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Magnetic photon splitting: The S-matrix formulation in the Landau representation
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Calculations of reaction rates for the third-order QED process of photon splittingg→gg in strong magnetic
fields traditionally have employed either the effective Lagrangian method or variants of Schwinger’s proper-
time technique. Recently, Mentzel, Berg and Wunner presented an alternative derivation via anS-matrix
formulation in the Landau representation. Advantages of such a formulation include the ability to compute
rates near pair resonances above pair threshold. This paper presents new developments of the Landau repre-
sentation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel,
Berg, and Wunner by summing over the spin quantum numbers of the electron propagators, and analytically
integrating over the component of momentum of the intermediate states that is parallel to the field. The ensuing
tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to
S-matrix theory applications. Such developments can facilitate numerical computations of splitting consider-
ably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the
limit of highly supercritical fields and the domain where photon energies are far inferior to that for the
threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are
simply expressed in terms of theG function, its integral and its derivatives. In addition, the equivalence of the
asymptotic forms in these two domains to extant results from effective Lagrangian or proper-time formulations
is demonstrated.

PACS number~s!: 12.20.Ds, 95.30.Cq, 97.60.Jd, 98.70.Rz
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I. INTRODUCTION

The third-order quantum electrodynamical process
photon splittingg→gg in a strong magnetic field, currentl
popular in several astrophysical models of different neut
star sources, was first studied over three decades ago
cause of the analytic complexities encountered when inv
tigating this interaction, it was not until the beginning of th
1970s that a body of correct and uncontroversial res
emerged. These early splitting calculations used either ef
tive Lagrangian@1–3# or variations of Schwinger’s proper
time techniques@4–6#, the expediency of which yielded
compact analytic forms for the ratesR when specializing to
low energy (R}v5) or low field (R}B6) cases. After a hia-
tus of nearly two decades, photon splitting became of inte
again in the literature@7–10# following the publication of an
S-matrix calculation in the Landau representation of its ra
by Mentzel, Berg and Wunner@11#, specifically because o
their contention that the earlier works cited above had s
ously underestimated the strength of this process. The r
computed in@11# were later retracted in@12#, with a sign
error in their numerical coding having been discovered a
corrected. The Mentzel-Berg-Wunner analytic derivati
was the first comprehensive presentation of the applica
of a Landau representation technique specifically to magn
photon splitting, though the QED formalism presented
Melrose and Parle@13,14# virtually provided an equivalen
enunciation of suchS-matrix forms for splitting amplitudes
More recently, Weise, Baring, and Melrose@10# confirmed
the analytic derivation of@11#. The Landau representatio
calculations and most of the earlier effective Lagrangian

*Associated with the Universities Space Research Associa
Email address: baring@lheavx.gsfc.nasa.gov
0556-2821/2000/62~1!/016003~16!/$15.00 62 0160
f

n
e-

s-

ts
c-

st

s

i-
tes

d

n
tic
y

d

proper-time presentations were generally applicable to n
dispersive regimes below the pair creation threshold (\v
52mc2), where the momentum vectors of the initial an
final photons are collinear, and arbitrary field strengths.

Below pair threshold, the effective Lagrangian approa
of @1–3# and the proper-time calculations in@4–7# appear
much more amenable for the purposes of numerical eva
tion than theS-matrix formulation in the Landau represent
tion. This arises because effective Lagrangian and pro
time ~ELP! methods produce results that involve trip
integrals over relatively simple~hyperbolic and exponential!
functions, while theS-matrix amplitudes integrate over th
parallel momentumpz and include a triple summation ove
the Landau level quantum numbers of the intermediate
states. Both techniques start from different but equival
@15# forms of the electron propagator, and henceS-matrix
computations@11,10# should yield identical results to prope
time numerics@1–7#. For the specific case of magnetic pa
creationg→e1e2, such an equivalence of theS-matrix and
proper-time methods has been demonstrated@16,17#, but
only via continuous asymptotic approximations th
smoothly average out the exact ‘‘sawtooth’’ resonance str
ture. Yet theS-matrix Landau representation approach e
plicitly retains the resonances in the scattering amplitu
above pair threshold, whereas the ELP methods elimin
such information early during developments. Photon splitt
becomes effectively first-order ina f at any one of a multi-
tude of pair resonances, generated when the intermed
states become ‘‘on-shell.’’ Hence it is quite possible th
splitting can compete effectively with pair creation as a ph
ton absorption mechanism above pair threshold. Ascertain
whether this is true is an interesting physics question. Mo
over, if splitting is approximately as probable as pair creat
above threshold, then it manifestly changes the characte

n.
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vacuum dispersion, so that quadratic~and by inference per
haps higher order! contributions to the vacuum polarizatio
tensor become significant relative to the standard linear o
used in the derivation@3# of kinematic selection rules fo
splitting. Hence, the generation of exact and compact exp
sions for the rates forg→gg valid both below and above
pair creation threshold is clearly a worthwhile enterpr
from a physics perspective.

Developed expressions for the rates for photon splitt
are also important for astrophysical applications of this p
cess, particularly to effect efficient and accurate compu
tions of such rates. These applications have so far focuse
neutron star magnetospheres, primarily on models of
gamma repeaters~SGRs! and strongly-magnetized pulsar
both being extremely topical in the astrophysics commun
at present. The potential importance of splitting in neutr
star environments was suggested by@3,18,19#. Possible for-
mation of splitting cascades has been explored in model
SGR transient outbursts as a means of softening the spec
efficiently with no production of pairs@20–23#. If both po-
larizations can split, or if polarization switching is activ
during SGR outbursts, then the properties of the splitt
cross section guarantee emergent spectra in the obse
range~20–150 keV! and of the observed shape for all field
in excess of around 1014G @20–22#, provided that the emis
sion region is not concentrated near the polar cap. The s
tral properties of SGRs in quiescent emission appear to
distinct from those during outburst. Pulsations and tempo
increases of their periods~i.e. spin-down! have now been
observed@24–26# for two of the four confirmed SGRs~SGR
1806-20 and SGR 1900114!, leading to inferences of field
in the vicinity of 1015G. The connection between these pu
sars of extremely high magnetization, so-calledmagnetars,
and conventional radio, x-ray, or gamma-ray pulsars is
well understood. Baring and Harding@27# postulated that
radio quiescence, a property of the SGRs, may be com
in magnetars due to the efficient action of photon splitt
and other effects in suppressing the creation of pairs. Ph
splitting also has spectral implications for such pulsars w
more modest fields:@28# demonstrated that the unusual a
sence of.30 MeV emission in the gamma-ray pulsar PS
1509-58 ~whose spin-down field is;331013G! can natu-
rally be explained by the operation ofg→gg in the intense
magnetic and gravitational fields near its surface.

Several desirable goals are immediately identifiable
the basis of this historical path for the study of the physics
photon splitting, and the needs of the astrophysics com
nity. It would be satisfying~i! to obtain analytic expression
for rates that are valid above pair creation threshold using
Landau representation methodology,~ii ! to know whether
the analytic formalism of Mentzel et al.@11# can be develope
and simplified, and~iii ! to demonstrate a formal equivalenc
between thisS-matrix Landau representation approach a
extant results from proper-time–effective Lagrangian te
niques. This paper addresses these issues, using the ve
analytic formalism of Mentzel et al. as the starting point f
mathematical developments. The analysis here consider
the polarization modes that are permitted by theCP invari-
ance symmetry ('→ii , '→'' and i→'i), and applies
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for collinear momenta of the incoming and outgoing ph
tons, i.e., when the effects of vacuum dispersion are
glected. A significant development provided in this paper
the dramatic simplification incurred by algebraically pe
forming the summation over the spin states that are incor
rated in the electron propagators. The resulting express
in Sec. II A ~first stated in@10#! are relatively compact, and
of an appearance familiar to Landau representation–S-matrix
theory applications to magnetized environments~i.e. includ-
ing associated Laguerre functions!. Furthermore, here the in
tegrations over the momentum parallel to the field are p
formed analytically for the first time in Sec. II B, renderin
the splitting rates in most amenable forms~see Eqs.@12# and
@15#! that are optimal for numerical applications: the analy
forms presented consist of just triple summations over L
dau level quantum numbers of the intermediate states. Th
general results are valid both below and above pair thresh
at non-resonant photon energies, and provide substantia
vances over the work of@11#; they are much more suitable fo
numerical evaluation since many cancellations have b
eliminated algebraically.

Two specializations are discussed in Sec. III, primarily
~partially! demonstrate equivalence of the Landau repres
tation formalism presented here with extant proper-tim
effective Lagrangian limiting forms for splitting rates, an
simultaneously to serve as a check on the mathematical
nipulations of this paper. Results are presented for all th
polarization modes permitted byCP invariance in the limit
of zero dispersion. The first asymptotic regime is~see Sec.
III A ! for highly supercritical fields,B@Bc5m2c3/e\,
where in the case of'→ii , the limit was found to concur
with a recent analytic result that was obtained by Baier et
@8#, while new results were obtained for the other two mod
In the second specialization, in Sec. III B, asymptotic resu
for energiesv!mc2 well below pair creation threshold wer
obtained, reproducing the cubic energy dependence of
amplitudes obtained by other QED techniques. Moreov
new and compact expressions for the scattering amplitu
in this low energy limit are derived in terms of the logarith
of the G function, its integral and their derivatives. The
simplified forms in Eqs.~41! and ~42! are also produced
from extant integral forms for splitting matrix elements d
rived first in @1,3#, thereby facilitating the first analytic dem
onstration of the equivalence of splitting rates obtained
the S-matrix formulation in the Landau representation a
those derived using Schwinger-type techniques.

II. THE GENERAL S-MATRIX FORMALISM

The rates for photon splitting within anS-matrix formu-
lation can be developed using a variety of conventions; h
the Landau representation used by Mentzel, Berg and W
ner@11# is adopted, and formal developments lead to an in
pendent confirmation of their analytic derivation. Spec
cally, for a field B5(0,0,B), this approach uses
representation of the electron-positron wave functions
eigenstates of the magnetic moment~or spin! operatormz

~with mW 5msW 1g5bsW 3@p1eA(x)#) in Cartesian coordi-
nates within the confines of the Landau gaugeA(x)
3-2
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5(0,Bx,0). Such states turn out to be very convenient b
cause they generate useful symmetry properties; they w
identified by Sokolov and Ternov@29#, who dubbed them
states of ‘‘transverse polarization.’’ Lete, e8 ande9 denote
the polarizations of the initial and final~primed! photons
(e,e8,e95',i), and km5(v,k), km8 5(v8,k8) and km9
5(v9,k9) denote the absorbed and produced photon f
momenta. Then the total rate for splitting via the polarizat
modee→e8e9 can be written, using Eqs.~27!–~29! of @11#,
in terms of theS-matrix elementSf i

(3), which is the sum of six
termsSf i , j

(3) corresponding to the six viable time-ordering po
sibilities:

Re→e8e95
1

2 S V

8p3D 2mc2

\ E d3k8d3k9
1

TU (
j 51,6

Sf i , j
(3)U2

, ~1!

whereV andT denote the volume and time associated w
the interaction calculation and the factor of 1/2 out the fro
avoids double counting of the final states. The priming c
vention adopted throughout the paper is one and two pri
for the produced photons and no prime for the initial phot
Since theS-matrix element contains a delta functiond4(km

2km8 2km9 ) prescribing four-momentum conservation f
splitting, it is squared in the usual way usingud4(km2km8
2km9 )u2→@VT/(2p)4#d4(km2km8 2km9 ). Note that the
S-matrix element should possess a cubic dependence on
ton energies when well below pair creation threshold, due
parity symmetry, photon gauge invariance, and the antis
metric nature of the electromagnetic field tensor; details
discussed in@3#.

Before writing down expressions for theS-matrix element
terms, it is appropriate to identify the dimensionless conv
tion that shall be adopted throughout this paper. Since
electron rest massm is the only mass that enters into th
QED problem, we opt to scale all energies bymc2 and mo-
menta bymc unless otherwise specified. This includes
scaling ofmc2/\ for photon frequenciesv. In the spirit of
this convention, we choose to use the symbol« to represent
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dimensionless electron energies and reserveE (5«mc2) to
denote ‘‘dimensional’’ energies as in@11#. In addition, the
magnetic field will be expressed in terms of the quant
critical field Bc5m2c3/e\ hereafter, so thatB51 denotes a
field of 4.41331013G.

The convention for polarizations is identical to that a
sumed in@11#, who opted for real polarization vectors wit
zero time components. The polarization states' and i are
defined according to whether the photon’s electric vector
either perpendicular or parallel~respectively! to the plane
containing the photon’s momentumk and the ~uniform!
magnetic field B vectors, the convention o
@11,13,6,16,10,30#. In the limit of zero dispersion, three po
larization modes are permitted by charge-parity (CP) invari-
ance in QED, namely'→ii , '→'' andi→'i . However,
Adler @3# showed~see also@31#! that for weak vacuum dis-
persion~roughly delineated byB&1), where the refractive
indices for the polarization states are very close to un
energy and momentum could simultaneously be conser
only for the splitting mode'→ii . This kinematic selection
rule applies to gamma-ray pulsar magnetospheres w
plasma dispersion is negligible. In magnetar models of s
gamma repeaters, where supercritical fields are emplo
strong vacuum dispersion arises. In such a regime, it is
clear whether Adler’s selection rules still endure, since
linear dispersion analysis omits higher order~quadratic! con-
tributions @13,14# to the vacuum polarization tensor~e.g.
those that couple to photon absorption via splitting! that may
become significant in supercritical fields. Furthermo
plasma dispersion effects, which can nullify the vacuum
lection rules, may be quite pertinent@32# to soft gamma re-
peater magnetospheres, rendering them distinctly diffe
from those of conventional pulsars. Therefore, in the int
ests of generality, consideration of all threeCP-permitted
splitting modes is adopted throughout this paper.

The derivation of theS-matrix element proceeds alon
lines identical to those in Mentzel, Berg, and Wunner@11#,
with the result being an exact reproduction of their analy
formalism, as reported in Weise, Baring, and Melrose@10#;
for details, one is referred to@11#. Of the sixSf i , j

(3) contribu-
tions to Eq.~1!, it is sufficient to explicitly present just one
g the
Sf i ,1
(3) 52 i

p2

16

~4pa f!
3/2B

Avv8v9

1

~2V!3/2d
(4)~km2km8 2km9 ! (

nn8n9
(

ss8s9

1

«0«08«09
E dpz

3
D n8n

11
~k9!D nn9

12
~k8!D n9n8

21
~k!2D nn8

22
~k9!D n9n

12
~k8!D n8n9

21
~k!

««8«9~«1«91v82 i e!~«81«91v2 i e8!
U

p
z85pz2k

z9 ,p
z952pz2k

z8
, ~2!

where a f5e2/(\c) is the fine structure constant, and the energies« and «0 are defined in Eq.~4! below, with similar
definitions for the primed energies involving primed quantum numbers and momenta of the virtual electrons. UsinJ
notation in Eq.~6! below,

D n8n
11

~k9!5J~2kx9un821,2ky9un,0!@k81* k41k83* k2#e29 1J~2kx9un8,2ky9un21,0!@k84* k11k82* k3#e19

2$J~2kx9un8,2ky9un,0!@k82* k41k84* k2#2J~2kx9un821,2ky9un21,0!@k81* k31k83* k1#%ez9,
3-3
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D nn9
12

~k8!5J~2kx8un21,0un9,ky8!@k1* k92* 1k3* k94* #e28 1J~2kx8un,0un921,ky8!@k2* k91* 1k4* k93* #e18

2$J~2kx8un,0un9,ky8!@k2* k92* 1k4* k94* #2J~2kx8un21,0un921,ky8!@k1* k91* 1k3* k93* #%ez8 , ~3!

D n9n8
21

~k!5J~kxun921,ky8un8,2ky9!@k48k391k28k19#e21J~kxun9,ky8un821,2ky9!@k38k491k18k29#e1

2$J~kxun9,ky8un8,2ky9!@k48k491k28k29#2J~kxun921,ky8un821,2ky9!@k38k391k18k19#%ez ,
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where the polarization vectorem5(0,ex ,ey ,ez) is specified
by e65ex6 iey and ez, and similarly for the final photon
polarizations~primed!. The other threeDs in Eq.~2! are not
displayed here for brevity; they can be obtained from th
in Eq. ~3! simply by the interchangee1↔e2 of polarization
components~and similarly for primed components! and a
relabelling of the Js that produces a corresponden

D n8n
q8q(k)→D nn8

2q2q8(k).
Several notations need to be identified. First, the partic

have energies«, and momentum componentspz along the
field. The energies« and «0 that appear here are, respe
tively, with and without the parallel momentumpz:

«5A11pz
212nB, «05A112nB, ~4!

with n denoting the Landau level quantum numbers,
usual. The other quantum number pertaining to the eig
states ofmz is s561, which signifies the spin state of th
fermions~ @11# used the labelt; here the notation of Melrose
and Parle@15# is preferred!, and satisfiesmzc5s«0c. It
does not appear explicitly in«, but is embedded in the spino
coefficientsk i :

S k1

k2

k3

k4

D [S d2 d1 0 0

d1 d2 0 0

0 0 d2 2d1

0 0 2d1 d2

D
3S A~«011!~«1«0!

2 ipzA«021

«1«0

pzA«011

«1«0

iA~«021!~«1«0!

D , ~5!

for d15ds,1 andd25(12dn,0)ds,21 where the spin quan
tum numbers takes on two values except for then50
ground state~zeroth Landau level!, where onlys51 is per-
missible. Hered i , j is the familiar Kronecker delta. The
primed coefficientsk i8 andk i9 are similarly defined in terms
of primed momenta and Landau level quantum numb
subject to the momentum conservation implicit in Eq.~2!.

The J functions that appear in Eq.~3! are integrals over
the oscillator functions~Hermite polynomial products!, a
form undeveloped in@11#. Here, Eq.~7.377! of @33# is em-
01600
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ployed to express these integrals analytically in terms of g

eralized Laguerre polynomials,Ln
n82n(x) ~see also Eq.~47!

of @15#!:

J~aun8,b8un,b!5expS 2 i
a

2B
@b1b8# D

3$ ie2 ic%n82nI n8,nS r2

2BD ~6!

where r (.0) and the phasec are introduced for conve
nience of notation:a5rcosc andb82b5rsinc. Note that
the bs are alwayskys anda is always akx. Here theI n8,n
functions follow the Sokolov and Ternov convention@29# up
to a factor ofn!, being related to theJ functions of Melrose
and Parle@15#, and both are defined in terms of the gener
ized Laguerre polynomials~see@33#!:

I n8,n~x!5~21!n82nI n,n8~x!5Jn82n
n

~x!

[A n!

n8!
e2x/2x(n82n)/2Ln

n82n~x!, n8.n. ~7!

Values forn.n8 are obtained by interchanging indices,
indicated. Hereafter, the~modified! Sokolov and Ternov con-
vention for writing the Laguerre polynomials will b
adopted. Complex conjugation of Eq.~6! can be used to
establish the identity

D n8n
q8q

~k!5~21!n82n$D nn8
2q2q8~k!%* , ~8!

noting that thek products are either purely imaginary or rea
for all choices of spin quantum numbers. The three fact
like (21)n82n appearing in the second product of threeDs
in Eq. ~2! cancel, leading to this product being just the co
plex conjugate of the first threeDs. This useful symmetry
property clearly underlines the convenience of the Soko
and Ternov choice of wave functions when adopting r
components for the photon polarization.

The form of the contribution to theS-matrix element in
Eq. ~2! is identical to that for Sf i ,1

(3) given in Eq. ~25! of
Mentzel, Berg and Wunner@11#. In the same fashion, it can
be found that the expression derived here forSf i ,2

(3) is abso-
lutely identical to Eq.~26! of @11#, thereby providing confir-
mation of their analytic developments; it can be obtained
using the substitutionsk8↔k9, n8↔n9 and e8↔e9 in Eq.
~3!. All other Sf i , j

(3) contributions result from application o
the cyclic permutations
3-4
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P11 : km9 , em9 →km8 , em8 , km8 , em8 →2km , em* ,

2km , em* →km9 , em9 ;

P21 : 2km , em* →km8 , em8 , km8 , em8 →km9 , em9 ,

km9 , em9 →2km , em* , ~9!

wherekm5(v,k), em5(0,ex ,ey ,ez), etc. Observe also tha
a minus sign and the complex conjugation of the polari
tions are always associated with the initial photon since i
absorbed in the process. Given these permutations, the c
ing symmetry for splitting is manifested in the followin
relationship between the various terms like those in Eq.~2!
that contribute to Eq.~1!:

Sf i ,3
(3) 5P21Sf i ,2

(3) , Sf i ,4
(3) 5P11Sf i ,1

(3) ,

Sf i ,5
(3) 5P11Sf i ,2

(3) , Sf i ,6
(3) 5P21Sf i ,1

(3) , ~10!

where the permutations act as operators. This symmetry
be expressed in a multitude of ways using the identi
P11P215I 5P21P11 andP61

3 5I .
It is important to remark that the derivation of analyt

forms by Mentzel, Berg and Wunner is not the first in t
literature relating toS-matrix applications to photon splitting
The papers by Melrose and Parle@15,13,14# dealing with
various aspects of QED in strong magnetic fields, spec
cally from a wave dispersion/response tensor approach,
structed theS-matrix element for splitting in Eqs.~46! and
~47! of @13#, which incorporated the quadratic vacuum r
sponse tensor given in Eq.~36! of @14#. This tensor is obvi-
ously of a standardS-matrix Landau representation appea
ance. Equations~2! and ~3! can be generated directly~and
also Sf i ,2

(3) ) from the Melrose-Parle evaluation after a mod
cum of algebra. Hence, Eqs.~2! and ~3! here, and Eqs.~25!
and ~26! can be used as reliable starting points for furth
S-matrix developments.

A. Analytic reduction: Summation over spin states

The form in Eqs.~2! and ~3! is quite cumbersome. It ca
be simplified considerably by~i! specializing to specific bu
representative directions of photon propagation and~ii ! ana-
lytically performing the summations over spin statess, s8
and s9. Restricting the photon motion to thex-direction
yields photon motion perpendicular to the field: since sp
ting is collinear in the non-dispersive limit discussed ear
in this paper, it follows thatkz5kz85kz950. This choice dra-
matically simplifies coefficients of the Laguerre polynomia
in Eq. ~3!. Without significant loss of generality, settingky

5ky85ky950 removes nearly all of the phase factors in t

definition of theJs in Eq.~6!, leaving justi n82n. Three such
factors emerge in the triple product ofDs, leading to a factor
of (21)n92n8.
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The CP symmetry possessed by the splitting process
comes most evident at this point, since it is now simple
derive theCP selection rules. The specification ofky5ky8
5ky950 andkz5kz85kz950 yields only one possible com
ponent of polarization perpendicular to the field,e'[«y5
2 i«15 i«2 and one conceivable component of polarizati
parallel to the field,ei[«z ~and similarly for primed quanti-
ties!. The polarization~electric field! vector of the photons is
of course, normal to the photon momentum vector, wh
automatically spawns the notation for the two possible po
ization states:': e'51, ei50 andi : e'50, ei51. From
the presence of subtractions in the numerators of the i
grands of Eq.~2! together with the complex conjugatio
property in Eq.~8! and the proportionality of theDs to fac-
tors like i n82n, it follows that only terms with an odd numbe
of e' factors contribute toSf i ,1

(3) , i.e. terms proportional to
eiei8e'9 , eie'8 ei9, e'ei8ei9 ande'e'8 e'9 . All other terms cancel
identically to zero. By virtue of the permutation symmetri
in Eq. ~9!, this is also true for all otherSf i , j

(3) . It is then trivial
to deduce theCP selection rules for photon splitting, name
that the only permitted transitions are

'→'', '→ii , i→'i . ~11!

The three other splitting transitions all haveS-matrix ele-
ments that are exactly zero for collinear photon momen
and hence are forbidden. This technique forCP selection
rule derivation was implemented in@11#. These restrictions
are simply consequences of the charge conjugation (C) and
parity (P) symmetries of the splitting process, i.e., relati
to the transformationsk→2k andB→2B.

The summation over the spin statess, s8 and s9
(561) produces a dramatic simplification in the appeara
of the S-matrix elements. Such spin summations act only
the products of thek is that appear in Eq.~3!; the algebra is
lengthy but straightforward, being facilitated by pairingSf i , j

(3)

terms with denominators that differ only in the sign of the
photon energies. The total splitting rate in Eq.~1! can be
written in the form

Re→e8e95
a f

3

2p2

mc2

\ E dv8

v2 uMe→e8e9u
2, ~12!

wherev95v2v8 is implicitly understood from the conser
vation of four-momentum. While these rates will be e
pressed for photon propagation normal to the uniform m
netic field, the results for general photon obliquitiesu to B
can be obtained via a simple Lorentz transformation:v
→vsinu,v8→v8sinu,v9→v9sinu, together with an extra
multiplicative factor of sinu applied to the rate in Eq.~12!.

The momentum dependence in the integrands of Eq.~2!
can be simplified by forming sums of the products of ene
denominators. Separating such sums into real and imagi
parts via the representationSl,m5Sl,m

R 1 iSl,m
I , leads to the

definition
3-5
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Sl,m
R 5H 1

~«91«1v8!~«81«91v!
1

1

~«91«2v8!~«81«92v!J 1lH 1

~«81«92v!~«1«82v9!

1
1

~«81«91v!~«1«81v9!J 1mH 1

~«1«81v9!~«91«2v8!
1

1

~«1«82v9!~«91«1v!J , ~13!

of the real part, wherel andm assume the values61. The imaginary part is not explicitly stated since it will not be of u
in the subsequent developments. The momentum integrations over theseSl,m

R then assume one of the forms

In5E
2`

` pz
2ndpz

««8«9
S1,1

R ,

J5E
2`

` dpz

«
S1,21

R , J 85E
2`

` dpz

«8
S21,1

R , J 95E
2`

` dpz

«9
S21,21

R ~14!

for n50 or 1; generalizations to complexSl,m ~relevant to calculating splitting rates above pair threshold and near
resonances! are routine. These manipulations yield the following compact forms for theMe→e8e9 coefficients in Eq.~12!:

M'→ii52
B

4 (
n,n8,n9

~21!n92n8$A8nn8n9B3I0n1
'→ii1A2n9B@J 91I12I0#n2

'→ii1A2n8B@J 82I11I0#n3
'→ii

1A2nB@J1I11I0#n4
'→ii%

M'→''52
B

4 (
n,n8,n9

~21!n92n8$A8nn8n9B3I0n1
'→''1A2n9B@J 92I12I0#n2

'→''1A2n8B@J 81I11I0#n3
'→''

1A2nB@J1I11I0#n4
'→''% ~15!

Mi→'i52
B

4 (
n,n8,n9

~21!n92n8$A8nn8n9B3I0n1
i→'i1A2n9B@J 91I12I0#n2

i→'i1A2n8B@J 81I11I0#n3
i→'i

1A2nB@J2I11I0#n4
i→'i%,
e
g

ll

o

e-
results that are to be used in conjunction with Eq.~12!. The
factor of2B/4 is introduced to render the scaled amplitud
positive, and also to afford a direct mapping onto limitin
forms obtained@7,9# by the proper-time technique, as wi

become evident in Sec. III. TheD i
e→e8e9 are differences of

triple products of generalized Laguerre polynomials@defined
in Eq. ~7!#; for '→ii

n1
'→ii5I n21,n821

9 I n9,n
8 I n8,n9212I n,n8

9 I n921,n21
8 I n821,n9

n2
'→ii5I n21,n821

9 I n921,n21
8 I n821,n92I n,n8

9 I n9,n
8 I n8,n921

n3
'→ii5I n21,n821

9 I n921,n21
8 I n8,n9212I n,n8

9 I n9,n
8 I n821,n9

~16!

n4
'→ii5I n21,n821

9 I n9,n
8 I n821,n92I n,n8

9 I n921,n21
8 I n8,n921 ,

where the Sokolov and Ternov representation of the ass
ated Laguerre functions in Eq.~7! is used together with the
priming notation
01600
s

ci-

I n8,n[I n8,nS v2

2BD , I n8,n
8 [I n8,nS @v8#2

2B D ,

I n8,n
9 [I n8,nS @v9#2

2B D , ~17!

thereby aiding brevity. For the'→'' mode,

n1
'→''5I n,n821

9 I n9,n21
8 I n8,n9212I n21,n8

9 I n921,n
8 I n821,n9

n2
'→''5I n,n821

9 I n921,n
8 I n821,n92I n21,n8

9 I n9,n21
8 I n8,n921

n3
'→''5I n,n821

9 I n921,n
8 I n8,n9212I n21,n8

9 I n9,n21
8 I n821,n9

~18!

n4
'→''5I n,n821

9 I n9,n21
8 I n821,n92I n21,n8

9 I n921,n
8 I n8,n921 ,

and the results for thei→'i mode are not explicitly stated
since they can be obtained by exploiting crossing symm
tries: the inverse of the permutation in Eq.~19! yields the
transformation n1

'→ii→2n1
i→'i,n2

'→ii→n3
i→'i,n3

'→ii

→2n4
i→'i,n4

'→ii→n2
i→'i. Then i

e→e8e9 can alternatively
3-6
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be expressed using theJb
a functions of Melrose and Parle a

in @10#. Note that the potential subtlety of having to includ
factors of 1/2 for some contributions from ground interm
diate states is eliminated by the specific choice of
Sokolov and Ternov wave functions.

The comparative simplicity of the reduced form of th
S-matrix element relative to Eq.~2! is both notable and com
forting. Unlike Eqs.~25! and ~26! of @11#, this developed
form of the splitting S-matrix element has an appearan
familiar to S-matrix applications of QED in the Landau rep
resentation to strongly-magnetized systems, with product
generalized Laguerre polynomials multiplied by simple co
binations of energies and momentum components. Exam
of previous work bearing such familiar forms focus large
on lower-order QED processes and include studies of s
chrotron radiation @29,30#, single photon pair creation
@17,29#, and vacuum@34# and plasma@35# polarization.

For the purposes of the analysis in the next section,
pertinent to define the cyclic permutations

v→2v9, v8→2v, v9→v8,

n→n9, n8→n, n9→n8, ~19!

in the spirit of theP11 permutation in Eq.~9!. These permu-
tations will appear repeatedly in the developments bel
and lead to the following transformation properties of E
~13!:

S21,21
R →2S21,1

R , S21,1
R →S1,21

R ,

S1,21
R →2S21,21

R , ~20!

with S1,1
R being invariant, symmetries that are consequen

of the arrangements of electron and positron propagator
the Feynman diagram for splitting. These translate into
vious mappings betweenJ, J 8 andJ 9 and an invariance o
the I n. It is also easily seen that under this cyclic permu
tion, the factor in braces in the summation forM'→'' is
invariant, while the equivalent factor in the summation f
Mi→'i maps over~up to a minus sign! to the factor in
braces in theM'→ii summation. As will become evident i
Sec. III, the remaining powers of21 in the summations do
not provide any unsatisfactory interference in the limits
low photon energy (v!1) and high fields (B@1), so that
permutation symmetry can be extended to the total am
tudes in these specific parameter regimes.

B. Analytic reduction: Integration over parallel momentum

Further analytic development is not only possible, b
also desirable, given that the integrations over the mom
tum pz parallel to the field can be expressed compactly
terms of elementary functions. Such tractability facilitat
both numerical evaluations and the derivation of asympt
limits. In proceeding, since results are sought at ener
sufficiently remote from pair creation resonances, the ima
nary parts of the denominators in theSl,m are dropped in all
further considerations, i.e., we consider only the functio
Sl,m

R 5ReSl,m.
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It turns out that carefully-constructed contour integratio
in the complexpz plane do not facilitate thepz integrations.
Hence the first step in integrating overpz is effected by the
more cumbersome and less elegant approach of comple
the squares and rationalizing the denominators using p
ucts of factors like («86«96v). These factors define pole
pi j of the pz integration fori and j being some combination
of n, n8 andn9. Such poles fall into two types: pair creatio
ones~e.g. see@17#! that contribute only above pair threshol
due to the structure of the splitting rate, and cyclotronic on
that must be considered below pair threshold. The app
ance of such cyclotronic poles is an artifact of the ration
ization of denominators, so that they are really pseudo-po
of the subsequent analysis; a consistency check on the a
bra is that theS-matrix element be effectively continuou
across them. It is convenient to define energies that co
spond to thepi j poles:

«nn85
~v9!21N2N 8

2v9
,

«n8n952
v21N 82N 9

2v
,

«n9n5
~v8!21N 92N

2v8
~21!

and three others paired with these, which are obtained via
relations «n8n1«nn85v9, «n9n81«n8n952v and «nn9
1«n9n5v8. Here the notation

N5112nB, N 85112n8B, N 95112n9B ~22!

is used for the purposes of abbreviation. Observe that, ta
advantage of the subjectivity of such definitions, a min
sign appears in front of the expression for«n8n9, a choice that
preserves symmetries induced by the mapping in Eq.~19! in
the results that follow. These definitions spawn the followi
useful identities for the momentum poles:

pnn8
2

5«nn8
2

2N5«n8n
2

2N 8

pn8n9
2

5«n8n9
2

2N 85«n9n8
2

2N 9 ~23!

pn9n
2

5«n9n
2

2N 95«nn9
2

2N,

which immediately imply the possibility of poles along th
imaginary axis. In fact,pnn8

2 >2min$N, N 8%, with equality
for v95uN2N 8u1/2, and likewise for the other poles. Not
that for the one-vertex calculations of cyclotron emission a
single photon pair creation and annihilation, the requirem
that such poles be real, corresponding to real componen
particle momenta on external lines, is precisely what gen
ates thresholds~e.g. @17#! and kinematic cutoffs~e.g. @30#!
for transitions involving various states.

The rationalization of the denominators yields relative
compact decompositions for these sums, after much can
lation and simplification. They take the form
3-7
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Sl,m
R 5cl,m1

2

W
$tl,m

««8««81tl,m
«8«9«8«91tl,m

«9««9«%, ~24!

the simplicity of which is contingent upon the energ
conservation restrictionv95v2v8. Here

W5vv8v91vN2v8N 82v9N 9. ~25!

Identities such asW522vv8(«n9n81«n9n) prove useful in
the ensuing analysis. Thecl,m and tl,m coefficients assume
simple forms when expressed as partial fractions. Cons
first the result forS1,1

R , which has the coefficients

c1,150

t1,1
««85

«n9n

pn9n
2

2pz
2 1

«n9n8

pn8n9
2

2pz
2 ~26!

t1,1
«8«95

«nn9

pn9n
2

2pz
2 1

«nn8

pnn8
2

2pz
2

t1,1
«9«5

«n8n

pnn8
2

2pz
2 1

«n8n9

pn8n9
2

2pz
2 .

Observe that a cyclic symmetry is immediately appare
S1,1

R is invariant under the permutation in Eq.~19!, as is
evident from its original definition in Eq.~13!. Similarly, the
in

l
e
-
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ts
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f
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algebraic developments yield coefficients for theS21,21
R

sum, which appears in the««8D2 terms, as

c21,215
1

vv8
2

2

W H «n9n8«n8n9

pn8n9
2

2pz
2 @«n9n81v8#

1
«n9n«nn9

pn9n
2

2pz
2 @«n9n2v#J

t21,21
««8 50

t21,21
«8«9 52

«n9n81v8

pn8n9
2

2pz
2 2

«nn8

pnn8
2

2pz
2 ~27!

t21,21
«9« 52

«n9n2v

pn9n
2

2pz
2 2

«n8n

pnn8
2

2pz
2 .

The coefficients for the sumS21,1
R that appears in the««9D3

terms and the coefficients for the sumS1,21
R that appears in

the «8«9D4 terms are similar: there is little need to sta
them explicitly, since the coefficients possess a relations
to each other due to the permutation symmetry enunciate
Eq. ~20!.

Given these decompositions, it is now fairly straightfo
ward to evaluate the integrations overpz, expressing them in
terms of the elementary functionf with real arguments« i j :
f ~N, E![PE
2`

` dpz

AN1pz
2

E
E 22N2pz

2 55
1

AE22N logeUE1AE 22N
E2AE 22NU , if E 2.N,

2
2

AN2E 2
arctanH E

AN2E 2J , if 0,E 2,N
~28!
lly
an
he di-
s as
the
for real E. The identity arctanz5(1/2i ) loge@(11iz)/(12iz)#
with z52E/AN2E 2 has been used to map across the s
gularities atE56AN ~cyclotronic below pair threshold! and
guarantee bounded and continuous behavior off (N, E)/E at
E50. The integral identity in Eq.~28! can be established
quickly with the aid of result 3.513.2 in@33#, using the sub-
stitution pz5ANsinht and partial fractions. Note that rea
values~either positive or negative! of E are guaranteed by th
formalism here, withE50 being improbable due to the dis
creteness of the quantum numbersn, n8 andn9.

The integration of the coefficientsI0 of the D1 terms for
each of the polarization modes are then straightforward,
the identities in Eq.~23! can be used to advantage. Simil
terms appear in theI1 integrations of parts of the coefficien
of the otherD i terms, which also possess integrands w
terms proportional to 1/«, 1/«8 and 1/«9 that formally lead to
divergences that cancel each other~an artifice introduced by
the rationalization of the denominators!. Using partial frac-
tions, the divergent contributions can be written as integ
over the finite range2p<pz<p, rearranging to subtract of
exactly-cancelling terms, and then taking the limit asp→`.
-

d

ls

Similar manipulations are used for theJ 9 integration over
S21,21

R , where again the leading order terms are individua
divergent yet collectively convergent. Partial fractions c
again be used to enable rearrangements and separate t
vergent terms, which are then integrated over finite range
with the I1 evaluation. The results are encapsulated in
identities

I05
2

W
$Fnn81Fn8n91Fn9n%,

I15L1
2

W
$pnn8

2 Fnn81pn8n9
2 Fn8n9

1pn9n
2 Fn9n%, ~29!

J 95L2
2

W
$«nn8«n8nFnn81«n8n9~«n9n8

1v8!Fn8n91«nn9~«n9n2v!Fn9n% ,
3-8
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where

Fnn85 f ~N,«nn8!1 f ~N 8,«n8n!,

Fn8n95 f ~N 8,«n8n9!1 f ~N 9,«n9n8!,

Fn9n5 f ~N 9,«n9n!1 f ~N,«nn9!, ~30!

and

L5
1

v8v9
logeN2

1

v9v
logeN 82

1

vv8
logeN 9. ~31!

No further integration is necessary: the cyclic permutatio
in Eq. ~19! can be used to quickly derive expressions forJ 8
andJ from Eq. ~29!.

At this point, it is salient to remark that the divergences
E 25N in the functionsf (N,E) pose no problem for the in
tegral evaluations in Eqs.~29!, because these functions a
ways appear two at a time. Below the pair threshold, th
divergences are cyclotronic in nature, being encounte
whenv→uAN 82AN 9u or for similar circumstances for th
other photon energies. Asv tends to such a limit, for ex-
ample, we observe that«n8n9→AN 8 and «n9n8→2AN 9
whenN 8.N 9 ~without loss of generality!. This opposition
of signs guarantees cancellation of divergences when
arctan form of f (N,E) is used@arctan(1/z)→p/22z as z
→0#, so that continuity across cyclotron ‘‘pseud
resonances’’ emerges naturally from Eq.~29!, consistent
with the continuity of theSl,m

R functions. Continuity across
pair resonances does not arise above pair threshold, so
true divergences emerge.

The incorporation of Eq.~29! into the scaled matrix ele
ments in Eq.~15! constitutes the final product of the gener
analytic developments in this paper, providing rates valid
all energies below pair threshold~and applicable for non-
resonant energies above threshold!, and for photon propaga
tion normal to the uniform magnetic field. They are em
nently suitable for numerical computations, having improv
upon the analytic formalism of Mentzel, Berg and Wunn
@11# @i.e. Eq.~2!# by performing the summations of the sp
states and integration over the momenta parallel to the fi
that are associated with the electron propagators. Such d
opments are prudent prior to numerical evaluations due
the large degree of cancellation in these sums and inte
tions.

III. ASYMPTOTIC LIMITS FOR HIGH B OR SMALL v

A fruitful extension of this analysis is the exploration
the simplification of the scattering amplitudes and rates
two particular asymptotic regimes, namely the limit of high
supercritical fields,B@1, and the specialization to photo
energies well below threshold, i.e.v!1. The benefits of
such an investigation are twofold. First, it provides the fi
unequivocal analytic demonstration of the equivalence
splitting results from theS-matrix formulation in the Landau
representation and effective Lagrangian–proper-time res
from Schwinger-type formalisms in well-defined parame
regimes. In doing so, it serves as a powerful check on
01600
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developments here. Second, in thev!1 case, it identifies a
new, satisfyingly compact representation of the scatter
amplitudes in terms of special functions that leads to an
ficient means of computation.

These two parameter regimes are encompassed unde
single limit v2!112B, which thereby identifies the appro
priate series expansion of the generalized Laguerre poly
mials that appear in the amplitudes. For small argumentx,
the leading order terms in the series forI n8,n(x) can be found
in the Appendix of@15#. Given thatn, n8, andn9 cluster in a
manner such thatun82nu;un92nu;1, this series converge
rapidly providednx!1. Hencenv2/(2B) actually repre-
sents the true expansion parameter here, withv8 and v9
being similarly bounded. The leading order terms of su

expansions for theD i
e→e8e9 are linear in the photon energie

while the next higher order terms are cubic; a more deta
exposition can be found in Weise, Baring and Melrose@10#.
The series for the integrations ofpz, namelyI0,I1,J 9J 8,
andJ ~which do not depend on the polarization mode! are
expansions inv2/(112B) rather thanv2/(2B). They are
independent ton energy to leading order, with a quadr
scaling with energy to next order. The series forv2!1
12B possess logarithmic character in the quantum numb
in situations when no two of them are equal~i.e. NÞN 8
ÞN 9ÞN:

I0'
4 logeN

~N2N 8!~N 92N!
1

4 logeN 8

~N 82N 9!~N2N 8!

1
4 logeN 9

~N 92N!~N 82N 9!
,

I1'2J 9'2
2N logeN

~N2N 8!~N 92N!
2

2N 8 logeN 8

~N 82N 9!~N2N 8!

2
2N 9 logeN 9

~N 92N!~N 82N 9!
, ~32!

and additionally involve inverse trigonometric function
when twons ~e.g. forN5N 8) are in fact equal:

I0'
4

~N2N 9!2 loge

N
N 9

2
4

N~N2N 9!
QS v9

2AND ,

I1'2
2N 9

~N2N 9!2 loge

N
N 9

2
2

N2N 9

1
4N2~v9!2

N~N2N 9!
QS v9

2AND
'

4

~N2N 9!
QS v9

2AND 2J 9, ~33!

where

Q~x!5
arcsinx

xA12x2
~34!
3-9
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and the identity arcsinx5arctan@x/A12x2# has been invoked
This retention of the inverse trigonometric functions is p
ticularly relevant for determining the highB limiting forms
of the scattering amplitudes. Relations similar to Eq.~33!
exist for N5N 8 andN 85N 9, obtained by the cyclic per
mutations throughNs and photon energies. The lengthi
higher order~quadratic! terms are not explicitly stated for th
sake of brevity. This concludes the preamble that guides
reader in the subsequent specializations.

A. The special case ofBš1

This regime is of particular relevance to the study of ma
netars such as soft gamma repeaters. For the two m
'→ii andi→'i, only the leading order terms for theD i and
the momentum integrals presented in Eqs.~32! and ~33! are
required. Consider first the reduction ofM'→ii. Here theD2
and D3 terms contribute leading order terms only throu
n951, n5n850 andn851, n5n950 cases, respectively
where it is necessary to use the full forms in Eq.~33!, and
inverse trigonometric functions appear through theQ(x)
function, which assumes the argumentsx5v8/2 and x
5v9/2. A similarn51, n85n950 term is identically equa
to zero by virtue of theD4 factor. The contributions from the
D1 andD4 terms possess an entirely different character,
ing infinite summations overn, with the values ofn8 andn9
being constrained byun82nu1un92nu<1, producing five
groupings of the indices. The series is evaluated by trun
ing the sum atn<k, relabeling one of the logarithmic term
and then taking the limitk→`. The net result is~for v
,2)

M'→ii'
4v8

v9A42~v9!2
arcsinS v9

2 D
1

4v9

v8A42~v8!2
arcsinS v8

2 D2v, B@1,

~35!

which, when combined with Eq.~12!, yields the asymptotic
high-B result derived by Baieret al. @7#, and reproduced
independently by Baring and Harding@9#; the overall rate for
'→ii approaches a value independent ofB. Observe that
the manifestations of the pair creation threshold for each
the final photons ofi polarization ~i.e. at v852 and v9
52) are the individually-divergent coefficients of the inver
trigonometric functions. Yet, collectively, due to the ener
conservation relationv5v81v9, such divergences cance
each other to yield a finite overall result asv→2. For the
incident photon of' polarization, the pair threshold of 1
1A112B is remote fromv52 so that it would only be-
come explicitly apparent when the amplitude was evalua
to higher order inB. Note also that thev!1 limit of Eq.
~35! is vv8v9/6 and reproduces results obtained in@3# and
@5#. The functional form of Eq.~35! is plotted in Fig. 1.

The equivalent result for the splitting modeMi→'i re-
quires little additional algebra given that it can be obtain
from the analysis just above using the cyclic symmetry tra
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formations of Eq.~19!. Carefully keeping track of signs an
all photon frequencies by relabelling at the beginning of
manipulations, the roles of theD4 and D3 terms are inter-
changed, and the obvious result emerges:

Mi→'i'
4v9

vA42v2
arcsinS v

2 D2
4v

v9A42~v9!2
arcsinS v9

2 D
1v8, B@1. ~36!

FIG. 1. The dependence of the scattering amplitudes forB@1,
scaled byv3, on the fractional energyv8/v of one of the produced
photons, for three different incident photon energiesv ~in units of
mc2), as labeled. Only the two polarization modes with amplitud
asymptotically independent ofB ~in units of Bc) in this ultra-
quantum limit are depicted, namely~a! '→ii and~b! i→'i ; their
functional forms are given in Eqs.~35! and ~36!, respectively. The
shape of the amplitude curves for'→'' is independent ofv and
is very close to that of thev50.1 curves in panels~a! and ~b!.
While the'→ii curves are necessarily symmetric aboutv85v/2,
asymmetry is present in thei→'i case wherev8 represents the
final photon of' polarization. Note that the magnitude ofMi→'i
diverges as pair thresholdv52 is approached.
3-10
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While not established before in the literature, the low ene
limit of this, namelyMi→'i'vv8v9/6, yields the differen-
tial rate from previous expositions@3,5# of low energy ap-
proximations. The form of Eq.~36! is displayed in Fig. 1,
exhibiting the asymmetry expected under interchan
v8↔v9. In this case, pair threshold structure in the amp
tude appears again for the two photons of parallel polar
tion ~i.e. at v52 and v952), and is also absent for th
produced' photon, being of higher order inB. Conse-
quently, the amplitude possesses a real divergence atv52, a
noteworthy occurrence that is illustrated by comparing
two panels of Fig. 1. Such divergences, which are not in
grable overv ~and therefore patently different in nature fro
the resonances encountered in rates forg→e6), are charac-
teristic of the photon splitting rate near resonances at
above the pair threshold ofv52, corresponding to the cre
ation of virtual pairs in various excited states. In fact, ne
such resonances, photon splitting necessarily becomes
order ina f like pair creation as the intermediate states ‘‘
on-shell.’’

The rapid increase of the rate ofi→'i relative to that of
'→ii is exhibited in Fig. 2, where the rates have be
scaled by the low energy (v!1) limiting forms @R(v)
}v5# discussed in the next subsection. This particular s
ing is chosen to illustrate deviations from thev!1
asymptotic forms, and therefore to demonstrate the need
relinquishing use of them when sampling photon energ
near pair threshold, a parameter regime very relevant to
tain astrophysical calculations~e.g. see@27,28#!. The domi-
nance of theRi→'i over R'→ii nearv52 apparent in these
B@1 results becomes substantive in parameter regi
where the weakly-dispersive vacuum~i.e. for B&1) polar-
ization selection rules for splitting derived by Adler@3#

FIG. 2. The total rates in theB@1 limit for the modes'→ii
and i→'i , computed according to Eq.~12! using the amplitude
formulas in Eqs.~35! and ~36!, divided by the rates that would b
computed when taking the low energy (v!1) limit of these ampli-
tudes, i.e.M'→ii'vv8v9/6'Mi→'i. Deviations from such low
energy approximations@i.e. R(v)}v5#, while significant for'
→ii , are dramatic fori→'i near pair creation thresholdv52.
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~which prohibit i→'i and'→'' splittings! may not ap-
ply if non-linear contributions to vacuum polarization o
plasma effects are significant. This underlines the salienc
a detailed determination of the dispersive properties of
magnetized vacuum or plasma medium appropriate to a
ticular astrophysical scenario.

The derivation of theB@1 form for the amplitude for
'→'' differs significantly from the results just expounde
First, contributions fromn951,n5n850 andn851,n5n9
50 andn51,n85n950 combinations are identically equa
to zero by virtue of each of the associatedD i factors. This
automatically implies that no inverse trigonometric functio
that have arguments independent ofB appear in the ampli-
tude, a property not possessed by the other splitting mo
The consequences of this are twofold. First, this cancella
implies that the scattering for'→'' is of a higher order in
B than for the other two splitting modes. Second, since a
potential appearance of inverse trigonometric functio
spawned by the forms in Eq.~33! involves arguments tha
depend onB through theNs, these arguments are alwa
small whenB@1, precipitating a redundancy with the low
energy limit. Hence, it follows immediately that the scatte
ing amplitude for'→'' in the regime of highly super-
critical fields is identical to that of theB@1 specialization of
the low energy (v!1) limit. As the latter has been derive
in various papers in the literature~e.g. see@3,5,10# and the
subsequent section!, here it is sufficient to merely state th
result:

M'→'''
vv8v9

3B
, B@1. ~37!

This extremely simple form differs profoundly from those
the other two modes because of the absence of photonsi
polarization in the interaction. Hence any signatures of
pair threshold of 11A112B of ' photons are absent in th
domain ofv,2, and a scaling-type form with obvious cy
clic symmetry emerges.

B. Approximations for v™1

The low energy limitv!1 is of interest not only becaus
it was the regime where compact analytic expressions for
splitting rates were first obtained@1–3#, but also because th
analysis that follows derives simple and elegant represe
tions of the scattering amplitudes in terms of well-know
special functions that provide a convenient alternative opt
for numerical evaluations.

The amplitudes for each of the splitting modes sho
exhibit a cubic energy dependence@3# whenv!1. Hence, a
necessary product of the Landau representation formalis
that terms linear in photon energies should contribute exa
zero. For the polarization modes'→ii and i→'i, whose
amplitudes are identical in the low energy limit@3,5#, the
demonstration of this is not dissimilar to theB@1 analysis.
The v!1 restriction generates a single infinite series inn
due to the clustering ofn8 and n9 aroundn. The ensuing
algebra in the simplification of this series is moderate
lengthy, and requires reindexing of the logarithmic terms
3-11
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MATTHEW G. BARING PHYSICAL REVIEW D 62 016003
assume forms involving loge@112nB#, and also some relabe
ling of the rational functions. Care must be taken in the
rearrangements due to the infinite nature of the series,
the technique adopted is outlined just below. The terms
ear in photon energy result in zero, as expected: for m
details, the reader is referred to@10#. The next order contri-
bution is cubic in energy, as desired, with terms coming fr
a mixture of~i! the linear terms of theD i combined with the
quadratic higher order terms of thepz integrals, and~ii ! the
cubic D i terms in conjunction with the leading order~con-
stant! terms from thepz integrals. The algebra is straightfo
ward, but lengthy and tedious, generating an exact canc
tion of all but terms proportional tovv8v9. This approach
leads to a reproduction of theCj listed in entirely in Appen-
dix B of Weise, Baring and Melrose@10# for both the'→ii

and'→'' modes of splitting. Hence there is little point i
replicating these expressions here; the reader is referre
@10# for details.

These results are expressed as single infinite series in
label n, which sometimes starts atn50, and sometimes be
gins at higher integer values~up to 3!. Hence, an aestheti
goal is to rearrange some of these series so that the sum
tions in each contribution begin atn50, and then add the
terms in the series together. This is a non-trivial exerc
given the divergent nature of the series in many of the in
vidual contributions. Hence, considerable care must be ta
when performing the rearrangements, for which there is
unique prescription. One choice for relabelling the sums
adopted by Weise, Baring and Melrose@10#, though their end
results expressed in their Appendix C do not facilitate a
lytic development in the most expedient manner, and wer
fact erroneous~discussed briefly below!. An alternative and
preferable choice for rearrangement of the multitude of se
over the labeln is adopted here, outlined as follows. Inspe
tion of the variousCj contributions in Appendix B of@10#
reveals that they always consist of three types of terms~i!
logarithmic ones proportional to loge@112(n1l)B#, for l
50,61,62,63, ~ii ! rational functions of 112~n1l!B for
l50, 61,62, and~iii ! polynomials inn. A unique method
for rearrangement is to truncate all series to finite ones w
n<k, and then perform relabelings so that the first two typ
of terms consist only of loge@112nB# terms and rationa
functions of 112nB. This approach provides no particula
focus on series that originate with labelsn.0, but requires
careful accounting of the remainder terms at the upper
lower ends of the sums, for which significant cancellati
arises. The coefficients of the logarithmic functions, ori
nally cubic in n, reduce to linear functions ofn in this de-
velopment. The consequent simplification of the series te
is counterbalanced by the transferral of complexity to
constant remainder terms, which are purely functions ok
and B. Taking the limit ofk→` achieves the desired~and
convergent! result.

After considerable algebra collecting together all the c
stituent series in Appendix B of@10#, and performing the
rearrangement as just prescribed, one arrives at the follow
series representation of the scaled scattering amplitudes
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Me→e8e95vv8v9 lim
k→`

H (
n50

k

Te→e8e9~n,B!

1Re→e8e9~k,B!J ~38!

for v!1, where

T'→ii~n,B!52S 4n

B
1

3

2B2D logeFn1
1

2BG
1S 2

3
1

1

2B2D 1

112nB
2

1

3~112nB!2

T'→''~n,B!5
3

2B2 logeFn1
1

2BG2
3

2B2

1

112nB

1
1

2B2

1

~112nB!2 ~39!

defines the series terms. The remainders are quite leng
and are listed in Appendix A.

Consider first the polarization mode'→ii . While possi-
bly only marginally simpler than Eq.~C1! of @10#, the series
and remainder in Eqs.~38!, ~39! and ~A1! naturally enable
the development of a special function representation of
scattering amplitude. The finite summation over terms l
(x1n)loge(x1n) in Eq. ~39! can be expressed using resu
44.1.2 of@36# in terms of an integral of the logarithm of th
G function. At this juncture, the analysis begins to ima
parts of that generated in expressing the polarization pro
ties of a magnetized vacuum via effective Lagrangian
proper-time techniques@37–39#, as should be expected
Hence, it is appropriate to adopt definitions from such lite
ture as much as possible. Following@37,38#, here a definition
for the generalizedG function G1(x) of

logeG1~x!5E
0

x

dt logeG~ t !1
1

2
x~x21!2

x

2
loge2p

~40!

is adopted. Properties of this function, which includeG1(1)
51, are discussed at length in@40# and outlined in Appendix
B.

Using Eq.~B1!, one soon arrives at an expression for t
scattering amplitude in terms of a handful of special~polyga-
mma! functions, namelyG1(x), and logeG(x) and its deriva-
tives. This representation consists of two parts, one indep
dent of k, and one that involves a limit ask→` of the
remainder in Eq.~A1!, combined with several terms incor
porating the special functions with arguments that depend
k. In evaluating this limit, most terms can be handled in
straightforward manner, and standard asymptotic series~e.g.
see@33#! for logeG(x) andc(x) asx→` prove useful. How-
ever, the treatment of the term involving the functio
logeG1(11k11/2B) that appears in the limit contribution i
non-trivial. A series representation for this function for lar
3-12
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arguments is required, and is presented in Eq.~B4!. Assem-
bling the various pieces, the limiting result ask→` is

M'→ii5vv8v9H 4

B
logeG1S 1

2BD2
1

2B2logeGS 1

2BD
2S 1

3B
1

1

4B3DcS 1

2BD2
1

12B2 c8S 1

2BD2
1

6
1

1

6B

2
4L1

B
1

1

4B2 ~ loge2p2123 loge 2B!J ~41!

for v!1. This is the sought-after compact analytic form th
is comparable in simplicity to the one-loop effectiv
Lagrangians calculated in@37,38#. Using series and
asymptotic expansions for all the special functions presen
is routine to establish thatM'→ii'(26B3/315)vv8v9 for
B!1, while forB@1, one findsM'→ii'vv8v9/6, a result
obtainable from Eq.~35!.

The developments are similar for the'→'' mode: this
representation again consists of two parts, one indepen
of k, and one that involves a limit ask→` of the remainder
in Eq. ~A2!, combined with several terms incorporating p
lygamma functions with arguments that depend onk. This
limit can easily be evaluated using asymptotic series to y
~for v!1)

M'→''5vv8v9H 2
3

2B2 logeGS 1

2BD1
3

4B3 cS 1

2BD
1

1

8B4 c8S 1

2BD1
1

3B
1

1

2B2 2
1

B3

1
3

4B2 ~ loge2p1 loge2B!J . ~42!

Using series and asymptotic expansions for all the spe
functions present, it is routine to establish thatM'→''

'(48B3/315)vv8v9 for B!1, while for B@1, one finds
M'→'''vv8v9/(3B), the result stated in Eq.~37!.

It must be remarked in passing that the expressions
'→'' in Eqs.~39!, ~A2! and~42! cannot be derived from
the series in Eq.~C2! of @10#, principally because that serie
expression is divergent, and therefore erroneous. Such
error was introduced by an inappropriate rearrangemen
individually-divergent contributing series~leading to the ad-
dition of infinite contributions!, a mistake that is avoided b
the careful technique employed here in manipulating the
sults of Appendix B in@10#. Notwithstanding, the numerica
results for the'→'' mode presented in@10# were effec-
tively evaluated before any series rearrangement, and th
fore remain valid.

The compact analytic forms presented in Eqs.~41! and
~42! represent the culmination of thev!1 focus here. It is
the first time such simple forms for the scattering amplitud
involving just special functions have been calculated in t
limit, though somewhat more convoluted, yet essentia
equivalent, expressions have been put forward in@41#. A
distinct advantage of the expressions in Eqs.~41! and~42! is
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the ease with which they can be accurately computed
merically. Their dependence onB is illustrated in Fig. 3,
replicating the numerics of@10# and earlier effective La-
grangian determinations@3#, which are just as expedien
since@see Eqs.~43! and ~45! below# they involve just inte-
grals of elementary functions.

The low frequency result forMi→'i is not presented ex
plicitly since it reproduces that forM'→ii ~e.g. see@3,5#!;
this is due to the crossing symmetries involved. Note t
while the cubic dependences of all the modes at low ener
reflect the lack of an energy scale in this domain~i.e. such as
pair threshold!, the normalizations are dependent on the p
larization mode, particularly at highly supercritical field
where theM'→'' amplitude is highly suppressed. This e
fectively represents how the rate normalization is sensitive
the ~virtual! pair creation thresholds for the polarizatio
states involved in a particular splitting mode.

To conclude this presentation focusing on thev!1 spe-
cialization, an obvious objective is the re-derivation of Eq
~41! and ~42! starting with extant and well-known effectiv
Lagrangian–proper-time~ELP! results, and thereby demon
strating analytically the equivalence of theS-matrix formu-
lation in the Landau representation and Schwinger-type
malisms in the low energy limit. Consider first the mode'

→i i , for which such a determination is somewhat involve
The starting point is the integral expression@3,5,9# that cor-
responds to the scaled scattering amplitude that generate
same form for the rate as in Eq.~12!:

M'→ii
ELP 5

vv8v9

B E
0

`ds

s
e2s/BH S 2

3

4s
1

s

6D coshs

sinhs

1
312s2

12 sinh2s
1

s coshs

2 sinh3sJ , ~43!

FIG. 3. The dependence of the scattering amplitudes, scale
vv8v9, on the magnetic field~in units of Bc54.41331013G! for
the splitting modes'→ii @see Eq.~41!# and'→'' @see Eq.
~42!#, for photon energies well below pair creation threshold. T
amplitude fori→'i is identical to that for'→ii .
3-13
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which hasB!1 andB@1 limits matching those of Eq.~41!.
In the subsequent analysis, it is useful to manipulate inte
tions using the variablem51/B. The first step is to recogniz
that 1/s3 times the factor in curly braces in Eq.~43! is a
perfect derivative, namely dg/ds, where g(s)
5(1/4s3)d@scoths21#/ds2coths/(6s). Integration by parts is
obviously the operative method, with the goal of retaini
coths functions explicitly, combined with powers ofs. After
some algebra, one finds that

M'→ii
ELP

vv8v9
5

1

BE0

`

dse2s/BF 1

4B2s
2

1

4Bs2 2
1

6B
1

1

3sG
3~s coths21!2

1

BE0

`ds

s3 e2s/BFs coths212
s2

3 G
~44!

results. The integration on the first line can be perform
using identities 3.551.3 and 3.554.4 of@33#, yielding theG
function and polygamma functions~or equivalently general-
ized Riemann Zeta functions! in addition to elementary func
tions. The only subtle part pertains to the second term of
integral, namely that contributed by the21/(4Bs2) factor.
This can be differentiated with respect toB, evaluated to
yield a c function, and then the result integrated, noting t
behavior asB→0. The evaluation of the integral on the se
ond line of Eq.~44! is much more involved. However, it ha
been performed before in the literature, and appears ex
itly in calculations@37,38# of the one-loop effective Lagrang
ian describing refractive indices of the magnetized vacu
in QED. Hence the motivation for the particular partitionin
of integrations chosen in Eq.~44!. Details of the determina
tion of this integral are found in Dittrich et al.@38#, and the
second line of Eq.~44! can be equated to28p2/B3 times the
LagrangianL (1)(B) ~see Eqs.~2.4! and ~3.16! of @38#!,
thereby introducing theG1 function. Collecting together the
terms neatly generates an analytic form forM'→ii

ELP that is
identical to Eq.~41!, so that the desired demonstration
equivalence of the Landau representation and effective
grangian forms is achieved.

The procedure for the'→'' mode is similar, though
somewhat less involved. The equivalent scaled scatte
amplitude obtained@3,5# from effective Lagrangian–proper
time techniques is

M'→''
ELP 5

vv8v9

B E
0

`ds

s
e2s/B

3H 3

4s

coshs

sinhs
1

324s2

4sinh2s
2

3s2

2sinh3sJ . ~45!

Recognizing that the factor in curly braces can be written
2(3s/4)d@coths/s21/s2#/ds1(s2/4)d3@coths21/s#/ds3, in-
tegration by parts is again indicated, with identities 3.55
and 3.554.4 of@33# again proving useful. With manipulation
similar to ~but simpler than: theG1 function is not involved
here! those for the'→ii , a modicum of algebra leads to th
derivation of Eq.~42! from Eq.~45!, as desired. This equiva
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lence is a satisfying indication of the verity of the Land
representation analysis in this paper.

IV. CONCLUSION

This paper has provided a detailed development of
S-matrix formulation of the QED process of magnetic phot
splitting in the Landau representation, focusing on the c
of zero dispersion where photon propagation is colline
The formalism in Sec. II rederives and extends the expo
tion of Mentzel, Berg and Wunner@11#. The two principal
general developments offered here are an analytic reduc
via the summation over the spins of the intermediate p
states, discussed briefly in@10#, and the analytic integration
over the momenta parallel to the field incorporated in
electron propagators. This latter accomplishment is prese
here for the first time. The cumulative product of these d
velopments is a satisfyingly simple and elegant form in E
~15! for the scattering amplitude for each of the polarizati
modes permitted byCP invariance. These amplitudes po
sess products of generalized Laguerre polynomials that
common to QED processes in external magnetic fields,
elementary functions involving the photon energies and
various pair thresholds associated with the propagat
Moreover, the analytic forms presented consist of just tri
summations over Landau level quantum numbers of the
termediate states, and are eminently suitable for accurate
merical computations both below and above pair creat
thresholdv52. The applicability of these results to regime
above pair threshold is a benefit of theS-matrix expansion in
the Landau representation that is not afforded by effec
Lagrangian and proper-time calculations: while these~latter!
Schwinger-type techniques elegantly formulate splitting ra
below pair threshold, they eliminate the resonance struc
early on in their mathematical developments, a severe li
tation abovev52.

As an embellishment to these general results, specia
tions in two significant domains have been obtained. T
first is for highly supercritical fields,B@1, reproducing in
particular the result of@7# for the'→ii mode, and deriving
new results for the other two modes permitted byCP invari-
ance in the limit of zero dispersion. The second group
asymptotic results are for energiesv!1 well below pair
creation threshold, where new and compact expressions
the scattering amplitudes have been derived in Eqs.~41! and
~42! in terms of the logarithm of theG function, its integral
and their derivatives. These two domains of specializat
herein have facilitated the first analytic demonstration of
equivalence of splitting rates obtained by theS-matrix for-
mulation in the Landau representation and those derived
ing Schwinger-type effective Lagrangian–proper-time te
niques.
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APPENDIX A

Here the remainders that appear in the series representation in Eq.~38! for the v!1 specializations to the splitting
amplitudes for polarization modes'→ii and'→'' are presented:

R'→ii~k,B!5
k11

8B F2k21kS 41
1

BD1
1

BG logeFk121
1

2BG1
1

4B F11k31k2S 211
21

2BD1kS 101
14

B
1

5

2B2D
1

5

2B
1

5

4B2G logeFk111
1

2BG2
1

4B F11k31k2S 161
21

2BD1kS 51
9

B
1

5

2B2D1
5

4B2G logeFk1
1

2BG
2

k

4B Fk21
k

2B
21G logeFk211

1

2BG2S B

3
~k11!1

1

6
1

k11

2B D 1

112~k11!B
1

k

2B@112kB#

2
9k2

2B
2

5k

B
2

7k

4B2 2
5

8B
2

9

8B2 2
3

4B2 loge2B, ~A1!

and

R'→''~k,B!52
~k11!~k12!~k13!

12B
logeFk131

1

2BG2
k11

16B F13

3
k21kS 32

3
1

7

2BD141
7

2BG logeFk121
1

2BG
1

1

16B F71

3
k31k2S 381

9

2BD1kS 79

3
2

4

BD1122
2

BG logeFk111
1

2BG2
1

16B F71

3
k31k2S 131

9

2BD
2kS 20

3
2

13

B D1
13

2BG logeFk1
1

2BG1
k

16B F13

3
k21kS 21

7

2BD2
19

3 G logeFk211
1

2BG
1

k~k21!~k22!

12B
logeFk221

1

2BG1
~k11!~k12!2

2@112~k12!B#
2

~k11!2~5k12!

2@112~k11!B#
2

k2~5k21!

2@112kB#
1

k~k21!2

2@112~k21!B#

1
7k2

4B
1

7k

4B
1

9

8B
1

k11

B2 1
3

4B2 loge2B. ~A2!
he
,

.
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APPENDIX B

In this appendix, various useful properties of theG1(x)
function, the integral of the logarithm of theG function, that
are needed in thev!1 specializations are stated. Given t
definition of G1 in Eq. ~40!, it is elementary to establish
using 44.1.2 of@36#, that

(
n50

k

~x1n!loge~x1n!5 logeG1~11x1k!2 logeG1~x!.

~B1!

Taking successive derivatives with respect tox, one quickly
arrives at well-known finite series representations ofG(x)
and its logarithmic derivativec(x); see@33,42# for discus-
sions of these functions and their series representations

An asymptotic series representation for theG1 function
for large arguments is useful, and can be derived with the
of the following series representation~see result 8.343.2 o
@33#! for the logarithm of theG function:
01600
id

logeG~x!5S x2
1

2D logex2x1
1

2
loge2p

1
1

2 (
m51

`
m

~m11!~m12!Fz~m11,x!2
1

xm11G
~B2!

from which Stirling’s asymptotic expansion can be derive
Here,z(m,t) is the generalized Riemann Zeta function, d
fined in 9.511 and 9.521.1 of@33#. The integration of this
series is effected using the identityz8(m,t)52z(m11,t),
and is mostly uneventful. However, the treatment of them
51 term in the summation is somewhat more subtle, due
the singular nature ofz(0,t), and requires taking the limi
m→11, assumingm to be a continuous variable. Then resu
8.362.1 of@33# comes in handy, and the series identity
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logeG1~x!5
x21

4
~2x logex2x21!

1
1

12Fc~x!1
1

x
1gE21G

1
1

2 (
m52

`
1

~m11!~m12!

3Fz~m,1!2z~m,x!211
1

xmG ~B3!

follows, where gE52c(1)'0.5772 is Euler’s constant
This series, which adequately substitutes for an asympt
representation, can be used very effectively for numer
evaluations for allx>1. For the range 0<x,1, this series
also effects accurate evaluation of logeG1(x) via use of the
recurrence relation logeG1(x)5logeG1(11x)2xlogex, an iden-
tity derivable from Eq.~40! with the aid of 6.441.3 in@33#.
For largex, it then follows that
th

s.

01600
tic
al

logeG1~x!;S x~x21!

2
1

1

12D logex2
x2

4
1L11OS 1

xD
~B4!

where

L15
gE

12
1

1

6
1

1

2 (
m52

`
z~m,1!21

~m11!~m12!

[ lim
k→`

H (
n51

k

n logen2S k~k11!

2
1

1

12D logek1
k2

4 J
~B5!

with numerical valueL1'0.24875. This is just the constan
appearing in the magnetized vacuum polarization analyse
@37,38#, where the Raabe integral form for it can be foun
The second definition ofL1 in Eq. ~B5! can be obtained by
settingx50 in Eq. ~B1!, and is a result noted by@41#.
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