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Chiral symmetry restoration and axial vector renormalization for Wilson fermions

T. Reisz
Service de Physique The´orique de Saclay, CE-Saclay, F-91191 Gif-sur Yvette Cedex, France

and Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany

H. J. Rothe
Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany

~Received 28 February 2000; published 6 June 2000!

Lattice gauge theories with Wilson fermions break chiral symmetry. In theU(1) axial vector current this
manifests itself in an anomaly. On the other hand it is generally expected that the axial vector flavor mixing
current is nonanomalous. We give a short, but strict proof of this to all orders of perturbation theory, and show
that chiral symmetry restoration implies a unique multiplicative renormalization constant for the current. This
constant is determined entirely from an irrelevant operator in the Ward identity. The basic ingredients going
into the proof are the lattice Ward identity, charge conjugation symmetry and the power counting theorem. We
compute the renormalization constant to one loop order. It is largely independent of the particular lattice
realization of the current.

PACS number~s!: 11.15.Ha, 11.30.Rd
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I. INTRODUCTION

Any realization of fermions on the lattice has to resp
the constraints imposed by the Nielsen-Ninomiya theor
@1#. Whereas Wilson fermions break chiral symmetry expl
itly, Ginsparg-Wilson fermions@2,3# have an exact chira
symmetry on the lattice that is generated by composite lo
lattice operators@4#. In both cases, the continuum chiral fl
vor mixing symmetry and the anomaly are to be prope
reproduced as the cutoff is removed.

In a recent paper@5# it was shown that under very gener
conditions on the lattice Dirac operator, which, in particul
are satisfied both for Wilson and for Ginsparg-Wilson ferm
ons, the axial anomaly is correctly generated in the c
tinuum limit. The main conditions are gauge invariance,
sense of doublers, and locality on the lattice in a m
general sense. The origin of the anomaly is traced back t
irrelevant, local lattice operator in the axial vector Wa
identity.

For Ginsparg-Wilson fermions, the composite operato
the chiral transformation, which ensures an exact flavor m
ing symmetry on the lattice, stays irrelevant under renorm
ization @6#. As a consequence, the axial vector current d
not require renormalization. On the other hand, for Wils
fermions it is not obvious, although widely believed, that t
chiral symmetry becomes restored in the continuum limit.
one-loop order this has been verified in the literature@7–10#.
In this paper we give a short but strict proof of this assert
to all orders of perturbation theory, based on lattice pow
counting for massless theories@11#. Although we explicitly
refer to Wilson fermions, the result is as general as that
the anomaly generation given in@5#. As we shall show, the
only role played by the irrelevant, symmetry breaking ope
tor in the flavor mixing axial vector Ward identity is to giv
rise to a unique multiplicative renormalizationZj of the axial
vector current, ensuring that chiral symmetry is restored
the continuum limit.

We compute the one-loop contribution toZj from the ir-
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relevant operator as a function of the Wilson parameter. T
result is largely independent of the particular lattice regul
ization of the current. The values ofZj agree with those
obtained for a particular choice of the current in an ear
calculation@10#.

II. GENERAL FRAMEWORK

Although our general proof will be given for QED, i
generalizes in an obvious way to non-Abelian gauge theo
with massless fermions.

A. Renormalized lattice QED

The action for renormalized QED is given by

S~A,c,c̄ !5SW~U !1Sf~U,c,c̄ !1Sg f~A!. ~1!

SW(U) is e.g. the Wilson plaquette action:

SW~U !5ZA

1

2g2 (
xPaZ4

(
mÞn50

3

@12U~x;m!

3U~x1am̂;n!U~x1an̂;m!21U~x;n!21#, ~2!

with g the renormalized gauge coupling constant a
U(x,m)5exp@iagAm(x)#PU(1). The fermion action is given
by

Sf5a4 (
xPaZ4

Zcc̄~x!~D@U#1m0!c~x!, ~3!

with c a 2-flavor Dirac spinor field and withD@U# the Wil-
son Dirac operator:
©2000 The American Physical Society04-1
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D@U#c~x!5
1

2a (
m50

3

@~gm2r !U~x;m!c~x1am̂ !

2~gm1r !U~x2am̂;m!21c~x2am̂ !

12rc~x!#. ~4!

m0 is the bare fermion mass, which for massless fields m
be tuned to its critical value ofO(g2). Sg f denotes the gaug
fixing action. For concreteness we choose the Lorentz ga

Sg f~A!5a4 (
xPaZ4

l

2 S (
m50

3
1

a
]̂m* Am~x!D 2

, ~5!

with l.0 the gauge fixing parameter. Here and in the f
lowing, ]̂m and ]̂m* denote the forward and backward lattic
difference operators, respectively:

]̂m f ~x!5 f ~x1am̂ !2 f ~x!, ]̂m* f ~x!5 f ~x!2 f ~x2am̂ !,
~6!

wherem̂ is the unit vector inm direction.
The generating functionalW of the connected correlatio

functions is given by

expW~J,h,h̄ !5E )
x

S dc~x!dc̄~x!)
m

dAm~x! D
3exp$2S~A,c,c̄ !1Sc~A,c,c̄;J,h,h̄ !%

~7!

with source termSc :

Sc~A,c,c̄;J,h,h̄ !5a4(
x

H(
m

Jm~x!Am~x!1h̄~x!c~x!

1c̄~x!h~x!J . ~8!

The vertex functionalG is obtained by a Legendre transfo
mation

W~J,h,h̄ !5G~A,c,c̄ !1a4(
x

S (
m

Jm~x!Am~x!

1h̄~x!c~x!1c̄~x!h~x! D , ~9!

where

a4Am~x!5
]W

]Jm~x!
, a4c~x!5

]W

]h̄~x!
,

~10!

a4c̄~x!52
]W

]h~x!
.

By G̃(n,m)(k,l ) we denote the momentum space vertex fu
tion of n fermion pairs andm gauge fields, with their col-
01450
st

ge

-

-

lected momenta denoted byk and l, respectively. ForQ any

composite local lattice operator, we writeG̃Q
(n,m)(q;k,l ) for

the vertex function with one insertion ofQ, with q its mo-
mentum. Momentum conservation is implied. Massless
mions require that

tr G̃(1,0)~k50!50 ~11!

to be achieved by tuningm0, where the trace is taken in
spinor space.ZA andZc are uniquely determined by appro
priate normalization conditions at non-exceptional momen
e.g. by

i

4

]

] k̃0

tr g0G̃(1,0)~k!U
k̄

51, 2
1

2

]

] k̂0

G̃11
(0,2)~k!U

k̄

5mC ,

~12!

wherek̄5(m̄Þ0,0,0,0),k̂5(2/a)sin(ka/2), k̃5(1/a)sin(ka).

B. Symmetries

Below we make explicit reference to the charge conju
tion symmetry

G~A C,cC,c̄C!5G~A,c,c̄ !, ~13!

where

A m
C~x!52Am~x!, cC~x!5Cc̄~x!T,

~14!
c̄C~x!52c~x!TC21.

The superscriptT denotes transposition andC the charge
conjugation matrix satisfying

C21gmC52gm
T , m50, . . . ,3. ~15!

Furthermore, applying a gauge transformation leads to
local Ward identity,

i (
m50

3
1

a
]̂m*

]G

]Am~x!
1Fgc̄~x!

]G

]c̄~x!
2gc~x!

]G

]c~x!G
2 ila (

m,n50

3

]̂n* ]̂n]̂m* Am~x!50. ~16!

It implies that the renormalized action is of the form as sta
above.

III. CHIRAL SYMMETRY BREAKING AND SYMMETRY
RESTORATION

Chiral symmetry is broken by the Wilson Dirac operato
Under a local, flavor mixing chiral transformation

dc~x!5 i e~x!sag5c~x!, dc̄~x!5 i e~x!c̄~x!g5sa ,
~17!

wheresa , a51,2,3, denote the Pauli matrices acting in fl
vor space, the action transforms according to
4-2
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dS5a4(
x

i e~x!S 2(
m

1

a
]̂m* j ma~x!1Da~x!12m0Pa~x! D ,

~18!

with

Pa~x!5Zcc̄~x!g5sac~x!. ~19!

The gauge invariant local operatorsj m and D are not
uniquely determined by Eq.~18!. In general,D is a local
lattice operator which is classically irrelevant, that is,

lim
a→0

Da~x!50. ~20!

It has UV degree 4 and IR degree 5. A convenient repres
tation of j ma and ofDa is given by

j ma~x!5Zc

1

2
@c̄~x!~gm1s!g5saU~x;m!c~x1am̂ !

1c̄~x1am̂ !~gm2s!g5saU~x;m!21c~x!#,

~21!

Da~x!52Zc

1

2a (
m50

3

$~r 2s!c̄~x!g5sa@U~x;m!c~x1am̂ !

1U~x2am̂;m!21c~x2am̂ !22c~x!#1~r 1s!

3@c̄~x1am̂ !U~x;m!211c̄~x2am̂ !U~x2am̂;m!

22c̄~x!#g5sac~x!%,

where r is the Wilson parameter, ands some arbitrary rea
but otherwise fixed constant. The following discussion
renormalization does not depend on a particular choice o

We add to the source part of the actionSc a term

a4(
x

(
a51

3 S (
m50

3

Gma~x! j ma~x!

1Fa~x!@Da~x!12m0Pa~x!# D , ~22!

and denote the corresponding vertex functional
G8(A,c,c̄;G,F). Obviously, G8(A,c,c̄;G50,F50)
5G(A,c,c̄). Then Eq. ~18! implies that G8 satisfies the
axial vector current Ward identity

(
m

1

a
]̂m*

]G8

]a4Gma~x!
1H ]G8

]a4c~x!
sag5c~x!

2c̄~x!sag5

]G8

]a4c̄~x!
J 5

]G8

]a4Fa~x!
1O~F,G!.

~23!

The functional identity~23! is equivalent to the infinite set o
momentum space Ward identities:
01450
n-

f
s.

y

i (
m50

3

q̂mG̃j ma

(n,m)~q;k,l !2G̃QED
(n,m)~k,l !

5G̃Da

(n,m)~q;k,l !12m0G̃Pa

(n,m)~q;k,l !. ~24!

Here we have writtenG̃QED
(n,m)(k,l ) for the pure QED part,

which is a linear combination ofG̃(n,m)(k,l ) with g5sa at-
tached to the various external fermion lines, but with
composite operator inserted. According to the renormali
tion prescription of QED, it is UV finite and universal in th
continuum limit.

QED is already renormalized, but because ofD[” 0, the
axial vector currentj m requires additional renormalization
This renormalization is multiplicative. That is, there exists
renormalization constantZj such that

G̃j maR
(n,m)~q;k,l !5Zj G̃j ma

(n,m)~q;k,l ! ~25!

is finite in the continuum limit, for alln and m. The renor-
malized current satisfies the Ward identities

i (
m50

3

q̂mG̃j maR
(n,m)~q;k,l !2G̃QED

(n,m)~k,l !5G̃DaR
(n,m)~q;k,l !,

~26!

where

G̃DaR
(n,m)~q;k,l !5G̃Da

(n,m)~q;k,l !1F2m0G̃Pa

(n,m)~q;k,l !

1 i ~Zj21! (
m50

3

q̂mG̃j ma

(n,m)~q;k,l !G ~27!

are the renormalized vertex functions with oneDa insertion.
Because of

m05O~g2! and Zj215O~g2!, ~28!

the part in brackets on the right hand side of Eq.~27! is
equivalently obtained by adding local counterterms to
lattice source actionSc , that is, in Eq.~22!, the term in
square brackets is replaced by

Da~x!12m0Pa~x!1~Zj21!
1

a (
m50

3

]̂m* j ma~x!. ~29!

We now show that for the particular choice ofZj , these
counterterms provide precisely overall Taylor subtractions
zero momentum, for all correlation functions with oneD
insertion, according to their overall ultaviolet lattice dive
gence degrees. Together with Eq.~12!, becauseD is an ir-
relevant local lattice operator, this then implies that

lim
a→0

G̃DaR
(n,m)~q;k,l !50, ~30!
4-3
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to all orders of perturbation theory, and for alln andm @11#.
The renormalized axial vector current becomes conserve
the continuum limit.

For the proof of this assertion, we recall thatD is a local

operator of IR degree 5. This implies thatG̃DR
(1,1) is continuous

at zero momentum andG̃DR
(1,0) is once continuously differen

tiable at zero momentum.@These are the only vertex func
tions with oneD insertion that require overall UV subtrac
tions, with overall ~lattice! divergence degrees 0 and
respectively.#

First, charge conjugation symmetry implies that

G̃DaR
(1,1)~0!50. ~31!

Furthermore, for the massless theory, satisfying Eq.~11!, we
obtain from Eq.~26!, with n51, m50,

G̃DaR
(1,0)~0!50, ~32!

becauseG̃j maR
(1,0) (q;k,l ) is at most logarithmically infrared di

vergent if all momenta are sent to zero. Again, using cha
conjugation symmetry, we know that, for small momenta

G̃DaR
(1,0)~q;k!5 i (

m50

3

gmqmg5sazD1o~q,k! as q,k→0,

~33!
e
r

ha

er

01450
in

e

with ~infrared! finite constantzD . Hence, order by order,Zj
is uniquely determined by the requirement that

G̃DaR
(1,0)~q;k!5o~q,k! as q,k→0. ~34!

This completes the proof.

IV. AXIAL VECTOR RENORMALIZATION CONSTANT
IN ONE-LOOP ORDER

To one-loop order the renormalization constantZj is de-

termined from the condition~34!, whereG̃DR
(1,0) is given ac-

cording to Eq.~27! by

@G̃DaR
(1,0)~q;k!#1-loop5@G̃Da

(1,0)~q;k!#1-loop12m0g5sa

1 i ~Zj21! (
m50

3

q̂mgmg5sa . ~35!

The lattice Feynman diagrams that contribute to the first te
on the right hand side are listed below. The vertices t
correspond to theD insertion are given in Appendix B:
~36!
To implement condition~34! we expand the right hand sid
of Eq. ~35! around vanishing momentum up to first orde
After a tedious but straight forward calculation one finds t

T1G̃DaR
(1,0)~q;k!5 i @2zD1~Zj21!# (

m50

3

qmgmg5sa ,

~37!

where T1 denotes the Taylor expansion to order 1 at z
momentum.zD is given by the following (r -dependent! ex-
pression:

zD52Cg2r 2E
2p

p d4l

~2p!4

hs~ l !

~ l̃ 21M̂ r
2!2

, ~38!

with C51 for U(1) andC5(N221)/(2N) for SU(N), and
.
t

o

hs~ l !5cosl sS l̃ 22 l̃ s
21

l̂ 2

2
hs~ l ! D 2 l̃ s

2 hs~ l !1
l̃ 2

2

1
1

4
r 2 l̂ 2S l̂ 2cos2

l s

2
2 l̃ s

2 D , ~39!

where

l̂ m52 sin
l m

2
, l̂ 25 (

m50

3

l̂ m
2 , l̃ m5sin l m , l̃ 25 (

m50

3

l̃ m
2 ,

~40!

M̂ r5
r

2
l̂ 2, hs~ l !52 cos2

l s

2
2 (

m50

3

cos2
l m

2
.

s is any one of the indices 0, . . . ,3. Condition ~34! now
determinesZj to be

Zj511zD . ~41!
4-4
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FIG. 1. zD(r )/(Cg2) as function of the Wil-
son parametersr. We havezD(2r )5zD(r ) and
zD(r )Þ0 wheneverrÞ0.
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zD does not depend on a particular realization of the a
vector currentj ma , Eq. ~21!; that is, it is independent of the
parameters.

Note that the~finite! renormalization constant of the axia
vector current is solely determined from diagrams involvi
the insertion of a classically irrelevant operator. The integ
~38! is evaluated numerically. The dependence ofzD on the
Wilson parameter is shown in Fig. 1. From this figure we s
that zD is a monotonically decreasing function ofr .0.
There exists no non-zero value ofr for which the axial cur-
rent is not renormalized. In particular, for the common
used valuer 51 we obtainzD520.0549Cg2.

V. CONCLUSION

In this paper we have investigated the renormalization
the flavor mixing axial vector current for massless gau
theories with Wilson fermions. The corresponding axial ve
tor Ward identity involves a symmetry breaking lattice o
eratorD which is local and classically irrelvant. Using th
lattice power counting theorem for massless field theor
we have shown thatD uniquely determines the renormaliz
tion constant of the axial vector current in such a way t
the chiral symmetry becomes restored in the continu
limit, to all orders of perturbation theory.

We have computed the renormalization constant to o
loop order. It is largely independent of a particular latti
realization of the current and non-vanishing whenever
Wilson parameterrÞ0. The values agree with those o
tained for a particular choice of the axial vector current
@10#.

Although we have considered Wilson fermions, the res
of symmetry restoration in the continuum limit is quite ge
eral. It holds for any lattice Dirac operator that satisfies
general set of conditions. These conditions are gauge inv
ance and charge conjugation symmetry, absense of doub
and locality in the more general sense as stated in@5,12#.
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APPENDIX A: SMALL MOMENTUM BEHAVIOR

The infrared properties ofD ensure that the vertex func

tions G̃DR
(1,1)(q;k,l ) and G̃DR

(1,0)(q;k) are continuous and onc
continuously differentiable at zero momentum, respective
Their regular parts are obtained from the small moment
behavior of that part of the vertex functionalG8 that is linear
in the sourceF. In momentum space it reads

E d4q

~2p!4

d4k1

~2p!4

d4k2

~2p!4 (
ma

F̃ma~q!

3$~2p!4d~q1k11k2!c̃̄~k1!

3@ i ~r rk21r lk1!mgm1h#g5sac̃~k2!

1jc̃̄~k1!gmAm~2q2k12k2!g5sac̃~k2!%

~A1!

with c numbersr r , r l , h, andj. Applying the transforma-
tion ~14! yields the same expression with

r r↔r l , h→h, j→2j. ~A2!

The symmetry~13! thus implies thatr r5r l and j50. The
vanishing ofh is implied by the chiral Ward identity. This
implies the statements~31!–~33!.

APPENDIX B: FEYNMAN RULES

We state the Feynman rules for the insertion of oneDa
operator, Eq.~21!, that are required for the computatio
of the axial vector current renormalization constantZj to
one-loop order. For simplicity the rules are given for gau
group U~1!:
4-5
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~B1!

~B2!
01450
~B3!

where

ck,m5cos
kma

2
, k̂m5

2

a
sin

kma

2
. ~B4!
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