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Maximal neutrino mixing from a minimal flavor symmetry
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We study a number of models, based on a non-Abelian discrete group, that successfully reproduce the
simple and predictive Yukawa textures usually associated wi#h theories of flavor. These models allow for
solutions to the solar and atmospheric neutrino problems that do not require altering successful predictions for
the charged fermions or introducing sterile neutrinos. Although Yukawa matrices are hierarchical in the models
we consider, the mixing between second- and third-generation neutrinos is naturally large. We first present a
guantitative analysis of a minimal model proposed in earlier work, consisting of a global fit to fermion masses
and mixing angles, including the most important renormalization group effects. We then propose two new
variant models: The first reproduces all important features of the SKUKP) unified theory with neither
SU(5) nor U(2). The second demonstrates that discrete subgroups @) $&in be used in constructing viable
supersymmetric theories of flavor without scalar universality even thoudRB) 3y itself cannot.

PACS numbs(s): 11.30.Hv, 12.15.Ff, 12.60.Jv, 14.60.Pq

[. INTRODUCTION fields must provide for Yukawa textures that are phenomeno-
logically viable. If flavor universality of scalar superpartner
It is possible that the observed hierarchy of fermionmasses is not simply a consequence of the mechanism by
masses and mixing angles originates from the spontaneoy#ich supersymmetry breaking is mediatgd-4], then a
breakdown of a new symmetrg; that acts horizontally successful model must also explain why these scalars do not
across the three standard model generations. Ideally, afontribute to flavor-changing neutral current processes at un-
Yukawa couplings except that of the top quark are forbidderfcceptable levels.
by G, invariance at high energies; the remaining ones are Models with horizontal symmetries have been proposed
generated when a set of fieldsthat transform nontrivially ~With G either gauged or global, continuous or discrete, Abe-
underGf deve]ops vacuum expectation VaM@ﬂEVS). A lian or non-Abe-”an, or some appropriate combination
hierarchy in couplings is obtained @& is broken sequen- thereof[5,6]. Abelian flavor symmetries have been used suc-

groupsH; , such that changing processes by aligning the fermion and sfermion

mass matricegs]. However, the freedom to choose a number

K1 M2 M3 of new U1) charges for each MSSM matter field represents
Gi—H;—Hy—--- for w1>u,>usz---. (1)  so much freedom that these models seminhog at least

from a low-energy point of view. Non-Abelian symmetries
At each stage of the symmetry breaking there is an associre more restrictive, as the Yukawa matrices generally de-
ated small dimensionless paramefek)/M, where¢; isa  compose into a smaller number of irreducitie representa-
“flavon” field whose VEV is responsible for the breaking tions. Thus, it is not unreasonable to expect that minimal
Hi_1—H;, and whereM; is the ultraviolet cutoff of the models exist that are both successful and aesthetically com-
G¢-invariant effective theory. The ratiog; /M appear in  pelling. This is the primary motivation for the current work.
higher-dimension operators that contribute to Yukawa cou- |n non-Abelian flavor models, the existence of three gen-
plings in the low-energy theory. For example, the superpoerations of matter fields, the heaviness of the top quark, and
tential term the absence of supersymmetric flavor-changing processes to-
gether suggest 2® 1 representation structure for the MSSM
iQ Hp byD (1.2 matter fields. With this choice it is not only possible to dis-
M, <3 DR ' tinguish the third generation, but also to achieve an exact
degeneracy between superparticles of the first two genera-
leads to a bottom quark Yukawa coupling of orde%,)/M¢.  tions whenG; is unbroken. In the low-energy theory, this
The most general set of operators involving the fields of thelegeneracy is lifted by the same small symmetry-breaking
minimal supersymmetric standard modgISSM) and the¢ ~ parameters that determine the light fermion Yukawa cou-
plings, so that flavor changing neutral currédRCNC) ef-
fects remain adequately suppressed, even with superpatrticle
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=U(2) [8-10]. Quarks and leptons are assigne@ol rep- 0 ue'p 0
resentations, so that in tensor notation one may represent the

three generations of any matter field B§+ F3, wherea is a Yu= thep  Lhaep Use |, (1.9

U(2) index, andF is Q, U, D, L, or E. A set of flavons is 0 use Us

introduced consisting of,, S,,, andA,,, where¢ is a

U(2) doublet, andS(A) is a symmetrigantisymmetrig U(2) whereuq, ... ,us are O(1) coefficients. By embedding the

triplet (singled. The doublet and triplet flavons acquire the U(2) model in a grand unified theory it is possible to obtain

VEVs p~ € naturally; the model can then accommodate all the de-

sired fermion mass hierarchies for choices of the coefficients

(¢) (O (Sy (0 0 u; andd; that are all of order 110]. For example, in an
M, e d M, |0 : (1.3 Su(5) grand unified theoryGUT), Y|, is associated with the

coupling10-10-5, where thelO's represent matter fields, and

the most general set of nonvanishing entries consistent withhe 5is the Higgs fieldH. However,

an unbroken (1) symmetry that rotates all first generation- .
fields by a phase. This residua(1) symmetry is broken at a 10 10= 5, 45,® 50, (1.10
somewhat lower scale by the flavén
where the subscripts indicate symmetry or antisymmetry un-
(A) 0 € der interchange of the twd0's. If we assume that the anti-
M, \—¢ o) (1.4 symmetric flavorA is an SU5) singlet, the producAH is a
5., and does not contribute ¥, . Similarly, if the flavonS
is a 75 with a VEV in the hypercharge direction in $&)
space, then the part @H that contains the Higgs doublet
. o field transforms as 45, which again does not contribute to
U(2)—U(1)— nothing (1.5 Yy . To obtain nonvanishing couplings of the right size in
the upper X 2 block of Y|, one introduces a singlet flav@h

yields a Yukawa texture for the down quarks, for example, ofat transforms as an $5) adjoint. The VEV ofS implies

wheree’ <e. Thus, the sequential breaking

the form that the breakings of both (@) to U(1) and SU5) to the
standard model gauge group are associated with VEVs of
0 die’ 0 ordere. Thus, it is natural to assund& )~ e, which provides
exactly the desired value qf in Eq. (1.9. Moreover, the
Yp~| —die’ dye dse ¢, (1.6)  su(5) assignments foA andS provide for a Georgi-Jarlskog
0 dse ds mechanism[11], so that unified () models successfully
account for the charged lepton mass spectrum as well.
Wheredl’ L ’d5 are O(l) coefficients. With the choice While the textures that follow from the Simple tWO-Step

~0.02 ande’ ~0.004, this texture achieves the correct hier-breaking of a W2) flavor symmetry are indeed minimal, the
archy in down quark mass eigenvalues and gives contribi@riginal symmetry group is not. It is natural to ask whether
tions of the appropriate size to entries of the Cabibbothere are small discrete groups that work equally well as
Kobayashi-Maskaw#CKM) matrix. TheO(1) coefficients horizontal symmetries. It was shown in R¢12] that the
may be determined from a global fit, as in REE0]. The charged fermion Yukawa textures usually associated with
ratio m,/m, is assumed to be unrelated tq2y symmetry U(2) models may be reproduced assuming the symmetry
breaking, and is simply put into the low-energy theory byGs=T'XZ3, and the breaking pattern
hand. This is accomplished by choosing the free parangeter
in Eq. (1.6). € €
While the form ofYp is viable, U2) symmetry by itself T'®Z3—Z3—nothing. (111
cannot explain the differences between the hierarchies within
Yp and Yy . Quark mass ratios renormalized at the grandHere, T’ is the double tetrahedral group, a discrete subgroup
unified scale are given approximately pg] of SU(2) corresponding to the symmetry of a regular tetra-
hedron. The factoze'? is the diagonal subgroup of 2,C T’
Mg imgimy=\*N20, (1.7 and the additionalZ; factor (see Sec. IY. Since U?2) is
isomorphic to SU(2X U(1), it is not surprising that our dis-
while crete symmetry is a product of a discrete subgroup of25U
and a discrete subgroup of(1). Moreover, it was argued in
myimgme=A8\%01, (1.8)  Ref.[12] that this symmetry isninimalin the sense that
(i) T’ is the smallest discrete subgroup of @U(and in
whereA~0.22 is the Cabibbo angle. Clearly, an additionalfact the smallest group of any kipdwith 1-, 2- and
suppression factgs is required inY |, for those elements that 3-dimensional representations and the multiplication &ile
contribute most significantly to the up and charm quark mass 2=3® 1. These two ingredients are necessary to reproduce
eigenvalues, the successful (2) textures.
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(ii) Z5 is the smallest discrete subgroup oflYthat al-  cluding the most significant renormalization group effects. In
lows G; to contain a subgroup forbidding all ord€x(e") Sec. VI, we present th&' XZg model that reproduces the
entries in the Yukawa textures. important features of the SU(%)U(2) model with neither

The latter statement applies to models in whithis a  SU(5) nor U(2). In Sec. VI, we show how to construct a
discrete gauge symmetfgee Sec. )t models with a global Viable globalT’ model with no Abelian factors. In Sec. VIil
T’ symmetry do not require any additional Abelian factors, W& comment on one scenario involving sterile neutrinos, and
as we demonstrate in Sec. VII. The use of a discrete gaug8 the final section we summarize our conclusions.
rather than global symmetries is motivated by various argu-
ments that the latter are violated at order 1 by quantum gravi-  Il. WHAT IS A DISCRETE GAUGE SYMMETRY?

tational effect{13]. In two of the models we presenl; is | ot 5 define a discrete gauge symmetry provisionally as
an anomaly-free discrete gauge symmetry, while the addiy giscrete remnant of a spontaneously broken continuous
tlonaI_Zn fa_ctor is not. As in many of the Abelian models gauge symmetry. Below the breaking scAl®f the continu-
described in the literaturs], we simply assume that &, oys symmetry, the low-energy effective Lagrangian has in-
factor may be embedded in a(1) gauge symmetry whose teractions that are invariant under the unbroken discrete
anomalies are cancelled by the Green-Schwarz mechanisgtoup, no massless gauge fields, and derivatives that trans-
[14]. Thus, our models may be viewed as consistent lowform trivially. It would seem then that this effective theory is
energy effective theories for flavor symmetries that are locajdentical to one with a purely global discrete symmetry. In
in a complete, high-energy theory. this section, we review the arguments suggesting that this is
On a more practical level, the different representatiomot the case. We first illustrate how gauge invariance of a
structure ofT’ allows for elegant solutions to the solar and theory spontaneously broken to a discrete subgroup dictates
atmospheric neutrino problems that do not alter the predicthe form of all terms in the low-energy effective theory, and
tive quark and charged lepton Yukawa textures, nor requirghus renders its discrete invariance immune to wormhole dy-
the introduction of sterile neutrinos. While similar results cannamics. We then show that a theory with a discrete gauge
be obtained in some SO(18)J(2) models[15], we obtain  symmetry predicts topological defects not present in a theory
our successful solutions using a much smaller symmetryith a global symmetry, and that these play an important role
structure’ One goal of this paper is to study these solutionsin demonstrating that discrete gauge charges leave quantum-
at a level of quantitative detail not presented in our earliefmechanical hair on black holes. Both observations suggest
work. that discrete gauge symmetries are viable as candidates for
In addition, we propose two new models involviiy  fundamental symmetries of nature. After reviewing these ar-
symmetry. The first model, based on the discrete gauge synuments we summarize the anomaly-cancellation constraints
metry T'XZg, reproduces all important features of the relevant to low-energy theories with discrete gauge symme-
SU(5)xU(2) model without requiring a field-theoretic tries. We use these constraints in constructing models
grand unified theoryln other words, the suppressionmf,  throughout this paper.
and m, in the SU(5)xXU(2) theory described earlier is Following a discussion by Bank47], let us consider the
achieved inT' XZg without SU5). In addition, the ratio low-energy effective theory that results from spontaneously
my /Mg, which is not explained in SU(3U(2), is predicted  breaking a W1) gauge symmetry to a discrete subgroup. The
in our model to be 0fO(€)~0.02 for tan3~0O(1), where full theory consists of two scalar fieldg and ¢ with U(1)
tang is the ratio of Higgs field VEVEH)/(Hp). In a sec- chargesq and 1, respectively, wherg is an integer. The
ond model, we consider the implications ©f as a purely Lagrangian is the usual one for an Abelian Higgs model:
global flavor symmetry. Although in this case the symmetry
may not be fundamental, it could still arise as an accidental 1 ) )
symmetry at low energies. We show that it is possible to £=— 4—2FWF’”+|3MX—|qAﬂX|2+|5u¢—IAM¢|2
construct a viable model based @n alone, with no addi- 9
tional Abelian factors. While it is well known that supersym- +VixTy. (2.2
metric models with a continuous $2J flavor symmetry and
a 2&1 representation structure do not have viable Yukawarhe potentialV is such that they field acquires a vacuum
textures, our global” model demonstrates that discrete sub-expectation value.. Let us rewrite the Lagrangian using the

groups of SW2) remain viable alternatives. nonlinear field redefinitiony= (A + o)€'?/ /2. This yields
Our paper is organized as follows. In the next section, we

discuss the meaning of discrete gauge symmetries and the 1 1 1

relevant anomaly-cancellation constraints in the low-energy L= — — Fu FH+ E&MO'&’“U"F §(A+a)2(aﬂe—qAM)2

effective theory. In Secs. Illl and IV, we review the group g

theory of T' and present the minimal model described in +|a#¢>—iAM¢|2+V(0), 2.2

Ref. [12]. In Sec. V we fit predictions of the model to

charged fermion and neutrino masses and mixing angles, ir\‘/Y/herea is the Higgs field and is the would-be longitudinal

component of the (1) gauge boson in unitary gauge. We
choose to construct a low-energy effective theory in which
For a similar approach, see REL6]. the o field, which has a mass of ordéy, is integrated out.
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However, we retain the gauge field, as well as the un- 20

physical scalar fieldd. Although the gauge symmetry is 5527- 29
spontaneously broken, the Lagrangian of the theory remains

invariant under the local (1) transformation This implies an observable Aharanov-Bohm effect in the

scattering of particles with discrete gauge charge off cosmic
strings. Krauss and WilczgkL 8] use this observation to ar-
gue that the scattering of a cosmic string off a particle with
discrete gauge charge that is falling into a black hole is in-
sensitive to the point at which the particle crosses the event

¢_>eia(x)¢’ AKX A+ aﬂa(x), 60— 0+q a(X).
(2.3

The low-energy effective Lagrangian then consists of the ki

netic terms . . SO
horizon. Thus, the discrete charge of the particle is not lost,
1 1 and the black hole grows quantum-mechanical hair.
L=— —ZFWFW+|<?M¢—iAM¢|2+§A2(aM0—qAﬂ)2, It is interesting to note that the discussion above may be
49 rephrased in unitary gauge by making the initial replace-
24 ments
as well as the most general set of gauge-invariant operators B,=A,—(1/q)d,0, and d=e "4, (2.10

involving the fields¢, e'?, and covariant derivatives, with
powers ofA included to obtain the correct mass dimensionsin Eq. (2.2), which then becomes
We can classify the interactions in the effective Lagrangian

that involve ¢ into two types: terms that are invariant under 1 v 1 B 1 2 2mp
global U(1) transformations o alone(with the other fields L=- 4_ngMVF + 5‘9#‘7‘9 ot §(A+ o)°q°B*B,
held fixed and those that are not. A typical term of the first

type is¢' ¢; terms of the second type necessarily involve the +]d,P— iBH<b|2+V( o). (2.11
U(1) gauge-invariant product
. Unlike the previous approach, all the fields above are gauge
e 10 (2.9 invariant; one may integrate oBt, ando, and obtain all the

o ) o ) ___possibleZg-invariant interactions involving the light field.
or similar products with derivatives. Such terms are invariantryis formulation of the low-energy theory is peculiar in that
under aZ, phase rotation of the fielgp alone. Thus, gauge the periodicity of¢ implies that
invariance of the low-energy theory implies that it must have

an unbrokerZ, symmetry. Since this is a consequence of a e?"ap=, forall integersn. (2.12
local symmetry, it cannot be violated by wormhole dynam- . _ .
ics. Thus, the field manifold o is not the complex plan€, but

We now show that information on discrete gauge charge&ather the orbifoldC/Z,: Field configurations connected by
is not lost when a charged particle falls into a black hole. ToZq transformations are identified, and hence are physically
do so, first note that the Abelian Higgs model has stabléedundant, the hallmark of a gauge symmetry. Given this
cosmic string solutions. In the case whefe=0, the kinetic ~manifold, the fieldb has a conical singularity at the origin in

energy terms in Eq2.4) are minimized when field space; strings in unitary gauge correspondbtdield
configurations that wrap around this singularity as the azi-
1 muthal angle varies from 0 to72
A#:a‘?ﬂg' (2.6 As the previous ) —Z, example demonstrates, a dis-

crete gauge symmetry can arise in a renormalizable field
For nonsingular gauge field configurations, this is related tdheory when a continuous gauge symmetry is spontaneously
A,=0 by a gauge transformation. However, singular solu-broken by a Higgs field VEV that leaves a discrete symmetry
tions also exist; a cosmic string along tkieaxis corresponds  unbroken. The same can occur for non-Abelian symmetries

to as well. For example, one may break a gauged2pgym-
_ metry with a Higgs field transforming as7awhich contains
1 x! . aT’ singled, leaving the theory invariant unddi’. On the

Ai:afij m Lj=12, 6=arctanxz/xy). other hand, the 1) —Z, example suggests how a discrete

2.7) symmetry may be defined without an explicit embedding in a
' continuous group. In string theory, the discrete symmetry
If one couples the gauge field to a classical curi¢ntthen ~ may be a remnant of general coordinate invariance, ordinary

the change in the action by adding one such cosmic string igauge invariance, or the larger gauge symmetry of string
theory [17]. For our purposes, however, the nature of the

) high energy theory is irrelevant.
6S=(1/q)f 01", (2.8 It is worth mentioning in passing that spontaneously-
broken discrete gauge symmetries have domain walls that
which follows from Eq.(2.6). Takingj* to be the current of are not topologically stable. Holes bounded by strings may
a particle with unit W1) charge(and hence nontriviaZ, spontaneously nucleate, allowing the walls to tear them-
charge that circles the string, one finds that selves to pieces while dissipating energy through gravita-
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TABLE I. Character table of the double tetrahedral graup
The phasey is exp(2ri/3).

Sample element E R C,,C,bR C; C3 CsR C3R

. Order of class 1 1 6 4 4 4 4
Order of element 1 2 4 6 3 3 6
. 1° 1 1 1 1 1 1 1
— 1 11 I
\L/‘( 1 11 1 ” 7 " 7
2 2 -2 0 1 -1 -1 1
FIG. 1. Geometrical illustration of the grody or T. The rota- ZJ: 2 2 0 no- 7= , 7’
tions C, andC; generate all other rotations in each group. 2 -2 0 7o-n -7 7
3 3 3 1 0 0 0 0

tional radiation[19]. The effectiveness of this mechanism at

avoiding cosmological problems is not relevant to our dis-. . -~ .
cussion since the flavor-symmetry-breaking scale in ouih terms of familiar Euler angles, and then restricting their

models is high enougfof order the unification scaléhat all value_s to thpse_ describi.ng .rotations taking a regular tetrahe-
topological defects are eliminated by inflation dron into coincidence with itself. The same Euler angles de-
Finally, it is relevant to consider whether there are anyScrlbe rotations in S(2) space, since S2) and SQ3) are

constraints on the low-energy particle content of theorieéOcally :jgomq(rpf:g:, SO thaTE|s| the sulljgrgéjg ggsg) %"'

with discrete gauge symmetries. Since continuous gaug sponding 1o the same Euler angles (3). ne
symmetries must satisfy anomaly-cancellation conditionst erefore.expect.s that even-.d|men3|onal representations  of
the particle content of low-energy theories with discrete are splnonal, 1.€., are muItlpI|Qd by 1 “r.‘def a'27 rota-
gauge symmetries is restricted. fiea and Ros§20] were tion (calledR in the literaturg, while odd-dimensional rep-
the first to consider the constréints on a discrete gauyed resentations o’ coincide with those of and are invariant
symmetry, and their results were refined by Banks and Dinémder this rotation, as may be verified by the character table,
[21]: Let G, be a simple factor of the continuous group in Tafbl_l,e _I' d by th . dCa depicted i
which a discrete gauge symmetry is embedded, an jet Ei 1|ngeneratef hy tde Lcl)tatlolr(szdan 3 b?rplctg n

and Gy represent the unbroken Abelian and non-Abelian’ '9: +- BE€CaUSe 0 the double-valued nature bfrotations,
gauge symmetries of the low-energy effective theory. Can'_[hese elements actually have orders 4 and 6, respectively. For

cellation of theGOGﬁ anomaly is the only new requirement reasons to be d_e_scnbed belovy, it turns out to be convenient
to present explicit representatioiepy for an element of

for consistency of the low-energy theory; all other anomaly-
cancellation constraints involvinG, can be satisfied by the order 4(such asC,) and one of order 3SU.Ch asC3R). )/\{e
{abel these elements as and g, respectively’ thenT’ is

introduction of heavy states. Banks and Dine point out that; . NS 3 4 2 2
this requirement, termed the linear fiez-Ross condition, is defined by the multiplication rulegs=gs=1, 9¢g5=050o,

equivalent to demanding discrete gauge invariance of nor@2Nd9sds "05=999sJs- One may then show that each of the
perturbative interactions generated by instantons of the ur@4 €léments may be written uniquely in the canonical form
broken continuous gauge groups. This observation demor$#893ds, Wherep=0,+1, and ifq=0 or 2, therr =0, while
strates that consistency of a discrete gauge symmetry at loi = *1, thenr=0,*1.
energies can be established without reference to any particu- The groupT’ is central to our model building since it is
lar embedding. the smallest with 1-, 2-, and 3-dimensional reps and the mul-
tiplication rule 2@ 2=3®1. T' models therefore allow for
lIl. GROUP T' flavons that perform the same roles &g, S,p andA,,, in
the U2) model. The only other 24-element group that has
All of the symmetries described in this paper cont@iin  reps of the same dimensions is the octahedral gr@up
the double tetrahedral grodpGeometrically, T’ is defined  (which is isomorphic td5,). In this case, however, the prod-
as the group of all 24 proper rotations in three dimensionsict of two doublet reps does not contain a triplet, and the
leaving a regular tetrahedron invariant in the(8Udouble  analogy to W2) is lost.
covering of S@3). This perhaps opaque definition may be More specifically, T’ has three singlets’ and1*, three
understood in the following way. There exists a group of 12doublets,2° and 2=, and one triplet3. The triality super-
elements called the tetrahedral grolip consisting of all  script provides a concise way of stating the multiplication
proper rotations in three dimensions leaving a regular tetrarules for these reps: With the identification of as +1,
hedron invariant{Fig. 1). It is constructed by parametrizing
the group S@) of all proper rotations in three dimensions

3The element labels are chosen to coincide with those of Thomas
and Wood[23], whereT' is seen to be isomorphic to §(F;), the
2For a review of basic terms of discrete group theory, see Refgroup of 2< 2 unimodular matrices whose elements are added and
[22], Appendix A. multiplied as integers modulo 3.
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2

trialities add under addition modulo three, and the following 7”0 0
rules hold: 9e(2°)= . Qo(27)= ;
0 7 0
= = - __[(mn O
1®R=R®1=R forany repr, 2©2=3a1, 0a(2 ):(0 1)' 3.3
293=322=202"32". 323=30301%01 o1 wheren=exp(27i/3). If matter fields of the first two genera-

tions are assigned to tt2 rep, one then obtains the desired
phase rotation under th®; subgroup. This observation is at
(3.D)  the heart of the global’ model presented in Sec. VL.
As we see below, however, models in whithis free of
Note that trialities flip sign under Hermitian conjugation, so diSCreté gauge anomalies are much easier to construct if mat-
that2* 2~ =33 1° while (27)T®2 =3@1". ter fields are assigned to tB8rep instead. In this case, let us

The multiplication of T’ representations may be made cOnsider extending the flavor symmetry groupToxZs.
We identify a new triality index 0,+ and — with the Z;

explicit by the use of Clebsch-Gordan matrices. For ex- , 5 . . o
ample, let the fieldse and ¢ be column vectors that trans- Phase rotations 1y, and»”, respectively. Like thd” indi-
form as2* and2~ underT’, respectively. From the rules C€S: theZ, trialities also combine via addition modulo 3.

above, we know that the product of these reps contains RePS ofT' X Z5 are denotft_j by affixing this additional trial-
trivial singlet, the1®, but it is not immediately clear how to Iy @S @ Superscript, e.g2" . We now identify the desired
construct this representation out of the given fields. ForiNtermediate symmetry as the diagonal subgroup of the origi-
mally, we seek a matriM such that the product nal Z3, generated by the elemegg, and the newZ; factor.
We call this subgrouﬁg henceforth. It is easy to see that the
rep2°~ transforms undezg'? by the matrix

n O
0 1) (3.9

X" My—x"My (3.2

der the t f ti R d R , wh .
under the transformatione— R(g) x andy—R(g) x, where which is simply the product of4(2°) and #2. The matter

R is a two-dimensional matrix rep, arglruns over all ele- ; 0 .00 . )
ments of the group. From our earlier discussion, it is only[1€/d @ssignment2™ & 1%, and the breaking pattert

necessary that we consider transformations associated wifﬁZﬁZ? —nothing are at the heart of the minimal flavor
the defining elementgs andgs, to solve for the form oM; ~ model d'SCUSO%edJTJ the Dexg_secilgn. It Is_\(/)vorth pointing out
in the present case, one finds thdtis proportional to the thattherepd™ 177,177, 2", 27" and2"" are special in
Pauli matrixo,. This algebraic procedure is easily general-that these singlet reps and the second component of the dou-
ized to products of other reps. Explicit matrix representationdlets remain invariant undés . Thus any2e 1 combination:
for the generating elements, andge, as well as the com- of these reps is potentially useful in building models with
plete set of Clebsch-Gordan matrices for combiriigreps ~ U(2-like textures. _ _
are provided in the Appendix. The reader should keep in Finally, we return to the issue of anomaly cancellation.
mind that these Clebsch-Gordan matrices must be taken int/@ pointed out in Sec. Il that consistency of a discrete gauge
account if one is to reproduce the Yukawa textures presente?ymmetry at low energies only requires the cancellation of
later in this paper. For example, without the factowgf one ~ anomalies that1) involve the unbroken non-Abelian con-
might not realize that a VEV in the first component pf ~finuous gauge groups an@) are linear in a continuous
couples only to the second componentjof group in which the discrete group is embedd-ed.. If we embed
As mentioned in the Introduction, we also require that ourT N SU(2), then these constraints are satisfaatomati-
discrete flavor symmetry contain a subgroup that rotate§ally. providing that the particle content of a given model
first-generation matter fields by a phase. This subgroup playidls complete SW2) representations. Let us therefore con-
the same role as the intermediatélJsymmetry in the () Sider the embedding o’ in SU(2) in more detail.
model, and must forbid all entries in the first row and column _ The group SU2) has one rep of each nonnegative integral
of each Yukawa matrix. The smallest discrete subgroup thafimensionn [the spin 6—1)/2 re, while T’ has only sin-
one might consider is &, that flips the sign of all first glet, doublet, and trlplet reps. It must be the.case that large
generation matter fields. Unfortunately, such a transformaSU(2) reps break up into a number &f reps with the same
tion leaves the 11 entry of each Yukawa matrix invarianttotal dimension. To see this decomposition, consider the
(two sign flips, so that the up and down quarks could, in characteristic polynomial of matrices in each of thereps
principle, acquire masses that are too largeZzAphase ro-
tation, on the other hand, does not lead to the same problem,
and aZ; subgroup ofT’ is generated by the elemegg 4One can also imagine models in which the symmetry group
defined previously. From the Appendix, we see that the twobreaks to a non-Abelian subgroup; however, in this case the simple
dimensional representation matrices for the elenggnéire  rephasing of multiplet components under the subgroup is not guar-
given by anteed.
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TABLE Il. Decomposition of SW2) reps into reps off'. N is any non-negative integer.

SU(2) rep multiplicity T’ rep decomposition

12N 2N{2@2 @27}

12N+1 1°sN{1’°01"®1 ®3-3}
12N+2 o2N{2Xe2t w27}

12N+3 3eN{l’s1 @1 ®3-3}
12N+ 4 {2*@2 t@2N{la2"®27}
12N+5 {1"e1 @3'eN{1%¢1" 01 ®3-3}
12N+6 (2N+1){2%@2t @27}
12N+7 {1°%2-3loN{1°¢ 1701 @3.3}
12N+8 P (2N+1){ w2 @27}
12N+9 1% 1"e1 @2-3loN{1°%¢1"e1 @3.3}
12N+10 {2"e27 le(2N+1){ @2t @27}
12N+11 {I"e#1 ®3-3loN{1%01"@1 ©3-3}

for any two rotations that generate the full group. The samavhere e’ <e again represent ratios of flavon VEVs to the
can be done for the full S@) group restricted to the particu- ScaleM;. Since we have chosen a “special” doublet rep for
lar Euler angles that givd’. Then a large rep matrix of the first two generations, which transforms as ¢iad} un-
SU(2) is block diagonalizable into smaller blocks corre- derZs, only the 22, 23, and 32 entries of the Yukawa ma-
sponding to rep matrices df’; in particular, the character- trices may develop VEVs dD(e€) originating from vevs irS
istic polynomial of the S(2) matrix is the product of those and ¢. The symmetryZ3 is then broken by 4°~ VEV of

of the T' matrices. It is then possible to extract whigh O(€'). The Clebsch-Gordan coefficient that coupleld a to
reps appear in a given $2J rep, as well as their multiplici- two 2°~ doublets is proportional to-,, so thee’ appears in
ties. The results of this decomposition are summarized ian antisymmetric matrix. These considerations yield the tex-
Table Il. There we see that th?, 2°, and 3 reps of T’ tures

correspond to the complete 2, and 3 reps of SU2). It 0 € 0

follows, for example, thal’ is non-anomalous in all models ,

utilizing the 2°~ @ 1% representation structure for the matter YupL~| € € €], 4.3
fields (with Higgs fields as singlets Note that there is no 0 e 1

meaningful low-energy constraint on tt® charges since

Abelian factors may be embedded at high energies (b U

gauge groups whose anomalies are cancelled by the Gre
Schwarz mechanisii4].

whereO(1) coefficients have been omitted. Since tfe
eand3* flavon VEVs appear as antisymmetric and symmetric
lrn]fatrices, respectively, all features of the grand unified exten-
sion of the U2) model are obtained here, assuming the same
GUT transformation properties are assignedstoS, and A.
IV. MINIMAL MODEL One can also show readily that the squark and slepton mass-
squared matrices are the same as in tl) thodel.

It was shown in Ref[12] that this simple model can be
e(ﬁ(tended to describe the observed deficit of solar and atmo-
to the T’ X Z, reps2°~ @ 1% while the Higgs fieldd,, o are spheric neutrin'os. Mod_els for lepton masses were con-
taken to be purdés; singlets. Given these assignménts, it isStrUCted both with and without the assumption of(Stlni-

easy to obtain the transformation properties of the Yukawa('cat'.on' The latter p035|k_J|I|ty IS O.f Interest, for example’ i
one is only concerned with explaining flavor physics of the

In this section we review the minimdl’ X Z; model pre-
sented in Ref[12], which we study in quantitative detail in
Section V. The three generations of matter fields are assign

matrices: lepton sector, and is provided for completeness. In either
[3©1°7] [2°*] case, the proposed ex_te_nsions yield viable neutrino textpres

YupL~ ot oo |- (4.0  with naturally large mixing between the second and third
[2°7]  [1%] generations. Moreover, these extensions do not alter the

) o charged fermion textures, so that all the relations between
Equation(4.1) indicates the flavon r_epsogeeded_to construcinasses and mixing angles in thé2model are also predic-
the fermion mass matrices, namely,”, 2°*, and3", which  tions of T' X Z,. We now review the two cases considered in
we callA, ¢, andS, respectively. Once these flavons acquireref, [12].

VEVs, the flavor group is broken. We are interested in a case I: Here we do not assume grand unification, so that
two-step breaking all flavons are Si(b) singlets. We introduce three genera-
tions of right-handed neutrinos transforming as

!
€ €

T'®Z3—Z3—nothing, (4.2 ve~20" @1, (4.4)
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Note that this representation choice differs from that of thewhich yields
other matter fields only in the third generation. Singeare

singlets under the standard model gauge groups, introducing (e'le)* €'le €'le Hoy2
a 1l field by itself creates no anomaly problems. The neu- M ~| €le 1 (Hu) E, (4.10
trino Dirac and Majorana mass matrices then allow flavons Ar

that do not contribute to the charged fermion mass matrices. e'le 1 1

Their transformation properties are given by where we have suppressed Bé1) coefficients. It is clear

[3@1°7] [279] [37] [279] by inspection that we naturally obtain large mixing between
LR™ [20°] [1+]), RR~< [2+0] [1*])' second- and third-generation neutrinos. It is also important to
point out that the two eigenvalues of E4.10 that appear to
(4.5  be of O(1) depend sensitively on the products of a large
Note that one obtains the same triplet and nontrivial singlehumber of order one coefficients. It is easy to obtain a hier-
in the upper X2 block as in the charged fermion mass archy of order 10 in the two largest mass eigenvalues, with-
matrices, as well as one of the same flavon doublet2%hge  out allowing any of the coefficients defined in Egs.
the rep1°~ is not present inMrg, since Majorana mass (4.7),(4.8) to deviate from unity by more than a factor of 2.
matrices are symmetric. In addition we obtain the r2p8, This comment is important in understanding how the reason-
177, and1™*, which did not appear in Eq4.1). New fla-  able coefficient choices given in RdfL2] account for the
von fields can now be introduced with these transformatiordliffering mass scales associated with atmospheric and solar
properties, and their effects on the neutrino physics exploredieutrino oscillations.

Let us introduce a singlenew flavon¢, transforming as a In order to determine neutrino oscillation parameters pre-
279 and with a VEV cisely one needs to compute the neutrino CKM matrix. If
) M. and Y_ are diagonalized byM, =WM> W', Y_
(1) ~02( € ) 46 =ULYPUL, then
Mf €
v=Ulw. (4.11

where g, is the Clebsch that couples the two doublets to
1°~. This new flavon is the only extension we make to thewe parametrize this matrix as in R¢R4]:
model in order to describe the neutrino phenomenology. Af-

ter introducing¢,, the neutrino Dirac and Majorana mass V

matrices read

C12C13 C13512 S13
0 l,e" l3rpe’ i i
, 1 32 = | C23818' "~ C12515573 €120 *—S15513523 C13523 |,
Mig~| —11€"  lae  larie | (Hy), 23518 Y~ C1xC23S13  — C155258' — 23815513 C1aCra
0 |4€ 0

(4.12

Farse’'? ryriee’ ro€’ . ,
42 41 2 wherec;;(s;;) stands for co#}(sin¢;). Then one finds

Mgr~| rari€€’ rse rie | Ag, 4.7
' viva
r2€ fie 0 SIP(201) = 4— 2, 4.13
where Ay is the right-handed neutrino mass scale, and we (Vi +Vip)
have parametrized th®(1) coefficients. Furthermore, the 2,2
;:Q‘;;gsged lepton Yukawa matrix including(1) coefficients SIFP(20,9) = 4 h 23 323 . (4.14
(V23tV39)
0 Ci€ 0 The observed atmospheric neutrino fluxes may be ex-
Y ~| —ci€’ 3cre cze ¢ (48  plained byv,-v, mixing if sin?26,3=0.8 and 10°<Am3,
0 Cse  Cs =10 2, while the solar neutrino deficit may be accommo-

dated byv,-v, mixing assuming the small-angle Mikheyev-
The factor of 3 in the 22 entry is simply assumed at presentSmirnov-Wolfenstein (MSW) solution 2x 10 3<sirf26,,
but originates from the Georgi-Jarlskog mechanism in the<s10°2 for 4x 10*65Am§25 107°, where all squared

grand unified case considered next. masses are given in éJ25,26. These regions of parameter

The left-handed Majorana mass mathy | follows from  space are the ones obtained most naturally from our m8dels.
the seesaw mechanism

MLLQMLRMI;I%M-II_—R' (4.9 6 ; i ixi
The experimental ranges for neutrino mixing parameters follow
from a two-neutrino mixing approximation which is valid only if
the mixing anglef;3<15° [24]. This condition is satisfied in all our
SAssuming more than ong, leads to the same qualitative results. models.
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SinceAR is not determined from symmetry considerations, itHere B is a Hermitian matrix that depends on the flavons in
is only necessary to reproducems/Am>,. In Ref.[12] a  the model. The kinetic terms may be put back into canonical
choice for theO(1) coefficients can be found that yields form by the superfield redefinitiony —1—By ~(1
neutrino mass ratios and mixing angles falling within the —B/2)v, . This in turn leads to a correction ¥, :
desired ranges given above.

Case Il: Here we assume @) unification and that the My =M = 1/2B,M}. (4.18

flavons transform nontrivially under the GUT grgljp’_n‘r’lmew’Numerically it is only necessary that we retain the largest
A~1, S~75 ¢~1, andX~24 Note that sinceH~5, the  glements oB:

productsSH and AH transform as a5 and5, respectively,
ultimately providing a factor of 3 enhancement in the 22
entry of Y, (the Georgi-Jarlskog mechanignin addition, B~| - - ae (4.19
two 279 doublets are introducedp,; and ¢,,, since the
texture obtained for the neutrino masses by adding only one - ae
extra doublet is not viable. Both doublets, have VEVs of
the form displayed in Eq4.6). As before, the presence of
these two new doublets does not alter the form of an
charged fermion Yukawa texture.

The neutrino Dirac and Majorana mass matrices now take

which also leads to a®(e) correction to the determinant
discussed above. The paramedes included in the quanti-
Yative analysis of the model presented in the next section.

the forms V. NUMERICAL ANALYSIS
The numerical check of the unifie@’ X Z; model pre-
0 1€ lgrye’ sented in[12] relied on two assumptions. The first is that
M g~| —li€ 1,6 lsrqe (Hy), there existO(1) coefficientsc;, d;, andu; for the charged
| fermion Yukawa matrices that, when combined with the par-
0 4€ 0 ticular choice of neutrino Yukawa parametérandr;, yield
charged fermion mass eigenvalues and mixing angles in
rze’? rsee’ ry€ agreement with the values observed. This should not be a
Muo~| race’  rse?  rie | Ag, 41 problem since the textures of the'XZ; model for the
RR N , ° (1) R 4.19 charged fermions agree completely with those of tH@)U
r26 r]_E

model[10], in which all of these observables are accommo-

_ o ~_dated in detailed fits. Second, the textures as written in the
while the charged lepton mass matrix is the same as in Eqast section are defined at the scalig; ~2x 10'® GeV,

(4.8). Using Eq.(4.9) one obtains the texture while the observables are of course measured below the elec-
troweak scale. A truly meaningful fit requires running the
(e'le)> €'le €'le 5 gauge and Yukawa couplings over this range. While the tex-
M ~| €le 1 (Hu) . (418 tures renormalized &\l 5+ andm; should not differ wildly

Agr in form, a global fit is required to properly compare the pre-
dictions of our model to the experimental data. The purpose
of this section is to report on the necessary steps in these fits

Again, a viable set 00(1) coefficients may be found in Ref. gnd the numerical results.

[12]. In order to study the renormalization of gauge and

While the texture in Eq(4.16 appears to be the same as yykawa couplings, we run the one-loop renormalization
the one in Eq(4.10 (up to an overall factor o), thereisin  group equationdRGE’s) of the MSSM [27] from Mgyt

fact an important difference: th®(1) entries in Eq(4.16  down to the electroweak scale taken to fe=175 GeV.

have a VaniShing determinant at lowest order. The ratio Ofl'his ana|ysis does not include two-|oop corrections or

the two largest eigenvalues are therefore determined byhreshold effects at either end of the spectrum. In particular,
higher order corrections, which must be taken into account tgnijs approach does not differentiate between the sddles
obtain the correct numerical resuftsVhile the zero deter- eM{~Mgyr, € Mi~€e'Mgyrle, andAg~eMgyr.® In any
minant is lifted atO(€) in the superpotential, it is interesting case, both the two-loop and threshold effects are formally of
that, in this particular case, a comparable correction comesypleading order, and therefore are taken into account by
from D terms that alter the canonical form of the neutrinopermitting theoretical uncertainties in the gauge and Yukawa
kinetic energy: couplings ofO(1/16m?)~1%.
Values of the gauge couplings Bt are obtained by
J’ d40[VIV|_+ vEBvL]. 4.17 [sg?ing with the precision values extracted at the sbtéje

€'le 1

"In fact, the analysis made for the model in case | included higher 8Notice thatA g~ eM g Vields the appropriate mass scale in Eq.
order terms, which did not contribute in any significant way. (4.16 for atmospheric neutrino oscillations.
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a; }(M5)=59.99+0.04, Am,
In =6.22+1.61,

2
a; {(M5)=29.57+0.03, Ami,

i =0.9+
a3 1(M5)=8.40+0.13. (5.1) Sif’203=0.9+0.1,

The gauge couplings are run from; to m; using the one- In(sin’26;,) = — 5.41+0.80. 54

loop standard modé5M) RGE's, and then frorm, to M gyt

using the one-loop MSSM RGE%The GUT scale cou- Summarizing this point, we have discussed the details of
plings are taken directly from the textures of Ed&.6), how inputs consisting of the gauge couplings hg "%”d

(1.9), (4.8 and(4.15), given numerical values for the dimen- Yu'kawa matrix parameters at a high scale are manlpulgted
sionless coefficients;, d;, I;, ., u;, anda (collectively using one-loop RGE’s to produce output values for fermion

k), and fore, ¢', . ande. The Yukawa matices are then TR8028 BT [T, SR CEd et o e a ehoice
run down tom, and diagonalized® ' q

Experimental values for the low-energy Yukawa cou-Of parameters;, where all of these coefficients a(1),

plings are extracted from the physical masses and mixinggggeééhea?uéglu_f_r?.gagtgcefoﬁrel.2ue'g zt:\r?rrsenr]]e);t r\:]v!;h_thelr
angles compiled by the Particle Data Grdag], where en- mizati\(/)n' t\;mg tHe clorrll lete sin?ullation congi%ts of clhcl)osin
tries of Y, are obtained by dividing quark masses by ’ ’ P 9

: - a set of parameteis (relevant aiM 1), running the RGE’s
v sinp/\2 and those offp | by dividing quark and lepton . ; ;
: h
masses by cosAl\2, whetes — 246 GeV. down tom, and comparing with observation to compute a

. o figure of merit, 2. If x? is too large, the parameteks are
. The experimental uncertalntles; on th? obseryame:es— adjusted and the procedure is repeated until convergence of
timates for the quark masgassed in the fits are either those

2 . . . .
. ; to a minimum is achieved.
appearing in Refl28] or 1% of the central value, whichever X The y2 function assumes a somewhat nonstandard form
is larger; since the lepton masses are measured with extra )

dinary precision, they are sensitive to the two-loop RGE anﬂ‘ferml_on mgﬁﬁfs and mixing af‘g'es are converted to Yukawa
threshold corrections that we have ignored. couplingski™"* Ak; , and contribute an amount

The RGE for the neutrino Majorana mass maivix, was
computed in Ref[31] and is included here in order to com- AX2=(
plete the RGE evolution for all observables. The low-energy
neutrino observables are taken to be

kiexpt_ ki ) 2

TRk 9

to x2, as usual. There are 15 observaljgsjuark masses, 3

Am3, quark CKM elementgsince CP violation is neglectey 3
100<——-<2500, lepton masses, 2 neutrino mixing angles, and 1 neutrino mass
Ami, ratio] and 26 parametets ; on the surface, it seems that the
fit is always under-constrained. However, our demand that
Sin"26,5>0.8, the parameter; lie near unity imposes additional restric-
tions, which we include by adding terms 4G of the form
2x 10 3<sinf26,,<10 2. (5.3
2 In|kI| 2
For the sake of having meaningful uncertainties, a parameter =3 (5.6

whose lower bound is much smaller than its upper bound is

converted into its logarithm. Instead of E&.3), we use for eachi. Thus, the parameteks are effectively no longer

free, but are to be treated analogously to pieces of data, each
o _ _ of which contributes one unit tg? if it is as large as 3 or as
It should be pointed out that, while the SM RGE's make use ofgmg|| a5 1/3. The particular choice of 3 for this purpose is, of
the modified minimal subtractiorMS) scheme, the MSSM RGE's  course, a matter of taste. In effect, the inclusion of such
in Ref. [27] make use of the dimensional reducti@R scheme tarms renders the parametdtsno longer as true degrees of
[29], which differ at the matching scalen( by our choicg by an  freedom. On the other hand, they are not true pieces of data
amount either, since a value of sal,=0.8 is just as valid as a value
4r  4m 1 _of —1.1 for our purposes. Thus, the value_xﬁﬁm determin-
—5r = —ws ~ 3(Cali (5.2 ing a "good” fit is 15, since there are 15 pieces of true data
ai @ and effectively naunconstrainedit parameters.

whereC,={0,2,3} fori=1,2,3.

®The RGE's are integrated by means of the Runge-Kutta method
with adaptive step size contrf80]. The results of this method were  *We also allow for variation of the parameterse’, p, and¢ by
cross-checked against the results of using Richardson extrapolatidrand, but do not minimize with respect to them. Changes in these
with Bulirsch-Stoer stepping30] and were found to agree to the parameters are equivalent to redefinitions of @) coefficients,
limits of the expected accuracy of either solution. so that they merely set the scale for the other parameters of the fit.

016009-10



MAXIMAL NEUTRINO MIXING FROM A MINIMA L...

PHYSICAL REVIEW D 62 016009

TABLE lIl. Best fit parameters for th@' X Z; model with tan8=2. The minimumy?=2.77.

€=0.04, p=0.08, ¢'=0.004, £=0.017

€;=-0.93+001 d;=+1.33+045 |,=+0.85:0.62 r,;=+0.94-0.84 u;=+0.92+0.31
c,=—0.46+0.03 d,=—-0.81+0.26 |,=—1.01*1.11 r,=+1.06£0.95 u,=+1.480.70
C3=—-1.02:1.13  d3=+155£0.67 |13=—0.97£0.75 r;=+1.03:1.12 uz=—0.90+0.91
c,=—-103+115 d,=+1.14+1.33 1,=-1.09:1.04 r,=—1.07+1.05 u,=+1.07+1.21
Cs=—0.90+0.01  ds=—-1.29£0.12 Ig=-1.11+0.79 r5=-0.97+1.03 ug=+1.84+0.95

a=+0.98-1.06

The numerical minimization is carried out using the €', andp are somewhat largga factor of 2 or morgthan
MINUIT minimization package. As a cross-check, minimiza-their values in the (2) model of Ref.[9], where neutrino
tion using Powell’s direction set meth¢80] is carried outto  physics was not considered. From the excelightone con-
make sure that the same minimum is achieved. Since theludes that thel’ X Z; model has little difficulty satisfying
topography of they? function is complicated due to the nu- all of the required constraints including the naturalness of the
merous parameters involved, it is important to try a numbecoefficients, allowing for the small parametérthat distin-
of initial choices for the input parameteksin order to have  guishes the scale of, from Yp | .
confidence that the minimum obtained is close to global. While we have seen that the minimal scenario is ex-
Once convergence is achieved, a parabolic minimum is agremely successful at reproducing fermion masses and mix-
sumed and a Hessian matrix is computed in order to gaug@g angles, there are nonetheless a number of interesting
uncertainties of the parameters. variant models based om’ symmetry. We explore these

Detailed numerical fits show that it is not difficult to find models in the next three sections.
parameter; that satisfy the constrair)gﬁ]in< 15. However,
in the T’ XZ; model, the ratiom,/m, must be accommo-
dated either by a small value gfor a large value of tag.
For definiteness, we choose {8r2 as a representative As discussed in the Introduction, thé2) model must be
value, and find a best fit witly?,, of 2.77. The complete set embedded in a grand unified theory to reproduce all of the
of parameters is listed in Table 1l and a comparison to databserved quark mass hierarchies. In this section we present a
appears in Table 1V. Note especially that the parameters model that does exactly the same, without the need for a

GUT, by extending the discrete gauged flavor grougrto

TABLE V. Experimental values versus fit central values for Xz_6' We show that this _mod_el explains the ramp,_/mt,
observables using the inputs of Table IIl. Masses are in GeV and aiVhich is merely parametrized in the(2) model(and in our
other quantities are dimensionless. Error bars indicate the larger &therT' models. Before presenting the model we comment

experimental or 1% theoretical uncertainties, as described in th@N notation. As before, we use the triality superscripts
text. —, and 0 for the different representationsTof. For theZg

reps we now introduce the indices 0,1,. . . ,5, which com-

VI. SU(5)XU(2) WITH NEITHER SU (5) NOR U(2)

Observable Expt. value Fit value bine through addition modulo 6. For examp!‘®172
s s =279 etc. SinceZg is isomorphic taZ; X Z,, one may view

My (3.3+ 1.8)x 10_3 3.5¢ 10_3 the new flavor symmetry as A, extension of theT’' xXZ,

My (6.0+3.0)x10 4.0x10 flavor group defined in the model of Sec. IV; denoting Ihe

Ms 0.155-0.055 0.136 reps by+ and —, one identifies

m 1.25£0.15 1.24

my, 4.25+0.15 4.25 Z Z Ze

m; 173.8:5.2 170.4

me (5.11+1%)x 10~ 5.11x 10 0 + 0

m, 0.106+ 1% 0.106 - - 1

m, 1.78+1% 1.78 + + 2

IV 0.221+0.004 0.221 0 - 3

IVl (3.1+1.4)x 1073 2.3x10°3 - + 4

Ve (3.9+0.3)x 102 3.9x10 2 + - 5

Ami/Aam?, 100 — 2500 526

In(Am24 Am?,) 6.22+1.61 6.27 That is, the Zg charge is X (Z3 charge)}3

sir26,, 2%10°3—10"2 4.5x10°3 X (Z, charge) modulo 6. In the remainder of this section

In(sir?26,,) —5.41+0.80 —5.40 we use the more compa€t X Zg notation.

Sirt20, ~0.8 0.90 The three generations of matter fields transform as

Sin’26;5 — 1.4x10°°

Q,U,D~2%a1% (6.1
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L~2%p1t4, (6.2 Unlike the minimal model described in the previous two sec-
tions, the flavons here contribute to the Yukawa matrices in
E~2"291°2, (6.3  Some cases only at quadratic order
v~ 20171, 6.4) [3*@1%] [22]\ [AS+AA+¢? ¢)
_ . . _ TV 27 (1) ¢ 1
The matter fields have transformation properties that differ
from those in our previous models, and in particular, the 0 ee’ 0
electroweak doublet leptons are no longer anomaly free by ~| —ee! €€ e (6.13
themselves. The third-generatibrfield is assigned to a non- 0 1 ' '
€

trivial T’ singlet, thel™, which does not form a complete
SU(2) representation. Given the discussion in Sec. I, The

SU(2)3, anomaly is not automatically cancelled. However, s [Fe17?] [277] _[ATSHATA A¢
we remedy this problem by assigning non-trivial transforma- b [2791  [17%] A A
tion properties to the Higgs fields:
0 € 0
Hy~1% Hp~12 (6.5 ~| —€ € €]e (6.14
The fieldsHp andL; are both electroweak doublets and, as 0 e 1

far as the non-Abelian quantum numbers are concerned,
form a vector-like pair wherHp is a1~ underT’. The
remaining fieldsg and vg, do not transform under any un- Yo~
broken non-Abelian continuous gauge groups and thus their
T' X Zg quantum numbers may be assigned freely. 0 € €

In order to break the flavor symmetry and obtain the fer- _ | _ s _ (6.15
mion mass matrices we introduce the following flavons:

[34@ 104] [24])

AS+AA+ ¢? A’¢+AV¢V)
[274]  [177]

Ap+A,p, A

S~3°, A~1° ¢~2% (6.6)
We see that the flavons andA’ appear in precisely the
A~1t4 A'~172 (6.7  'ight way to recover approximate $8) X U(2) textures for
Yp andY, , with an additional overall factor ok. The only
In addition to these flavon fields, we introduce two more indifference is a relatively uninteresting entry in the 13 and
the neutrino sector of the theory. Their transformation prop31 elements o, . Notice that the VEV of the field has
erties are such that they do not alter the form of the chargefieen replaced byA) in Eq. (6.13. Thus, all important fea-

fermion Yukawa textures: tures of the Sb) X U(2) model are reproduced.
Note that the ratian,/m;, which is experimentally ob-
d,~2%3 A, ~171 (6.8)  served to be in the range 0.028&,/m,;=0.026, is predicted

to be of ordere~0.02 for tan3~0(1), as can baeen from
Together withvg, these fields are the only ones that trans-the ratio of the 33 entries iy and Y. This is promising
form nontrivially under theZ, subgroup oZg (i.e., the only  since tanB~QO(1) is the naive expectation if the Higgs po-
ones with oddZg charges Again, we are interested in a tential is not fine-tuned.

two-step breaking: Before proceeding to the analysis of the neutrino sector, a
few comments are warranted on the possible supersymmetric

e contributions to FCNC'’s in this model. As mentioned in the
T’ X Zg—Z3—nothing, (6.9 Introduction, scalar superpartners of the first two generations

are exactly degenerate in our models when the flavor sym-
WhereZS is precisely the same subgroup as in the minimalmetry is unbroken. The amount of scalar nondegeneracy at
T'XZ3; model. Thus, by the same arguments presented ifow energies is determined by the order at which flavons

Sec. IV, we obtain the following patterns of VEVs: contribute to the scalar mass matrices. In the minimal model,
the flavons contribute quadratically to the scalar masses of
(8 (0 O (A) 0 € the first two generations, as a consequence of the flavons’
M_fN 0 € M—f’“ —¢ o) (6.10 nontrivial Z; charges. The scalar mass-squared matrices of
the U2) model are then reproduced. In the current model,
() 0 (A) (A" however, the flavors may contribute linearly, sincg’ is in
_~02( ) Tle, L (6.1)  the product of 2°)"®(2%). The important point is that this
My € My My effect provides ar©(e€) correction to thediagonalentries of
the scalar mass matrices. In the fermion mass-eigenstate ba-
(,) € (A,) sis, a Cabibbo-like rotatiod-~€’/e leads to 12 entries in
Me 72 e My 612 ihe scalar mass matrices of ordém3, wherem is an av-

016009-12



MAXIMAL NEUTRINO MIXING FROM A MINIMA L... PHYSICAL REVIEW D 62 016009

erage scalar mass amatl~0.004. Taking into account uncer- (6.18), is the same as obtained in R¢84], and thus the
tainty in O(1) coefficients, this result is in marginal agree- claim in Ref.[35] that this texture cannot account for solar
ment with the bounds fron€ P-conserving flavor-changing neutrino oscillations is not correct.
processes, assuming superpartner masses less than 1 TeV
[32]. While bounds fromC P-v_io_lating precesses are generi- VIl. GLOBAL T' MODEL
cally stronger, theD(1) coefficients have unknown phases
that one may simply choose in order to avoid these bounds. As pointed out in the Introduction, it is not possible to
Without a firm understanding of the origin GfP violation,  construct a realistic supersymmetric model with a continuous
saying more about these phases entails a degree of speculd(2) flavor symmetry if scalar universality is not assumed.
tion that we choose to avoid. Of course, if scalar superpartThe argument is straightforward: The left- and right-handed
ners are heavyas in the “more minimal MSSM”[33]) or  up quark fields must be embeddedZid 1 representations to
flavor universal(as in gauge mediatiofl], anomaly media- maintain the heaviness of the top quark, as well as degen-
tion [2,3], or Scherk-Swartz mechanisi]), the currentl’ eracy of squarks of the first two generations. Given this as-
model is completely safe. signment, the couplin@?UPe,,H,, is allowed by the unbro-

Next we examine the neutrino sector of the model. Giverken flavor symmetry, which implies the unacceptable
the transformation properties of;, we calculate the neu- relation my=mc~m,. The T' model below demonstrates
trino Dirac and Majorana mass matrices that discrete subgroups of &) are viable for building mod-

els of fermion masses, although they are more dangerous

AS+HAA+ @ Ag, than models with additional Abelian factors, as far as super-

[34@ 104] [271]
- Ap+A,p, A, (Hu) symmetric FCNC processes are concerned. We first present

M LR™

[27%]  [1*1] . .
the model, and then explain how it evades the problem de-
0 l,e" Iorq€e’ scribed above.
| —lie' lae  lorae H 6.1 The crucial feature that allows one to build a successful
1, 3 2f3€ | e(Hy), .19 T’ XZ3; model is the existence of a doublet representation
l4€ Ise e 2°~, whose first generation component alone rotates by a
4 1 phase under th&; subgroup. This choice is unique in mod-
N [377 [277] _ AS A¢, els whereT’ is a discrete gauge symmetry, since Heep is
RR [271] [174 Agp, A R the only doublet that fills a complete £2) representation if

, we embedTl’ in SU(2). The4 of SU(2) decomposes into the
0 0 rie reps2™ and2™, which implies that each is separately anoma-
~| 0 rpe rze |eAg, (6.17 lous. While it might still be possible to construct models
involving anomaly-free combinations @ and2~ reps, we
have found no examples that are particularly compelling. On
wherer; andl; areO(1) coefficients. To leading order, the the other hand, iff" is assumed to be a global symmetry,
seesaw mechanism gives then matter fields can be assigned to any of the doublet rep-
resentations freely. This provides an opportunity for con-

r1€, r36 I’4

€?le € structing economical models, as we now demonstrate.

E/
M| e 1 1 e(Hy)? 6.1 Consider thez; subgroup ofT’ generated by the element
LL An (6.1 gy that acts on the® rep as dia§n?, 5}, with 7 defined as in
! R .
€ 1 1 Sec. lll. In the 2 rep, this element takes the form

) ) o diag{ 7,1}, which we identify as the desired phase rotation
Note that the texture in Ed6.18 is not changed if higher-  matrix for matter fields of the first two generations. Given

order corrections are included that lift the zeros in Eqsgyr freedom to assign matter fields to any of the doublet reps
(6.16,(6.17. Following the same procedure as before, Wej, 4 globalT’ model, it is no longer necessary to extend the
diagonalizeM, andY and extract the neutrino masses andfjayor symmetry by an Abelian factor in order to find a sub-

mixing angles. A global fit of the parameters in this modelgroup that forbids the order’ Yukawa entries. Thus, one is
can in principle be done; however, we just present a Viab"?\aturally led to the charge assignment

set of parameters for simplicity. Using the set of values for

the O(1) coefficients inM | (rq,... r4,04,...,lg)=(1.0, 2210 f _ U D L and E. (7.1
1.0,1.0,-1.0,1.2, 1.2, 1.3~ 1.0, — 2.0, 1.0 and assuming y~2°®1" for ¢=Q, U, D, L and E, (7.1
all coefficients inY_ are 1.0 except that of the 22 entry, 0 . .
which we set to 3.0, we obtain andHy p~1", which yields

Am?
2125, sif26,,=3.5xX1073, sirf26,5=0.88. Yup,.L~ (7.2)

=
Ami,
(6.19 . .
Introducing flavonsA, ¢ andStransforming ad™, 2*, and
This agrees with the allowed ranges described in the previ3, respectively, one reproduces the canonic&)Uextures
ous sections. It is worth mentioning that the texture, Eqassuming the breaking pattern

[3¢1] [2+])
(21 [1°1)°
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’

€ € 0
€

T’ —Z3— nothing, (7.3 <¢v>~< ) <¢L>~<

toge_tr_ler With the dynamical assumption that o_nIy therep This is consistent with the breaking pattern in Eg.3), but
participates in the last step of symmetry breaking. The result]--ncludes a dynamical assumption that the doulfiétdoes
ing textures are identical to those in our original model of

) . L not participate in the first stage of sequential symmetry
Sec. IV. Ont_a difference, however, is that tﬁﬂavon m_thls breaking and its second component acquires no VEV.
model contributes to the squark mass matrices at first ordex. L .
: . . , . ince ¢, transforms as an SB) adjoint, it can contribute
in €, just as in theT’' X Zg model. However, this is not a . . o
: ' irectly toM g, but only toMgR if, for example, the adjoint
concern for the same reasons discussed at length in Sec. V., . . . ;
. . . avon Y is also present; the corresponding entriedvbfy
Turning to neutrino physics, recall that successful resultsare therefore sunpressed by an additional factas: of
were obtained in thd' X Z; model by altering the charge PP y '
assignment of the third-generation right-handed neutrino 0

!

€
Nk (7.9

. . . IlE, |5r16
field. Thus, we are motivated here to consider , 5 ,
MLR% _|16 |2€ |3r2€ <HU>1
VRNZ_@]._, (74) O |4E 0
which implies 0 0 rye
" [3e17] [2‘]) ( [3] [2‘]) Mrr=| O ra€® rye' | Ag. (7.10
oLt TR 2] ) rie? e’ rge
(7.5 _ _
The seesaw mechanism then yields
We identify the flavong, with the representatio® , which
does not appear in any of the charged fermion Yukawa tex- (e'le)?> €'le €'le

tures. However, there is an important difference between this M ~| €le 1 1 (Huy)%e (7.12)
model and the one discussed in Sec. IV: The third generation L , Ag "’ '

vg field transforms by a phase under tAg subgroup, so €'le 1

that, for example, the 13 and 31 entries Mz are left . 3 .
invariant under this intermediate symmetry. This implies an’Vheré we used the numerical fact thelf/ >~ O(1). It is
inversion in the hierarchy of vevs in the third row and col- mPortant to note that we have only displayed the contribu-
umn of Mgg. In the non-unified version of the model, it is tions to Eq.(7.1'0) linear in ¢, S and A .for convenience,
somewhat remarkable that we still obtain a viable form forduadratic and higher order corrections lift the zero entries of
My, : these textures, but do not change the result in &dql)

qualitatively. Note that Eq(7.11) is the same successful tex-
0 le' lsrie ture obtained in our original’ X Z; model.
Finally, we return to the no-go theorem presented at the

— ! !
MR~ lie" l2e Tarae’ | (Hy), beginning of this section. It is not possible to construct a
0 l,€ 0 realistic model with a continuous $) flavor symmetry and
2®1 rep structure because an unwanted flavor-invariant op-
0 0 re erator may be formed from the product of two doublet matter
. , )
Mpr=| O rse r.€' | Ag, (7.6 fields. In our globall” model we have the freedom to assign

, , matter fields to new doublet representations whose products
rie Tae Tye contain no trivial singlets, thus avoiding the problem.
(e'le)?> €'le €'le
M~ €'le 1 1
€'le 1 1

<HU>26 1) VIl T" WITH STERILE NEUTRINOS

Ag 7 In this section we comment briefly on the possibility of
four light neutrino species. Rather than investigating the
Unfortunately, this result does not persist in the simplest uni—(vas?t sp?ce of poss:cblle rr:odells, W? tﬁlmply s(;mlw qgw the
fied version of the model, which includes additional suppres-resq S ob a successiul extension o é2}Jmo el with a
sion factors in the 22 entries & r and M rg. Fortunately, sterile neutrino pr_oposed by HaII_ and Weir(eiW) [35] can
a simple modification of the flavon charge assignments in thge(r:epro_guced witht deTmﬁgy ||?stez?::1. fields. includi
unified theory allows us to recover the previous result. We onsider a (2) model with all matter fields, including
introduce two ¢, flavons that transform differently under

T'X SU(5):
2We consistently assume that a flavon that transforms nontrivi-
b,~ (27,24, o ~(27,1). (7.9 ally under a subgroupl; either acquires a VEV of the order of the
scale at whichH; is spontaneously broken or acquires no VEV at
Furthermore, we assume the pattern of VEVs: all.
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three generations of right-handed neutrinos2él repre- ¢~20+—>2(11, S~3 —=3.,, A~ 10‘—>1‘12,
sentations. Given the canonical pattern of flavon VEVs, one (8.3
obtains a right-handed neutrino mass matrix of the form

where the subscript indicates thélycharge. Assuming the

0 0O breaking pattern
MRR: O € € AR' (81) . ¢
0 € 1 T'XU(1)—Z5— nothing, (8.4

Since MgR is symmetric, there is no contribution from the we reproduce the textures of thg2y model, including Eq.
flavon A, leading to a singular matrix. It is important to em- (g.1), identically. The HW predictions for solar, atmospheric
phasize that the zero entries of Ef.1) are not lifted at any  and Liquid Scintillation Neutrino Detectdt. SND) [36] neu-
order ine ande’ as a consequence of the holomorphicity of trino oscillations are then recovered by extending the sym-
the superpotential. From consideration of th@lndices of  metry by an additional (1) factor, implemented precisely as
the flavon fieldqor alternatively their charges under 41)  before. We are thus able to reproduce the results of[REf.
subgroup of W2)], it is possible to show that any contribu- with the flavor symmetryT’ x U(1)2. Although we find this

tion to the vanishing entries of E¢8.1) requires the com- model less compelling than the other three already discussed,
plex conjugation of a flavon field, which is not allowed by it may be of some relevance if the LSND oscillation result is
unbroken supersymmetry. If the pattern of flavon VEVs isindependently confirmed.

not altered, the first-generation right-handed neutrino re-
mains in the low-energy theory as a sterile neutrino.

This sterile neutrino mixes with the second-generation IX. CONCLUSIONS

left-handed neutrino at order’ in M g. After integrating We have shown in this paper how to reproduce the quark
out the two heavy right-handed neutrino flavors, one obtaingand charged lepton Yukawa textures of th@model using
a four-by-four neutrino mass matrix of the form a minimal non-Abelian discrete symmetry, the double tetra-
hedral groupT’. The first model we discuss, based on the
0 discrete gauge symmetily’ X Z3, not only successfully ac-
M ce'(Hy) commodates the observed charged fermion masses and CKM
M@ = L v , 8.2 angles, but also accounts for solamall-angle MSW and
0 atmospheric neutrino oscillations. In particular, a largev .
0 ce'(Hy) 0 0 mixing angle is predicted in the model, even though all

charged fermion Yukawa textures are hierarchical. A global
where the three-by-three blodk(® has entries of order fit including neutrino parameters was performed in a grand

(Hy)?Ar, which can be found in Ref35]. HW observe unifiedzversion of_the model, and results with extremely
that the 24 and 42 entries &) are much larger than all 900dx" were obtained. ,

others, leading naturally to maximal mixing betweepand _ In addition, two varianiT’ models were discussed. !n the
the sterile neutrino. As it stands, however, both would havdi'st: the flavor group was extended 16 X Zg, and all im-
masses of order of the electroweak scale untdsstaken to ~ Portant features of the SU(2)U(2) model were reproduced

be of O(108). To obtain a viable model, HW extend the Wlth(_)ut the need for a fleld-t_he_ore_tlc unification. Thls_model
flavor symmetry by an additional (@) factor, under which ~Provided a successful predictidmith order-1 uncertainty

all the right-handed neutrinos have chargd.. A charge ©f the bottom to top quark Yukawa coupling ratio, which is
—1 flavon is introduced with the VEVey~10~%, which merely parametnzed in the (R) mode_l and in the othef
breaks this symmetry weakly. One then finds thatey,, models we discuss. The second variant theory was based on

while M® remains unchanged. a globalT' symmetry and demonstrates that the successful
The main obstacle to implementing this solution iTa U(2) textures can be obtained without including an Abelian

x Z5 model with all matter fields assigned 28~ & 1% reps factor in the flavor group. In both variant models, large

is that higher-order corrections to the first row and column of“» ¥~ miXif‘g is Pfed‘Cted’ and solutions to the _solar and
Eq. (8.1) are not forbidden by holomorphicity; the complex atmospheric neutrino problems are naturally obtained.

conjugate of any non-trivial; phase rotation is the same as It _iS worth pointing out that the_ viable _neutrino textures
its square. Thus, we are led to promote Ayisymmetry to a predicted by our models are achieved without altering the

continuous W1).* The appropriate embedding is given by predm'qve textpres of t_he charged fgrmlons and wnhout in-
troducing sterile neutrinos. Interestingly, the solutions we

present have no simple analogy in th€Umodel: the right-
handed neutrino fields in our models do not fill complete
U(2) representations. In particular, the third generatign
transforms as 4, which forms onlypart of a 5 in U(2).
3we could also promot&; to a much largei,, that adequately Aside from the possibility of very nonminimal (2) models
suppresses corrections to the zero entries in(&4); we leave this (.. with seven generations of right-handed neutjintis
possibility implicit in our discussion. desired neutrinolT’ reps do not naturally occur. The key

y~22"91%°-2% o 1)
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advantage of discrete groups is that the large, phenomengcients for two singlet reps or any rep witl! are all unity;

logically unused representations of the continuous embedhe remaining CGs for products involving singlets are
ding group break up into sets of small phenomenologically .
useful representations of the discrete group. If discrete gauge 11®2'2=21""2, with O;=c(1 0), 0O,=c(0 1),

symmetries arise as fundamental symmetries of nature, then (AB)
we see from the example df' that their richer representa- . .
tion structure makes it possible to construct simple and el- 1"®3=3, with O;=c(0 0 1),
egant models of flavor.
g O,=c(1 0 0), O3=c(0 1 0), (A7)
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APPENDIX: EXPLICIT DETAILS OF T'

As described in the text, the grodp is generated by the Mo 00 Mo 0 1 Ao
elements labeleds andgg. We begin by exhibiting explicit S“lo 1)’ 671 -1 o/ (A9)
matrices representing these elements in each of the seven
reps listed in Table I. The singlets agg(1°)=1, gq(1°)  Then
=1, go(1Y) =17, go(17)=7? where p=exp(27i/3). The L.
doublge‘é ar)e 7 81 )=7 7= exp(ml3) 92093, 2°©27D3;

g5(20’i)=|\/|1, g9(20)=7]M2, Ol:CM31 OZICM4= 03:CM5! (Alo)
99(27)=7°M,, go(27)=M,, (A1) 220010, 2271
where O=cMg, (Al11)
y 1 +i +ﬁei“’1z) (7; o) 92723, 2 ©2 D3
=7 2| L pa-iwi2 —i v V2= '
\/§ \/Ee : 0 ](-AZ) Ol:CM5, OQICM3, 03:CM4, (AlZ)
0 - - .
and the triplet rep is generated by 2’©2'D1", 2 @2 D1
. -1 279 29 10 O O=cMg, (A13)
0s(3=3| 27" ~1 27|, gu3=|0 7 O | X©2°53, 2'®2'D3;
2y 27> -1 0 0 #°
(AS) O]_:CM4, OZZCMS, 03:CM3, (A14)
The Clebsch-GordafiCG) coefficient matricesD; coupling P92 D17, 2t@2">O1:
ann,-pletx and anny-plety to form ann,-plet z consist of
n, matrices of dimensions, X n, satisfying the condition O=cMg. (Al15)
. Nz _ The remaining combinations are
RIOR,=2 (R);O;, i=1,...n,,  (Ad)
=1 20+ ©3020=:
whereR; denotes the group rotatidRin repi. In a perhaps s
- : ) 1 0 O 0 0 1-i
more familiar notation, the CGs above may be written 0,=c _ 0,=c
0 1+i 0/’ -1 0 0 )’
X ylz (A16)
(Oi)jk=(- K i) (A5)
J 93027, 2'@3D22°, 2 ©322%

Note from Eq.(A5) that the CG matrices foR;®R, are

simply the transposes of those Ry® R, and thus are omit- O.=c 01 0 O.=c 1-i 0 0
ted below. The coefficients below indicate multiplicative ! 0 0 1+i)’ 2 0 -1 0/
constants arbitrary in the definition EGA4). The CG coef- (A17)
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0O 0 -1 0O 0 1
0 - + 0 - +.
2’3027, 2"®3D2°, 2°®3D2": O=c,| 0 2 0]+c| 0 0 0],
-1 0 O -1 0 O
0 0 1 0 1-i 0 (A19)
0.=c . , =C ,
" Mavi o0 o 2" lo 0o -1 1 0
(A18) 0
3301% ©O=c| 0 0 1|,
3®3D3,83;: 0 1
2 0 0 0O 0 O 1 0
O;=c;| 0 0 —1f+4¢| 0 0 -1, 33D1": O=c|1 0 0],
0O -1 O 0 1 O 0 1
0O -1 0 -1 0 0 1
O,=c;| =1 0 O|+c,|1 0 Of, 39301 O=c|0 1 0], (A20)
0 0 0O O 1 0
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