothing, ~4.2!
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where e8,e again represent ratios of flavon VEVs to th
scaleM f . Since we have chosen a ‘‘special’’ doublet rep f
the first two generations, which transforms as diag$h,1% un-
der Z3

D , only the 22, 23, and 32 entries of the Yukawa m
trices may develop VEVs ofO(e) originating from vevs inS
andf. The symmetryZ3

D is then broken by a102 VEV of
O(e8). The Clebsch-Gordan coefficient that couples a102 to
two 202 doublets is proportional tos2, so thee8 appears in
an antisymmetric matrix. These considerations yield the t
tures

YU,D,L;S 0 e8 0

2e8 e e

0 e 1
D , ~4.3!

whereO(1) coefficients have been omitted. Since the102

and32 flavon VEVs appear as antisymmetric and symme
matrices, respectively, all features of the grand unified ext
sion of the U~2! model are obtained here, assuming the sa
GUT transformation properties are assigned tof, S, andA.
One can also show readily that the squark and slepton m
squared matrices are the same as in the U~2! model.

It was shown in Ref.@12# that this simple model can b
extended to describe the observed deficit of solar and at
spheric neutrinos. Models for lepton masses were c
structed both with and without the assumption of SU~5! uni-
fication. The latter possibility is of interest, for example,
one is only concerned with explaining flavor physics of t
lepton sector, and is provided for completeness. In eit
case, the proposed extensions yield viable neutrino text
with naturally large mixing between the second and th
generations. Moreover, these extensions do not alter
charged fermion textures, so that all the relations betw
masses and mixing angles in the U~2! model are also predic
tions ofT83Z3. We now review the two cases considered
Ref. @12#.

Case I: Here we do not assume grand unification, so
all flavons are SU~5! singlets. We introduce three gener
tions of right-handed neutrinos transforming as

nR;202
% 121. ~4.4!
9-7
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Note that this representation choice differs from that of
other matter fields only in the third generation. SincenR are
singlets under the standard model gauge groups, introdu
a 12 field by itself creates no anomaly problems. The ne
trino Dirac and Majorana mass matrices then allow flavo
that do not contribute to the charged fermion mass matri
Their transformation properties are given by

MLR;S @32
% 102# @210#

@201# @112#
D , MRR;S @32# @210#

@210# @121#
D .

~4.5!
Note that one obtains the same triplet and nontrivial sing
in the upper 232 block as in the charged fermion ma
matrices, as well as one of the same flavon doublets, the201;
the rep102 is not present inMRR, since Majorana mas
matrices are symmetric. In addition we obtain the reps210,
112, and121, which did not appear in Eq.~4.1!. New fla-
von fields can now be introduced with these transformat
properties, and their effects on the neutrino physics explo
Let us introduce a single5 new flavonfn transforming as a
210 and with a VEV

^fn&
M f

;s2S e8

e D , ~4.6!

where s2 is the Clebsch that couples the two doublets
102. This new flavon is the only extension we make to t
model in order to describe the neutrino phenomenology.
ter introducingfn , the neutrino Dirac and Majorana ma
matrices read

MLR'S 0 l 1e8 l 3r 2e8

2 l 1e8 l 2e l 3r 1e

0 l 4e 0
D ^HU&,

MRR'S r 4r 2e82 r 4r 1ee8 r 2e8

r 4r 1ee8 r 3e r 1e

r 2e8 r 1e 0
D LR , ~4.7!

whereLR is the right-handed neutrino mass scale, and
have parametrized theO(1) coefficients. Furthermore, th
charged lepton Yukawa matrix includingO(1) coefficients
reads

YL'S 0 c1e8 0

2c1e8 3c2e c3e

0 c4e c5

D j. ~4.8!

The factor of 3 in the 22 entry is simply assumed at pres
but originates from the Georgi-Jarlskog mechanism in
grand unified case considered next.

The left-handed Majorana mass matrixMLL follows from
the seesaw mechanism

MLL'MLRMRR
21MLR

T , ~4.9!

5Assuming more than onefn leads to the same qualitative result
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which yields

MLL;S ~e8/e!2 e8/e e8/e

e8/e 1 1

e8/e 1 1
D ^HU&2e

LR
, ~4.10!

where we have suppressed theO(1) coefficients. It is clear
by inspection that we naturally obtain large mixing betwe
second- and third-generation neutrinos. It is also importan
point out that the two eigenvalues of Eq.~4.10! that appear to
be of O(1) depend sensitively on the products of a lar
number of order one coefficients. It is easy to obtain a h
archy of order 10 in the two largest mass eigenvalues, w
out allowing any of the coefficients defined in Eq
~4.7!,~4.8! to deviate from unity by more than a factor of 2
This comment is important in understanding how the reas
able coefficient choices given in Ref.@12# account for the
differing mass scales associated with atmospheric and s
neutrino oscillations.

In order to determine neutrino oscillation parameters p
cisely one needs to compute the neutrino CKM matrix.
MLL and YL are diagonalized byMLL5WMLL

0 W†, YL

5ULYL
0UR

† , then

V5UL
†W. ~4.11!

We parametrize this matrix as in Ref.@24#:

V

5S c12c13 c13s12 s13

2c23s12e
if2c12s13s23 c12c23e

if2s12s13s23 c13s23

s23s12e
if2c12c23s13 2c12s23e

if2c23s12s13 c13c23

D ,

~4.12!

whereci j (si j ) stands for cosuij(sinuij). Then one finds

sin2~2u12!54
V11

2 V12
2

~V11
2 1V12

2 !2
, ~4.13!

sin2~2u23!54
V23

2 V33
2

~V23
2 1V33

2 !2
. ~4.14!

The observed atmospheric neutrino fluxes may be
plained bynm-nt mixing if sin22u23*0.8 and 1023&Dm23

2

&1022, while the solar neutrino deficit may be accomm
dated byne-nm mixing assuming the small-angle Mikheyev
Smirnov-Wolfenstein ~MSW! solution 231023&sin22u12

&1022 for 431026&Dm12
2 &1025, where all squared

masses are given in eV2 @25,26#. These regions of paramete
space are the ones obtained most naturally from our mod6

6The experimental ranges for neutrino mixing parameters foll
from a two-neutrino mixing approximation which is valid only
the mixing angleu13,15° @24#. This condition is satisfied in all our
models.
9-8
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SinceLR is not determined from symmetry considerations
is only necessary to reproduceDm23

2 /Dm12
2 . In Ref. @12# a

choice for theO(1) coefficients can be found that yield
neutrino mass ratios and mixing angles falling within t
desired ranges given above.

Case II: Here we assume SU~5! unification and that the
flavons transform nontrivially under the GUT group, name
A;1, S;75, f;1, andS;24. Note that sinceH̄;5̄, the
productsSH̄ andAH̄ transform as a45 and 5̄, respectively,
ultimately providing a factor of 3 enhancement in the
entry of YL ~the Georgi-Jarlskog mechanism!. In addition,
two 210 doublets are introduced,fn1 and fn2, since the
texture obtained for the neutrino masses by adding only
extra doublet is not viable. Both doubletsfn have VEVs of
the form displayed in Eq.~4.6!. As before, the presence o
these two new doublets does not alter the form of a
charged fermion Yukawa texture.

The neutrino Dirac and Majorana mass matrices now t
the forms

MLR'S 0 l 1e8 l 5r 2e8

2 l 1e8 l 2e2 l 3r 1e

0 l 4e 0
D ^HU&,

MRR'S r 3e82 r 4ee8 r 2e8

r 4ee8 r 5e2 r 1e

r 2e8 r 1e 0
D LR , ~4.15!

while the charged lepton mass matrix is the same as in
~4.8!. Using Eq.~4.9! one obtains the texture

MLL;S ~e8/e!2 e8/e e8/e

e8/e 1 1

e8/e 1 1
D ^HU&2

LR
. ~4.16!

Again, a viable set ofO(1) coefficients may be found in Re
@12#.

While the texture in Eq.~4.16! appears to be the same
the one in Eq.~4.10! ~up to an overall factor ofe), there is in
fact an important difference: theO(1) entries in Eq.~4.16!
have a vanishing determinant at lowest order. The ratio
the two largest eigenvalues are therefore determined
higher order corrections, which must be taken into accoun
obtain the correct numerical results.7 While the zero deter-
minant is lifted atO(e) in the superpotential, it is interestin
that, in this particular case, a comparable correction co
from D terms that alter the canonical form of the neutri
kinetic energy:

E d4u@nL
†nL1nL

†BnL#. ~4.17!

7In fact, the analysis made for the model in case I included hig
order terms, which did not contribute in any significant way.
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HereB is a Hermitian matrix that depends on the flavons
the model. The kinetic terms may be put back into canon
form by the superfield redefinitionnL→A12BnL'(1
2B/2)nL . This in turn leads to a correction toMLL :

MLL→MLL21/2$B,MLL%. ~4.18!

Numerically, it is only necessary that we retain the larg
elements ofB:

B'S • • •

• • ae

• ae •

D , ~4.19!

which also leads to anO(e) correction to the determinan
discussed above. The parametera is included in the quanti-
tative analysis of the model presented in the next section

V. NUMERICAL ANALYSIS

The numerical check of the unifiedT83Z3 model pre-
sented in@12# relied on two assumptions. The first is th
there existO(1) coefficientsci , di , andui for the charged
fermion Yukawa matrices that, when combined with the p
ticular choice of neutrino Yukawa parametersl i andr i , yield
charged fermion mass eigenvalues and mixing angles
agreement with the values observed. This should not b
problem since the textures of theT83Z3 model for the
charged fermions agree completely with those of the U~2!
model@10#, in which all of these observables are accomm
dated in detailed fits. Second, the textures as written in
last section are defined at the scaleMGUT'231016 GeV,
while the observables are of course measured below the e
troweak scale. A truly meaningful fit requires running th
gauge and Yukawa couplings over this range. While the t
tures renormalized atMGUT andmt should not differ wildly
in form, a global fit is required to properly compare the pr
dictions of our model to the experimental data. The purp
of this section is to report on the necessary steps in these
and the numerical results.

In order to study the renormalization of gauge a
Yukawa couplings, we run the one-loop renormalizati
group equations~RGE’s! of the MSSM @27# from MGUT
down to the electroweak scale taken to bemt5175 GeV.
This analysis does not include two-loop corrections
threshold effects at either end of the spectrum. In particu
this approach does not differentiate between the scalesM f ,
eM f'MGUT, e8M f'e8MGUT/e, andLR'eMGUT.8 In any
case, both the two-loop and threshold effects are formally
subleading order, and therefore are taken into accoun
permitting theoretical uncertainties in the gauge and Yuka
couplings ofO(1/16p2)'1%.

Values of the gauge couplings atMGUT are obtained by
starting with the precision values extracted at the scaleMZ
@28#:

r 8Notice thatLR'eMGUT yields the appropriate mass scale in E
~4.16! for atmospheric neutrino oscillations.
9-9
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a1
21~MZ!559.9960.04,

a2
21~MZ!529.5760.03,

a3
21~MZ!58.4060.13. ~5.1!

The gauge couplings are run fromMZ to mt using the one-
loop standard model~SM! RGE’s, and then frommt to MGUT
using the one-loop MSSM RGE’s.9 The GUT scale cou-
plings are taken directly from the textures of Eqs.~1.6!,
~1.9!, ~4.8! and~4.15!, given numerical values for the dimen
sionless coefficientsci , di , l i , r i , ui , and a ~collectively
ki), and fore, e8, r, andj. The Yukawa matrices are the
run down tomt and diagonalized.10

Experimental values for the low-energy Yukawa co
plings are extracted from the physical masses and mix
angles compiled by the Particle Data Group@28#, where en-
tries of YU are obtained by dividing quark masses
v sinb/A2 and those ofYD,L by dividing quark and lepton
masses byv cosb/A2, wherev5246 GeV.

The experimental uncertainties on the observables~or es-
timates for the quark masses! used in the fits are either thos
appearing in Ref.@28# or 1% of the central value, whicheve
is larger; since the lepton masses are measured with ext
dinary precision, they are sensitive to the two-loop RGE a
threshold corrections that we have ignored.

The RGE for the neutrino Majorana mass matrixMLL was
computed in Ref.@31# and is included here in order to com
plete the RGE evolution for all observables. The low-ene
neutrino observables are taken to be

100,
Dm23

2

Dm12
2

,2500,

sin22u23.0.8,

231023,sin22u12,1022. ~5.3!

For the sake of having meaningful uncertainties, a param
whose lower bound is much smaller than its upper boun
converted into its logarithm. Instead of Eq.~5.3!, we use

9It should be pointed out that, while the SM RGE’s make use
the modified minimal subtraction (MS) scheme, the MSSM RGE’s
in Ref. @27# make use of the dimensional reductionDR scheme
@29#, which differ at the matching scale (mt by our choice! by an
amount

4p

a i
DR

5
4p

a i
MS

2
1

3
~CA! i , ~5.2!

whereCA5$0,2,3% for i 51,2,3.
10The RGE’s are integrated by means of the Runge-Kutta met

with adaptive step size control@30#. The results of this method wer
cross-checked against the results of using Richardson extrapol
with Bulirsch-Stoer stepping@30# and were found to agree to th
limits of the expected accuracy of either solution.
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lnS Dm23
2

Dm12
2 D 56.2261.61,

sin22u2350.960.1,

ln~sin22u12!525.4160.80. ~5.4!

Summarizing this point, we have discussed the details
how inputs consisting of the gauge couplings atMZ and
Yukawa matrix parameters at a high scale are manipula
using one-loop RGE’s to produce output values for ferm
masses and mixing angles observed at low energy.
course, the salient question is whether one can find a ch
of parameterski , where all of these coefficients areO(1),
and yet the output quantities are all in agreement with th
observed values.11 This is accomplished through ax2 mini-
mization; thus, the complete simulation consists of choos
a set of parameterski ~relevant atMGUT), running the RGE’s
down to mt and comparing with observation to compute
figure of merit,x2. If x2 is too large, the parameterski are
adjusted and the procedure is repeated until convergenc
x2 to a minimum is achieved.

The x2 function assumes a somewhat nonstandard fo
Fermion masses and mixing angles are converted to Yuk
couplingski

expt6Dki , and contribute an amount

Dx25S ki
expt2ki

Dki
D 2

~5.5!

to x2, as usual. There are 15 observables@6 quark masses, 3
quark CKM elements~since CP violation is neglected!, 3
lepton masses, 2 neutrino mixing angles, and 1 neutrino m
ratio# and 26 parameterski ; on the surface, it seems that th
fit is always under-constrained. However, our demand t
the parameterski lie near unity imposes additional restric
tions, which we include by adding terms tox2 of the form

Dx25S lnuki u
ln 3 D 2

~5.6!

for eachi. Thus, the parameterski are effectively no longer
free, but are to be treated analogously to pieces of data,
of which contributes one unit tox2 if it is as large as 3 or as
small as 1/3. The particular choice of 3 for this purpose is
course, a matter of taste. In effect, the inclusion of su
terms renders the parameterski no longer as true degrees o
freedom. On the other hand, they are not true pieces of
either, since a value of say,ki50.8 is just as valid as a valu
of 21.1 for our purposes. Thus, the value ofxmin

2 determin-
ing a ‘‘good’’ fit is 15, since there are 15 pieces of true da
and effectively nounconstrainedfit parameters.

f

d

ion

11We also allow for variation of the parameterse, e8, r, andj by
hand, but do not minimize with respect to them. Changes in th
parameters are equivalent to redefinitions of theO(1) coefficients,
so that they merely set the scale for the other parameters of th
9-10
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TABLE III. Best fit parameters for theT83Z3 model with tanb52. The minimumx252.77.

e50.04, r50.08, e850.004, j50.017

c1520.9360.01 d1511.3360.45 l 1510.8560.62 r 1510.9460.84 u1510.9260.31
c2520.4660.03 d2520.8160.26 l 2521.0161.11 r 2511.0660.95 u2511.4860.70
c3521.0261.13 d3511.5560.67 l 3520.9760.75 r 3511.0361.12 u3520.9060.91
c4521.0361.15 d4511.1461.33 l 4521.0961.04 r 4521.0761.05 u4511.0761.21
c5520.9060.01 d5521.2960.12 l 5521.1160.79 r 5520.9761.03 u5511.8460.95
a510.9861.06
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The numerical minimization is carried out using th
MINUIT minimization package. As a cross-check, minimiz
tion using Powell’s direction set method@30# is carried out to
make sure that the same minimum is achieved. Since
topography of thex2 function is complicated due to the nu
merous parameters involved, it is important to try a num
of initial choices for the input parameterski in order to have
confidence that the minimum obtained is close to glob
Once convergence is achieved, a parabolic minimum is
sumed and a Hessian matrix is computed in order to ga
uncertainties of the parameters.

Detailed numerical fits show that it is not difficult to fin
parameterski that satisfy the constraintxmin

2 ,15. However,
in the T83Z3 model, the ratiomb /mt must be accommo
dated either by a small value ofj or a large value of tanb.
For definiteness, we choose tanb52 as a representativ
value, and find a best fit withxmin

2 of 2.77. The complete se
of parameters is listed in Table III and a comparison to d
appears in Table IV. Note especially that the parametere,

TABLE IV. Experimental values versus fit central values f
observables using the inputs of Table III. Masses are in GeV an
other quantities are dimensionless. Error bars indicate the larg
experimental or 1% theoretical uncertainties, as described in
text.

Observable Expt. value Fit value

mu (3.361.8)31023 3.531023

md (6.063.0)31023 4.031023

ms 0.15560.055 0.136
mc 1.2560.15 1.24
mb 4.2560.15 4.25
mt 173.865.2 170.4
me (5.1161%)31024 5.1131024

mm 0.10661% 0.106
mt 1.7861% 1.78
uVusu 0.22160.004 0.221
uVubu (3.161.4)31023 2.331023

uVcbu (3.960.3)31022 3.931022

Dm23
2 /Dm12

2 100 – 2500 526
ln(Dm23

2 /Dm12
2 ) 6.2261.61 6.27

sin22u12 23102321022 4.531023

ln(sin22u12) 25.4160.80 25.40
sin22u23 .0.8 0.90
sin22u13 — 1.431023
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e8, andr are somewhat larger~a factor of 2 or more! than
their values in the U~2! model of Ref.@9#, where neutrino
physics was not considered. From the excellentx2, one con-
cludes that theT83Z3 model has little difficulty satisfying
all of the required constraints including the naturalness of
coefficients, allowing for the small parameterj that distin-
guishes the scale ofYU from YD,L .

While we have seen that the minimal scenario is e
tremely successful at reproducing fermion masses and m
ing angles, there are nonetheless a number of interes
variant models based onT8 symmetry. We explore thes
models in the next three sections.

VI. SU„5…ÃU„2… WITH NEITHER SU „5… NOR U„2…

As discussed in the Introduction, the U~2! model must be
embedded in a grand unified theory to reproduce all of
observed quark mass hierarchies. In this section we prese
model that does exactly the same, without the need fo
GUT, by extending the discrete gauged flavor group toT8
3Z6. We show that this model explains the ratiomb /mt ,
which is merely parametrized in the U~2! model~and in our
otherT8 models!. Before presenting the model we comme
on notation. As before, we use the triality superscripts1,
2, and 0 for the different representations ofT8. For theZ6
reps we now introduce the indicesi 50,1,. . . ,5, which com-
bine through addition modulo 6. For example,214

^ 112

5220, etc. SinceZ6 is isomorphic toZ33Z2, one may view
the new flavor symmetry as aZ2 extension of theT83Z3
flavor group defined in the model of Sec. IV; denoting theZ2
reps by1 and2, one identifies

Z3 Z2 Z6

0 1 0
2 2 1
1 1 2
0 2 3
2 1 4
1 2 5

That is, the Z6 charge is 23(Z3 charge)13
3(Z2 charge) modulo 6. In the remainder of this secti
we use the more compactT83Z6 notation.

The three generations of matter fields transform as

Q,U,D;204
% 100, ~6.1!

ll
of
e
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L;204
% 114, ~6.2!

E;212
% 122, ~6.3!

nR;204
% 111. ~6.4!

The matter fields have transformation properties that di
from those in our previous models, and in particular,
electroweak doublet leptons are no longer anomaly free
themselves. The third-generationL field is assigned to a non
trivial T8 singlet, the11, which does not form a complet
SU~2! representation. Given the discussion in Sec. II, theT8
SU~2! W

2 anomaly is not automatically cancelled. Howev
we remedy this problem by assigning non-trivial transform
tion properties to the Higgs fields:

HU;100, HD;122. ~6.5!

The fieldsHD andL3 are both electroweak doublets and,
far as the non-Abelian quantum numbers are concern
form a vector-like pair whenHD is a 12 under T8. The
remaining fields,E andnR , do not transform under any un
broken non-Abelian continuous gauge groups and thus t
T83Z6 quantum numbers may be assigned freely.

In order to break the flavor symmetry and obtain the f
mion mass matrices we introduce the following flavons:

S;30, A;120, f;202, ~6.6!

D;114, D8;122. ~6.7!

In addition to these flavon fields, we introduce two more
the neutrino sector of the theory. Their transformation pr
erties are such that they do not alter the form of the char
fermion Yukawa textures:

fn;213, Dn;111. ~6.8!

Together withnR , these fields are the only ones that tran
form nontrivially under theZ2 subgroup ofZ6 ~i.e., the only
ones with oddZ6 charges!. Again, we are interested in
two-step breaking:

T83Z6→
e

Z3
D→

e8
nothing, ~6.9!

whereZ3
D is precisely the same subgroup as in the minim

T83Z3 model. Thus, by the same arguments presente
Sec. IV, we obtain the following patterns of VEVs:

^S&
M f

;S 0 0

0 e D ,
^A&
M f

;S 0 e8

2e8 0 D , ~6.10!

^f&
M f

;s2S 0

e D ,
^D&
M f

;e,
^D8&
M f

;e, ~6.11!

^fn&
M f

;s2S e8

e D ,
^Dn&
M f

;e. ~6.12!
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Unlike the minimal model described in the previous two se
tions, the flavons here contribute to the Yukawa matrices
some cases only at quadratic order

YU;S @34
% 104# @202#

@202# @100#
D;S DS1DA1f2 f

f 1 D
'S 0 ee8 0

2ee8 e2 e

0 e 1
D , ~6.13!

YD;S @32
% 112# @210#

@210# @114#
D;S D8S1D8A Df

Df D
D

'S 0 e8 0

2e8 e e

0 e 1
D e, ~6.14!

YL;S @34
% 104# @224#

@224# @114#
D;S DS1DA1f2 D8f1Dnfn

D8f1Dnfn D
D

'S 0 e8 e8

2e8 e e

e8 e 1
D e. ~6.15!

We see that the flavonsD andD8 appear in precisely the
right way to recover approximate SU~5! 3 U~2! textures for
YD andYL , with an additional overall factor ofe. The only
difference is a relatively uninterestinge8 entry in the 13 and
31 elements ofYL . Notice that the VEV of theS field has
been replaced bŷD& in Eq. ~6.13!. Thus, all important fea-
tures of the SU~5! 3 U~2! model are reproduced.

Note that the ratiomb /mt , which is experimentally ob-
served to be in the range 0.023&mb /mt&0.026, is predicted
to be of ordere'0.02 for tanb'O(1), as can beseen from
the ratio of the 33 entries inYU andYD . This is promising
since tanb'O(1) is the naive expectation if the Higgs po
tential is not fine-tuned.

Before proceeding to the analysis of the neutrino secto
few comments are warranted on the possible supersymm
contributions to FCNC’s in this model. As mentioned in th
Introduction, scalar superpartners of the first two generati
are exactly degenerate in our models when the flavor s
metry is unbroken. The amount of scalar nondegenerac
low energies is determined by the order at which flavo
contribute to the scalar mass matrices. In the minimal mo
the flavons contribute quadratically to the scalar masse
the first two generations, as a consequence of the flav
nontrivial Z3 charges. The scalar mass-squared matrice
the U~2! model are then reproduced. In the current mod
however, the flavonS may contribute linearly, since30 is in
the product of (204)†

^ (204). The important point is that this
effect provides anO(e) correction to thediagonalentries of
the scalar mass matrices. In the fermion mass-eigenstate
sis, a Cabibbo-like rotationuC;e8/e leads to 12 entries in
the scalar mass matrices of ordere8m̃0

2, wherem̃0
2 is an av-
9-12
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erage scalar mass ande8'0.004. Taking into account unce
tainty in O(1) coefficients, this result is in marginal agre
ment with the bounds fromCP-conserving flavor-changing
processes, assuming superpartner masses less than 1
@32#. While bounds fromCP-violating precesses are gene
cally stronger, theO(1) coefficients have unknown phas
that one may simply choose in order to avoid these boun
Without a firm understanding of the origin ofCP violation,
saying more about these phases entails a degree of spe
tion that we choose to avoid. Of course, if scalar superp
ners are heavy~as in the ‘‘more minimal MSSM’’@33#! or
flavor universal~as in gauge mediation@1#, anomaly media-
tion @2,3#, or Scherk-Swartz mechanism@4#!, the currentT8
model is completely safe.

Next we examine the neutrino sector of the model. Giv
the transformation properties ofnR , we calculate the neu
trino Dirac and Majorana mass matrices

MLR;S @34
% 104# @221#

@224# @111#
D;S DS1DA1f2 Dfn

D8f1Dnfn Dn
D ^HU&

'S 0 l 1e8 l 2r 1e8

2 l 1e8 l 3e l 2r 3e

l 4e8 l 5e l 6

D e^HU&, ~6.16!

MRR;S @34# @221#

@221# @114#
D;S DS Dfn

Dfn D
DLR

'S 0 0 r 1e8

0 r 2e r 3e

r 1e8 r 3e r 4

D eLR , ~6.17!

wherer i and l i areO(1) coefficients. To leading order, th
seesaw mechanism gives

MLL;S e82/e e8 e8

e8 1 1

e8 1 1
D e^HU&2

LR
. ~6.18!

Note that the texture in Eq.~6.18! is not changed if higher-
order corrections are included that lift the zeros in E
~6.16!,~6.17!. Following the same procedure as before,
diagonalizeMLL andYL and extract the neutrino masses a
mixing angles. A global fit of the parameters in this mod
can in principle be done; however, we just present a via
set of parameters for simplicity. Using the set of values
the O(1) coefficients inMLL (r 1 , . . . ,r 4 ,l 1 , . . . ,l 6)5(1.0,
1.0, 1.0,21.0, 1.2, 1.2, 1.3,21.0, 22.0, 1.0! and assuming
all coefficients inYL are 1.0 except that of the 22 entr
which we set to 3.0, we obtain

Dm23
2

Dm12
2

5125, sin22u1253.531023, sin22u2350.88.

~6.19!

This agrees with the allowed ranges described in the pr
ous sections. It is worth mentioning that the texture, E
01600
TeV

s.

ula-
t-

n

.

l
le
r

i-
.

~6.18!, is the same as obtained in Ref.@34#, and thus the
claim in Ref. @35# that this texture cannot account for sol
neutrino oscillations is not correct.

VII. GLOBAL T8 MODEL

As pointed out in the Introduction, it is not possible
construct a realistic supersymmetric model with a continu
SU~2! flavor symmetry if scalar universality is not assume
The argument is straightforward: The left- and right-hand
up quark fields must be embedded in2% 1 representations to
maintain the heaviness of the top quark, as well as deg
eracy of squarks of the first two generations. Given this
signment, the couplingQaUbeabHu is allowed by the unbro-
ken flavor symmetry, which implies the unacceptab
relation mu5mc'mt . The T8 model below demonstrate
that discrete subgroups of SU~2! are viable for building mod-
els of fermion masses, although they are more dange
than models with additional Abelian factors, as far as sup
symmetric FCNC processes are concerned. We first pre
the model, and then explain how it evades the problem
scribed above.

The crucial feature that allows one to build a success
T83Z3 model is the existence of a doublet representat
202, whose first generation component alone rotates b
phase under theZ3

D subgroup. This choice is unique in mod
els whereT8 is a discrete gauge symmetry, since the20 rep is
the only doublet that fills a complete SU~2! representation if
we embedT8 in SU~2!. The4 of SU~2! decomposes into the
reps21 and22, which implies that each is separately anom
lous. While it might still be possible to construct mode
involving anomaly-free combinations of21 and22 reps, we
have found no examples that are particularly compelling.
the other hand, ifT8 is assumed to be a global symmetr
then matter fields can be assigned to any of the doublet
resentations freely. This provides an opportunity for co
structing economical models, as we now demonstrate.

Consider theZ3 subgroup ofT8 generated by the elemen
g9 that acts on the20 rep as diag$h2,h%, with h defined as in
Sec. III. In the 22 rep, this element takes the form
diag$h,1%, which we identify as the desired phase rotati
matrix for matter fields of the first two generations. Give
our freedom to assign matter fields to any of the doublet r
in a globalT8 model, it is no longer necessary to extend t
flavor symmetry by an Abelian factor in order to find a su
group that forbids the ordere8 Yukawa entries. Thus, one i
naturally led to the charge assignment

c;22
% 10 for c5Q, U, D, L and E, ~7.1!

andHU,D;10, which yields

YU,D,L;S @3% 12# @21#

@21# @10#
D . ~7.2!

Introducing flavons,A, f andS transforming as12, 21, and
3, respectively, one reproduces the canonical U~2! textures
assuming the breaking pattern
9-13
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T8→
e

Z3→
e8

nothing, ~7.3!

together with the dynamical assumption that only the12 rep
participates in the last step of symmetry breaking. The res
ing textures are identical to those in our original model
Sec. IV. One difference, however, is that theSflavon in this
model contributes to the squark mass matrices at first o
in e, just as in theT83Z6 model. However, this is not a
concern for the same reasons discussed at length in Sec

Turning to neutrino physics, recall that successful res
were obtained in theT83Z3 model by altering the charg
assignment of the third-generation right-handed neutr
field. Thus, we are motivated here to consider

nR;22
% 12, ~7.4!

which implies

MLR;S @3% 12# @22#

@21# @11#
D , MRR;S @3# @22#

@22# @12#
D .

~7.5!

We identify the flavonfn with the representation22, which
does not appear in any of the charged fermion Yukawa
tures. However, there is an important difference between
model and the one discussed in Sec. IV: The third genera
nR field transforms by a phase under theZ3 subgroup, so
that, for example, the 13 and 31 entries ofMRR are left
invariant under this intermediate symmetry. This implies
inversion in the hierarchy of vevs in the third row and co
umn of MRR. In the non-unified version of the model, it
somewhat remarkable that we still obtain a viable form
MLL :

MLR'S 0 l 1e8 l 5r 1e

2 l 1e8 l 2e l 3r 2e8

0 l 4e 0
D ^HU&,

MRR'S 0 0 r 1e

0 r 3e r 2e8

r 1e r 2e8 r 4e8
D LR , ~7.6!

MLL;S ~e8/e!2 e8/e e8/e

e8/e 1 1

e8/e 1 1
D ^HU&2e

LR
. ~7.7!

Unfortunately, this result does not persist in the simplest u
fied version of the model, which includes additional suppr
sion factors in the 22 entries ofMLR andMRR. Fortunately,
a simple modification of the flavon charge assignments in
unified theory allows us to recover the previous result. W
introduce twofn flavons that transform differently unde
T83 SU~5!:

fn;~22,24!, fn8;~22,1!. ~7.8!

Furthermore, we assume the pattern of VEVs:
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^fn&;S 0

e D , ^fn8&;S e8

0 D . ~7.9!

This is consistent with the breaking pattern in Eq.~7.3!, but
includes a dynamical assumption that the doubletfn8 does
not participate in the first stage of sequential symme
breaking and its second component acquires no VEV12

Sincefn transforms as an SU~5! adjoint, it can contribute
directly toMLR , but only toMRR if, for example, the adjoint
flavon S is also present; the corresponding entries ofMRR
are therefore suppressed by an additional factor ofe:

MLR'S 0 l 1e8 l 5r 1e

2 l 1e8 l 2e2 l 3r 2e8

0 l 4e 0
D ^HU&,

MRR'S 0 0 r 1e2

0 r 3e2 r 2e8

r 1e2 r 2e8 r 4e8
D LR . ~7.10!

The seesaw mechanism then yields

MLL;S ~e8/e!2 e8/e e8/e

e8/e 1 1

e8/e 1 1
D ^HU&2e

LR
, ~7.11!

where we used the numerical fact thate82/e3;O(1). It is
important to note that we have only displayed the contrib
tions to Eq.~7.10! linear in f, S and A, for convenience;
quadratic and higher order corrections lift the zero entries
these textures, but do not change the result in Eq.~7.11!
qualitatively. Note that Eq.~7.11! is the same successful tex
ture obtained in our originalT83Z3 model.

Finally, we return to the no-go theorem presented at
beginning of this section. It is not possible to construc
realistic model with a continuous SU~2! flavor symmetry and
2% 1 rep structure because an unwanted flavor-invariant
erator may be formed from the product of two doublet mat
fields. In our globalT8 model we have the freedom to assig
matter fields to new doublet representations whose prod
contain no trivial singlets, thus avoiding the problem.

VIII. T8 WITH STERILE NEUTRINOS

In this section we comment briefly on the possibility
four light neutrino species. Rather than investigating
~vast! space of possible models, we simply show how t
results of a successful extension of the U~2! model with a
sterile neutrino proposed by Hall and Weiner~HW! @35# can
be reproduced withT8 symmetry instead.

Consider a U~2! model with all matter fields, including

12We consistently assume that a flavon that transforms nont
ally under a subgroupHi either acquires a VEV of the order of th
scale at whichHi is spontaneously broken or acquires no VEV
all.
9-14
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three generations of right-handed neutrinos, in2% 1 repre-
sentations. Given the canonical pattern of flavon VEVs, o
obtains a right-handed neutrino mass matrix of the form

MRR5S 0 0 0

0 e e

0 e 1
D LR . ~8.1!

SinceMRR is symmetric, there is no contribution from th
flavon A, leading to a singular matrix. It is important to em
phasize that the zero entries of Eq.~8.1! are not lifted at any
order ine ande8 as a consequence of the holomorphicity
the superpotential. From consideration of the U~2! indices of
the flavon fields@or alternatively their charges under a U~1!
subgroup of U~2!#, it is possible to show that any contribu
tion to the vanishing entries of Eq.~8.1! requires the com-
plex conjugation of a flavon field, which is not allowed b
unbroken supersymmetry. If the pattern of flavon VEVs
not altered, the first-generation right-handed neutrino
mains in the low-energy theory as a sterile neutrino.

This sterile neutrino mixes with the second-generat
left-handed neutrino at ordere8 in MLR . After integrating
out the two heavy right-handed neutrino flavors, one obta
a four-by-four neutrino mass matrix of the form

M (4)5S 0

MLL
(3) ce8^HU&

0

0 ce8^HU& 0 0

D , ~8.2!

where the three-by-three blockMLL
(3) has entries of orde

^HU&2/LR , which can be found in Ref.@35#. HW observe
that the 24 and 42 entries ofM (4) are much larger than al
others, leading naturally to maximal mixing betweennm and
the sterile neutrino. As it stands, however, both would ha
masses of order of the electroweak scale unlessc is taken to
be of O(1028). To obtain a viable model, HW extend th
flavor symmetry by an additional U~1! factor, under which
all the right-handed neutrinos have charge11. A charge
21 flavon is introduced with the VEVeN;1028, which
breaks this symmetry weakly. One then finds thatc'eN ,
while M (3) remains unchanged.

The main obstacle to implementing this solution in aT8
3Z3 model with all matter fields assigned to202

% 100 reps
is that higher-order corrections to the first row and column
Eq. ~8.1! are not forbidden by holomorphicity; the comple
conjugate of any non-trivialZ3 phase rotation is the same a
its square. Thus, we are led to promote ourZ3 symmetry to a
continuous U~1!.13 The appropriate embedding is given by

c;202
% 100→211

0
% 10

0

13We could also promoteZ3 to a much largerZn that adequately
suppresses corrections to the zero entries in Eq.~8.1!; we leave this
possibility implicit in our discussion.
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f;201→221
0 , S;32→322 , A;102→122

0 ,
~8.3!

where the subscript indicates the U~1! charge. Assuming the
breaking pattern

T83U~1!→
e

Z3
D→

e8
nothing, ~8.4!

we reproduce the textures of the U~2! model, including Eq.
~8.1!, identically. The HW predictions for solar, atmospher
and Liquid Scintillation Neutrino Detector~LSND! @36# neu-
trino oscillations are then recovered by extending the sy
metry by an additional U~1! factor, implemented precisely a
before. We are thus able to reproduce the results of Ref.@35#
with the flavor symmetryT83U(1)2. Although we find this
model less compelling than the other three already discus
it may be of some relevance if the LSND oscillation result
independently confirmed.

IX. CONCLUSIONS

We have shown in this paper how to reproduce the qu
and charged lepton Yukawa textures of the U~2! model using
a minimal non-Abelian discrete symmetry, the double tetr
hedral groupT8. The first model we discuss, based on t
discrete gauge symmetryT83Z3, not only successfully ac-
commodates the observed charged fermion masses and C
angles, but also accounts for solar~small-angle MSW! and
atmospheric neutrino oscillations. In particular, a largenm-nt
mixing angle is predicted in the model, even though
charged fermion Yukawa textures are hierarchical. A glo
fit including neutrino parameters was performed in a gra
unified version of the model, and results with extreme
goodx2 were obtained.

In addition, two variantT8 models were discussed. In th
first, the flavor group was extended toT83Z6, and all im-
portant features of the SU(5)3U(2) model were reproduced
without the need for a field-theoretic unification. This mod
provided a successful prediction~with order-1 uncertainty!
of the bottom to top quark Yukawa coupling ratio, which
merely parametrized in the U~2! model and in the otherT8
models we discuss. The second variant theory was base
a globalT8 symmetry and demonstrates that the succes
U~2! textures can be obtained without including an Abeli
factor in the flavor group. In both variant models, lar
nm-nt mixing is predicted, and solutions to the solar a
atmospheric neutrino problems are naturally obtained.

It is worth pointing out that the viable neutrino texture
predicted by our models are achieved without altering
predictive textures of the charged fermions and without
troducing sterile neutrinos. Interestingly, the solutions
present have no simple analogy in the U~2! model: the right-
handed neutrino fields in our models do not fill comple
U~2! representations. In particular, the third generationnR
transforms as a12, which forms onlypart of a 5 in U~2!.
Aside from the possibility of very nonminimal U~2! models
~e.g. with seven generations of right-handed neutrinos!, the
desired neutrinoT8 reps do not naturally occur. The ke
9-15
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advantage of discrete groups is that the large, phenom
logically unused representations of the continuous emb
ding group break up into sets of small phenomenologica
useful representations of the discrete group. If discrete ga
symmetries arise as fundamental symmetries of nature,
we see from the example ofT8 that their richer representa
tion structure makes it possible to construct simple and
egant models of flavor.
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APPENDIX: EXPLICIT DETAILS OF T8

As described in the text, the groupT8 is generated by the
elements labeledg5 andg9. We begin by exhibiting explicit
matrices representing these elements in each of the s
reps listed in Table I. The singlets areg5(10,6)51, g9(10)
51, g9(11)5h, g9(12)5h2, where h5exp(2pi/3). The
doublets are

g5~20,6!5M1 , g9~20!5hM2 ,

g9~21!5h2M2 , g9~22!5M2 , ~A1!

where

M152
1

A3
S 1 i 1A2eip/12

2A2e2 ip/12 2 i
D , M25S h 0

0 1D ,

~A2!

and the triplet rep is generated by

g5~3!5
1

3 S 21 2h 2h2

2h2 21 2h

2h 2h2 21
D , g9~3!5S 1 0 0

0 h 0

0 0 h2
D .

~A3!

The Clebsch-Gordan~CG! coefficient matricesOi coupling
an nx-plet x and anny-plet y to form annz-plet z consist of
nz matrices of dimensionsnx3ny satisfying the condition

Rx
TOiRy5(

j 51

nz

~Rz! i j Oj , i 51, . . . ,nz , ~A4!

whereRi denotes the group rotationR in rep i. In a perhaps
more familiar notation, the CGs above may be written

~Oi ! jk5S x y

j k
Uz
i D . ~A5!

Note from Eq.~A5! that the CG matrices forR1^ R2 are
simply the transposes of those forR2^ R1, and thus are omit-
ted below. The coefficientsc below indicate multiplicative
constants arbitrary in the definition Eq.~A4!. The CG coef-
01600
o-
d-
y
ge
en

l-

n
-
er
r

en

ficients for two singlet reps or any rep with10 are all unity;
the remaining CGs for products involving singlets are

1t1^ 2t252t11t2, with O15c~1 0!, O25c~0 1!,
~A6!

11
^ 353, with O15c~0 0 1!,

O25c~1 0 0!, O35c~0 1 0!, ~A7!

12
^ 353, with O15c~0 1 0!,

O25c~0 0 1!, O35c~1 0 0!. ~A8!

Next, let

M35
1

2
~12 i !S 0 1

1 0D , M45S i 0

0 0D ,

M55S 0 0

0 1D , M65S 0 1

21 0D . ~A9!

Then

20
^ 20.3, 26

^ 27.3:

O15cM3 , O25cM4 , O35cM5 , ~A10!

20
^ 20.10, 26

^ 27.10:

O5cM6 , ~A11!

20
^ 21.3, 22

^ 22.3:

O15cM5 , O25cM3 , O35cM4 , ~A12!

20
^ 21.11, 22

^ 22.11:

O5cM6 , ~A13!

20
^ 22.3, 21

^ 21.3:

O15cM4 , O25cM5 , O35cM3 , ~A14!

20
^ 22.12, 21

^ 21.12:

O5cM6 . ~A15!

The remaining combinations are

20,6
^ 3.20,6:

O15cS 1 0 0

0 11 i 0D , O25cS 0 0 12 i

21 0 0 D ,

~A16!

20
^ 3.21, 21

^ 3.22, 22
^ 3.20:

O15cS 0 1 0

0 0 11 i D , O25cS 12 i 0 0

0 21 0D ,

~A17!
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20
^ 3.22, 21

^ 3.20, 22
^ 3.21:

O15cS 0 0 1

11 i 0 0D , O25cS 0 12 i 0

0 0 21D ,

~A18!

3^ 3.3s% 3a :

O15c1S 2 0 0

0 0 21

0 21 0
D 1c2S 0 0 0

0 0 21

0 1 0
D ,

O25c1S 0 21 0

21 0 0

0 0 2
D 1c2S 0 21 0

1 0 0

0 0 0
D ,
J.

s,

.
B

ir,
.

.

. D

s.
,

.

s

01600
O35c1S 0 0 21

0 2 0

21 0 0
D 1c2S 0 0 1

0 0 0

21 0 0
D ,

~A19!

3^ 3.10: O5cS 1 0 0

0 0 1

0 1 0
D ,

3^ 3.11: O5cS 0 1 0

1 0 0

0 0 1
D ,

3^ 3.12: O5cS 0 0 1

0 1 0

1 0 0
D . ~A20!
s.

t
er
by

s.
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