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Fermion masses and neutrino oscillations inSO„10… supersymmetric grand unified theory
with D3ÃU„1… family symmetry

Radovan Dermı´šek and Stuart Raby
Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210

~Received 10 November 1999; published 30 May 2000!

Discrete non-Abelian gauge symmetries appear to be the most advantageous candidates for a family sym-
metry. We present a predictiveSO(10) SUSY GUT model withD33U(1) family symmetry (D3 is the
dihedral group of order 6!. The hierarchy in fermion masses is generated by the family symmetry breaking
D33U(1)→ZN→nothing. This model fits the low energy data in the charged fermion sector quite well and
naturally provides large anglenm-nt mixing describing atmospheric neutrino oscillation data and small angle
ne-ns mixing consistent with the small mixing angle MSW solution to the solar neutrino data. In addition, the
non-Abelian family symmetryD3 is sufficient to suppress large flavor violations.

PACS number~s!: 14.60.Pq, 11.30.Hv, 12.15.Ff
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I. INTRODUCTION

The origin of the fermion mass hierarchy is one of t
most challenging problems in elementary particle physics
the standard model fermion masses and mixing angles
free parameters. Even though these 13 parameters@9 charged
fermion masses; 3 angles and 1 phase in the Cabib
Koboyashi-Maskawa~CKM! matrix# are well known experi-
mentally, the standard model does not offer any explanat
Supersymmetric~SUSY! grand unified theories~GUTs!, in
addition to gauge coupling unification, also provide relatio
between quark and lepton masses within generations. H
ever, the understanding of the hierarchy between genera
is still missing. A possible solution to the fermion mass
erarchy problem is to introduce a new symmetry—fam
symmetry—acting horizontally between generations. The
erarchy is then generated by sequential spontaneous bre
of this symmetry. Furthermore, acting differently on diffe
ent generations, family symmetries can provide a solution
the problem of large flavor changing neutral curre
~FCNCs! in SUSY @1#.

A variety of models@2–9# with family symmetries were
proposed. Among these, models withU(2) ~or its sub-
groups! family symmetry@5–9# appear to be very promisin
candidates for the theory of flavor. The reason for this
twofold: the top quark is the only fermion with mass of ord
the weak scale, thus distinguishing the third generation fr
the others; and by placing the first and second generat
into a two dimensional irreducible representation of the fa
ily group the degeneracy of squarks in these two generat
can be achieved, which is necessary to suppress FCN
Thus non-Abelian family symmetries, especiallyU(2) or its
subgroups, are naturally suggested.

We would like to focus here on a particular model pr
sented in@7#. It is anSO(10) SUSY GUT with family sym-
metry U(2)3U(1).1 This model is ‘‘predictive’’ by which

1The model@7# is a modification of theSO(10)3U(2) model
suggested in@6#. The modification only affects the results in th
neutrino sector.
0556-2821/2000/62~1!/015007~9!/$15.00 62 0150
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we mean that it is ‘‘natural’’—the Lagrangian contains a
terms consistent with the symmetries and particle conten
the theory; and the number of arbitrary parameters is
than the number of observables. This model fits the low
ergy data in the charged fermion sector quite well and na
rally provides large anglenm-nt mixing describing atmo-
spheric neutrino oscillation data and small anglene-ns

mixing consistent with the small mixing angle Mikheye
Smirnov-Wolfenstein~MSW! solution to solar neutrino data

There are however complications associated with aU(2)
family symmetry in supersymmetric theories. It is believ
that global symmetries do not arise in string theory and a
these are thought to be violated by quantum gravity effe
@10#. On the other hand, with continuous gauge symmet
there are associatedD-term contributions to scalar masse
which can lead to unacceptably large FCNCs@11#. As a re-
sult, we should consider discrete family gauge symmetr
Discrete gauge symmetries are not violated by quan
gravity effects@12# and can arise in spontaneous breaking
continuous gauge symmetries or directly in compactifi
tions of string theory.

In this paper we present anSO(10) SUSY GUT with
D33U(1) family gauge symmetry which does not suff
from the problems mentioned in the previous paragraph. T
model provides exactly the same operators genera
Yukawa matrices as model@7#. Thus it fits the low energy
data in the charged lepton sector equally well and provi
the same neutrino solution. In addition, the field content
this model is simpler than@7# and can naturally provide an
explanation for sequential family symmetry breaking by t
vacuum expectation values~VEVs! of ‘‘flavon’’ fields.

The rest of the paper is organized as follows. In Sec. II
briefly review possible discrete family symmetries, provide
motivation forD33U(1) as a family symmetry and discus
anomalies associated with gauging of this symmetry. In S
III we construct theSO(10)3D33U(1) invariant super-
space potential which, after family symmetry breaking, ge
erates the quark and lepton Yukawa matrices. Our con
sions are in Sec. IV. For convenience, in Appendix A w
summarize properties of the groupD3 and its representa
tions, and calculate invariants used in Sec. III. In Appen
©2000 The American Physical Society07-1
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RADOVAN DERMÍŠEK AND STUART RABY PHYSICAL REVIEW D 62 015007
B we present aD38 version of the model and finally in Ap
pendix C we briefly review the results of@7# for charged
fermion masses and mixing angles as well as for neut
oscillations.

II. DISCRETE FAMILY SYMMETRY

As mentioned in the Introduction, we are interested
discrete family symmetries which possess two-dimensio
irreducible representations. In order to be able to generate
same operators for fermion masses as in the case ofU(2),
family symmetry@7# subgroups ofSO(3) or SO(2) are sug-
gested.

Discrete subgroups ofSO(3) are classified@13# in terms
of two infinite series:ZN ~cyclic Abelian groups! and DN
~non-Abelian dihedral groups!; and three exceptional group
T ~tetrahedral!, O ~octahedral! andI ~icosahedral!. Similarly,
sinceSO(3)>SU(2)/Z2 , discrete subgroups ofSU(2) are
classified in terms of double covers of the correspond
subgroups ofSO(3). Wecall theseZN8 , DN8 , T8, O8 andI 8.
SinceZN are Abelian they possess only singlet irreducib
representations. Irreducible representations of dihe
groupsDN and DN8 are all one and two dimensional. Thre
dimensional irreducible representations start to appear in
exceptional groups.

In paper@7# the three generations of fermions transfo
as a doublet and singlet underSU(2). Togenerate the effec
tive mass operators for quarks and leptons in the light
generations, three ‘‘flavon’’ fieldsfa, Sab andAab @doublet,
symmetric triplet and anti-symmetric singlet underSU(2)#
were introduced. The family symmetry is sequentially b
ken by minimal symmetry breaking~VEVs!:

^fa&5S 0
f D , ^Sab&5S 0 0

0 SD , ^Aab&5S 0 A

2A 0 D .

~1!

Thus, it looks like we need to consider a group which h
at least one three dimensional irreducible representatio
have a discrete analog ofSab. In that case the tetrahedra
group T8 would be the smallest group we could conside2

However, the coupling of a triplet to two doublets, which
necessary in@7#, can be easily mimicked by a coupling o
three doublets in most of the dihedral groups.@In the case of
D3 see Eq.~A9! in Appendix A and in the case ofD38 Eq.
~B5! in Appendix B.# Therefore a flavon field in the three
dimensional representation is not necessary when cons
ing a dihedral family symmetry. Furthermore, it has not be
possible to find a mechanism for generating non-zero VE
for S22, while ^S11&5^S12&50 @14#. On the other hand, if the
most general family symmetry breaking VEVS^S11&5k1S,

2In the process of writing this paper we became aware of the w
@9# which suggested the groupT8 as a good starting point for mod
els with ‘‘U(2)-like’’ family symmetry.
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^S12&5k2S are considered3 the predictivity of the theory is
lost, since there are now as many parameters in the cha
fermion sector as there are observables@15#.

Therefore, dihedral groups are the most promising can
dates for an ‘‘SU(2)-like’’ family symmetry. They were pre-
viously used as family symmetries in Refs.@8#. If we now
demand the minimal family symmetry group containing re
resentations which can be used most economically, we
lead to the groupD3 .

The groupD3 is the smallest non-Abelian group~it is
isomorphic toS3—the symmetric permutation group!. Some
basic properties of this group and its representations are s
marized in Appendix A.D3 possesses three nonequivale
irreducible representations1A, 1B and2A (1A is a trivial rep-
resentation; also denoted by 1!. Thus this symmetry provides
a natural interpretation of the three generations of fermi
as a singlet and doublet1B12A underD3 . Differences be-
tween generations can then be understood as a consequ
of assigning them to different representations ofD3 .

Since we want the family symmetry to be gauged, it m
be anomaly free. To show that there are no combinedD3
and/or SO(10) anomalies we use the fact that both t
SO(3) and SO(10) groups are anomaly free. Represen
tions ofSO(3) decompose into irreducible representations
D3 in the following way:

1→1A,

3→1B12A, ~2!

5→1A12A12A,

]

Therefore, if the field content of the theory is such that fie
with the sameSO(10) quantum numbers can be arrang
into complete multiplets ofSO(3) then there are noD3 ,
SO(10) or mixed anomalies.

BecauseD3 has only two nonequivalent nontrivial irre
ducible representations we also need~in order to maintain
‘‘naturalness’’! an additionalU(1) symmetry to distinguish
different fields with the sameD3 andSO(10) charges. This
U(1) symmetry is in general anomalous. An anomalo
U(1) gauge symmetry was previously used in models@3#.
We shall assume that theU(1) anomalies can be cancelle
by the Green-Schwarz mechanism@16#.

Before we continue, it is important to discuss the con
quences of the symmetry groupD3 with regards to flavor
violation @1#. It has been shown that an SU~2! family sym-
metry can effectively suppress flavor violating proces
among the first two families@5,6#. This follows from the fact
that to zeroth order in family symmetry breaking, the s
SUSY breaking mass term for squarks and sleptons in
first two families in an SU~2! invariant and thus proportiona

rk 3These new parameters have minor consequences in the ch
fermion sector (x2 analysis requires them to be small!, but provide
new neutrino solutions. For details see@15#.
7-2
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FERMION MASSES AND NEUTRINO OSCILLATIONS IN . . . PHYSICAL REVIEW D62 015007
to the identity matrix. Then family symmetry breaking co
rections to squark and slepton masses are at most of orde
family mixing for quarks and leptons. In Appendix A, w
show that the same argument also applies forD3 . ThusD3
will also suppress flavor violations.

III. AN SO„10…ÃD3ÃU„1… MODEL

In this section we present anSO(10) SUSY GUT with
D33U(1) family gauge symmetry. InSO(10) all fermions
in one generation are contained in the 16 dimensional i
ducible representation and, in the simplest version, one
of Higgs doublets is contained in the 10 dimensional irred
ible representation. The minimal Yukawa coupling of t
third generation of fermions to the Higgs fields is given
l16310163 from which we obtain the symmetry relationl t
5lb5lt5lnt

5l at the GUT scale. While this Yukaw
unification is known to work quite well for the third gener
tion it fails for the two light generations. Thus a family sym
metry is necessary to forbid the tree level Yukawa coupl
of the first and second generations to the Higgs fields. Bre
ing of this symmetry will provide the necessary hierarchy
fermion masses.

A. The charged fermion sector

As discussed in Sec. II the first two generations of ferm
ons are contained in 16a , a51,2 which is a doublet unde
D3 with charge 1 underU(1) @or 16a5(2A,1)#. The third
generation 163 transforms as (1B,3) and a 10 of Higgs fields
transforms as~1,26!. Using the results of Appendix A we
see that the couplingl16310163 is invariant underD3
3U(1) while l16a1016a andl16a10163 are not.

To generate the Yukawa couplings for the first two ge
erations we introduce three ‘‘flavon’’ superfields:

fa5~2A,22!, f̃a5~2A,24!, A5~1B,4!, ~3!

which areSO(10) singlets, and a pair of Froggatt-Nielse
states@17# @16 and 16 underSO(10)#:

x̄a5~2A,25!, xa5~2A,5!. ~4!

The superspace potential for the charged fermion secto
this model is given by

W.163 10 163116a 10xa

1x̄aS M xa1
1

M0
45f̃a1631

1

M0
45fa16a1A 16aD ,

~5!

where 455(1,6) is anSO(10) adjoint field4 which is as-
sumed to obtain a VEV in theB-L direction; and M

4Note that we usually call fields by their SO~10! quantum num-
bers. The adjoint representation ofSO(10) is 45 dimensional.
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5(1,0) is a linear combination of anSO(10) singlet and
adjoint. Its VEV M0(11aX1bY) gives mass to Froggatt
Nielsen states. HereX andY are elements of the Lie algebr
of SO(10) with X in the direction of theU(1) which com-
mutes withSU(5) andY the standard weak hypercharge; a
a, b are arbitrary constants which are fit to the data. Furth
more, each term inW has an arbitrary coupling constan
which is omitted for notational simplicity.5

The largest scale of the theory is assumed to be the m
of the Froggatt-Nielsen states. In the effective theory bel
M0 , these states are integrated out giving the effective m
operators in Fig. 1.

When ‘‘flavon’’ doublets obtain VEVŝ f̃a&5f̃da1 and
^fa&5fda2 the family symmetryD33U(1) is broken to a
diagonalZ6 symmetry and the Yukawa couplings 163 ...162
and 162 ...162 are generated. Finally, the VEV of theA field
breaks the family symmetry completely and generates
Yukawa coupling 161 ...162 . These results are summarize
in the form of the Yukawa matrices for up quarks, dow

5To forbid all higher dimensional operators we also assum
U(1)R symmetry under which 45 has zero charge and all ot
fields have charge 1. Neither theU(1) nor U(1)R symmetry is in
any sense unique. We can equally well assume just one symm
without imposingR-symmetry or products of severalU(1)s ortheir
discrete subgroupsZN . By specifyingU(1) charges we show tha
the model is ‘‘natural,’’ i.e. there exist aU(1) which allows the
required operators in the superpotential and at the same time fo
all possibly dangerous operators to any order. If we do not imp
the U(1)R symmetry the model is however still natural. Th

charges under any singleŨ(1) which constrains the model ar
however relatively high; a reflection of the fact that this symme
has to forbid all dangerous higher dimensional operators. An

ample of such aŨ(1) is ~including fields which occur later in Secs
III B and III C!: 16a524, 163523, 1056, x̄a5216, xa522,

f̄a57, fa58, A520, 45512, M518, ca5215, S5215, Sf

515, Na524, N3523, and1656.

FIG. 1. Diagrams generating the Yukawa matrices.
7-3
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RADOVAN DERMÍŠEK AND STUART RABY PHYSICAL REVIEW D 62 015007
quarks, charged leptons and the Dirac neutrino Yukawa
trix below:6

Yu5S 0 e8r 0

2e8r er r eTū

0 r eTQ 1
D l

Yd5S 0 e8 0

2e8 e rseTd̄

0 r eTQ 1
D j

~6!

Ye5S 0 2e8 0

e8 3e r eTē

0 rseTL 1
D j

Yn5S 0 2ve8 0

ve8 3ve
1

2
vr eTn̄

0 rseTL 1

D l

with

v5
2s

2s21
~7!

and

Tf5~baryon no.2lepton no.!

for f 5$Q,ū,d̄,Lē,n̄%. ~8!

In our notation, fermion doublets are on the left and s
glets are on the right. Note, we have assumed that the H
doublets of the minimal supersymmetric standard mo
~MSSM! are contained in the 10 such thatl 10.l Hu
1j Hd . We could then consider two important limits—ca
~1! l5j ~no Higgs mixing! with large tanb, and case~2!
l@j or small tanb. In the first case the Yukawa matrices a
given by specifying six real parametersl,e,e8,r,s,r and
three phasesFe ,Fs ,Fr , which cannot be rotated away
These nine parameters are then fit to the thirteen observ
charged fermion masses and mixing angles. In the sec
case we would have one more arbitrary parameter.

We have obtained the Yukawa matrices parametrized
the same way as in paper@7#. Therefore, all the results from
@7# apply also in our case. For completeness, the results
charged fermion masses and mixing angles are summa
in Appendix C.

6The ratios of VEVs which enter the Yukawa matrices are giv

by dimensionless parameters:r e;f̄^45&/M0
2, e;f^45&/M0

2, e8
;A/M0 . Parameterss andr are functions ofa andb which were
defined after Eq.~5!. For more details see@6#.
01500
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B. The superpotential for ‘‘flavon’’ doublets

To generate the Yukawa matrices~6! with zeros in the
1-1, 1-3 and 3-1 elements it is necessary to have^f̃2&
5^f1&50. This may look like a very special assumptio
However, we argue that with aD3 symmetry such an ar
rangement of VEVs for ‘‘flavon’’ doublets is naturally ob
tained.

Consider the following superpotential for ‘‘flavon’’ dou
blets:

W.cafaf̃a1S~faf̃a2Mf
2 !, ~9!

whereca5(2A,6) andS5(1,6) are singlets underSO(10).
Mf

2 is a scale at which the ‘‘flavon’’ doublets obtain VEVs
It is effectively ~1,26!. The origin ofMf

2 is not important. It
can result from one or two fields with effectiveU(1) charge
26 obtaining a VEV. For example, ifMf

2 5lf^Sf&, where
lf is a dimensionful constant, it can be checked thatSf
5(1,26)7 does not couple anywhere else; neither in t
charged lepton sector nor the neutrino sector~see next
section!.8

The superpotential~9! has two isolated supersymmetr
vacua related byfa↔f̃a :

ca5S50, fa5S 0
f D , f̃a5S f̃

0 D , ff̃5Mf
2 . ~10!

Sinceca andShave zero VEVs they do not contribute in th
charged lepton and the neutrino sectors.

Thus from the simple superpotential~9! we have obtained
the solution for VEVs offa and f̃a needed to generate th
Yukawa matrices~6!.

C. The neutrino sector

The parameters in the Dirac Yukawa matrix for neutrin
~6! mixing n- n̄ are now fixed. Of course, neutrino masses
much too large and we need to invoke the GRSY@19# see-
saw mechanism.

We can introduce SO~10! singlet fieldsN and obtain ef-
fective mass termsn̄-N and N-N. Adding Na5(2A,1) and
N35(1B,3) @with the sameU(1) charges as 16a and 163#
together with165(1,26) @the sameU(1) charge as 10#9 we
directly obtain the termsn̄-N. The corresponding diagram
can be obtained from Fig. 1 by substituting 10→16,16a
→Na,163→N3 on the right hand side of the diagrams.N-N
mass terms are generated from operators describing inte

n

7Sf has charge 2 underU(1)R symmetry.
8WhenSf obtains a VEV, theU(1) symmetry is broken down to

Z6 . As we saw in the previous section the VEVs offa and f̄a

leave an unbrokenZ6 symmetry. Therefore, to be precise, with th
mechanism for generating appropriate VEVs of ‘‘flavon’’ double
the flavor symmetry breaking scenario from the previous sectio
slightly changed toD33U(1)→D33Z6→Z6→nothing.

916 is assumed to get a VEV in the ‘‘right-handed’’ neutrin
direction. This VEV is also needed to break the rank ofSO(10).
7-4
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tions of Na andN3 with flavon fields. Thus these new field
contribute to the superspace potential below:

W.16~Naxa1N3163!1NaNafa1NaN3f̃a . ~11!

Finally in order to allow for the possibility of a light ster
ile neutrino we introduce aD3 nontrivial singletN̄3 @a singlet
underSO(10)# which enters the superspace potential as
lows:

W.m3N3N̄3 . ~12!

The dimensionful parameterm3 is assumed to be of order th
weak scale. The notation is suggestive of the similarity
tween this term and them term in the Higgs sector. In both
cases, we are adding supersymmetric mass terms and in
cases, we need some mechanism to keep these dimens
parameters small compared to the Planck scale. This ma
accomplished by symmetries, see for example Ref.@20#.

We define the vectorm̃5(0,0,m3)T which can be gener
alized to a matrix in the case of more than one sterile n
trino.

The case with three neutrinos (m3[0) cannot simulta-
neously fit both solar and atmospheric neutrino data, for
tails see@7#. In this paper we consider the case of four ne
trinos ~with one sterile neutrino!.

The generalized neutrino mass matrix is then given by10

~n N̄3 n̄ N!

S 0 0 m 0

0 0 0 m̃T

mT 0 0 V

0 m̃ VT MN

D ~13!

where

m5Yn^Hu
0&5Yn

v

&
sinb ~14!

and

V5S 0 e8V16 0

2e8V16 3eV16 0

0 r e~12s!Tn̄V16 V168
D ,

MN5S 0 0 0

0 f f̃

0 f̃ 0
D . ~15!

10This is similar to the double seesaw mechanism suggeste
Mohapatra and Valle@21#.
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V16, V168 are proportional to the VEV of16 ~with different

implicit Yukawa couplings! andf,f̃ are up to couplings the
VEVs of f2 , f̃1 , respectively.

Since bothV and MN are of order the GUT scale, th
statesn̄, N may be integrated out of the effective low ener
theory. In this case, the effective neutrino mass matrix
given~at MG) by11 @the matrix is written in the (n,N̄3) flavor
basis where charged lepton masses are diagonal#

mn
eff5Ũe

†S m~VT!21MNV21mT 2m~VT!21m̃

2m̃TV21mT 0 D Ũe*

~16!

with

Ũe5S Ue 0

0 1D , e05eUe
† , n05nUe

† . ~17!

Ue is the 333 unitary matrix for left-handed leptons neede
to diagonalizeYe @Eq. ~6!# and e0 , n0(e,n) represent the
three families of left-handed leptons in the weak-~mass-!
eigenstate basis for charged leptons.

The neutrino mass matrix is diagonalized by a unita
matrix U5Ua i ,

mn
diag5U†mn

effU* ~18!

where a5$ne ,nm ,nt ,ns% is the flavor index and i
5$1, . . . ,4% is the neutrino mass eigenstate index.Ua i is
observable in neutrino oscillation experiments. In particu
the probability for the flavor statena with energyE to oscil-
late intonb after traveling a distanceL is given by

P~na→nb!5dab24(
k, j

UakUbk* Ua j* Ub j sin2D jk ,

~19!

whereD jk5dmjk
2 L/4E anddmjk

2 5mj
22mk

2.
The results for this four neutrino model~taken from Ref.

@7#! are given in Appendix C.

D. Anomalies

As mentioned in Sec. II, we restrict discussion of anom
lies to those involvingD3 andSO(10) only. The only fields
in the model with nontrivial charge under both groups a
doublets 16a , xa , x̄a and1B singlet 163 . The simplest way
to avoid anomalies is to arrange these fields into2A11B
multiplets ofD3 with the sameSO(10) quantum number. To
make this possible we have to introduce another pair
Froggatt-Nielsen fieldx and x̄ which are1B singlets under

by

11In fact, at the GUT scaleMG we define an effective dimensio
5 supersymmetric neutrino mass operator where the Higgs VE
replaced by the Higgs doubletHu coupled to the entire lepton dou
blet. This effective operator is then renormalized using one-lo
renormalization group equations toMZ . It is only then thatHu is
replaced by its VEV.
7-5
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RADOVAN DERMÍŠEK AND STUART RABY PHYSICAL REVIEW D 62 015007
D3 . It is easy to check that these new fields do not contrib
to the discussion in this section.

There are many ways to arrange theSO(10) singlets with
non-trivial D3 quantum numbers into complete multiplets
SO(3). In particular, it is always possible to add new do
blets or 1B singlets underD3 which do not contribute to
fermion masses and mixing angles.

In Appendix B we present aD38 version of the same
model. The main advantage ofD38 is that the2 of SU(2)
decomposes into the2B representation ofD38 . Thus, if all
doublets with nontrivialSO(10) quantum numbers transform
as2B underD38 the anomaly cancellation conditions are a
tomatically satisfied.

IV. CONCLUSIONS

In this paper we have presented anSO(10) SUSY GUT
with the minimal discrete nonabelian gauge family symm
try, D33U(1).12 With minimal family symmetry breaking
VEVs, which may be obtained naturally in this theory, w
obtain a ‘‘predictive’’ model for quark and lepton mass
~including neutrinos! which will be tested in future experi
ments. In the charged fermion sector the model reprodu
the good results obtained previously in anSO(10)3U(2)
3U(1) model discussed in Ref.@7#. The D3 symmetry is
sufficient to suppress large flavor violating interactions in
charged fermion sector. In the neutrino sector we also re
duce the results of Ref.@7#, in particular we are able to fi
atmospheric neutrino data with maximalnm→nt oscillations
and solar neutrino data with SMA MSWne→ns oscillations.
The model is however unable to fit LSND data.
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FIG. 2. Symmetry axes of an equilateral triangle.
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APPENDIX A: THE GROUP D3 AND ITS
REPRESENTATIONS

All possible rotations in three dimensions which leave
equilateral triangle invariant form the groupD3 ~see Fig. 2!.
This group contains six elements in three classes:13

E;C3 ,C3
2;Ca ,Cb ,Cc , ~A1!

whereE is the identity element,C3 is the rotation through
2p/3 about the axis perpendicular to the paper and go
through the center of the triangle,C3

2 is C3 applied twice,Ca
is the rotation throughp about the axisa, and similarlyCb
and Cc . Note thatCb is the same asCaC3 and Cc is the
same asCaC3

2.
The number of classes in a finite group is equal to

number of nonequivalent irreducible representation of
group. One of the most interesting results of the theory
finite groups is the relation between the number of eleme
g of a group and dimensionsnn of its nonequivalent irreduc-
ible representationsn,

(
n

nn
25g.

Thus we find that the groupD3 has two nonequivalent on
dimensional representation1A , 1B and one two dimensiona
representation2A . Each representation is described by t
set of characters14 x1 ,...,xn , where n is the number of
classes in the group. The character table for the groupD3 is
given in Table I.

From the character table it is possible to find the deco
position of the product of any two representations:

1A ^ 1A51A, 1A ^ 1B51B, 1B^ 1B51A, ~A2!

1A ^ 2A52A, 1B^ 2A52A, ~A3!

2A ^ 2A51A % 1B% 2A. ~A4!

To construct an explicit model obeyingD3 symmetry we
need to specify the representation and determine invar
tensors. One dimensional representations coincide with
characters and the two dimensional representation can
chosen to be

13An elementb of the groupG is said to be conjugate to th
elementa if there is an elementu in G such thatuau215b. A
group can be separated into classes of elements which are conj
to one another.

14The character of an elementa of the groupG in a given repre-
sentationD is the trace( iDii (a). Therefore elements in the sam
class~conjugate elements! have the same character.

TABLE I. The character table for the groupD3 .

D3 E C3 Ca

1A 1 1 1
1B 1 1 21
2A 2 21 0
7-6
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D~E!5S 1 0

0 1D , D~C3!5S e 0

0 e21D , D~Ca!5S 0 1

1 0D ,

~A5!

wheree5e2p i /3.
Now it is straightforward to find the two singlets and th

doublet in the decomposition of a product of two doubl
~A4!. Writing c5$x,y% andc85$x8,y8%, we find

c ^ c8u1A
5xy81yx8, ~A6!

c ^ c8u1B
5xy82yx8, ~A7!

c ^ c8u25S yy8
xx8 D . ~A8!

The decomposition~A4! also reveals that the product o
three doublets contains an invariant. Takingc95$x9,y9%,
this invariant is

c ^ c8^ c9u1A
5xx8x91yy8y9. ~A9!

Finally, we want to show that given a doubletca in D3 ,
there is a unique invariant norm given byca* ca[c1* c1

1c2* c2 . Clearly, this norm isD3 invariant since under aD3

transformationca85Cabcb with C,D3 and C†C51. That
this is unique follows from the fact that in the product of tw
doublets there is a unique invariant given in Eq.~A6!. In
addition, defining a new doublet byxa5gabcb* satisfying
xa85Cabxb5(cb* )8gba

T 5cc* Ccb
† gba

T requires for consistency
g5CgCT. The unique solution to this consistency conditi
is g5(1

0
0
1 ). Then we havex ^ cu1A

[ca* ca .

APPENDIX B: D38 VERSION OF THE MODEL

The double groupD38 contains 12 elements in 6 classes.
addition to1A, 1B, and2A representations which are alread
presented inD3 it also has double-valued representations1C,
1C̄ and2B. The character table of a the double-valued rep

TABLE II. The character table for double-valued represen
tions of the groupD38 .

D3 E R C3 C3R Ca CaR

1C 1 21 21 1 i 2 i

1C̄ 1 21 21 1 2 i i

2B 2 22 1 21 0 0

TABLE III. Multiplication rules for the groupD38 .

D38 1A 1B 1C 1C̄ 2A 2B

1A 1A 1B 1C 1C̄ 2A 2B

1B 1A 1C̄ 1C 2A 2B

1C 1B 1A 2B 2A

1C̄ 1B 2B 2A
01500
s
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sentations is given in Table II.
Multiplication rules are given in Table III and Eqs.~A4!,

~B1! and ~B2!:

2A ^ 2B51C% 1C̄% 2B, ~B1!

2B^ 2B51A % 1B% 2A, ~B2!

The double-valued two dimensional representation can
chosen to be

D~E!5S 1 0

0 1D , D~C3!5S e1/2 0

0 e21/2D ,

- TABLE IV. Charged fermion masses and mixing angles. Init
parameters: (1/aG ,MG ,e3)5(24.52,3.0531016 GeV,24.08%);
(l,r,s,e,r,e8)5(0.79,12.4,0.84,0.011,0.043,0.0031); (Fs,Fe,Fr)
5(0.73,21.21,3.72) rad; @m0,M1/2,A0,m(MZ)#5(1000,300,
21437,110) GeV; @(mHd

/m0)2,(mHu
/m0)2,tanb#5(2.22,1.65,

53.7).

Observable
Data ~s!
~masses!

Theory
~in GeV!

MZ 91.187~0.091! 91.17
MW 80.388~0.080! 80.40
Gm3105 1.1664~0.0012! 1.166
aEM

21 137.04~0.14! 137.0
as(MZ) 0.1190~0.003! 0.1174
rnew3103 21.20 ~1.3! 10.320
Mt 173.8~5.0! 175.0
mb(Mb) 4.260~0.11! 4.328
Mb2Mc 3.400~0.2! 3.421
ms 0.180~0.050! 0.148
md /ms 0.050~0.015! 0.0589
Q22 0.00203~0.00020! 0.00201
M t 1.777~0.0018! 1.776
Mm 0.10566~0.00011! .1057
Me3103 0.5110~0.00051! 0.5110
Vus 0.2205~0.0026! 0.2205
Vcb 0.03920~0.0030! 0.0403
Vub /Vcb 0.0800~0.02! 0.0691

B̂K
0.860~0.08! 0.8703

B(b→sg)3104 3.000~0.47! 2.995
TOTAL x2 3.39

TABLE V. Fit to atmospheric and solar neutrino oscillation
Initial parameters: ~4 neutrinos with large tanb); m857.11
31022 eV; b520.521; c50.278; Fb53.40 rad.

Observable Computed value

dmatm
2 3.231023 eV2

sin22uatm 1.08
dmsol

2 4.231026 eV2

sin22usol 3.031023
7-7
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D~Ca!5S 0 1

21 0D , ~B3!

andD(R)52D(E). As before,e5e2p i /3.
Now it is straightforward to find new invariants. Takin

the 2A doublet c5$x,y% and 2B doublets w5$a,b%, w8
5$a8,b8% we find

w ^ w8u1A
5ab82ba8, ~B4!

c ^ w ^ w8u1A
5xbb81yaa8. ~B5!

With these results it is straightforward to check that t
fermion masses and mixing angles we obtained in Sec
can be also obtained if we assume aD383U(1) family sym-
metry. In this case all doublets charged nontrivially und
SO(10) are in the2B of D38 , while singlets transform trivi-
ally under D38 . ‘‘Flavon’’ fields are in representations:fa

52A, f̃a52B and A51A. ‘‘Flavon’’ doublets are expected
to obtain VEVs^fa&5fda1 and ^f̃a&5f̃da1 .

In the neutrino sector the doublets transform in the2B and
the singlets transform trivially underD38 . Finally, the fields
entering the superpotential for the ‘‘flavon’’ doublets tran
form in the following way:ca52B, S51C, andSf51C̄.

The advantage ofD38 ~andDN8 s in general! is that the2B

representation ofD38 appears alone in the decomposition o
2 of SU(2). Representations ofSU(2) decompose into irre
ducible representations ofD38 in the following way:

2→2B,

3→1B12A ~B6!

4→1C11C̄12B, ~B7!

]

Because all doublets with nontrivialSO(10) quantum num-
bers transform as2B underD38 and all singlets with nontrivial
SO(10) quantum numbers are trivial singlets underD38 the
anomaly cancellation conditions are automatically satisfi
For theSO(10) singlet with nontrivialD38 quantum number,
(fa), at the least we must add anSO(10) singlet transform-
ing as a1B.

APPENDIX C: RESULTS FOR CHARGED FERMION
MASSES, MIXING ANGLES AND NEUTRINO

OSCILLATIONS

In paper@7# a globalx2 analysis has been performed i
corporating two~one! loop renormalization group~RG! run-
ning of dimensionless~dimensionful! parameters fromMG to
01500
II

r

-

d.

MZ in the MSSM, one loop radiative threshold corrections
MZ , and 3 loop QCD~1 loop QED! RG running belowMZ .
Electroweak symmetry breaking is obtained self-consiste
from the effective potential at one loop, with all one loo
threshold corrections included. This analysis is perform
using the code of Blaz˘ek et al. @18#.

In Table IV we give the 20 observables which enter t
x2 function, their experimental values and the uncertaintys
~in parentheses!. These are the results for one set of s
SUSY breaking parametersm0 , M1/2 with all other param-
eters varied to obtain the best fit solution. In most casess is
determined by the 1 standard deviation experimental un
tainty, however in some cases the theoretical uncerta
~;0.1%! inherent in our renormalization group running an
one loop threshold corrections dominates. For large tab
there are 6 real Yukawa parameters and 3 complex ph
Fr , Fe and Fs . With 13 fermion mass observable
~charged fermion masses and mixing angles@B̂K replacing
eK as a ‘‘measure ofCP violation’’ #! we have 4 predictions
For low tanb, lÞj, we have one less prediction. Fro
Table IV it is clear that this theory fits the low energy da
quite well.

Finally, the squark, slepton, Higgs and gaugino spectr
of the theory is consistent with all available data. The light
chargino and neutralino are Higgsino-like with the mas
close to their respective experimental limits. As an exam
of the additional predictions of this theory consider theCP
violating mixing angles which may soon be observed aB
factories. For the selected fit it was found

~sin 2a,sin 2b,sing!5~0.74,0.54,0.99! ~C1!

or equivalently the Wolfenstein parameters

~r,h!5~20.04,0.31!. ~C2!

The results obtained in Ref.@7# for the neutrino sector are
presented in Tables V and VI. The model has maximalnm
→nt mixing to describe atmospheric neutrino data and sm
mixing angle~SMA! ne→ns oscillations to fit solar neutrino
data with SMA matter enhanced MSW oscillations. T
model cannot however fit the Liquid Scintillation Neutrin
Detector~LSND! ne→nm data.

TABLE VI. Neutrino masses and mixings. Mass eigenvalu
@eV#: 0.0, 0.002, 0.04, 0.07. Magnitude of neutrino mixing mat
Ua i . i 51, . . . ,4 labels mass eigenstates.a5$e,m,t,s% labels fla-
vor eigenstates.

0.998 0.0204 0.0392 0.0529

0.0689 0.291 0.567 0.767

0.31731023 0.145 0.771 0.620

0.28431023 0.946 0.287 0.154
s.
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