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Magnetic photon splitting: The S-matrix formulation in the Landau representation
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Calculations of reaction rates for the third-order QED process of photon splittingy in strong magnetic
fields traditionally have employed either the effective Lagrangian method or variants of Schwinger’s proper-
time technique. Recently, Mentzel, Berg and Wunner presented an alternative derivation $ianarix
formulation in the Landau representation. Advantages of such a formulation include the ability to compute
rates near pair resonances above pair threshold. This paper presents new developments of the Landau repre-
sentation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel,
Berg, and Wunner by summing over the spin quantum numbers of the electron propagators, and analytically
integrating over the component of momentum of the intermediate states that is parallel to the field. The ensuing
tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to
Smatrix theory applications. Such developments can facilitate numerical computations of splitting consider-
ably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the
limit of highly supercritical fields and the domain where photon energies are far inferior to that for the
threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are
simply expressed in terms of thefunction, its integral and its derivatives. In addition, the equivalence of the
asymptotic forms in these two domains to extant results from effective Lagrangian or proper-time formulations
is demonstrated.

PACS numbse(s): 12.20.Ds, 95.30.Cq, 97.60.Jd, 98.70.Rz

I. INTRODUCTION proper-time presentations were generally applicable to non-
The third-order quantum electrodynamical process ofdispersive regimes below the pair creation threshdid (
photon splittingy— yy in a strong magnetic field, currently =2mc?), where the momentum vectors of the initial and
popular in several astrophysical models of different neutrorfinal photons are collinear, and arbitrary field strengths.
star sources, was first studied over three decades ago. Be- Below pair threshold, the effective Lagrangian approach
cause of the analytic complexities encountered when invessf [1-3] and the proper-time calculations [#—7] appear
tigating this interaction, it was not until the beginning of the much more amenable for the purposes of numerical evalua-
1970s that a body of correct and uncontroversial resultsion than theS-matrix formulation in the Landau representa-
emerged. These early splitting calculations used either effedion. This arises because effective Lagrangian and proper-
tive Lagrangian[1-3] or variations of Schwinger’s proper- time (ELP) methods produce results that involve triple
time techniqueg4-6], the expediency of which yielded integrals over relatively simpléhyperbolic and exponential
compact analytic forms for the rat&swhen specializing to  functions, while theS-matrix amplitudes integrate over the
low energy R w®) or low field (R=B®) cases. After a hia- parallel momentunp, and include a triple summation over
tus of nearly two decades, photon splitting became of intereshe Landau level quantum numbers of the intermediate pair
again in the literatur¢7—10] following the publication of an states. Both techniques start from different but equivalent
S-matrix calculation in the Landau representation of its rate§15] forms of the electron propagator, and her&matrix
by Mentzel, Berg and Wunndd 1], specifically because of computationg11,10 should yield identical results to proper-
their contention that the earlier works cited above had seritime numeric§1-7]. For the specific case of magnetic pair
ously underestimated the strength of this process. The rateseationy—e*e™, such an equivalence of tf®matrix and
computed in[11] were later retracted ifi12], with a sign  proper-time methods has been demonstrdte@,17], but
error in their numerical coding having been discovered andnly via continuous asymptotic approximations that
corrected. The Mentzel-Berg-Wunner analytic derivationsmoothly average out the exact “sawtooth” resonance struc-
was the first comprehensive presentation of the applicatioture. Yet theSmatrix Landau representation approach ex-
of a Landau representation technique specifically to magnetiplicitly retains the resonances in the scattering amplitudes
photon splitting, though the QED formalism presented byabove pair threshold, whereas the ELP methods eliminate
Melrose and Parl§¢13,14] virtually provided an equivalent such information early during developments. Photon splitting
enunciation of sucls-matrix forms for splitting amplitudes. becomes effectively first-order in; at any one of a multi-
More recently, Weise, Baring, and Melrog&0] confirmed tude of pair resonances, generated when the intermediate
the analytic derivation of11]. The Landau representation states become ‘“on-shell.” Hence it is quite possible that
calculations and most of the earlier effective Lagrangian andplitting can compete effectively with pair creation as a pho-
ton absorption mechanism above pair threshold. Ascertaining
whether this is true is an interesting physics question. More-
* Associated with the Universities Space Research Associatiorover, if splitting is approximately as probable as pair creation
Email address: baring@lheavx.gsfc.nasa.gov above threshold, then it manifestly changes the character of
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vacuum dispersion, so that quadraf@nd by inference per- for collinear momenta of the incoming and outgoing pho-
haps higher ordercontributions to the vacuum polarization tons, i.e., when the effects of vacuum dispersion are ne-
tensor become significant relative to the standard linear oneglected. A significant development provided in this paper is
used in the derivatioi3] of kinematic selection rules for the dramatic simplification incurred by algebraically per-
splitting. Hence, the generation of exact and compact expregorming the summation over the spin states that are incorpo-
sions for the rates foy— yy valid both below and above rated in the electron propagators. The resulting expressions
pair creation threshold is clearly a worthwhile enterprisein Sec. Il A(first stated in[10]) are relatively compact, and
from a physics perspective. of an appearance familiar to Landau representatBsmatrix
Developed expressions for the rates for photon splittingheory applications to magnetized environme(ts. includ-
are also important for astrophysical applications of this proind associated Laguerre functionsurthermore, here the in-
cess, particularly to effect efficient and accurate computategrations over the momentum parallel to the field are per-
tions of such rates. These applications have so far focused darmed analytically for the first time in Sec. Il B, rendering
neutron star magnetospheres, primarily on models of soffhe splitting rates in most amenable forfsse Eqs|[12] and
gamma repeateréSGR$ and strongly-magnetized pulsars, [15]) that are optimal for numerical applications: the analytic
both being extremely topical in the astrophysics communityforms presented consist of just triple summations over Lan-
at present. The potential importance of splitting in neutrordau level quantum numbers of the intermediate states. These
star environments was suggested[By18,19. Possible for- ~general results are valid both below and above pair threshold
mation of splitting cascades has been explored in models ¢t hon-resonant photon energies, and provide substantial ad-
SGR transient outbursts as a means of softening the spectrdyances over the work ¢f.1]; they are much more suitable for
efficiently with no production of pair§20—23. If both po- numerical evaluation since many cancellations have been
larizations can split, or if polarization switching is active eliminated algebraically.
during SGR outbursts, then the properties of the splitting TWO specializations are discussed in Sec. lll, primarily to
cross section guarantee emergent spectra in the observéRfrtially) demonstrate equivalence of the Landau represen-
range(20—150 keV and of the observed shape for all fields tation formalism presented here with extant proper-time—
in excess of around 3G [20—22, provided that the emis- e_ffectlve Lagrangian limiting forms for splitting rates, and
sion region is not concentrated near the polar cap. The spegimultaneously to serve as a check on the mathematical ma-
tral properties of SGRs in quiescent emission appear to peipulations of this paper. Results are presented for all three
distinct from those during outburst. Pulsations and temporapolarization modes permitted P invariance in the limit
increases of their periodé.e. spin-down have now been ©f zero dispersion. The first asymptotic regime(sse Sec.
observed24—26 for two of the four confirmed SGR&GR Il A) for highly supercritical fields,B>B.=m’c®/e,
1806-20 and SGR 1906014, leading to inferences of fields Where in the case of — |||, the limit was found to concur
in the vicinity of 10°G. The connection between these pul- with a recent analytic result that was obtained by Baier et al.
sars of extremely high magnetization, so-caltedgnetars  [8], while new results were obtained for the other two modes.
and conventional radio, X-ray, or gamma-ray pu|5ar5 is notn the second SDECiaIization, in Sec. Il B, asymptotic results
well understood. Baring and Hardir@7] postulated that for energiesn<mc? well below pair creation threshold were
radio quiescence, a property of the SGRs, may be commo®bPtained, reproducing the cubic energy dependence of the
in magnetars due to the efficient action of photon splittingamplitudes obtained by other QED techniques. Moreover,
and other effects in suppressing the creation of pairs. Photofew and compact expressions for the scattering amplitudes
splitting also has spectral implications for such pulsars within this low energy limit are derived in terms of the logarithm
more modest fieldsi28] demonstrated that the unusual ab-Of the I' function, its integral and their derivatives. These
sence of>30 MeV emission in the gamma-ray pulsar PSRsimplified forms in Eqgs.(41) and (42) are also produced
1509-58 (whose spin-down field is-3x 10%G) can natu- from extant integral forms for splitting matrix elements de-
rally be explained by the operation gf— yy in the intense rived first in[1,3], thereby facilitating the first analytic dem-
magnetic and gravitational fields near its surface. onstration of the equivalence of splitting rates obtained by
Several desirable goals are immediately identifiable orfhe Smatrix formulation in the Landau representation and
the basis of this historical path for the study of the physics ofhose derived using Schwinger-type techniques.
photon splitting, and the needs of the astrophysics commu-

nity. It would be satisfyindi) to obtain analytic expressions Il. THE GENERAL SMATRIX FORMALISM
for rates that are valid above pair creation threshold using the n o )
Landau representation methodolodji) to know whether The rates for photon splitting within a&matrix formu-

the analytic formalism of Mentzel et d111] can be developed !ation can be developed using a variety of conventions; here
and simplified, andiii) to demonstrate a formal equivalence the Landau representation used by Mentzel, Berg and Wun-
between thisSmatrix Landau representation approach andner[11]is adopted, and formal developments lead to an inde-
extant resu'ts from proper-time_effective Lagrangian techpendent confirmation of their analytic derivation. SpeCifi-
niques. This paper addresses these issues, using the verifiedly, for a field B=(0,0B), this approach uses a
analytic formalism of Mentzel et al. as the starting point for representation of the electron-positron wave functions as
mathematical developments. The analysis here considers &igenstates of the magnetic momeot spin operator u,

the polarization modes that are permitted by @® invari-  (with w=mo+ ysBcx[p+eA(x)]) in Cartesian coordi-
ance symmetry ( —|||, L —LL and|—L]|), and applies nates within the confines of the Landau gaug€x)
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= (0,Bx,0). Such states turn out to be very convenient be-dimensionless electron energies and resé\e=emc?) to
cause they generate useful symmetry properties; they wefenote “dimensional” energies as ji11]. In addition, the
identified by Sokolov and Ternof29], who dubbed them magnetic field will be expressed in terms of the quantum
states of “transverse polarization.” Let e’ ande” denote  critical field B.=m?c®/efi hereafter, so thaB=1 denotes a
the polarizations of the initial and findprimed photons  field of 4.413< 10°%G. o o
(06 —L ), and k,—(0). (o' ) and ki T comventon for polaizatons ko entcl o ha -
= (w",k") denote the absorbed and produced photon fouiero time components. The polarization statesind || are

momenta. :I'r’l,en the tOtaI. rate for_splitting via the polarizationdeﬁned according to whether the photon’s electric vector lies
modee—e’e” can be written, using Eq$27)—(29) of [11], either perpendicular or parallétespectively to the plane

In terms of theS-matrix elemen§(?, which is the sum of six  containing the photon’s momentutk and the (uniform)
termsS{?) corresponding to the six viable time-ordering pos-magnetic  field B  vectors, the convention of

sibilities: [11,13,6,16,10,3D In the limit of zero dispersion, three po-
larization modes are permitted by charge-par@®P) invari-
1/ V \2mce2 1 2 ance in QED, namely — |||, L —L L and||—_L||. However,
Reﬁe,enzi(m) TJ 3k’d3k”? J_Els St . (1) Adler [3] showed(see alsd31]) that for weak vacuum dis-

persion(roughly delineated by8=<1), where the refractive
indices for the polarization states are very close to unity,
whereV andT denote the volume and time associated withenergy and momentum could simultaneously be conserved
the interaction calculation and the factor of 1/2 out the frontonly for the splitting modeL —||||. This kinematic selection
avoids double counting of the final states. The priming con+tule applies to gamma-ray pulsar magnetospheres where
vention adopted throughout the paper is one and two primeglasma dispersion is negligible. In magnetar models of soft
for the produced photons and no prime for the initial photongamma repeaters, where supercritical fields are employed,
Since theSmatrix element contains a delta functiafi(k, ~ strong vacuum dispersion arises. In such a regime, it is not
—k/,—k!) prescribing four-momentum conservation for clear whether Adler’s selection rules still endure, since his
splitting, it is squared in the usual way US“T'@A(kM—kL Imearl dispersion analysis omits higher Qrd@uadratlc) con-

K P[VTI2m)Y 84k, — K, —K"). Note that the tributions [13,14] to the vacuum p_olanz_atlon_ t_enS(Qe.g.

o v Bp Bple those that couple to photon absorption via splittitigat may
Smatrix element should possess a cubic dependence on phgacome  significant in supercritical fields. Furthermore,
ton_energles when well below pair Cr_eatlon threshold, d_ue t?)lasma dispersion effects, which can nullify the vacuum se-
parity symmetry, photon gauge invariance, and the antisyMpction rules, may be quite pertinef82] to soft gamma re-
metric nature of the electromagnetic field tensor; details argeater magnetospheres, rendering them distinctly different
discussed irf3]. from those of conventional pulsars. Therefore, in the inter-

Before writing down expressions for timatrix element  ests of generality, consideration of all thr€-permitted
terms, it is appropriate to identify the dimensionless convensplitting modes is adopted throughout this paper.
tion that shall be adopted throughout this paper. Since the The derivation of theS-matrix element proceeds along
electron rest masm is the only mass that enters into this lines identical to those in Mentzel, Berg, and Wunh&t],
QED problem, we opt to scale all energiesrog? and mo-  with the result being an exact reproduction of their analytic
menta bymc unless otherwise specified. This includes aformalism, as reported in Weise, Baring, and Melrps@;
scaling ofmc®/# for photon frequencies. In the spirit of  for details, one is referred fd1]. Of the sixsﬁ)j contribu-
this convention, we choose to use the symbab represent tions to Eq.(1), it is sufficient to explicitly present just one:

m (4map)®B 1 1
3 = —j— Sk, —k! -k’ ﬁjd
fi.1 16 \ ww’a)" (2V)3/2 ( M M #)n%/r 0_0,2/0,// 808080 pZ
 Dan (KD (KD () =Dy (KD g (KD (k)

ce'e"(et+e"+w' —ie)(e' +e"+tw—i€')

, ()

"o~
p,=p,—KJ.p)=—p,~ k]

where as=e€?/(%¢) is the fine structure constant, and the energieand ¢, are defined in Eq(4) below, with similar
definitions for the primed energies involving primed quantum numbers and momenta of the virtual electrons. Uding the
notation in Eq.(6) below,

Do (KN =3(=KIn"=1,—K][n,0)[ '} kgt k"% ko]€" +I(—KyIn',—KI[n—1,0)[ k'} k1 + k' k3]€",

—{I(—kgIn", —k{In,0)[ k'3 kat k' f ko] = I(—kyIn" —1,—k{In—1,00[ «'] K3+ k'3 k1]}€7,

016003-3



MATTHEW G. BARING

nk

Do (K)=3(—k}In—=1,0[n" k))[ k% "3 x

+K§K

—{I(—kgIn,0[n" k) 5 k"5 + k3 k"3

—{I(kaIn" kg In", =KD [ 4K+ K3x3]—

where the polarization vecta, = (0,e,,ey,€,) is specified
by e.=e,*ie, ande,, and similarly for the final photon
polarizations(primed. The other thre@®s in Eq.(2) are not

]_

Do (=3 = 1K', — K[ ki + rchrcyle +I(kn" k) n" = 1~ KI)[ e
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le” +3(—k|n,0|n" — 1,k§,)[K§ K'Y+ k"5 el
J(—ky|n—1,0n" - 1,k)',)[/(’1c K"t + k3 e"51te;, €)]
sk, KiKS]e,

I =1k I = 1,~K))[rhrch+ gy lbe,,

ployed to express these integrals analytically in terms of gen-

eralized Laguerre polynomials,ﬂl_”(x) (see also Eq(47)
of [15]):

displayed here for brevity; they can be obtained from those

in Eq. (3) simply by the interchange, «e_ of polarization
components(and similarly for primed componentand a

relabelling of the Js that produces a correspondence

—q-
nn’

DLAK) =D, 479 (K).

Several notations need to be identified. First, the particles

have energieg, and momentum componengs along the
field. The energiez and g, that appear here are, respec-
tively, with and without the parallel momentupj:

e=1+p2+2nB, &y=\1+2nB,

with n denoting the Landau level quantum numbers, a

(4)

usual. The other quantum number pertaining to the eigen-

states ofu, is o= £ 1, which signifies the spin state of the
fermions( [11] used the labet; here the notation of Melrose
and Parle[15] is preferred, and satisfiesu,y=oeqi. It
does not appear explicitly ia, but is embedded in the spinor
coefficientsk;:

K1 6. o4 0 0
Ky 5, o_ 0 0
] |0 0 5 -6,
Ka 0 0 -6, 6.
V(eg+1)(e+eg)
. go—1
~ Pz eteg
X 5

[80"!‘1 '
P2 etegg
iV(eg—1)(et+eg)

for 6,=96,, andé_=(1- 5,0, -1 where the spin quan-
tum numbero takes on two values except for the=0
ground statdzeroth Landau level where onlyo=1 is per-

S

a

i 55+ 5]

J(a|n’,,8’|n,B)=ex;{

P2
E) (6)

wherep (>0) and the phase are introduced for conve-
nience of notationa= pcosy and B’ — B= psiny. Note that
the Bs are alwaysk,s anda is always ak,. Here thel,, ,
functions follow the Sokolov and Ternov conventi@8] up

to a factor ofn!, being related to thd functions of Melrose
and Parlg15], and both are defined in terms of the general-

x{ie T

ized Laguerre polynomial&see[33]):

Lo n()=(=D)™ " 0 (x)=30,_ ()

/n! ' :
n_,'e—X/ZX(n —n)/ZLE —H(X)’ n'>n. (7)

Values forn>n' are obtained by interchanging indices, as
indicated. Hereafter, th@nodified Sokolov and Ternov con-
vention for writing the Laguerre polynomials will be
adopted. Complex conjugation of E¢6) can be used to
establish the identity

DK =(—D)" YD I (k)}*, ®)

noting that thex products are either purely imaginary or real,
for all choices of spin quantum numbers. The three factors

like (—1)" " appearing in the second product of thrBe
in Eq. (2) cancel, leading to this product being just the com-
plex conjugate of the first threBs. This useful symmetry
property clearly underlines the convenience of the Sokolov
and Ternov choice of wave functions when adopting real
components for the photon polarization.

The form of the contribution to th&matrix element in
Eq. (2) is identical to that for S{*} given in Eq.(25) of

missible. Hered,; is the familiar Kronecker delta. The Mentzel, Berg and Wunndd1]. In the same fashion, it can
primed coefficientsc; and «!’ are similarly defined in terms be found that the expression derived here $f, is abso-
of primed momenta and Landau level quantum numberdutely identical to Eq(26) of [11], thereby providing confir-

subject to the momentum conservation implicit in E2).
The J functions that appear in E@3) are integrals over

the oscillator functions(Hermite polynomial producjs a

form undeveloped inl1l]. Here, Eq.(7.377 of [33] is em-

mation of their analytic developments; it can be obtained by
using the substitutionk’ < k”, n’<n” ande’—¢e" in Eq.

(3). All other S%?)J contributions result from application of
the cyclic permutations
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" e* The CP symmetry possessed by the splitting process be-

comes most evident at this point, since it is now simple to
derive theCP selection rules. The specification b)f,=k)’,
e, —k,, €; =ky=0 andk,=k;=k;=0 yields only one possible com-
ponent of polarization perpendicular to the fietd,=g,=
_ . s —ie,=ie_ and one conceivable component of polarization
Poit —ku, eu—k,, e, Kk, e,—k,, e, parallel to the fieldgj=e, (and similarly for primed quanti-
ties). The polarizatiorielectric field vector of the photons is,
* ) of course, normal to the photon momentum vector, which
m? automatically spawns the notation for the two possible polar-
ization statesi : e, =1, =0 and|: e, =0, ¢=1.From

wherek,=(w,k), e,=(0e,,e,,e,), etc. Observe also that . . .
M i) i) M ~X Y y 1 yaul m -
a minus sign and the complex conjugation of the polariza—the presence of sublractions in the numerators of the inte

tions are always associated with the initial photon since it isgrands O.f Eq.(2) together with the cgmplex conjugation
absorbed in the process. Given these permutations, the crod¥? pgrty “,1 Eq-.(8) and the proportlonallty of ths 1o fac-
ing symmetry for splitting is manifested in the following tors likei™ ~", it follows that only terms with an odd number
relationship between the various terms like those in ®y. ©Of €, factors contribute tcS{), i.e. terms proportional to
that contribute to Eq(1): eiee], eielef, e eef ande, e /. All other terms cancel
identically to zero. By virtue of the permutation symmetries
in Eq. (9), this is also true for all otheB{?). It is then trivial

to deduce th&€ P selection rules for photon splitting, namely

that the only permitted transitions are

P,y: k!

11 I !
s eM—>kM, e kﬂ, e

—k

yIRl

H_}_k e

n
Ko €u o

3 3 3 3
Sgi,):%: P—1S$i,)2’ Sgi,)zl: P+1S$i,)1!

3 3 3 3
Sgi,)SZP-%—ngi,)Z’ Sgi,%zp—lsgi,)l! (10 I L_)HH ||—>L|| (12)
where the permutations act as operators. This symmetry can

be expressed in a multitude of ways using the identities o N )
P,,P_;=1=P_;P,, andP3,=I. The three other splitting transitions all hamatrix ele-

It is important to remark that the derivation of analytic ments that are exa(_:tly Z€ro f_or coIIin_ear photon momenta,
forms by Mentzel, Berg and Wunner is not the first in the@nd hence are forbidden. This technique @P selection
literature relating t&matrix applications to photon splitting. "U& derivation was implemented [11]. These restrictions
The papers by Melrose and Pafl£5,13,14 dealing with &€ Simply consequences of the charge conjugat@nand
various aspects of QED in strong magnetic fields, specifiP@rty (P) symmetries of the splitting process, i.e., relating
cally from a wave dispersion/response tensor approach, cof@ the transformationk— —k andB— —B.
structed theSmatrix element for splitting in Eqs46) and The summation over the spin states o' and o”

(47) of [13], which incorporated the quadratic vacuum re- (= *1) produces a dramatic simplification in the appearance
sponse tensor given in EB6) of [14]. This tensor is obvi- Of the Smatrix elements. Such spin summations act only on
ously of a standar@matrix Landau representation appear- the products of thes;s that appear in Eq3); the algebra is
ance. Equation£2) and (3) can be generated directlignd  lengthy but straightforward, being facilitated by pairi8g

also S{)) from the Melrose-Parle evaluation after a modi- terms with denominators that differ only in the sign of their
cum of algebra. Hence, Eq&) and (3) here, and Eqs(25) ~ Photon energies. The total splitting rate in Hd) can be
and (26) can be used as reliable starting points for furtherritten in the form

Smatrix developments.

3
A. Analytic reduction: Summation over spin states Reée'e":;:_ mﬁCZJ’ d: |Me%e'e"|2, (12)

The form in Egs(2) and(3) is quite cumbersome. It can
be simplified considerably b§i) specializing to specific but
representative directions of photon propagation @ndana-
lytically performing the summations over spin stateso’
and ¢”. Restricting the photon motion to the-direction

wherew”"=w—w' is implicitly understood from the conser-
vation of four-momentum. While these rates will be ex-

yields photon motion perpendicular to the field: since split-Eﬁiscsﬁglgortﬁ:?teosrlll?sr%g?gﬂloer;arrorm ?L;OJEE 33;;(;rom8mag-
ting is collinear in the non-dispersive limit discussed earlier v . g P 9 o
in this paper, it follows thak,= k.= K!=0. This choice dra- can be obtained via a simple Lorentz transformatian:

1 Z Z .

. S . . in,’ 'sing, 0" — w"sin her with an extr
matically simplifies coefficients of the Laguerre polynomlals_m)S b0 = w'sing,w’—w'sing, togethe th an extra

. . L : : multiplicative factor of si applied to the rate in Eq12).
in Eq. (3). Without significant loss of generality, settirkg Thpe S omentum dependéonpce ol integrandsqof()Ep,
=ky=kj=0 removes nearly all of the phase factors in the

X can be simplified by forming sums of the products of energy
definition of theJs in Eq.(6), leaving justi" ~". Three such  denominators. Separating such sums into real and imaginary
factors emerge in the triple product Bk, leading to a factor parts via the representatimvﬂzzsu_k izlx,,u leads to the

of (—1)" "', definition
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1 1 1
R
= + +
E)"“ (e"+et+tw')(e'+e"+w) (8"+8—w’)(8’+s"—w)] )\|(8’+8”—w)(8+8'—w")

1 1

1
+ + ,
M{(8+8’+w”)(8”+8_w’) (s+s’—w")(s”+s+w)

+(8’+8"+w)(8+8’+w”) (13

of the real part, wher& and x assume the values 1. The imaginary part is not explicitly stated since it will not be of use
in the subsequent developments. The momentum integrations overitﬁgsﬂnen assume one of the forms

_ [ PP
") _Leg'e” TLY
= dp = dp = dp
sz’ azzﬁflv jr:j /2251,1’ j":j "2251‘71 (14)
— —» g —© g

for n=0 or 1; generalizations to complex, , (relevant to calculating splitting rates above pair threshold and near pair
resonancesare routine. These manipulations yield the following compact forms for\the, ./» coefficients in Eq(12):

B "_ 1 () N " 7 — ! ’ -
Mi==7 Z (=DM Bnn BTN - Von"B[ 7"+ T, — o] A5 I+ \2n B[ T’ — Ty + o] A5~
n,n",n

+\2nB[J+ I+ To] A5

B n !
M, =— 2 > ()M {8 B3y AL T + 20 B[ T — T~ Tl A5 T + 20 B[ T + T+ T Ay T
n,n’,n”
+N2NB[ J+ T+ To] Ay T (15)

B "_ 1 ) N " 17 — ! ! —
Mi_=-7 2 (=)""{/8nn'n B3, A+ \2n"B[ 7" + T, — o] A+ on B 7 + Ty + T A
n,n,n

+\2nB[J- T+ Tl AL,

results that are to be used in conjunction with E). The w? , [w']?
factor of —B/4 is introduced to render the scaled amplitudes ln n=lnn 2B/ Ly n=lnrn B |’
positive, and also to afford a direct mapping onto limiting
forms obtained 7,9] by the proper-time technique, as will [0"]?
. . s rall . n —_
become evident in Sec. Ill. Th&®~® ¢ are differences of |nr,n—|nr,n<—23 ) 17
triple products of generalized Laguerre polynom{alsfined
in Eq. (7)]; for L— || thereby aiding brevity. For the —1 1 mode,
L—ll__ " ! " ’
Aiﬂ””:”:—ln’fllr’v' nln’,n”fl_lgn’lé”flnflln’*l,n” A1 R e R S P Pt
1L—11l __"” ’ U !
Lol , v AT _In,n’—lln”—l,nln’—lyn" In—l,n’ln”,n—lln',n”—l
AZ :In—1,n’—1|n”—1,n—1|n’—l,n”_In,n’ln”,nln’vn"—l
ALHLL_llf I/ | _I/l l/ |
3 “Ian—1'n"—1n'n’,n"=1""th—1n''n’ n-1'n"—-1n"
T L Y [ PURPE L LA PR (18)
(16) 1—11 " ’ " /
A4 :In,n’—lln”,n—lln’_lyn”_In—l,r‘l’ln”—l,nln',n”_l’
1 — ..
Ay H”:I::—l,n'—ll;w,nln’—1,n"_|:-,,’n/|,,1//71,n—1|n',n”—l’ and the results for thig—_L || mode are not explicitly stated

since they can be obtained by exploiting crossing symme-

where the Sokolov and Ternov representation of the assocfl€S: the inverse f’iﬁ‘he permtﬁatiopﬂim Eﬂﬂlﬂf“iiﬂf
ated Laguerre functions in E7) is used together with the transformation Ay H——A3 70, A7 7 —A57 L Ay
priming notation — = AP AL AL The A8 can alternatively
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be expressed using th'@ functions of Melrose and Parle as It turns out that Carefully-constructed contour integrations
in [10]. Note that the potential subtlety of having to include in the complexp, plane do not facilitate the, integrations.
factors of 1/2 for some contributions from ground interme-Hence the first step in integrating ovey is effected by the
diate states is eliminated by the specific choice of thenore cumbersome and less elegant approach of completing
Sokolov and Ternov wave functions. the squares and rationalizing the denominators using prod-
The comparative simplicity of the reduced form of the Ucts of factors like ¢’ +&" = w). These factors define poles
Smatrix element relative to E@2) is both notable and com- Pij of the p, integration fori andj being some combination
forting. Unlike Egs.(25) and (26) of [11], this developed ©0f n, n” andn”. Such poles fall into two types: pair creation
form of the splitting Smatrix element has an appearanceones(e.g. se¢17]) that contribute only above pair threshold,
familiar to Smatrix applications of QED in the Landau rep- due to the structure of the splitting rate, and cyclotronic ones
resentation to strongly-magnetized systems, with products ghat must be considered below pair threshold. The appear-
generalized Laguerre polynomials multiplied by simple com-ance of such cyclotronic poles is an artifact of the rational-
binations of energies and momentum components. Exampldgation of denominators, so that they are really pseudo-poles
of previous work bearing such familiar forms focus largely of the subsequent analysis; a consistency check on the alge-
on lower-order QED processes and include studies of syrPra is that theSmatrix element be effectively continuous
chrotron radiation[29,30, single photon pair creation across them. It is convenient to define energies that corre-
[17,29, and vacuuni34] and plasmd35] polarization. spond to thep;; poles:
For the purposes of the analysis in the next section, it is

"2 a ’
pertinent to define the cyclic permutations snn,:(‘” VNN
20" '
(1)—>_(1)”, w/_)_w, (1)”—>LL),,
/ , (1)2"‘./\/" _NH
n—n”, n’—n, n"—n’, (19 Enw =T T
in the spirit of theP | ; permutation in Eq(9). These permu- s ,
tations will appear repeatedly in the developments below, . :(w )HN"=N 21)
and lead to the following transformation properties of Eq. n’n 20’
(13):

o o o o and Fhree others paired with these, which are obtained via the
2_1'_14’_2_1’11 2—1’14’21‘—1; relations 8n7n+8nnr:w”, 8nlrnr+8nrnrr:_w and Enn"
+e,,=w'. Here the notation
DINIREED ST (20
N=1+2nB, N'=1+2n’'B, "=1+2n"B (22
with 251 being invariant, symmetries that are consequences
of the arrangements of electron and positron propagators its used for the purposes of abbreviation. Observe that, taking
the Feynman diagram for splitting. These translate into obadvantage of the subjectivity of such definitions, a minus
vious mappings betweeff, 7' and.7” and an invariance of sign appears in front of the expression gy ,,», a choice that
thel,. It is also easily seen that under this cyclic permuta-preserves symmetries induced by the mapping in(E®).in
tion, the factor in braces in the summation t, ., is  the results that follow. These definitions spawn the following
invariant, while the equivalent factor in the summation foruseful identities for the momentum poles:
M,_ ) maps over(up to a minus signto the factor in

. . . . ) 2 2 2 '
braces in theM, _, summation. As will become evident in Py =€nn —N=27,,—N
Sec. lll, the remaining powers of 1 in the summations do
not provide any unsatisfactory interference in the limits of pﬁ,nﬂzsﬁ,n,,_/\//zgﬁﬂn,_j\/" (23
low photon energy ¢<1) and high fields B>1), so that
ermutation symmetry can be extended to the total ampli- 2 2 2
p y y p pnun:Snun_N”:&‘nnu_M

tudes in these specific parameter regimes.

which immediately imply the possibility of poles along the
imaginary axis. In factpﬁn,z —min{ N, N}, with equality

Further analytic development is not only possible, butfor »”=|N—N"|¥2 and likewise for the other poles. Note
also desirable, given that the integrations over the momerthat for the one-vertex calculations of cyclotron emission and
tum p, parallel to the field can be expressed compactly insingle photon pair creation and annihilation, the requirement
terms of elementary functions. Such tractability facilitatesthat such poles be real, corresponding to real components of
both numerical evaluations and the derivation of asymptotigarticle momenta on external lines, is precisely what gener-
limits. In proceeding, since results are sought at energieates threshold$e.g.[17]) and kinematic cutoffge.g.[30])
sufficiently remote from pair creation resonances, the imagifor transitions involving various states.

B. Analytic reduction: Integration over parallel momentum

nary parts of the denominators in thg , are dropped in all The rationalization of the denominators yields relatively
further considerations, i.e., we consider only the functionscompact decompositions for these sums, after much cancel-
Efdf Rex, ,. lation and simplification. They take the form
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R 2 T algebraic developments vyield coefficients for tﬁély,l
D= O tigitiuse’ +1 L e'e"H1 Le"e}, (24 sum, which appears in thes' A, terms, as

the simplicity of which is contingent upon the energy- _ 1 2 ewmenn ,
H Fpe " ’ C_1-17= ’ 2 2[8n”n’+w ]
conservation restriction”=w—w’. Here ‘ ww  W|p.,—pP;
W=0vw'o"+oN—o'N'—o"N". (25 EnmEnm
+—2 — 2 Sn/rn_(l)]
Identities such a®V= —2ww' (g, +&nr) Prove useful in Prrn~ Pz
the ensuing analysis. Thg , andt, , coefficients assume —
simple forms when expressed as partial fractions. Consider “hol
. . . ’
first the result for2 5 ,, which has the coefficients e Enn T@ Enp 27
-1-1" 2 2 2 2
Cj_’lzo pn’n"—pZ pnn’_pz
’ Snrrn Snunr " Sn//n_ w Sn/n
=7 3t =7 (26) 1=~ = 772 7
pn”n P pn’n” Pz pn”n_ Pz pnnf — Pz
te's" = Enn Ennr The coefficients for the surﬁ?lyl that appears in thee”A3
Lp?, —p2 pl—pe terms and the coefficients for the st _, that appears in
the ¢'¢"A, terms are similar: there is little need to state
te"e = €n'n En'n” them explicitly, since the coefficients possess a relationship
11 pﬁn, - pg pﬁ,n,,— pg' to each other due to the permutation symmetry enunciated in
Eq. (20).

Observe that a cyclic symmetry is immediately apparent: Given these decompositions, it is now fairly straightfor-
251 is invariant under the permutation in E¢L9), as is  ward to evaluate the integrations oygt expressing them in
evident from its original definition in Eq13). Similarly, the  terms of the elementary functidnwith real arguments;;:

L g SVENT e
O e 1 I 1
o 5)_PJOO dp, £ | VE-N PNy 8
R e Y 2 [ ¢ Comsion
— ————= arctal ————= |
VN=E72 N=-¢£2)"

for real £ The identity arctar=(1/2) logd(1+iz)/(1-iz)]  Similar manipulations are used for th" integration over
with z=—&/YN—£7 has been used to map across the sinsR, | where again the leading order terms are individually
gularities at€= =\ (cyclotronic below pair threshojand  diivergent yet collectively convergent. Partial fractions can
guarantee bounded and continuous behavid(af, £)/€at  again be used to enable rearrangements and separate the di-
£=0. The integral identity in Eq(28) can be established yergent terms, which are then integrated over finite ranges as
quickly with the aid of result 3.513.2 i{83], using the sub-  with the Z; evaluation. The results are encapsulated in the
stitution p,= Wsinrt and partial fractions. Note that real jdentities
values(either positive or negatiyef £ are guaranteed by the 5
formalism here, withf€=0 being improbable due to the dis- To= oA Fur + Foror+ Foeh,
creteness of the quantum numbersn’ andn”. W

The integration of the coefficientg, of the A, terms for

each of the polarization modes are then straightforward, and 2 ., 5

the identities in Eq(23) can be used to advantage. Similar I,=L+ V—v{pnn/fnnr+pn/n,/fnrn/f

terms appear in th&; integrations of parts of the coefficients

of the otheA; terms, which also possess integrands with +p§”n Frnks (29

terms proportional to /, 1/e’ and 1£” that formally lead to

divergences that cancel each otkan artifice introduced by

the rationalization of the denominatprdsing partial frac- T
tions, the divergent contributions can be written as integrals

over the finite range- p<p,=<p, rearranging to subtract off
exactly-cancelling terms, and then taking the limitpas .

:E_ W{Snnrsnrn./fnnr+8nrnrr(8nunr
+u),)fn/n//+8nnu(8nun_(())fnnn},
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where developments here. Second, in the1l case, it identifies a
new, satisfyingly compact representation of the scattering
Fon =T (N enn) + (N &nrm), amplitudes in terms of special functions that leads to an ef-
, Y ficient means of computation.
Farmr=FHN enm) +HN" 8qm), These two parameter regimes are encompassed under the

single limit w?><1+ 2B, which thereby identifies the appro-
priate series expansion of the generalized Laguerre polyno-
mials that appear in the amplitudes. For small arguments
the leading order terms in the series fgr ,(x) can be found
1 1 1 in the Appendix of 15]. Given that, n’, andn” cluster in a
L= logN= —5—10gN' — ——510g. A", (31 manner such thah’ —n|~|n”—n|~1, this series converges
rapidly providednx<1. Hencenw?/(2B) actually repre-
No further integration is necessary: the cyclic permutationssents the true expansion parameter here, withand «”
in Eqg. (19) can be used to quickly derive expressionsfor  being similarly bounded. The leading order terms of such
and J from Eq. (29). expansions for tha®~®'¢" are linear in the photon energies,
At this point, it is salient to remark that the divergences atwhile the next higher order terms are cubic; a more detailed
£2=N in the functionsf (\;,€) pose no problem for the in-  exposition can be found in Weise, Baring and Melrps@).
tegral evaluations in Eq$29), because these functions al- The series for the integrations @f, namelyZy,Z,,.7" 7",
ways appear two at a time. Below the pair threshold, thesgnd 7 (which do not depend on the polarization mpdee
divergences _are cyclotronic in nature, being encounteregxpansions inw?/(1+2B) rather thanw?/(2B). They are
when w— | VA" = JA| or for similar circumstances for the independent ton energy to leading order, with a quadratic
other photon energies. As tends to such a limit, for ex- scaling with energy to next order. The series fof<1
ample, we observe that, w— VA~ and &g — — A + 2B possess logarithmic character in the quantum numbers
when N’ >N" (without loss of generality This opposition in situations when no two of them are equak. N# N’
of signs guarantees cancellation of divergences when theg A7+ A\
arctan form off(N,€) is used[arctan(12)— w/2—z as z
—0], so that continuity across cyclotron “pseudo- 4 logV 4 log N’
resonances” emerges naturally from E@9), consistent Om(j\/—./\/")(./\/'”—j\/) +(N'—N")(J\/—J\/')
with the continuity of theEsM functions. Continuity across

fn”n:f(-/\/'”vgn”n)"'f(-/vrsnn”)a (30

and

pair resonances does not arise above pair threshold, so that " 4 log V"
true divergences emerge. (N"= YN =N’
The incorporation of Eq(29) into the scaled matrix ele-
ments in Eq(15) constitutes the final product of the general 2Nlog N 2N log N’

analytic developments in this paper, providing rates valid fg~—J"~ _(N_N,)(NH_N) Y “NYN=-N")
all energies below pair threshol@nd applicable for non-

resonant energies above threshplthd for photon propaga- 2N logeN"

tion normal to the uniform magnetic field. They are emi- (A" — AN =N’

nently suitable for numerical computations, having improved

upon the analytic formalism of Mentzel, Berg and Wunnerand additionally involve inverse trigonometric functions
[11] [i.e. Eq.(2)] by performing the summations of the spin when twons (e.g. forA/=A") are in fact equal:

states and integration over the momenta parallel to the field

that are associated with the electron propagators. Such devel- . 4 I N 4 ° ( o )
opments are prudent prior to numerical evaluations due to 0~ T a2 08 — A ,
the large degree of cancellation in these sums and integra- V=N N NMN=NT) ZW
tions.

(32

7 2N o N 2
IIl. ASYMPTOTIC LIMITS FOR HIGH B OR SMALL ' (N_N”)Z geN” N=-N"

A fruitful extension of this analysis is the exploration of AN—(w")? o”
the simplification of the scattering amplitudes and rates in + NN=N") <\ 2N
two particular asymptotic regimes, namely the limit of highly
supercritical fieldsB>1, and the specialization to photon 4 ( " )
energies well below threshold, i.@<1. The benefits of ~ 7 Q -J, (33
such an investigation are twofold. First, it provides the first (N=N) ZW
unequivocal analytic demonstration of the equivalence o(N here
splitting results from th&-matrix formulation in the Landau
representation and effective Lagrangian—proper-time results .
from Schwinger-type formalisms in well-defined parameter _aresix.

: : . Q(x) (34)
regimes. In doing so, it serves as a powerful check on the XyV1—x?
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and the identity arcsic=arctaix//1—x?] has been invoked. og . Differential Scattering Amplitudes for .-f|
This retention of the inverse trigonometric functions is par- I L L B
ticularly relevant for determining the high limiting forms - @ w=19 B>1 1
of the scattering amplitudes. Relations similar to E8R) i ]
exist for N=N" and N'=N", obtained by the cyclic per- - 1.5 .
mutations throughVs and photon energies. The lengthier 04 — > =01 —
higher orderquadratig terms are not explicitly stated for the .
sake of brevity. This concludes the preamble that guides the
reader in the subsequent specializations.

Mo/ @

A. The special case oB>1 02

This regime is of particular relevance to the study of mag-
netars such as soft gamma repeaters. For the two mode:
L—lllandll—_L1l, only the leading order terms for thg and
the momentum integrals presented in E@2) and (33) are 0 2 4 p
required. Consider first the reduction.®f, ;. Here theA, ‘ Cowe
and A; terms contribute leading order terms only through
n"=1,n=n’'=0 andn’=1, n=n"=0 cases, respectively, ¢ Differential Scattering Amplitudes forIIIjLIII
where it is necessary to use the full forms in E83), and ! ! ! !
inverse trigonometric functions appear through 1Q¢éx)
function, which assumes the argumentsw’/2 and x
=w"/2. Asimilarn=1, n’=n"=0 term is identically equal - ©=19 1
to zero by virtue of the\ , factor. The contributions from the 4 — —
A, andA, terms possess an entirely different character, be- » L i
ing infinite summations ovar, with the values oh’ andn”
being constrained byn’—n|+|n”"—n|<1, producing five
groupings of the indices. The series is evaluated by truncat-
ing the sum ah<Kk, relabeling one of the logarithmic terms,
and then taking the limik—«. The net result igfor w=15 7
<2) 8

- (b) B»1 A

M/ @

4o’ . " 1 [T B BT 1
Moy~ arcsn’( _) % 2 4 8 8 1
o" \/4_(—00”)z 2 ‘ Cow/e .

40" o' FIG. 1. The dependence of the scattering amplitudesferl ,

+ o' m arcsw(7) o, B>1, scaled byw?, on the fractional energy’/w of one of the produced
photons, for three different incident photon energiegin units of

(35 mc?), as labeled. Only the two polarization modes with amplitudes

asymptotically independent d8 (in units of B in this ultra-

which, when combined with Eq12), yields the asymptotic quantum limit are depicted, namelg) L —|||| and(b) | —L||; their

high-B result derived by Baieet al. [7], and reproduced functional forms are given in Eq$35) and (36), respectively. The

independently by Baring and Harding]; the overall rate for  shape of the amplitude curves for—_L L is independent of» and

1 —|||| approaches a value independentBfObserve that is very close to that of thev=0.1 curves in panel$a) and (b).

the manifestations of the pair creation threshold for each ofvhile theL —|||| curves are necessarily symmetric abalit= /2,

the final photons of| polarization (i.e. at w'=2 and "  asymmetry is present in the— L[ case wherav’ represents the

=2) are the individually-divergent coefficients of the inversefinal photon ofL polarization. Note that the magnitude 0. |

trigonometric functions. Yet, collectively, due to the energydiverges as pair threshold=2 is approached.

conservation relatiomm=w'+ 0", such divergences cancel

each other to yield a finite overall result as—~2. For the formations of Eq(19). Carefully keeping track of signs and

incident photon ofL polarization, the pair threshold of 1 all photon frequencies by relabelling at the beginning of the

+ 1+ 2B is remote fromw=2 so that it would only be- manipulations, the roles of th&, and A; terms are inter-

come explicitly apparent when the amplitude was evaluateg¢hanged, and the obvious result emerges:

to higher order inB. Note also that thev<<1 limit of Eq.

(35 is ww' w"/6 and reproduces results obtained & and

[5]. The functional form of Eq(35) is plotted in Fig. 1. 40" arcsir( w) 4o arcsir( w”)

The equivalent result for the splitting modet;_, | re- MH—&H%(O A— o 2] W' A— ()2 2
quires little additional algebra given that it can be obtained
from the analysis just above using the cyclic symmetry trans- +w', B>1. (36)
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(which prohibit||— L || andL —_1 1 splittings may not ap-
ply if non-linear contributions to vacuum polarization or

B>1 plasma effects are significant. This underlines the saliency of

a detailed determination of the dispersive properties of the
magnetized vacuum or plasma medium appropriate to a par-
ticular astrophysical scenario.

The derivation of theB>1 form for the amplitude for
1L —1 1 differs significantly from the results just expounded.
First, contributions from”=1,n=n’"=0 andn’=1,n=n"
=0 andn=1,n"=n"=0 combinations are identically equal
to zero by virtue of each of the associatéd factors. This
automatically implies that no inverse trigonometric functions
that have arguments independentBfippear in the ampli-
tude, a property not possessed by the other splitting modes.
The consequences of this are twofold. First, this cancellation
implies that the scattering far—_1 L is of a higher order in
B than for the other two splitting modes. Second, since any
potential appearance of inverse trigonometric functions
spawned by the forms in E¢33) involves arguments that
depend onB through theNs, these arguments are always
small whenB>1, precipitating a redundancy with the low
energy limit. Hence, it follows immediately that the scatter-
ing amplitude forL —1 1 in the regime of highly super-
critical fields is identical to that of thB>1 specialization of
the low energy p<<1) limit. As the latter has been derived
in various papers in the literatufe.g. se€3,5,10 and the
While not established before in the literature, the low energ)Subsequent Secti@)’nhere it is sufficient to mere|y state the
limit of this, namelyM,_, | = ww' »"/6, yields the differen-  result:
tial rate from previous expositions,5] of low energy ap-
proximations. The form of Eq(36) is displayed in Fig. 1,
exhibiting the asymmetry expected under interchanges
w'—w". In this case, pair threshold structure in the ampli-

tude appears again for :[,he two photons of parallel polarizarhs extremely simple form differs profoundly from those of
tion (i.e. atw=2 and »"=2), and is also absent for the o other two modes because of the absence of photohs of
produced L photon, being of higher order iB. Conse-  arization in the interaction. Hence any signatures of the

quently, the amplitude pOSSesses a real divergen@ecza_, a air threshold of # 1+ 2B of L photons are absent in the
noteworthy occurrence that is illustrated by comparing th omain ofw<2, and a scaling-type form with obvious cy-
two panels of Fig. 1. Such divergences, which are not intez:"C symmetry e,merges.

grable ovew (and therefore patently different in nature from
the resonances encountered in ratesyfere™), are charac-
teristic of the photon splitting rate near resonances at and
above the pair threshold @§=2, corresponding to the cre-  The low energy limitw<1 is of interest not only because
ation of virtual pairs in various excited states. In fact, nearit was the regime where compact analytic expressions for the
such resonances, photon splitting necessarily becomes firsplitting rates were first obtaingdd—3], but also because the
order in a; like pair creation as the intermediate states “goanalysis that follows derives simple and elegant representa-
on-shell.” tions of the scattering amplitudes in terms of well-known
The rapid increase of the rate pf-L | relative to that of  special functions that provide a convenient alternative option
L —|| is exhibited in Fig. 2, where the rates have beenfor numerical evaluations.
scaled by the low energyw(<1) limiting forms [R(w) The amplitudes for each of the splitting modes should
xw°] discussed in the next subsection. This particular scalexhibit a cubic energy dependeni@ whenw<1. Hence, a
ing is chosen to illustrate deviations from the<1  necessary product of the Landau representation formalism is
asymptotic forms, and therefore to demonstrate the need fahat terms linear in photon energies should contribute exactly
relinquishing use of them when sampling photon energiegero. For the polarization modes—|ll and l—.Lll, whose
near pair threshold, a parameter regime very relevant to ceamplitudes are identical in the low energy lini&,5], the
tain astrophysical calculatiorie.g. seq27,28)). The domi-  demonstration of this is not dissimilar to ti#>1 analysis.
nance of theR_, ;| overR, | nearw=2 apparent in these The w<1 restriction generates a single infinite seriexin
B>1 results becomes substantive in parameter regimegue to the clustering ofi’ and n” aroundn. The ensuing
where the weakly-dispersive vacuuire. for B<1) polar- algebra in the simplification of this series is moderately
ization selection rules for splitting derived by AdI¢B] lengthy, and requires reindexing of the logarithmic terms to

Logso[ R(w)/R(w1) ]

FIG. 2. The total rates in thB>1 limit for the modesL — |||
and ||—_L||, computed according to E¢12) using the amplitude
formulas in Eqs(35) and(36), divided by the rates that would be
computed when taking the low energy€1) limit of these ampli-
tudes, i.e./\/llﬂmﬁww’w”IG%M‘PHg Deviations from such low
energy approximationgi.e. R(w)xw?], while significant for L
—|||l, are dramatic fol{— L || near pair creation threshold=2.

ww/w//

—g BuL (37)

M=~

B. Approximations for w<€1
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ling of the rational functions. Care must be taken in these Me erer=00'o"lim{ 2 Te oe(n,B)

assume forms involving QL +2nB], and also some relabel- K
k—o | N=0

rearrangements due to the infinite nature of the series, and
the technique adopted is outlined just below. The terms lin-

ear in photon energy result in zero, as expected: for more +Re_>e,e~(k,B)] (38
details, the reader is referred [tb0]. The next order contri-

bution is cubic in energy, as desired, with terms coming from
a mixture of(i) the linear terms of thé; combined with the for @<1, where
quadratic higher order terms of thg integrals, andii) the

cubic A; terms in conjunction with the leading ordé&on- Tlﬂ(n,B):—(4—n+ iz) loge| N+ _}

stan) terms from thep, integrals. The algebra is straightfor- B 2B 2B

ward, but lengthy and tedious, generating an exact cancella- 2 1 1 1

tion of all but terms proportional tew’ w”. This approach +(§+ 282/ 17208 3(1+2nB)

leads to a reproduction of th@, listed in entirely in Appen-
dix B of Weise, Baring and Melroge 0] for both thel —|ll
andL—11 modes of splitting. Hence there is little point in T,.,.(n B)=izlog
replicating these expressions here; the reader is referred to ’ 2B ¢
[10] for details.

These results are expressed as single infinite series in the
label n, which sometimes starts at=0, and sometimes be-
gins at higher integer valugsip to 3. Hence, an aesthetic
goal is to rearrange some of these series so that the sum

tions in each contribution begin at=0, and then add the . ! S | . .

terms in the series together. This is a non-trivial exercise Consider f|rst the .polarlzauon mo Il While possI-
iven the divergent nature of the series in many of the indi-bly only marginally simpler than EJC1) of [10], the series

9 9 y and remainder in Eq€38), (39) and (A1) naturally enable

h formi h f hich th ak€fhe development of a special function representation of the
when performing the rearrangements, for which there IS NQcayering amplitude. The finite summation over terms like

1
2B

3 1

Nt o8| 2B21+2nB

1 1 39
T 2BZ (11 2nB)? (39
mdefines the series terms. The remainders are quite lengthy,
and are listed in Appendix A.

unique prescription. One choice for relabelling the.sums I§x+n)logy(x+n) in Eq. (39) can be expressed using result
adopted by Weise, Baring and Melrdsé], though theirend 44 1 2 of[36] in terms of an integral of the logarithm of the
results expressed_m their Appendlx_ C do not facilitate anar function. At this juncture, the analysis begins to image
lytic development in the most expedient manner, and were iarts of that generated in expressing the polarization proper-
fact erroneousdiscussed briefly belowAn alternative and  ties of a magnetized vacuum via effective Lagrangian or
preferable choice for rearrangement of the multitude of serieproper-time technique$37-39, as should be expected.
over the labeh is adopted here, outlined as follows. Inspec-Hence, it is appropriate to adopt definitions from such litera-
tion of the variousC; contributions in Appendix B 0f10] ture as much as possible. Followif®j7,38, here a definition
reveals that they always consist of three types of teims: for the generalized” functionI';(x) of
logarithmic ones proportional to Igd+2(n+1)B], for |
=0,+1,+2,%=3, (ii) rational functions of *+2(n+I)B for x 1 X
|=0, +1,=2, and(iii) polynomials inn. A unique method logel"s(x) = JO dtlogel'(t) + 5x(x—1) — 5 loge2m
for rearrangement is to truncate all series to finite ones with (40)
n=<Kk, and then perform relabelings so that the first two types
of terms consist only of lofil+2nB] terms and rational is adopted. Properties of this function, which includg1)
functions of 1+2nB. This approach provides no particular =1, are discussed at length[i#h0] and outlined in Appendix
focus on series that originate with labels 0, but requires B.
careful accounting of the remainder terms at the upper and Using Eq.(B1), one soon arrives at an expression for the
lower ends of the sums, for which significant cancellationscattering amplitude in terms of a handful of spe¢dlyga-
arises. The coefficients of the logarithmic functions, origi-mma functions, namelyl’;(x), and logl’(x) and its deriva-
nally cubic inn, reduce to linear functions af in this de- tives. This representation consists of two parts, one indepen-
velopment. The consequent simplification of the series termdent of k, and one that involves a limit ak—o of the
is counterbalanced by the transferral of complexity to theremainder in Eq(A1), combined with several terms incor-
constant remainder terms, which are purely functionk of porating the special functions with arguments that depend on
andB. Taking the limit ofk— o achieves the desire@nd k. In evaluating this limit, most terms can be handled in a
convergentresult. straightforward manner, and standard asymptotic séeies
After considerable algebra collecting together all the con-see[33)]) for logel'(x) and (x) asx— oo prove useful. How-
stituent series in Appendix B df10], and performing the ever, the treatment of the term involving the function
rearrangement as just prescribed, one arrives at the followingpgel"1(1+k+1/2B) that appears in the limit contribution is
series representation of the scaled scattering amplitudes: non-trivial. A series representation for this function for large
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arguments is required, and is presented in (Bg). Assem- Scaled Scattering Amplitudes for y-=yy

0
bling the various pieces, the limiting result les- o is 1t r 1 T ]
(a4 1) 1 1 2
MJ_*)““:(UU) w glogel“l B —nger B 3
1 1 1 1 (1) 1 1 é
“lzet a8 1@ |28 "6 TeB
3
L, 1 ‘3
— F+ W(Iogebr— 1-3log.2B) (41 <
for ®<1. This is the sought-after compact analytic form that =
is comparable in simplicity to the one-loop effective é"
Lagrangians calculated in[37,38. Using series and = .
asymptotic expansions for all the special functions present, it -8 ' | ' | ' | ' | '
is routine to establish thatt, .~ (26B%315)ww’ " for -2 -1 OLogm[B]l 3
B<1, while forB>1, one findsM, _,~ww’'»"/6, a result
obtainable from Eq(35). FIG. 3. The dependence of the scattering amplitudes, scaled by

The developments are similar for the—1 | mode: this we’®”, on the magnetic fieldin units of B.=4.413x 108°G) for

representation again consists of two parts, one independetite spliting modesL —||| [see Eq.(41)] and L —1 L [see Eq.

of k, and one that involves a limit ds—« of the remainder (42)], for photon energies well below pair creation threshold. The

in Eq. (A2), combined with several terms incorporating po- amplitude forl|—_L|| is identical to that forl —{||.

lygamma functions with arguments that dependkorThis

limit can easily be evaluated using asymptotic series to yieldhe ease with which they can be accurately computed nu-

(for w<1) merically. Their dependence da is illustrated in Fig. 3,
replicating the numerics of10] and earlier effective La-

- 3 1 grangian determination§3], which are just as expedient
Mo mwo'o [_ >p2 100l E) + @lﬁ( E) since[see Eqs(43) and (45) below] they involve just inte-
grals of elementary functions.
+i¢, i>+i+i_i The low frequency result foM ., | is not presented ex-
8B*" 2B/ 3B 2B’ BS plicitly since it reproduces that faM, _; (e.g. seg3,5));
3 this is due to the crossing symmetries involved. Note that
2 while the cubic dependences of all the modes at low energies
* 4B? (loge2m+ IogQZB)] ' 42 reflect the lack of an energy scale in this dom@ie. such as

pair threshold, the normalizations are dependent on the po-
Using series and asymptotic expansions for all the specidarization mode, particularly at highly supercritical fields
functions present, it is routine to establish théd, ., ,  where theM, _,, | amplitude is highly suppressed. This ef-
~(48B%/315)ww’ " for B<1, while for B>1, one finds fectively represents how the rate normalization is sensitive to
M, | ~wo'w"l(3B), the result stated in Eq37). the (virtual) pair creation thresholds for the polarization

It must be remarked in passing that the expressions fostates involved in a particular splitting mode.
1L —11 in Egs.(39), (A2) and(42) cannot be derived from To conclude this presentation focusing on th&l spe-
the series in Eq(C2) of [10], principally because that series cialization, an obvious objective is the re-derivation of Egs.
expression is divergent, and therefore erroneous. Such gdl) and(42) starting with extant and well-known effective
error was introduced by an inappropriate rearrangement dfagrangian—proper-timéELP) results, and thereby demon-
individually-divergent contributing serig¢eading to the ad- strating analytically the equivalence of tiSematrix formu-
dition of infinite contributiong a mistake that is avoided by lation in the Landau representation and Schwinger-type for-
the careful techniqgue employed here in manipulating the remalisms in the low energy limit. Consider first the mate
sults of Appendix B in10]. Notwithstanding, the numerical — |||, for which such a determination is somewhat involved.
results for theL —1 | mode presented ifil0] were effec- The starting point is the integral expressié5s,9 that cor-
tively evaluated before any series rearrangement, and thereesponds to the scaled scattering amplitude that generates the
fore remain valid. same form for the rate as in EQL2):
The compact analytic forms presented in E@El) and

(42) represent the culmination of the<1 focus here. It is o
the first time such simple forms for the scattering amplitudes ~ , (etp _ wo'e” (=ds ( _3 E) coshs
involving just special functions have been calculated in this =B o s 4s ' 6/ sinhs
limit, though somewhat more convoluted, yet essentially )
equivalent, expressions have been put forward4]. A n 3+2s n s coshs
distinct advantage of the expressions in E44) and(42) is 12 sinlfs = 2 sink’s|’

(43
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which hasB<1 andB>1 limits matching those of Eq41).  lence is a satisfying indication of the verity of the Landau
In the subsequent analysis, it is useful to manipulate integrarepresentation analysis in this paper.

tions using the variablg =1/B. The first step is to recognize

that 14° times the factor in curly braces in E¢3) is a IV. CONCLUSION

perfect  derivative, ~namely dg/ds, where g(s) This paper has provided a detailed development of the
= (1/4s”)d[ scoths—1]/ds—cothe/(65). Integration by parts is  Smatrix formulation of the QED process of magnetic photon
obviously the operative method, with the goal of retainingsplitting in the Landau representation, focusing on the case
coths functions explicitly, combined with powers sf After  of zero dispersion where photon propagation is collinear.
some algebra, one finds that The formalism in Sec. Il rederives and extends the exposi-
tion of Mentzel, Berg and Wunndd 1]. The two principal
MBSy 1= 1 1 1 1
__f dse s/B
0

4B% 4B 6B 3s

general developments offered here are an analytic reduction

wo'o" B via the summation over the spins of the intermediate pair
states, discussed briefly [A0], and the analytic integration

T over the momenta parallel to the field incorporated in the

scoths—1— % electron propagators. This latter accomplishment is presented
here for the first time. The cumulative product of these de-
(44)  velopments is a satisfyingly simple and elegant form in Eq.
(15) for the scattering amplitude for each of the polarization
results. The integration on the first line can be performednodes permitted by P invariance. These amplitudes pos-
using identities 3.551.3 and 3.554.4 [&3], yielding thel’ sess products of generalized Laguerre polynomials that are
function and polygamma functionier equivalently general- common to QED processes in external magnetic fields, and
ized Riemann Zeta functions addition to elementary func- elementary functions involving the photon energies and the
tions. The only subtle part pertains to the second term of thigarious pair thresholds associated with the propagators.
integral, namely that contributed by thel/(4Bs?) factor.  Moreover, the analytic forms presented consist of just triple
This can be differentiated with respect By evaluated to summations over Landau level quantum numbers of the in-
yield a ¢ function, and then the result integrated, noting thetermediate states, and are eminently suitable for accurate nu-
behavior aB— 0. The evaluation of the integral on the sec- merical computations both below and above pair creation
ond line of Eq.(44) is much more involved. However, it has thresholdw=2. The applicability of these results to regimes
been performed before in the literature, and appears expli@bove pair threshold is a benefit of tBenatrix expansion in
itly in calculations[37,38 of the one-loop effective Lagrang- the Landau representation that is not afforded by effective
ian describing refractive indices of the magnetized vacuunt.agrangian and proper-time calculations: while théatter)
in QED. Hence the motivation for the particular partitioning Schwinger-type techniques elegantly formulate splitting rates
of integrations chosen in E@44). Details of the determina- below pair threshold, they eliminate the resonance structure
tion of this integral are found in Dittrich et d138], and the  early on in their mathematical developments, a severe limi-
second line of Eq(44) can be equated te 87%/B° times the  tation abovew=2.
Lagrangian £ )(B) (see Egs.(2.4) and (3.16) of [38]), As an embellishment to these general results, specializa-
thereby introducing thé'; function. Collecting together the tions in two significant domains have been obtained. The
terms neatly generates an analytic form ﬁb’rff”” that is  first is for highly supercritical fieldsB>1, reproducing in
identical to Eq.(41), so that the desired demonstration of Particular the result of7] for the L — || mode, and deriving
equivalence of the Landau representation and effective LaR€w results for the other two modes permitted@fy invari-
grangian forms is achieved. ance in the limit of zero dispersion. The second group of
The procedure for the. —1 1 mode is similar, though asymptotic results are for energies<1 well below pair
somewhat less involved. The equivalent scaled scatteringreation threshold, where new and compact expressions for
amplitude obtainei3,5] from effective Lagrangian—proper- the scattering amplitudes have been derived in Etf.and

1(=ds __o
X (scoths—1)— B gge
0

time techniques is (42) in terms of the logarithm of th& function, its integral
and their derivatives. These two domains of specialization
ELp wo'e” f=ds _ o herein have facilitated the first analytic demonstration of the

MIT = B o ?e equivalence of splitting rates obtained by tBenatrix for-

mulation in the Landau representation and those derived us-
[ 3 coshs 3—4s? 35?2 ing Schwinger-type effective Lagrangian—proper-time tech-

*14s sinhs ' 4sinfs _ 2sinfs| " (45 niques.
Recognizing that the factor in curly braces can be written as ACKNOWLEDGMENTS
— (3s/4)d[ cothe/s—1/s?]/d s+ (s/4)d®[ coths—1/s]/ds?, in- | thank my collaborators Jeanette Weise, Don Melrose
tegration by parts is again indicated, with identities 3.551.3and Alice Harding, and also Carlo Graziani and George Pav-
and 3.554.4 of33] again proving useful. With manipulations lov for many productive discussions, and also Stephen Adler
similar to (but simpler than: thd’; function is not involved for suggestions that improved the presentation. | also thank
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derivation of Eq.(42) from Eq.(45), as desired. This equiva- part of the period when this work was performed.
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APPENDIX A

Here the remainders that appear in the series representation iB&dfor the w<1 specializations to the splitting
amplitudes for polarization modes—|||| andL —_L 1 are presented:

R k,B k+1 2k2+k 4+1 1| k+2+ | P 11k3+k?| 21 21 k| 10+ e
(K B) =55~ *5/10% 78" Tk 21t o) Tk 10t 5 52
+ > + > log.| k+ 1+ ! ! 11k3+Kk?| 16+ 21 k(5 log,| k 1
2B ' 287] %% 28| 4B 28) TX°T BT 282/ T 482)'°%*" 2B
K " K P P B I L P k+1 1 k
28| KT o~ 10% k=1t op 1~ 3 (Kt Dt g+ S5 [T 2k+ 1B T 2B[1+ 2kB]
9k? 5k 7k 5 9 3I - AL
28 B 487 88 887 487 °%*% (AL
and
o . (kK+1)(k+2)(k+3) ia 1] k+1[13 |32 4+ g+ 2 1
Lonn(kB)= 2 128 %" 2E| 1|3 M3 T as) T 2E )% 2 28
! k3+k2 38+ — | +k|l = 4 +12 2| k+1 ! ! 71|<3 k?| 13 o
T 3 B/ B/ % KT aE T 1eB| 3N TN T 2
20 13 13I o 13k oo 9I 1. L
3 Bt 28|0% K 28| T 1| 3K T 2t 55) ~ 3|0 k1% 5
+k(k—1)(k—2)| - 2+ L (k+1)(k+2) (k+1)%(5k+2) k?(5k—1) k(k—1)?
128 0% T 1t 2(kt2)B] 2[1+2(k+1)B] 2[1+2kB]  2[1+2(k—1)B]
+7|<2 7k 9 k+1 00,28 A
28 "28 "8B " B7 '287'0%%E (A2)

APPENDIX B

1
logl'(x)= [0geX— x+ Io 2
In this appendix, various useful properties of thg(x) %el () ( ) % Gecm

function, the integral of the logarithm of tHé function, that

are needed in the<1 specializations are stated. Given the 1 o
definition of I'y in Eq. (40), it is elementary to establish, = E
using 44.1.2 of 36], that 24

k
Zo (x+n)loge(x+n)=logel"{(1+x+k)—logel 1(X).
(B1)

L(M+1X)— w71

=1 (m+ 1) m+2)

(B2)

from which Stirling’s asymptotic expansion can be derived.

Taking successive derivatives with respecktmne quickly — Here,{(m,t) is the generalized Riemann Zeta function, de-
arrives at well-known finite series representationsI'¢k)  fined in 9.511 and 9.521.1 ¢B3]. The integration of this
and its logarithmic derivatives(x); see[33,42 for discus-  series is effected using the identity(m,t)=—¢{(m+1}),
sions of these functions and their series representations. and is mostly uneventful. However, the treatment of tine

An asymptotic series representation for the function =1 term in the summation is somewhat more subtle, due to
for large arguments is useful, and can be derived with the aithe singular nature of(0,t), and requires taking the limit
of the following series representatigeee result 8.343.2 of m—1*, assumingn to be a continuous variable. Then result
[33)]) for the logarithm of thd” function: 8.362.1 of[33] comes in handy, and the series identity
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x—1
logel'1(X)= T(Zx [0geX—X—1)

1
+ 1—2 lﬂ(X) + ;+ YE— 1}

|_\

1
T A mrDmi2)

X g(m,l)—g(m,x)—1+xim (B3)

follows, where yg=—(1)~0.5772 is Euler's constant.

This series, which adequately substitutes for an asymptotic

PHYSICAL REVIEW D 62 016003

x? L 1
(B4)

x(x—=1) 1
logel™1(X)~ T+1_2 logex—

where

{(m1)—
m+1)(m+2)

k(k+1) 1 ook k?
T2 1%kt

(B5)

yve 1 1
Ll—Eazg

= lim

K— o0

k
[ > nlogsn—

n=1

representation, can be used very effectively for numerical

evaluations for alxk=1. For the range €&x<1, this series
also effects accurate evaluation of Jbg(x) via use of the
recurrence relation lof;(X)=logl"1(1+x)—xlogx, an iden-
tity derivable from Eq.(40) with the aid of 6.441.3 i33|.
For largex, it then follows that

with numerical valud.;~0.24875. This is just the constant
appearing in the magnetized vacuum polarization analyses of
[37,38, where the Raabe integral form for it can be found.
The second definition df, in Eq. (B5) can be obtained by
settingx=0 in Eq.(B1), and is a result noted by1].
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