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Discrete non-Abelian gauge symmetries appear to be the most advantageous candidates for a family sym-
metry. We present a predictiv@0O(10) SUSY GUT model withD;XU(1) family symmetry Dj is the
dihedral group of order)6 The hierarchy in fermion masses is generated by the family symmetry breaking
D3;XU(1)—Zy— nothing. This model fits the low energy data in the charged fermion sector quite well and
naturally provides large angle,-v, mixing describing atmospheric neutrino oscillation data and small angle
ve- Vg MiXing consistent with the small mixing angle MSW solution to the solar neutrino data. In addition, the
non-Abelian family symmetnp is sufficient to suppress large flavor violations.

PACS numbgs): 14.60.Pq, 11.30.Hv, 12.15.Ff

[. INTRODUCTION we mean that it is “natural’—the Lagrangian contains all
terms consistent with the symmetries and particle content of

The origin of the fermion mass hierarchy is one of thethe theory; and the number of arbitrary parameters is less
most challenging problems in elementary particle physics. Irthan the number of observables. This model fits the low en-
the standard model fermion masses and mixing angles aergy data in the charged fermion sector quite well and natu-
free parameters. Even though these 13 parami@enisarged  rally provides large angles,-v, mixing describing atmo-
fermion masses; 3 angles and 1 phase in the Cabibb&pheric neutrino oscillation data and small anglg v,
Koboyashi-Maskaw&CKM) matrix] are well known experi- mixing consistent with the small mixing angle Mikheyev-
mentally, the standard model does not offer any explanatiorSmirnov-WolfensteifMSW) solution to solar neutrino data.
Supersymmetri¢SUSY) grand unified theoriesGUTS9), in There are however complications associated with(2)
addition to gauge coupling unification, also provide relationsfamily symmetry in supersymmetric theories. It is believed
between quark and lepton masses within generations. Howhat global symmetries do not arise in string theory and also
ever, the understanding of the hierarchy between generationlsese are thought to be violated by quantum gravity effects
is still missing. A possible solution to the fermion mass hi-[10]. On the other hand, with continuous gauge symmetries
erarchy problem is to introduce a new symmetry—familythere are associatdd-term contributions to scalar masses
symmetry—acting horizontally between generations. The hiwhich can lead to unacceptably large FCNQ4]. As a re-
erarchy is then generated by sequential spontaneous breakisgit, we should consider discrete family gauge symmetries.
of this symmetry. Furthermore, acting differently on differ- piscrete gauge symmetries are not violated by quantum
ent generations, family symmetries can provide a solution tqrayity effects12] and can arise in spontaneous breaking of
the problem of large flavor changing neutral currentscontinuous gauge symmetries or directly in compactifica-
(FCNCg in SUSY[1]. _ _ _ tions of string theory.

A variety of modelg2—9] with faml!y symmetries were In this paper we present a8O(10) SUSY GUT with
proposed. Among these, models with(2) (or its sub-  p_s (1) family gauge symmetry which does not suffer
groups family symmetry[5—9] appear to be very promising rom the problems mentioned in the previous paragraph. This
candidates for the theory of flavor. The reason for this isygge provides exactly the same operators generating
twofold: the top quark is the only fermion with mass of order v ,kawa matrices as mod§T]. Thus it fits the low energy
the weak scale, thus distinguishing the third generation fromja4 in the charged lepton sector equally well and provides
the others; and by placing the first and second generationge same neutrino solution. In addition, the field content of
into a two dimensional irreducible representation of the famynis model is simpler thafi7] and can naturally provide an
ily group the degeneracy of squarks in these two generationsyp|anation for sequential family symmetry breaking by the
can be achieved, which is necessary to suppress FCNCgacyum expectation valué¥EVs) of “flavon” fields.

Thus non-Abelian family symmetries, especially2) or its The rest of the paper is organized as follows. In Sec. Il we
subgroups, are naturally suggested. _ briefly review possible discrete family symmetries, provide a

We would like to focus here on a particular model pre-motivation forDsx U(1) as a family symmetry and discuss
sented in7]. It is anSQ(10) SUSY GUT with family sym-  anomalies associated with gauging of this symmetry. In Sec.
metry U(2)xU(1).” This model is “predictive” by which ;| we construct theSO(10)xDsxU(1) invariant super-

space potential which, after family symmetry breaking, gen-

erates the quark and lepton Yukawa matrices. Our conclu-

The model[7] is a modification of theSO(10)x U(2) model ~ sions are in Sec. IV. For convenience, in Appendix A we
suggested if6]. The modification only affects the results in the summarize properties of the groups and its representa-

neutrino sector. tions, and calculate invariants used in Sec. Ill. In Appendix
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B we present @} version of the model and finally in Ap- (S =«,S are consideretthe predictivity of the theory is
pendix C we briefly review the results ¢7] for charged lost, since there are now as many parameters in the charged
fermion masses and mixing angles as well as for neutrindermion sector as there are observafes).
oscillations. Therefore, dihedral groups are the most promising candi-
dates for an ‘'SU(2)-like” family symmetry. They were pre-
viously used as family symmetries in Ref8]. If we now
Il. DISCRETE FAMILY SYMMETRY demand the minimal family symmetry group containing rep-

A ioned in the Introducti . qi resentations which can be used most economically, we are
s mentioned in the Introduction, we are interested i, 1o the grouDs.

discrete family symmetries which possess two-dimensional The groupDs is the smallest non-Abelian grouiit is

irreducible representations. In order to be able to generate tqg . . :
. . omorphic toS;—the symmetric permutation grougsome
same operators for fermion masses as in the cadé(a), P S y b grougs

. basic properties of this group and its representations are sum-
ga;rgtlleydsymmetry[ﬂ subgroups 0BQ(3) or SQ(2) are sug- marized in Appendix AD; possesses three nonequivalent

. . . irreducible representatioris, 1z and2, (1, is a trivial rep-
¢ D|scr'e;§a .subgrqup.sécSO(3|)' afbcllassme(ﬂliﬂ N tjrg]s resentation; also denoted by. Thus this symmetry provides
of two infinite series:Zy (cyclic Abelian groups and Dy 5 atyral interpretation of the three generations of fermions
(n?n-At;]eI:jagldm?dralr?rguglsandd t(hree eﬁ(cggtllonal ?r?UpS' as a singlet and doubldi+2, underD3. Differences be-
T (tetrahedral O (octahedrgland| (icosahedral Similarly .
. X ' tween generations can then be understood as a consequence
sinceSO(3)=SU(2)/Z,, discrete subgroups &U(2) are g d

o . of assigning them to different representationDaf.
classified in terms of double covers of the corresponding” g <e we want the family symmetry to be gauged, it must
subgroups 0680(3). Wecall thesez};, Dy, T’, O’ andl’. '

- d ) ‘ . be anomaly free. To show that there are no combibed
Since Zy are Abelian they possess only singlet '”educ'bleand/orSO(m) anomalies we use the fact that both the
representations. Irreducible representations of dihedr%o(3) and SO(10) groups are anomaly free. Representa-

groupsDy and Dy are all one and two dimensional. Three (jons ofSO(3) decompose into irreducible representations of
dimensional irreducible representations start to appear in thg3 in the following way:

exceptional groups.

In paper[7] the three generations of fermions transform 1-1,,
as a doublet and singlet undelJ(2). Togenerate the effec-
tive mass operators for quarks and leptons in the light two 3—1g+ 24, (2)
generations, three “flavon” fieldg?, S** andA2® [doublet,
symmetric triplet and anti-symmetric singlet undg(2)] 5— 15+ 24+ 24,

were introduced. The family symmetry is sequentially bro-
ken by minimal symmetry breaking/EVs):

Therefore, if the field content of the theory is such that fields
o (O an |0 O an | O A with the sameSO(10) quantum numbers can be arranged
(%)= ) (§%)= 0 s/’ (A%)= —A 0o into complete multiplets o5Q(3) then there are n@,,
(1) SO(10) or mixed anomalies.
BecauseD5 has only two nonequivalent nontrivial irre-
ducible representations we also ne@u order to maintain
Thus, it looks like we need to consider a group which has‘naturalness’ an additionalU (1) symmetry to distinguish
at least one three dimensional irreducible representation tdifferent fields with the samB4; and SO(10) charges. This
have a discrete analog &P®. In that case the tetrahedral U(1) symmetry is in general anomalous. An anomalous
group T’ would be the smallest group we could consitler. U(1) gauge symmetry was previously used in mod8ls
However, the coupling of a triplet to two doublets, which is We shall assume that tHé(1) anomalies can be cancelled
necessary if7], can be easily mimicked by a coupling of by the Green-Schwarz mechani$].
three doublets in most of the dihedral groups.the case of Before we continue, it is important to discuss the conse-
D3 see Eq.A9) in Appendix A and in the case dd5 Eq.  quences of the symmetry group; with regards to flavor
(B5) in Appendix B] Therefore a flavon field in the three- violation [1]. It has been shown that an 8)Y family sym-
dimensional representation is not necessary when considametry can effectively suppress flavor violating processes
ing a dihedral family symmetry. Furthermore, it has not beeramong the first two familieg5,6]. This follows from the fact
possible to find a mechanism for generating non-zero VEVShat to zeroth order in family symmetry breaking, the soft
for S22, while (S') =(S'? =0 [14]. On the other hand, if the SUSY breaking mass term for squarks and sleptons in the
most general family symmetry breaking VE(S) =« S, first two families in an S(R) invariant and thus proportional

2In the process of writing this paper we became aware of the work *These new parameters have minor consequences in the charged
[9] which suggested the grodp as a good starting point for mod- fermion sector §? analysis requires them to be smabut provide
els with “U(2)-like” family symmetry. new neutrino solutions. For details geié).
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to the identity matrix. Then family symmetry breaking cor- 10
rections to squark and slepton masses are at most of order the |
family mixing for quarks and leptons. In Appendix A, we

show that the same argument also appliesCigr ThusD4 163 163
will also suppress flavor violations. .
$Bp 1 ba 10
Ill. AN SO(10)XD3XU(1) MODEL |
In this section we present d&0(10) SUSY GUT with 163 Xa Xa 160
D;xU(1) family gauge symmetry. 80O(10) all fermions 45 é 10
in one generation are contained in the 16 dimensional irre- B-L ¢
ducible representation and, in the simplest version, one pair |
of Higgs doublets is contained in the 10 dimensional irreduc- 16, Xa Xa 164
ible representation. The minimal Yukawa coupling of the
third generation of fermions to the Higgs fields is given by A 10
\1651016; from which we obtain the symmetry relatioqg | |
=Np=A,=\, =\ at the GUT scale. While this Yukawa
T 16, Xa Xa 164

unification is known to work quite well for the third genera-
tion it fails for the two light generations. Thus a family sym- FIG. 1. Diagrams generating the Yukawa matrices.
metry is necessary to forbid the tree level Yukawa coupling
of the first and second generations to the Higgs fields. Break-

ing of this symmetry will provide the necessary hierarchy of=(1,0) is a linear combination of a8((10) singlet and
fermion masses. adjoint. Its VEV My(1+ aX+ BY) gives mass to Froggatt-

Nielsen states. Her¥ andY are elements of the Lie algebra

of SO(10) with X in the direction of theJ(1) which com-

mutes withSU(5) andY the standard weak hypercharge; and
As discussed in Sec. Il the first two generations of fermi-, g are arbitrary constants which are fit to the data. Further-

ons are contained in 16 a=1,2 which is a doublet under more, each term inW has an arbitrary coupling constant

D3 with charge 1 undetJ(1) [or 16,=(24,1)]. The third  which is omitted for notational simplicity.

generation 1§transforms asig,3) and a 10 of Higgs fields  The largest scale of the theory is assumed to be the mass

transforms ag1,—6). Using the results of Appendix A we of the Froggatt-Nielsen states. In the effective theory below

see that the coupling16;1016; is invariant underD; M, these states are integrated out giving the effective mass

A. The charged fermion sector

XU(1) while A16,1016, and\16,1016; are not. operators in Fig. 1.
T'o genera_lte the Yukawa couplings for the first two gen-  \yhen “flavon” doublets obtain VEV5<;5a>=;55a1 and
erations we introduce three “flavon” superfields: (pa)= 54, the family symmetryD,x U(1) is broken to a

diagonalZg symmetry and the Yukawa couplings;1616,
Ga=(20,—2), Pa=(2p,—4), A=(1p,4), (3 and 16...16, are generated. Finally, the VEV of thfefield
breaks the family symmetry completely and generates the
which areSO(10) singlets, and a pair of Froggatt-Nielsen Yukawa coupling 16...16,. These results are summarized
state17] [16 and 16 undeBO(10)]: in the form of the Yukawa matrices for up quarks, down

Ya:(ZAI_S)y Xa:(2A15)' (4)
5To forbid all higher dimensional operators we also assume a
The superspace potential for the charged fermion sector afi(1); symmetry under which 45 has zero charge and all other
this model is given by fields have charge 1. Neither th&(1) nor U(1)g symmetry is in
any sense unigue. We can equally well assume just one symmetry
without imposingR-symmetry or products of severd|(1)s ortheir
discrete subgroupd,, . By specifyingU(1) charges we show that
1 ~ 1 the model is “natural,” i.e. there exist &(1) which allows the
+xal M xat M—45 $,165+ M—45 $,16,+A 16, ], required operators in the superpotential and at the same time forbids
0 0 all possibly dangerous operators to any order. If we do not impose
(5) the U(1)g symmetry the model is however still natural. The
. L o charges under any singié(1) which constrains the model are
where 45=(1,6) is anSO(10) adjoint field which is as-  powever relatively high; a reflection of the fact that this symmetry
sumed to obtain a VEV in theB-L direction; andM  has to forbid all dangerous higher dimensional operators. An ex-
ample of such &J(1) is (including fields which occur later in Secs.
NIB and IIC): 16,=—4, 16,=—3, 10=6, y,= —16, x,=—2,

“Note that we usually call fields by their $T) quantum num-  ¢.=7, $,=8, A=20, 45=12, M=18, ¢,=—15, S=-15, S,
bers. The adjoint representation $0(10) is 45 dimensional. =15,N,=—4,N3=—3, and16=6.

WD16,10 16+ 16, 10 x,
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quarks, charged leptons and the Dirac neutrino Yukawa ma- B. The superpotential for “flavon” doublets
trix below?® To generate the Yukawa matricéd) with zeros in the
0 'p 0 1-1, 1-3 and 3-1 elements it is necessary to h{\ﬁg)
=(¢1)=0. This may look like a very special assumption.
Yo=| —€p e TeTg|\ However, we argue that with B3 symmetry such an ar-
0 refo 1 rangement of VEVs for “flavon” doublets is naturally ob-
tained.
0 ¢ 0 Consider the following superpotential for “flavon” dou-
blets:
Yy=| —€ € roeTy| &
( 0 reTg 1 WD abadat S(bada—M3), ©)
, 6) where ,= (2,,6) andS=(1,6) are singlets undesO(10).
0 ~e 0 Mé is a scale at which the “flavon” doublets obtain VEVs.
Yo=| € 3e relg|¢ Itis effectively (1,—6). The origin ofM? is not important. It
0 roeT, 1 can result from one or two fields with effectik$(1) charge
—6 obtaining a VEV. For example, If/lﬁ,z)\(/)(S,',)), where
0 —we 0 N, is a dimensionful constant, it can be checked tBat
=(1,—6)’ does not couple anywhere else; neither in the
Y =| we 3we EwreT* N charged lepton sector nor the neutrino sectsee next
v 2 v section.®
0 roeT, 1 The superpotential9) has two isolated supersymmetric
vacua related by, ¢,
with -
5=5=0, =5, =(¢) $3=M3. (10
20_ a ’ a ¢ ' a O 1 d)
T 201 @
Sincey, andShave zero VEVSs they do not contribute in the
charged lepton and the neutrino sectors.
and Thus from the simple superpotent{&) we have obtained
T¢=(baryon no-—lepton no) $§k§$gtﬁg tfrti)cre\;g)\./s of¢, and ¢, needed to generate the
for f={Q,u,d,Le,u}. ®) C. The neutrino sector

In our notation, fermion doublets are on the left and sin- The parameters in the Dirac Yukawa matrix for neutrinos

glets are on the right. Note, we have assumed that the Higd@ mixing v-v are now fixed. Of course, neutrino masses are

doublets of the minimal supersymmetric standard modefMuch too large and we need to invoke the GR3Y] see-

(MSSM) are contained in the 10 such thatlODAH, Saw mechanism. , _ .

+¢Hy. We could then consider two important limits—case e can introduce SQO) singlet fieldsN and obtain ef-

(1) A\=¢& (no Higgs mixing with large tang, and casg?2) fective mass Ferm%-N and N-N. Adding N,=(24,1) and

A> ¢ or small tang. In the first case the Yukawa matrices are Na=(1g,3) [with the sameU(1) charges as 16and 1G]

given by specifying six real parametexse,e’,p,o,r and  together withl6=(1,~6) [the sameJ(1) charge as 10 we

three phases,,®,,®,, which cannot be rotated away. directly obtain the terms-N. The corresponding diagrams

These nine parameters are then fit to the thirteen observabt@n be obtained from Fig. 1 by substituting 206,16,

charged fermion masses and mixing angles. In the secone>N,,16;— N3 on the right hand side of the diagranié-N

case we would have one more arbitrary parameter. mass terms are generated from operators describing interac-
We have obtained the Yukawa matrices parametrized in

the same way as in papgf]. Therefore, all the results from

[7] apply also in our case. For completeness, the results for7s¢ has charge 2 unddy (1) symmetry.

charged fermion masses and mixing angles are summarizeca%v\,henS(lS obtains a VEV, théJ(1) symmetry is broken down to

in Appendix C. Zs. As we saw in the previous section the VEVs ¢f and ¢,

leave an unbrokedg symmetry. Therefore, to be precise, with this
mechanism for generating appropriate VEVs of “flavon” doublets
5The ratios of VEVs which enter the Yukawa matrices are giventhe flavor symmetry breaking scenario from the previous section is
by dimensionless parametense~ ¢(45)/M2, e~ ¢(45)/M2, €' slightly changed td ;X U(1)— DX Zg— Zg— nothing.
~A/M,. Parametersr andp are functions ofx and 8 which were %16 is assumed to get a VEV in the “right-handed” neutrino
defined after Eq(5). For more details sefé]. direction. This VEV is also needed to break the ranks@¥ 10).
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tions_ofNa andN; with flavon fields..Thus these new fields v, Ve are proportional to the VEV o6 (with different
contribute to the superspace potential below: implicit Yukawa couplingsand ¢>,§5 are up to couplings the

Ta ~ VEVs of ¢,, ¢, respectively.
WD 16(N +N3163)+N,N +N,N . 11 2 Y1
8(Naxat No16;) + NaNacbat NaNagha - (11 Since bothV and My, are of order the GUT scale, the

statesry, N may be integrated out of the effective low energy
theory. In this case, the effective neutrino mass matrix is
given(atMg) by'![the matrix is written in the §,N3) flavor
basis where charged lepton masses are diagjonal

Finally in order to allow for the possibility of a light ster-

ile neutrino we introduce B 5 nontrivial singletN; [a singlet
underSO(10)] which enters the superspace potential as fol
lows:
_ o~ MVDTIMGVTImT —m(VH T
W3M3N3N3. (12) m =Ue _:[LTVflmT O Ue
. . . (16)
The dimensionful parameter; is assumed to be of order the
weak scale. The notation is suggestive of the similarity bewith
tween this term and thg term in the Higgs sector. In both

cases, we are adding supersymmetric mass terms and in both ~ Ue O + t

cases, we need some mechanism to keep these dimensionful e=| o 1) €7e€Ue, wo=vUe. (17
parameters small compared to the Planck scale. This may be

accomplished by symmetries, see for example Rz U, is the 3X 3 unitary matrix for left-handed leptons needed

We define the vectofi=(0,0u3)" which can be gener- to diagonalizeY, [Eq. (6)] and ey, vo(e,v) represent the
alized to a matrix in the case of more than one sterile neuthree families of left-handed leptons in the wedkiass}
trino. eigenstate basis for charged leptons.

The case with three neutrinog.4=0) cannot simulta- The neutrino mass matrix is diagonalized by a unitary
neously fit both solar and atmospheric neutrino data, for dematrix U=U ,;,
tails se€[7]. In this paper we consider the case of four neu- i .
trinos (with one sterile neutrino mi*9=UmSiu* (18

The generalized neutrino mass matrix is then givet? by . . .
where a={ve,v,,v,,vs} is the flavor index andi

={1,...,4 is the neutrino mass eigenstate indék,; is

(v N3 v N) observable in neutrino oscillation experiments. In particular,
the probability for the flavor state, with energyE to oscil-
0 0 m O late into v, after traveling a distance is given by
0 0 o0 &' s
1 .
mT 0 0 V ( ) P(VWHVB):(SQB_4|;J UakukuZJUBJ S|nzAJk,
0z VI My (19
where whereA = dm; L/4E and sm{, = m’—m.
The results for this four neutrino modébken from Ref.
; [7]) are given in Appendix C.
m=Y,(H)=Y,—sinB (14)
V2 D. Anomalies
and As mentioned in Sec. Il, we restrict discussion of anoma-
lies to those involvingd 3 andSO(10) only. The only fields
0 N 0 in the model with nontrivial charge under both groups are:
€ Ve doublets 1§, x4, xa andlg singlet 16. The simplest way
V=| —€'Vi 3eVie 0|, to avoid anomalies is to arrange these fields ifor 15
0 re(1—o)T-Vis Vig multipletg ofDj3 vyith the saméSO(lQ) quantum number. Tp
make this possible we have to introduce another pair of
00 0 Froggatt-Nielsen fieldy and y which arelg singlets under
MN= 0 d) E) . (15)
0 '& 0 n fact, at the GUT scal®1; we define an effective dimension

5 supersymmetric neutrino mass operator where the Higgs VEV is
replaced by the Higgs doublét, coupled to the entire lepton dou-
blet. This effective operator is then renormalized using one-loop

OThis is similar to the double seesaw mechanism suggested byenormalization group equations k- . It is only then thatH,, is
Mohapatra and Vallg21]. replaced by its VEV.
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TABLE I. The character table for the groups.

Dj E Cs C.
Cs 1a 1 1 1
1g 1 1 -1
2 2 -1 0

APPENDIX A: THE GROUP D3 AND ITS

REPRESENTATIONS
- ™ All possible rotations in three dimensions which leave an
¢ b equilateral triangle invariant form the grolp; (see Fig. 2
This group contains six elements in three classes:

FIG. 2. Symmetry axes of an equilateral triangle.
. ) . E;C31C§;Ca!cb1CC1 (Al)
D,. Itis easy to check that these new fields do not contribute
to the discussion in this section. whereE is the identity elementC; is the rotation through
There are many ways to arrange $6(10) singlets with ~ 27/3 about the axis perpgndmulza.r to the paper and going
non-trivial D5 quantum numbers into complete multiplets of through the center of the triangl€g is C; applied twice C,
SO(3). In particular, it is always possible to add new dou-is the rotation throughr about the axisa, and similarlyCy,
blets or 15 singlets undeD; which do not contribute to andC.. Note thatC, is the same a€,Cs and C. is the
fermion masses and mixing angles. same asC,Cs. . o _
model. The main advantage &f, is that the2 of SU(2) number of nonequivalent irreducible representation of the
decomposes into thg, representation oD} . Thus, if all group. One of the most interesting results of the theory of

; L finite groups is the relation between the number of elements
doublets with nontriviaBO(10) quantum numbers transform . ) . . .
, : » g of a group and dimensions, of its nonequivalent irreduc-
as 2z underD; the anomaly cancellation conditions are au-

. - ible representations,
tomatically satisfied. P

2_
IV. CONCLUSIONS EV n,=g.

_In this paper we have presented 80(10) SUSY GUT  Thys we find that the group; has two nonequivalent one
with the minimal discrete nonabelian gauge family symme-yimensional representatidn, , 15 and one two dimensional

12 \\pi . i ;
try, D3xU(1). With minimal family symmetry breaking epresentatior2, . Each representation is described by the
VEVs, which may be obtained naturally in this theory, we got of characteté X1.---X», Where v is the number of

obtain a “predictive” model for quark and lepton masses | sses in the group. The character table for the gDys

(including neutrinos which will be tested in future experi- %'ven in Table 1.

ments. In the charged fermion sector the model reproduceS gron the character table it is possible to find the decom-

the good results obtained previously in &&(10)xU(2)  hosition of the product of any two representations:
XU(1) model discussed in Ref7]. The D3 symmetry is

sufficient to suppress large flavor violating interactions in the 1I.®1,=15, 1,®1g=1g, 1z®1g=1,4, (A2)
charged fermion sector. In the neutrino sector we also repro-
duce the results of Ref7], in particular we are able to fit 10®2,=2p, 1g®27=2,, (A3)

atmospheric neutrino data with maximg|— v . oscillations

and solar neutrino data with SMA MSW,— v, oscillations. 2n® 22 = 1a® gD 2. (A4)
The model is however unable to fit LSND data. To construct an explicit model obeyird; symmetry we
need to specify the representation and determine invariant
ACKNOWLEDGMENTS tensors. One dimensional representations coincide with the

characters and the two dimensional representation can be
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and T. Blazk and K. Tobe for the use of the work in prepa- An eler_nentb O.f the groupG 1S said to be conjug?te o the
ration elementa if there is an elementi in G such thatuau™“=hb. A

group can be separated into classes of elements which are conjugate
to one another.
The character of an elemeatof the groupG in a given repre-
2As mentioned in Sec. Il A, théJ(1) factor can even be re- sentationD is the traceS;D;;(a). Therefore elements in the same
placed by a discret&y symmetry. class(conjugate elemenkhave the same character.
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TABLE Il. The character table for double-valued representa-

tions of the grouD}. parameters:

PHYSICAL REVIEW 2 015007

TABLE IV. Charged fermion masses and mixing angles. Initial
(b, Mg, e3)=(24.52,3.05% 10 GeV,— 4.08%);
(\r,0,€,p,6')=(0.79,12.4,0.84,0.011,0.043,0.0031) D (© ., P )

Dy E R G CsR C, C.R =(0.73-1.21,3.72) rad; [Mg, M 1/5,Aq, (M 2) ]=(1000,300,
—1437,110) GeV; [(my,/mg)?,(my /mo)? tanB]=(2.22,1.65,
1c 1 -1 -1 1 i —Ii 53.7).
1c 1 -1 -1 1 =i i
2 2 -2 1 -1 0 0 Data (o) Theory
Observable (massep (in GeV)
M5 91.187(0.09) 91.17
D(E):(l 0), D(Cg)Z(E ?1)1 D(Ca)Z(O 1), My 80.388(0.080 80.40
0 1 0 € 10 G,Xx10° 1.1664(0.0012 1.166
(A5) e 137.04(0.14 137.0
wheree— e2/3. ag(My) 0.1190(0.003 0.1174
Now it is straightforward to find the two singlets and the Prew 10° ~1.20(1.3 +0.320
doublet in the decomposition of a product of two doublets M, 173.8(5.0 175.0
(A4). Writing ¢={x,y} andy'={x",y’'}, we find m,(Mp) 4.260(0.1Y) 4.328
Mp—M, 3.400(0.2) 3.421
Yy |y, =xy' +yx, (A6) ms 0.180(0.050 0.148
mg/ms 0.050(0.015 0.0589
U |y =Xy —yX, (A7) -2 0.00203(0.00020 ~ 0.00201
M. 1.777(0.0019 1.776
yy' M, 0.10566(0.00012 .1057
YYo= ! |- (A8) MX 10° 0.5110(0.00052  0.5110
Vis 0.2205(0.0026 0.2205
The decompositiorfA4) also reveals that the product of ~ Veb 0.03920(0.0030  0.0403
three doublets contains an invariant. Takipg={x",y"}, Vub/Ven 0.0800(0.02 0.0691
this invariant is B 0.860(0.08 0.8703
B(b—sy)x 10 3.000(0.47) 2.995
YR Y @ Y|, =xx'X"+yy'y". (A9)  TOTAL 2 3.39

Finally, we want to show that given a doubkgf in D5,
there is a unique invariant norm given by ¥,= 7
+ ¢ i, . Clearly, this norm i invariant since under B
transformationy, = Cp4, With CCD3 and C'C=1. That
this is unique follows from the fact that in the product of two
doublets there is a unique invariant given in E46). In
addition, defining a new doublet by,=g.,¢¢ satisfying
Xa= Carxv= () 95a= /s ClyGpa requires for consistency
g=CgCT. The unigque solution to this consistency condition
is g=(25). Then we havey® ¢y, = /4 s

(B1) and(B2):

chosen to be
APPENDIX B: D4 VERSION OF THE MODEL

The double grou; contains 12 elements in 6 classes. In
addition tol,, 15, and2, representations which are already
presented ifD 4 it also has double-valued representatiGgs

10
D(E)=(0 1), D(C3)=( 0

sentations is given in Table II.
Multiplication rules are given in Table Il and Eq&A\4),

2A® ZB: 1c® 16@ 23,

28® ZB: lA@ lB@ 2A1

61/2

(B1)

(B2)

The double-valued two dimensional representation can be

0
e 12)

1c and2g. The character table of a the double-valued repre- TABLE V. Fit to atmospheric and solar neutrino oscillations.
Initial parameters: (4 neutrinos with large tag); m’'=7.11

TABLE Ill. Multiplication rules for the groupD3; . X 10 2eV; b=—0.521;¢c=0.278; ®,=3.40rad.

D; 15 1 1c 1c 2a 2g Observable Computed value
1 1, 15 1c 1c 2 2 oma,., 3.2x10 %eV?

15 1 1c 1c 2 2 SiN?20m 1.08

1c 1 1, 2 2 om?,, 4.2x10 %eV?

1c 15 2 24 Sin226,,, 3.0x10°3

015007-7
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0 1 TABLE VI. Neutrino masses and mixings. Mass eigenvalues
D(C,)= ) (B3)  [eV]: 0.0, 0.002, 0.04, 0.07. Magnitude of neutrino mixing matrix
-1 0 U, .i=1,...,4labels mass eigenstates={e,u,7,s} labels fla-

andD(R)=—D(E). As before,e=e?"", vor eigenstates.

Now it is straightforward to find new invariants. Taking

0.998 0.0204 0.0392 0.0529
the 2, doublet ¢={x,y} and 23 doublets ¢={a,b}, ¢’
—{a’,b'} we find 0.0689 0.291 0.567 0.767
’ 0.317x 1073 0.145 0.771 0.620
¢®@¢'[;,=ab’—ba’, (B4) 0.284x 1072 0.946 0.287 0.154
! p— ! !
Y@@ e'|y,=xbb +yaa’. (BS) M in the MSSM, one loop radiative threshold corrections at

M, and 3 loop QCO1 loop QED RG running belowM ;.

fermion masses and mixing anales we obtained in Sec. || lectroweak symmetry breaking is obtained self-consistently
! IXIng angies w ! : * tfrom the effective potential at one loop, with all one loop

can be also obtained if we assum®gxU(1) family Sym-  yprashold corrections included. This analysis is performed
metry. In th|_s case all d?ublet_s charged nontrivially W_‘derusing the code of Blak et al. [18].
SQ(10) are in the of D3, while singlets transform trivi- 5" Taple IV we give the 20 observables which enter the
ally underD;. “Flavon” fields are in representationsb, 2 function, their experimental values and the uncertainty
=25, ¢a=25 andA=1,. “Flavon” doublets are expected (in parenthesgs These are the results for one set of soft
to obtain VEVS(¢,)= ¢Sa; and(d,)= Sy . SUSY breaking parameters,, My, with all other param-
In the neutrino sector the doublets transform inZgand ~ €ters varied to obtain the best fit solution. In most cases
the singlets transform trivially unddd} . Finally, the fields ~determined by the 1 standard deviation experimental uncer-
entering the superpotential for the “flavon” doublets trans-t@inty, however in some cases the theoretical uncertainty
form in the following way:i,= 25, S=1¢, andS,=1c. (~0.1% inherent in our ren.ormallzat!on group running and
The advantage oD (andD/;s in generalis that the2g one loop threshold corrections dominates. For large gan
representation db; appears alone in the decomposition of a'igere qz;\re :n(rjefll Yu'i,?/\i':ﬁ ri%ragrelfr]eigi arndasscgr;g?\);agr;ses
2 of SU(2). Representations @U(2) decompose into irre- ~°P' ~ € i

ducible representations @} in the following way: (charged fermion masses and mixing andBg replacing
€k as a “measure o€ P violation”]) we have 4 predictions.

With these results it is straightforward to check that the

2—2g, For low tanB, A+ ¢, we have one less prediction. From
Table 1V it is clear that this theory fits the low energy data
3—15+2, (B6)  quite well.
Finally, the squark, slepton, Higgs and gaugino spectrum
4—1c+1c+ 2, (B7)  of the theory is consistent with all available data. The lightest

chargino and neutralino are Higgsino-like with the masses
close to their respective experimental limits. As an example

B Il doubl ith ViSIO(10 of the additional predictions of this theory consider ®F
ecause all doublets with nontrivi O(10) quantum num-  yiqlating mixing angles which may soon be observedBat
bers transform a8 underD 3 and all singlets with nontrivial  ¢5ctories. For the selected fit it was found

SQ(10) quantum numbers are trivial singlets undgy the _ _ _
anomaly cancellation conditions are automatically satisfied. (sin 2a,sin 26,siny) =(0.74,0.54,0.99 (CY
For theSO(10) singlet with nontriviaD; quantum number,

(¢a), at the least we must add &0O(10) singlet transform- or equivalently the Wolfenstein parameters

ing as alg. (p,m)=(—0.04,0.3]. (C2
APPENDIX C: RESULTS FOR CHARGED FERMION The results obtained in R€f7] for the neutrino sector are
MASSES. MIXING ANGLES AND NEUTRINO presented in Tables V and VI. The model has maximal
' OSCILLATIONS — v, Mixing to describe atmospheric neutrino data and small

mixing angle(SMA) v.— v, oscillations to fit solar neutrino
In paper[7] a global x? analysis has been performed in- data with SMA matter enhanced MSW oscillations. The
corporating two(oné loop renormalization groufRG) run-  model cannot however fit the Liquid Scintillation Neutrino
ning of dimensionles@imensionfu) parameters frolMgto  Detector(LSND) v— v, data.
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