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Chiral symmetry restoration and axial vector renormalization for Wilson fermions
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Lattice gauge theories with Wilson fermions break chiral symmetry. InUtfie) axial vector current this
manifests itself in an anomaly. On the other hand it is generally expected that the axial vector flavor mixing
current is nonanomalous. We give a short, but strict proof of this to all orders of perturbation theory, and show
that chiral symmetry restoration implies a unique multiplicative renormalization constant for the current. This
constant is determined entirely from an irrelevant operator in the Ward identity. The basic ingredients going
into the proof are the lattice Ward identity, charge conjugation symmetry and the power counting theorem. We
compute the renormalization constant to one loop order. It is largely independent of the particular lattice
realization of the current.

PACS numbd(s): 11.15.Ha, 11.30.Rd

[. INTRODUCTION relevant operator as a function of the Wilson parameter. The
result is largely independent of the particular lattice regular-
Any realization of fermions on the lattice has to respectization of the current. The values &; agree with those
the constraints imposed by the Nielsen-Ninomiya theoren®btained for a particular choice of the current in an earlier
[1]. Whereas Wilson fermions break chiral symmetry explic-calculation[10].
itly, Ginsparg-Wilson fermiong2,3] have an exact chiral
symmetry on the lattice that is generated by composite local
lattice operator$4]. In both cases, the continuum chiral fla-
vor mixing symmetry and the anomaly are to be properly  Although our general proof will be given for QED, it

reproduced as the cutoff is removed. generalizes in an obvious way to non-Abelian gauge theories
In a recent papdi5] it was shown that under very general with massless fermions.

conditions on the lattice Dirac operator, which, in particular,

are satisfied both for Wilson and for Ginsparg-Wilson fermi-

ons, the axial anomaly is correctly generated in the con- A. Renormalized lattice QED
tinuum limit. The main conditions are gauge invariance, ab-  The action for renormalized QED is given by
sense of doublers, and locality on the lattice in a more

Il. GENERAL FRAMEWORK

general sense. The origin of the anomaly is traced back to an S(A, ¢, ) = Sp(U) +Si(U, i, 1) + Syt(A). (1)
irrelevant, local lattice operator in the axial vector Ward
identity.

For Ginsparg-Wilson fermions, the composite operator inSw(U) is e.g. the Wilson plaquette action:
the chiral transformation, which ensures an exact flavor mix-

ing symmetry on the lattice, stays irrelevant under renormal- 1 3

ization[6]. As a consequence, the axial vector current does g (U)=z,— > > [1-U(x:p)

not require renormalization. On the other hand, for Wilson 202 ycazt u#r=0

fermions it is not obvious, although widely believed, that the . .

chiral symmetry becomes restored in the continuum limit. To XU(x+au;v)U(x+av;u)  Uxv) " H, (2)

one-loop order this has been verified in the literafarelQ.

In this paper we give a short but strict proof of this assertio

to all orders of perturbation theory, based on lattice pow

counting for massless theorigtl]. Although we explicitly

refer to Wilson fermions, the result is as general as that for

the anomaly generation given [B]. As we shall show, the

only role played by the irrelevant, symmetry breaking opera- . —

tor in the flavor mixing axial vector Ward identity is to give S=a' X . Zyp(x)(DLU ]+ mo) h(x), ©)

rise to a unique multiplicative renormalizatid@j of the axial xeal

vector current, ensuring that chiral symmetry is restored in

the continuum limit. with ¢ a 2-flavor Dirac spinor field and witB[ U] the Wil-
We compute the one-loop contribution Zg from the ir-  son Dirac operator:

Mwith g the renormalized gauge coupling constant and
eU(x,,u)=exp[iagAﬂ(x)]eU(1). The fermion action is given
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1 B . lected momenta denoted lyandl, respectively. FoQ any
DU =5 E: [(y,—UX; p) p(x+ap) composite local lattice operator, we writd)"™ (q;k,1) for
the vertex function with one insertion @, with g its mo-

—(yﬂ+r)U(x—a,&;,u)*lz,/;(x—a[L) mentum. Momentum conservation is implied. Massless fer-

mions require that
+2rp(x)]. 4

mg is the bare fermion mass, which for massless fields must

be tuned to its critical value dd(g?). Syt denotes the gauge to be achieved by tuningny, where the trace is taken in

fixing action. For concreteness we choose the Lorentz gaugspinor spaceZ, andZ,, are uniquely determined by appro-
priate normalization conditions at non-exceptional momenta,

trTA9k=0)=0 (11)

NS 2 e.g. by
S(A)=a* X 5( 2, ga,tA,Ax)) G
XxeaZ u=0 i 0 1 9.
— % o, T(L0) — 2 T2
with A>0 the gauge fixing parameter. Here and in the fol- 4 (9];0” ol (k) =1, 2 aROF ()| -
lowing, 3# and 5; denote the forward and backward lattice “ (12)

difference operators, respectively: o A B
~ ~ ~ ~ wherek=(u#0,0,0,0),k=(2/a)sinka/2), k= (1/a)sinka).
d,f0)=Ff(x+au)—f(x), f(x)=F(x)—f(x—auw),
(6) B. Symmetries

where & is the unit vector inu direction. Below we make explicit reference to the charge conjuga-

The generating functiona of the connected correlation tion symmetry
functions is given by

T(ACyC 90 =T (A ¢, 1), (13)
expW(J,7,7)= f I1 (d¢<x>d$<x>n dA,(X) where
X ©
— — . = AS(x)=—A,(x), ¢Cx)=Cy(x)7,
) YE0=—p(x)'C
with source terns; : The superscripfT denotes transposition and the charge
conjugation matrix satisfying
- a4 —
Se(A i3, =at [; 3L (AL)+ 7(X) (%) Cly,C=—yl, w=0,...3. (15
— Furthermore, applying a gauge transformation leads to the
(%) ”(X)]' ®  Jocal Ward identity,
. . . 3
The vertex functional” is obtained by a Legendre transfor- i 15* ar l//( ) ol —gu(x)
mation o a raA,(x) *19 I(X) 9 (911,()()
J— _ 3
_ 4
W3, 7, m) =T (A g9 +a' 2 (; 3,(X) A (%) _.Aa”; % 9,35 A, (x)=0. (16)
+ (X) P(X) + h(X) W(X)) , (9)  Itimplies that the renormalized action is of the form as stated
above.
where lll. CHIRAL SYMMETRY BREAKING AND SYMMETRY
\ B P \ B W RESTORATION
a"Au(x)= 93 ()" ath(x)= &—(X) ' Chiral symmetry is broken by the Wilson Dirac operator.
: K (10) Under a local, flavor mixing chiral transformation
— IW , -
aty(x)=— ——. OP(X)=i€(X) T ysh(X), Sp(X)=ie(X)¢h(X) Y50,
dn(X) (17)

By T™M(k,|) we denote the momentum space vertex func-wheres,, «=1,2,3, denote the Pauli matrices acting in fla-
tion of n fermion pairs andn gauge fields, with their col- vor space, the action transforms according to
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1. 3
65=a"2 10| =2 2001 ualX) +AulX) +2MePe(X) | | 2 QT - TG k)

(18 _ ~
with =T (qk, 1) +2melE ™ (qsk ). (24)

Po(X)=Zyth(X) Y50 o h(X). (19 Here we have Writterfg‘é”g(k,l) for the pure QED part,
o _ which is a linear combination of™™(k,l) with yso, at-
Thg gauge invariant local operatojs, and A, are ot tached to the various external fermion lines, but with no
unlquely determlne_d b_y Eq'ls)' In generaI,A IS a_IocaI composite operator inserted. According to the renormaliza-
lattice operator which is classically irrelevant, that is, tion prescription of QED, it is UV finite and universal in the

: continuum limit.

:TOA“(X) 20 QED is already renormalized, but becauseAct0, the
axial vector curreng , requires additional renormalization.
It has UV degree 4 and IR degree 5. A convenient represenfhis renormalization is multiplicative. That is, there exists a
tation ofj ,, and ofA,, is given by renormalization constar; such that

. 1 - O gk =2z FOm g

1 4a(0)=Zy 51900 (7, +8) 750U (X ) (X +a) PG ORI W CHD @9

+ WX+ au — U(x;u) L , is finite in the continuum limit, for alh andm. The renor-
Y(xt+ap)(v,—9) ys0,U(Xin) (X)) malized current satisfies the Ward identities

(21)
3
LS u - TRk -TEB (k=T "R (g;k,|
Aa(x):—zepgME:O{(f—S)tlf(x)ysaa[u(xw)z/f(X+am 2 r(GKD=Toep(k =T} r'(a:k]),

(26)
+U(x—aw;p) H(x—an) = 24001+ (r +s) where

X[P(x+ap)U(x;u) H p(x—ap)U(x—au;u)
—29(x)]y50. (X},

wherer is the Wilson parameter, arglsome arbitrary real o
but otherwise fixed constant. The following discussion of +i(Z;-1) 2 qMF](”'m)(q;k,l)} (27)
renormalization does not depend on a particular choice of s. n=0 -

We add to the source part of the actiSpa term

TRk D =T (k1) +{ 2ml 8™ sk, 1)

3

are the renormalized vertex functions with akg insertion.
3 Because of

3
a“g gl Eo Ga(¥)] ya(X)

me=0(g? and Z;—1=0(g?), (28

+F,(X)[A(X)+2myP,(X)] ], (220  the part in brackets on the right hand side of E2j7) is
equivalently obtained by adding local counterterms to the
b attice source actiors., that is, in Eqg.(22), the term in

and denote the corresponding vertex functional square brackets is replaced by

T'(A,4,G,F). Obviously, T'(A,,¢;G=0F=0)

=T'(A,y,¥). Then Eq.(18) implies thatI'’' satisfies the 13
axial vector current Ward identity A (X)+2mMyPy(X) +(Z;— 1) 5 2 T ua(X). (29
1. ar’ . .
P + 0o YsP(X) We now show that for the particular choice &f, these
. Ja"G (X)) | daP(x) counterterms provide precisely overall Taylor subtractions at
- g’ , zero momentum, for all correlation functions with one
—P(X) 0y ys—— ]: +0O(F,G). insertion, according to their overall ultaviolet lattice diver-
daty(x)]  da’F ,(x) gence degrees. Together with E@2), because\ is an ir-
23) relevant local lattice operator, this then implies that
The functional identity23) is equivalent to the infinite set of lim r(“ m>(q k,1)=0, (30)
momentum space Ward identities: a—0
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to all orders of perturbation theory, and for alandm[11].  with (infrared finite constaniz, . Hence, order by ordeg;
The renormalized axial vector current becomes conserved iis uniquely determined by the requirement that
the continuum limit.

For the proof of this assertion, we recall thatis a local

operator of IR degree 5. This implies tH{: is continuous T¢Aak)=0(q,k) as g,k—0. (34

at zero momentum anﬁgléo) is once continuously differen-
tiable at zero momentunjThese are the only vertex func-
tions with oneA insertion that require overall UV subtrac-
tions, with overall (lattice) divergence degrees 0 and 1,
respectively}

First, charge conjugation symmetry implies that

This completes the proof.

IV. AXIAL VECTOR RENORMALIZATION CONSTANT
IN ONE-LOOP ORDER

{30 =o0. (31 To one-loop order the renormalization constapts de-

. termined from the conditiori34), whereT:2 is given ac-
Furthermore, for the massless theory, satisfying(Ed)., we cording to Eq.(27) by

obtain from Eq.(26), with n=1, m=0,

(1,0 ) = ~ ~
FaR0)=0, 32 [Tk T1100p=[TE:K) T1100p™ 2Mo¥50s
becausd {*4(q;k,!) is at most logarithmically infrared di- 3
pa .
vergent if all momenta are sent to zero. Again, using charge T (Zj_l)zo QuYu¥50a- (39

conjugation symmetry, we know that, for small momenta,

3
T(LO) - o) — i n . The lattice Feynman diagrams that contribute to the first term
FAWR(q’k) I,Zo Yulu¥sTaZato(Ak)  as q.k=0, on the right hand side are listed below. The vertices that
(33 correspond to tha insertion are given in Appendix B:

(36)
|
To implement conditior(34) we expand the right hand side N ~ T2
of Eq. (35) around vanishing momentum up to first order. hg(l)=cosl,,(l 2-T2+ - 7o(1) T2 (1) + >
After a tedious but straight forward calculation one finds that
1 .../ l, -~
3 +=r? 2(I 2cos’-——lzg), (39
=(1.0) ) 4 2
TICAGK =i [+ (Z= D] 2 7,50,
n=0 where
(37) | 5 5
T —oaink T2_ T2 T e 2_ T2
where T, denotes the Taylor expansion to order 1 at zero u=2 Sm?’ ! ,LZO Lo Tu=sinl,, | 4=0 e
momentum.£, is given by the following (-dependentex- (40
pression: I 3 |
-~ r. .
M=l 2 ng(l)=200§5—2 00525”.
=—-C 2,2 m d4| ho’(l) 38 n=0
£a= gr —a(2m)* (T%+ |\7|r2)2’ (38) o is any one of the indices,0..,3. Condition (34) now
determine<Z; to be
with C=1 for U(1) andC=(N?—1)/(2N) for SU(N), and Zi=1+¢,. (41
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FIG. 1. £,(r)/(Cg?) as function of the Wil-
006 F 4 son parameters. We have{,(—r)=¢{,(r) and
Ia(r) #0 whenever #0.

-0.08 |- 1

01 E

Z, does not depend on a particular realization of the axial ~APPENDIX A: SMALL MOMENTUM BEHAVIOR
vector curreny ., Eq.(21); that is, it is independent of the
parametes.

Note that thefinite) renormalization constant of the axial
vector current is solely determined from diagrams involving
the insertion of a classically irrelevant operator. The integral
(38) is evaluated numerically. The dependence pfon the
Wilson parameter is shown in Fig. 1. From this figure we se
that £, is a monotonically decreasing function of>0.
There exists no non-zero value ofor which the axial cur- f d*q  d*k, d%,

The infrared properties ok ensure that the vertex func-
tions T%:D(q;k,1) and T.9(q;k) are continuous and once
continuously differentiable at zero momentum, respectively.
Their regular parts are obtained from the small momentum

ehavior of that part of the vertex functioral that is linear
én the source~. In momentum space it reads

> Fla(a)

rent is not renormalized. In particular, for the commonly 7 n n
(2m)* (27)% (2m)" ‘wa

used valug =1 we obtain, = —0.054%Cg?.
x{(2m)*8(q+ky+ky) t(ky)
V- CONCLUSION X[i(prkatpike) 7, 71 Y50 ath(ky)
In this paper we have investigated the renormalization of - ~
the flavor mixing axial vector current for massless gauge +EP(Kk) v AL(—d—Ki—ke) ysoa (ko)
theories with Wilson fermions. The corresponding axial vec- (A1)
tor Ward identity involves a symmetry breaking lattice op-
erator A which is local and classically irrelvant. Using the . .
lattice power counting theorem for massless field theories‘{,"Ith ¢ ”“”f‘befspr’ pi, 7, andg. A.pp'y”.‘g the transforma-
we have shown that uniquely determines the renormaliza- 10N (14) yields the same expression with
tion constant of the axial vector current in such a way that
the chiral symmetry becomes restored in the continuum pr=pr, n—mn, E——E& (A2)
limit, to all orders of perturbation theory.

We have computed the renormalization constant to one- T _ _
loop order. It is largely independent of a particular lattice 'N® SYmmetry(13) thus implies thap, =p, and§=0. The

realization of the current and non-vanishing whenever th&/2nishing ofz is implied by the chiral Ward identity. This
Wilson parameter 0. The values agree with those ob- 'MPlies the statement81)—(33).

tained for a particular choice of the axial vector current in
[10].

Although we have considered Wilson fermions, the result
of symmetry restoration in the continuum limit is quite gen- We state the Feynman rules for the insertion of dng
eral. It holds for any lattice Dirac operator that satisfies aoperator, Eq.(21), that are required for the computation
general set of conditions. These conditions are gauge invaref the axial vector current renormalization constahjtto
ance and charge conjugation symmetry, absense of doublerse-loop order. For simplicity the rules are given for gauge
and locality in the more general sense as statd,h2]. group U1):

APPENDIX B: FEYNMAN RULES
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ko

e = 3 [(7'—5)’;\%4‘(7'4'3) QJ%%

(B1)

= 08 [r=9) (¥R T R, = (1 49) (g oy = k), |,

<t

i
k1

(B2)
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kg

e : =g’a (r =) Cophy b+ {r +5) cq—kx—-kz,u] 0 Y50 u
k1
(B3)
where
3 k,a ‘ 2 k,a B4
Ck”u—COST, M—ESIHT. (B4)

[1] H.B. Nielsen and M. Ninomiya, Nucl. PhyB185, 20 (1981);
B193 173(1981.

[2] P. Ginsparg and K. Wilson, Phys. Rev.d5, 2649(1982.

[3] H. Neuberger, Phys. Lett. B17, 141(1998; 427, 353(1998.

[4] M. Luscher, Phys. Lett. B28 342(1998.

[5] T. Reisz and H.J. Rothe, Phys. Lett.4B5 246 (1999.

[6] T. Reisz and H.J. Rothe, Nucl. Phys. (B be publishel
hep-lat/9908013.

[7] L.H. Karsten and J. Smit, Nucl. PhyB183 103(1981).

[8] B. Meyer and C. Smith, Phys. Lett23B, 62 (1983.

[9] G. Martinelli and Z. Yi-Cheng, Phys. Lett.25B, 77 (1983.
[10] R. Groot, J. Hoek, and J. Smit, Nucl. Ph¥237, 111(1984).
[11] T. Reisz, Commun. Math. Phy416, 573 (1988; 117, 639

(1988.

[12] P. Hernadez, K. Jansen, and M. 'kaher, Nucl. PhysB552,
363(1999.

014504-6



