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Microscopic universality and the chiral phase transition in two flavor QCD
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We reanalyze data from available finite-temperature QCD simulations near the chiral transition, with the
help of chiral random matrix theorchiral RMT). The statistical properties of the lowest-lying eigenvalues of
the staggered Dirac operator for @) lattice gauge theory with dynamical fermions are examined. We
consider temperatures below, near, and above the critical tempefatiaethe chiral phase transition. Below
and aboveT the statistics are in agreement with the exact analytical predictions in the microscopic scaling
regime. AboveT. we observe a gap in the spectral density and a distribution compatible with the Airy
distribution. NearT the eigenvalue correlations appear inconsistent with chiral RMT.

PACS numbs(s): 12.38.Gc, 11.10.Wx, 11.15.Ha, 11.30.Rd

[. INTRODUCTION distribution shapes are an example of the first aspect, expec-
tation values of the fermion condensate of the second.

It is inherent to the lattice approach to quantum field The limitations for validity of the chiral RMT consider-
theory that one has to extrapolate from finite lattices, finiteations(for a givenT in the phase of broken chiral symmetry
statistics and noncritical coupling parameters to infinite lat-are set byf1,2]
tices, infinite statistics and critical points. Since the result
supposedly is a nontrivial, nonperturbatively defined quan-
tum field theory, this process is plagued by uncertainties. A Agcp
typical example of such a situation, where all these aspects
combine, is the study of the thermal transition in QCD for
small quark masses. One is interested in the continuum limivhereL, is the linear size of the system any, is the mass
(gauge couplingg—0), small or vanishing fermion masses ©f the lightest(pseudo}Goldstone boson. The second restric-
(m—0), close to critical temperatureT(-T,) in the ther- tion imposes that the pion does not fit into the space-time
modynamic limit (,— ) — a formidable problem. volume and it therefore appears to be unphysical. However,

The extrapolations are always based on assumptions offrious correlators in the Dirac operator spectrum can be
the asymptotic behavior. Well-known examples are scalingomputed precisely in this limit.
functions based on renormalization group and chiral pertur- Chiral RMT has been proven to give exact analytical pre-
bation theory — an expansion around a ground state Wiﬂﬁiictions for the Spectrum of the Dirac operator in the micro-
Goldstone bosons. Here we will examine another such apscopic limit[3]. The microscopic scaling region is simply a
proach, which should allow the extrapolation to infinite vol- blowup of the origin in the spectrum. To be specific, one
ume and vanishing fermion mass: chiral random matrixconsiders eigenvalues on the scaler/VX whereX. is the
theory (chiral RMT). chiral condensate, related to the spectral density per unit vol-

ume p(\) via the Banks-Casher[4] relation %
=Iim)HO IimVHw p(N). This regime is, by definition, only

well defined in the spontaneously broken phase wi¢gg
RMT attempts to identify universal features of ensembles# 0. In the phase with restored symmetry the scale of interest

of (random) matrices with common symmetry properties. Its is set by the density of states in the vicinity of the onset of

chiral version, if successful, allows one to separate two asp(\).

pects of a theory such as QCD: the general universal prop- Here we present a study of the microscopic correlators in

erties shared with other theories from the model-specifithe spectrum of the staggered Dirac operator i3 dauge

“dynamical” content of the theory. Microscopic eigenvalue theory with dynamical fermions at finite temperature. Spe-

1
<L, <—, (1.1)

m

A. Chiral random matrix theory
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cifically we examine the low lying eigenvalue statistics atwhereM is a 2N X 2N block Hermitian matrixthe elements
temperatures below, near, and above the critical temperatud W being random complex numbérandT is a determin-

of the chiral phase transition. istic, i.e., not random, off-diagonal block matrix
Our analysis is based on the evaluation of the MILC Col-
laboration’s gauge configuratior§,6]. We therefore con- 0 W 0 t
centrate on the new aspects connected to RMT ideas for the M= wh o)’ T= t 0/ (2.2

spectral correlators of the Dirac operator. In particular for
T>T. we study the singularity at the inner end point of theHere dM denotes the Haar measurg(x) is an analytic

spectral density. function.
The predictions from chiral RMT concern the correlations
B. Temperature transition between the eigenvaluesof D=M+T on the scale of in-

. L . - dividual eigenvalues in the thermodynamic liit-. The
Strictly speaking, in the continuum I|rr31&—>0, NONZETO  matrix D is the analogue of the massless Dirac operator in
temperature is realized for latticesi,xn, with T 5cp. The chiral phase transition within chiral RMT is iden-
=1[n@a(Bg)] and ni/n,—0. In that limit, for vanishing tified through the value of the spectral density of the eigen-
quark massn, one expects a phase transitionTat In Ref.  y5jyes ofD near zero, i.e., using the Banks-Casher relation.
[5] the critical temperature was estimated to lie between 143 Modeling the chiral phase transition in chiral RMT
and 154 MeV. Foff <T chiral symmetry is broken sponta- amounts to driving a depletion of eigenvaluesDofear the
neously, with massless pseudoscalars @apg)#0; above origin by means of some temperature parameter. Two sepa-
T. we expect restoration of this symmetry. Whereas for puraate approaches have been examined in the literature. First,
Yang-Mills theory the deconfinement transition is associatedhe unitary invariant chiral RMT2,3], corresponding to Eq.
with a breaking of the center symmetry with the Polyakov(2.1) with T=0, in which the chiral phase transition is driven
loop as order parameter, this symmetry is explicitly brokenby tuning U(M?). Second, the nonunitary invariant chiral
by the fermion action. Nevertheless, remnants of the originaRMT [16-18, corresponding to Eq(2.1) with U(M?)
breaking feature of the Polyakov loop persist even for small= M2, where the deterministic block matrik mimics the
fermion masses. effect of the temperature. In this paper we do not need to
The nature of the chiral phase transition depends on thdistinguish between the two approaches as they are consis-
number of flavordN¢. An argument based on a 3®model  tent for the quantities measured here.
analysis[ 7] predicts a first order phase transition féy=3. Below T, i.e., whenp(0)+# 0, chiral RMT predict419]
For N;=2 one expects a second order phase transition witithe probability distribution for the smallest eigenval(er
SU(2)x SU(2)=0(4) scaling behavior. However, even first the trivial topological sector
order behavior may be arguadl@-10Q]. For staggered fer-

mions at nonvanishing lattice spacing the correct counting of z 2/4det1§i’jng Cij({‘/M2+ zz'})
flavors is unclear since flavor symmetry is restored only in P(z{u})=5e"* det .. - ,

: . ; ; 2 €< j=n AIJ({IU’})
the continuum limit. Staggered fermiorfas simulated by f 23
MILC with the hybrid R algorithm[11]) correspond to the 2.3

caseN¢=2 in the continuum limit. On coarse lattices the so;ip
defined fermions should show at least UEQ(2) scaling

behavior. For a discussion of the various scenarios see Refs. Aij({ﬂ})zﬂgillj—l(ﬂ«i)a
[12-14.
It is unclear whether the phase transitionTat extends Ci({uh) =l M1 (1),
towards m>0 or whether, when moving from lower to
higher temperature, one just observes crossoverlike behavior. z=2mAp(0)N, and u;=27mp(0)N, (2.9

Some evidence points towards this second scehaBd 2.
In the following, we denote the crossovigthase transition  wherep(0) is the spectral density at the origin for thess-

position byT.(m) or simply T,. lesssituation[i.e., whenm;=0 in Eq.(2.1)]. I; denotes the
jth modified Bessel function. This result is universal in the
Il. EXPECTATIONS FROM CHIRAL RMT chiral RMT context, that is, the analytic form &(z,{u})

. _ does not change under deformationsJgiM?) provided that
According to the nature of the elements in the randomp(o)gﬁo_ After the identificationV=2N (V is the physical
matrix, chiral RMT appears in three universality classes. IN,qume in lattice units Eq. (2.3 allows us to extract
this paper we consider the @’gaug.e theory with quarks N = 7p(0) (the fermion condensate in the chiral li;nfrom
the fundamental representation, which belongs to the univek .. \,Jlume Dirac spectra. Of course, in this the mild con-
sality class of the chiral unitary ensemidghiral UE). The

o . . dition (1.1) must be satisfied.
partition function under study i2,16,17 Above T, when there is a finite gap in the spectral den-

Ny sity, the repulsion between the eigenvalue paix ., be-
Z(Np) :J' dMe-NTTUMATT detM+T+i , comes negligible; chl_ral RMT hence predlcts.f,aft inner
({mj) © f[[l el m) edge, known as the Airy solutid20,21]. At T.—signaled in

(2.1 chiral RMT by a powerlike behavior of the spectral density
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at smallx\— p(\) <A, the prediction from chiral RMT is TABLE I. Summary of the MILC configurations used in our
on the value ofs [22]. configurations availabje The suggestions in the right-most column

The distribution of the smallest eigenvalue is a spectraﬁri bazed_og;\g!sL?‘s re_sijgs' The transition is ngar5.26 forn,
one-point correlation function and is quite sensitive to statis- + "dA="5.725 forn;=12.
tical fluctuations(see below. As an additional measure we MILC set  No.confs n, n, B, maB, phase

also study a two-point correlator: the level spacing distribu-

tion P(s). Note that the level spacings=s;,,—S; are de- 124A 61 12 4 525 0.0125 <T,
termined in the unfolded spectrufs,}2", . Unfolding sepa- 1248 91 12 4 5.26 0.0125 <T,
rates the fluctuation properties of the spectrum from the24c 126 12 4 527 0.0125 ne&
supposedly smooth background behavior. The unfolded varit24p 57 12 4 528 0.0125 >T,
able is defined in terms of the eigenvalue spectrum and thex41 42 12 4 5025 0.008 <T,
local average spectral density by 1242 50 12 4 5255 0008 <T,
\ 1243 45 12 4 526 0.008 neadg
i
s— f (p(0))dA. (2.5 1244 47 12 4 5265 0008  ne¥
0 1245 42 12 4 527 0.008 >T,
1246 40 12 4 528 0.008 >T,
The RMT prediction for the level spacing distribution is well 1o1 30 24 12 5.65 0.008 <T.
approximated by the unitary Wigner surmise ETO3 131 24 12 5.725 0.008 nesy
FTO4 188 24 12 58 0.008 >T,
32 -
P(s)— _2528,432,7,. 2.6 FTO5 146 24 12 585  0.008 Te
a

The level spacing distribution is not expected to be affecte¢used on the situation wherg(0)#0, there is nothing
by temperature and masses in chiral RMT, see, e.g., Rewrong from first principles in using chiral RMT whes(0)
[23]. =0.

Chiral RMT makes predictions for average spectral corr-
elators in sectors with definite topological change.e., de-
rived assuming exact zero modgkese are not included in lll. GAUGE FIELD CONFIGURATIONS AND ANALYSIS
the predicted distributions; see RE24] for the result of the By courtesy of the MILC Collaboratiofs] there are sets
weighted summation of all topological sectorsFor  of gauge configurationgs] available to the lattice commu-
Ginsparg-Wilson fermionf25], which realize chiral symme- ity These were generated with two species of dynamical
try on the lattice, one may identify exact zero modes as restaggered fermions, at various lattice sizes, temperatures,
sulting from topological excitations according to the Atiyah-5jues of the gauge coupling and small values of the bare
Singer index theorem(for Wilson fermions one can fermion mass. In Table | the samples used in the present
hypothesize that zero modes are replaced by real modesstydy are listed. For further details on the method of deter-
This is not the case for staggered fermions, where exact zef@jnation of the gauge configurations and the physical param-
modes are absent away from the continuum lif@] and  gters we refer to Ref5].
even gauge configurations with nonvanishing topological The massless staggered Dirac operator is anti-Hermitian
charge do not give zero eigenvalues. Exa_ct zero modes agh( therefore has purely imaginary eigenvalues, lying sym-
here replaced by “almost” zero modes which accumulate tometric to the origin. We determine the lowest lying eigenval-
the origin in the continuum limit. In the strong coupling re- yes with help of the implicitly restarted Arnoldi methf@P],
gion the microscopic staggered Dirac spectra summed ovgsing Chebyshev polynomials to improve the convergence.
all topological sectors sho{27,28 good agreement withthe  The convergence speed depends on the separation be-
analytical prediction for the topologically neutra=0 sector  tween the eigenvalues. The configurations belfwthere-
from chiral RMT. However, approaching weaker coupling fore exhibit much slower convergence and e 243x 12
observations contradicting this scenario have been found in@e determination is then quite time consuming. Configura-
two-dimensional conteX29]. ) tions that are supposedly aboWe develop a gap for the

Before turning to the numerical studies, let us commengmglest eigenvalue and the convergence of the diagonaliza-
on the validity of the chiral RMT predictions. The condition tjgn is faster. All eigenvalues have been obtained with a
for application of chiral RMT in lattice analyses is well es- precision of at least five significant digits. We have deter-
tablished wherT~0: The range in the unfolded spectrum mined(on the positive imaginary axishe lowest ten eigen-
over which the chiral RMT correlations dominate [i8]  yalues for the 12x4 ensembles and the lowest eight eigen-
<f2/((yp)L2) [30,31], wheref . is the pion decay constant. values for the 2%x 12 ensembles.
An equivalent statement fof =T, is not known and no The chiral RMT prediction for the smallest eigenvalue
stringent tests of the low-lying eigenvalue statistics havedistribution has been tested against quenched Q&334
been carried out so far. Let us emphasize that even thougind dynamical S(2) [28] lattice simulations aT =0; there
the larger part of the studies of chiral RMT have been fo-are also recent quenched QCD results for nonzero tempera-
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ture [35]. RMT distributions for the bulk nearest-neighbor T N T '
spacing in both, the confinement and the deconfinemen
phase of full QCD have been observed in RéB] on 6°

X 4 lattices[Wigner surmise, see ER.6)].

IV. REPORTING THE RESULTS

We now turn our attention to the measurement of the 02F n=12n=4 1 n=12n=4
statistical properties of the Dirac operator. Starting with the m=0.0125 | m=0.0125
distribution of all eigenvalues and then separating out the
lowest and the second lowest eigenvalue we observe the firs
indication of a discrepancy with chiral RMT. In order to
mvespggte t.hIS d|§crepancy further we stpdy the level spac- 0 005 0040 002 004
ing distribution. Finally we focus on the inner edge of the 2z
spectrum forT>T, and measure the exponent for the singu-
larity of the spectral density.

0.2
(b)

Figure 1 gives the eigenvalue distribution as obtained
from the lowest ter{or eight for the large latticesigenval-
ues for each configuration. It coincides with the distribution

A. Eigenvalue density

n=12n=4 + n=12 n=4 ]
X t X t j

from all eigenvalues only up to the lowest of all tenth 02} ,_-12 n=a T
(eighth eigenvalues. In order to emphasize this feature we __ nf=0‘008t m=0.008 m=0.008
also plot the distribution histogram of this terf#sighth ei-  $ ol B=5265 1 p=5.27 1 B=528 ]

genvalue in full black.

A remarkable change in the features of the distributions
occurs aroundl;, as given in Table I. In particular fam, v Y : -
=24, n,=12 a gap inp(\) appears fo>T,. 0 0.02)» 004 0 002 0040 002 004

Since we do not know about the topological charge of
most of the configurations studied here, we cannot separat

. S : 0.006 n=24 n=12 I n=24n=12 ]

the trivial from the nontrivial topological sectors, as would (©) m=0 oost S 008‘
be required for a faithful comparison with chiral RMT dis- 0.004 B=5.65 1 :
tributions. For sufficiently rough lattice@.e., in the strong
coupling regiol, one can argug28] that the topological 0.00;
chargev is effectively zero from the fermionic point of view;
however this is no more the case for fine enough lat{i2és 0.006 F T ]
and the problem of the knowledge of the topological charge T n=24n=12 10 =24 n=l2
becomes critical. Fol > T, the situation is completely dif- 0,004 | M=0008 ¢ 1 m=0.008 o
ferent, since topological fluctuations are suppressed in the a p=58 ]
continuum theory. 0.002 | +

The “microscopic” distributions should be in the chiral ]
UE universality class and predictiaf2.3) should apply in % 02 0040 0. 0.04
particular for the smallest eigenvalue fox< T . A fit of the A

corresponding predI(_:tlon for the tQpOIOglca”y tr.IVI.aI. €as€ G, 1. Histograms for the tefor eigh) smallest eigenvalues.

(v=0) to the normalized data provides u:?‘ with tirefinite The contribution from the tentteighth eigenvalue is indicated in

yolume parameteE. We assume the continuum symmetry, placy (@) 18x4, m=0.0125, (b) 12x4, m=0.008, (c) 24°

i.e., Ny=2 in Eq. (2.3). This one-parameter fit appears rea- %12, m=0.008.

sonable only for data concerning temperatures well b&lgw

as indicated in Fig. @). This is made explicit in Table I ) .

where the fitted values & together with the corresponding chiral RMT formulas—. should therefore be independent of

x%Npr are reported; the latter increases withand forT ~ the spatial lattice size, and the fermion mass.

=T, (in agreement with Table )Iprediction(2.3) becomes For, e.g., 12x4, B=5.25 we find agreement &t for

incompatible with data. m=0.0125 and 0.008 within the errors. Bt=5.26 the val-
The formal chiral RMT expressiof2.3) gives the eigen- ues disagree. This value gfis, however, close t@; and the

value distribution as a function of volume and fermion massposition of the phase transitidior crossoveris quite sensi-

the parametel (the spectral density at the origiis thus  tive to m. Such a change of the transition point is not ac-

defined implicitly as the extrapolation to infinite volume and counted for in chiral RMT, which is not at all sensitive to the

vanishing fermion mass. From our fits—if the data follows underlying dynamics of QCD.
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FIG. 2. Histograms for the first eigenvalué) 12°x4, m
=0.0125,(b) 12X 4, m=0.008,(c) 24*x 12, m=0.008. For the
data where we fitted to chiral RMT distributigisee Table )l we
also plot the fits. The error bars i@ are shown to indicate the
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TABLE II. Values of the scal& as obtained from comparison
of lattice data forP(\ ,;,) with chiral UE.

n, n, B m s X2INpe
12 4 5.25 0.0125 0.6429) 0.495
12 4 5.26 0.0125 0.5726) 0.562
12 4 5.27 0.0125 0.4429) 1.651
12 4 5.28 0.0125 0.1383) 2.129
12 4 5.25 0.008 0.6887) 0.368
12 4 5.255 0.008 0.5%%2) 1.218
12 4 5.26 0.008 0.4583 1.379
12 4 5.265 0.008 0.3329 2.517
12 4 5.27 0.008 0.1631) 2.806
24 12 5.65 0.008 0.01988) 1.048
24 12 5.725 0.008 0.006:0) 5.063

increase as the quark mass decreases. Therefore, it is not
surprising that our linear extrapolation of MILC results tends
to come out slightly but systematically smaller than the val-
ues we find in Table II.

The issue of the topological sector is likely to be particu-
larly relevant for the finest lattice at our disposal 3242),
where almost zero modes could be present and spoil the va-
lidity of the trivial sector predictions from chiral RMT.
These could be the cause of the bump observed for small
at 8=5.8, both in the spectral density and in the smallest
eigenvalue distribution. It is therefore with some hesitation,
that we compare the histograms for the smallest eigenvalues
in Fig. 2 with these predictions.

In order to further investigate this feature, we studifed
the set withp=5.725) the influence of the configurations
where the eigenvectorg, of the lowest eigenvalues exhibit a

large contribution to the total chirality, i.el{UyysUg)|
=0.08. According to the index theorem, these configurations
with large chirality, which make up roughly one half of the
ensemble, tend to carry nonvanishing topological charge and
therefore zero modes. Indeed we find that a substantial part
(75%) of the first peak may be explained from these contri-
butions.

These findings suggest that indeed topological modes are
responsible for a low-lying peak in the distributions. Below
T. all topological sectors are present and the low-lying ei-
genvalues have comparable magnituteeir average posi-
tion being roughly proportional to). When the temperature
approachedl; the theoretical expectation is that the topo-
logical fluctuations begin to be suppressed, although still
present in the ensemble, quasi-superimposed on the back-
ground distribution, which starts to broaden significantly
with increasing temperature. Sufficiently far abolg only
the topologically trivial sector survives and there may be no

For comparison we have to extrapolate the MILC valuessmall eigenvalues at all. This is indeed what we actually
[5] for the chiral condensate both, to infinite volume and toobserve for the lattice 24 12.

vanishing quark mass. Sindexcept for chiral RMTJ we

In a recent study of quenched configuratid@$] there

have no firm prediction concerning the volume dependencéjave been indications for a dilute gas of instanton—anti-
we just extrapolate the MILC results for the large lattices atinstanton pairs producing a Poissonian distribution of small
B=5.65 and 5.725 linearly to vanishing quark mass. Weeigenvalues abov&.. These may be suppressed or absent
know, however, that finite-volume effects on the condensatevhen considering dynamical fermions. In our context this
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m=0.008
T B=5.27 k

0 00l 002 0 00l 002 003

FIG. 3. Histograms for the second smallest eigenvalue fér 12
X4, m=0.008. In comparison with Fig.(B) we observe that the
mutual overlap betweeR(\m») and P(\,) increases ag— ;. (b)
This is not consistent with chiral RMT.

seems to be the case for the finest lattices’ 22 with 8
=5.85) at our disposal.

Figure 3 gives the histograms for the second smallest ei-
genvalues. Again we notice a dramatic change of the distri-
bution shape around.(m). g

We interpret the sudden flatness of the distribution of the
smallest eigenvalues as beifig due to the vanishing spec-
tral density andii) due to increasing statistical fluctuations
near the chiral phase transition. The latter effect is not repro-
duced in chiral RMT since this is a zero-dimensional and
nondynamical theory. Furthermore, the mutual overlap of FIG. 4. Histograms for the distribution ¢&) the first nine ei-
P(\,) andP(\,) increases fo3— B.. This is also incon- genvalue spacings on the®24 lattice and(b) the first seven ei-
sistent with chiral RMT. In order to study this effect further genvalue spacings on the®2412 lattice withm=0.008(according

we now turn to the level spacing distributions. to Refs.[5,6] B.=5.7 in this case The standard predictio(®.6)
for the level spacing distribution is plotted for comparison.

B. Level ing distributi . . .
evel spacing distnbution lowest ten(or eighy eigenvalues allow for a crude estimate

Another observable with definite predictions from RMT of the distribution shape.
(see Sec. Jlis the distribution of level spacings. The advan-  Recall that the level spacing distribution is measured in
tage here is, that the level spacing should not be influenceghe unfolded spectrum, see E&.5. Here we use the aver-
by possible distortions of the smallest eigenvalues due to thgge spacingé\;,;—\;) between contiguous eigenvalues to
unknown topological charge of the configuratio(it the  define the unfolded level spacings
smallest eigenvalues are removed from the )data

The studies of the level spacing statistics in lattice data so ~(Njs1—N)
far have shown a uniform picture consistent with the RMT S”lfsi_()\iﬂ_)\i)' (4.2)
prediction(2.6). The agreement extends on both sides of the
confinement-deconfinement phase transiti@B,36. How- In Fig. 4 we compare the data with the parameter-free

ever, to the authors’ knowledge there is no analytical predictheoretical expectation. Whereas below and atiqwee find
tion from chiral RMT for the level spacing distribution when reasonable agreement with the theoretical expectation, there
focusing on the soft edge or & . So one might worry that are clear discrepancies nélar. We observe unexpected high
the standard prediction, E@2.6), is not appropriate when histogram entries. Since the average value by definition is 1
p(0)=0. Within theT model of Ref.[16] for T=T, andT this then leads to a shift of the central peak to the left.
=3T,, we have performed a numerical high statistics simu- In order to further check our unfolding procedure, we also
lation to eliminate such doubt, and we there confirmed theconsidered other approaches, e.g., using a average density as
distribution(2.6). [The T model is defined by Eq2.1) with in Eq. (2.5 by smoothing our distribution in various ways.
U(M?)=M? andt in Eq. (2.2) chosen proportional to the We furthermore tried to discard the higher lying eigenvalues,
unit matrix] e.g., using only the lowest five level spacings or introducing
Usually it is possible to get high statistics on the levela cutoff near the peak of the distributions in Fig. 2. In all
spacing distributions since each configuration provides #hose checks we found essentially the same behavior with
large number of eigenvalue spacings. However, already thdiscrepancies nedr. .
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r E 0.003
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FIG. 5. The behavior of the average distance from the smallest F|G. 6. Theu=0 Airy density with end pointx =A=0.0205.

eigenvalue to théth eigenvalue for the 2412 ensemble aB  approximately the domain of the first three eigenvalues is shown.
=5.85.

from the ensemble of 146 configurations on &:242 lattice

In conclusion of this section, we observe Bt=T. a  for 83=5.85. We also exhibit the best fit to EG.3) with
breakdown of the otherwise universal microscopic spectratespect tou, giving u=0.117(71). Also shown are the cor-
correlations. The dynamics of QCD plays an essential role imesponding curves fou=0 andu=2. The valueu=0 is
the phase transition. A RMT model where such dynamics islearly favored.
not there fails to account for the increased fluctuations in the Since the two-point correlations behave as expected from
eigenvalue level spacings. RMT, we now turn to the one-point distribution. The micro-
scopic behavior of the spectral density in the vicinity of this
singularity is universal in the chiral RMT sense, but depends
on the value oiu [37]. Foru=0 the exact analytical predic-

We now turn to the results foF>Tc. In our results for  ton for the microscopic spectral density in the vicinity of the
24°x 12 at3=5.85[Fig. 1(c)] a gap in the spectral distribu- jnner edge i§20]
tions is obvious. However, even At 5.8 we may speculate,
that a clear signal of a gap is only prevented by ttopo- pai(2,00=[Ai’'(2)]°—Z[Ai(2)]% (4.4
logical) quasizero modes responsible for the small bump
small eigenvalues.

Recall, that chiral RMT[16] predicts the presence of a
gap in the spectral density(\) of the Dirac operator cen-
tered around. = 0. Furthermore, the inner edge of this gap is
predicted to show a singularity, at a poifit in the macro- A=A
scopic spectral density37]

C. Soft inner edge

ahere the origin has been moved to the inner spectral end
point A by means of the rescaled eigenvalgewhich is
defined through

4
1+ =

2

2 1/(u+3/2)
| s

7TAK

The consistency with the predicti@a.3) for u=0 and the
approximate validity of chiral RMT correlations in the level
spacing statistics abovie. suggest that the Airy density.4)
corresponding to the value=0 should fit the spectral den-
whereK is a known constant. The constantakes the value Sity. If it does, then we can extract the inner end pdindf
u=0 in the generic chiral RMT, i.e., without fine-tuning the the spectrum in the thermodynamic limit, by fittipg;(z,0)
matrix potential in Eq(2.1) (which would be necessary in With respect toA to the lowest part of the spectral density,
order to obtain higher values af). This corresponds to a S€e€ Fig. 6. This fit does not convincingly confirm Airy den-
square-root-like eigenvalue density neéar sity. However, the statistical fluctuations at tiisvalue af-

One concern here is to measuwe With the limited fect the one-point distributionsubstantially and prevent a
amount of data available it is not possible to do this based ofl€cisive comparison.
the spectral density only. Instead we propose to study the
average distance between the smallest and the sequel eigen- V. SUMMARY AND CONCLUSIONS

vaIues(qi,_l,QE()\Hl—)\_1>; the extraction ofu is carried We have examined the manifestations of the chiral phase

out by noting the following scaling relation in the index 4nsition in the microscopic spectral correlators for the

ordering by size the eigenvalues which follow the smallest Dirac operator. For the level spacing distribution, we find
agreement with RMT below and abovie.. Below T. the

(4.3 chiral RMT distributions allow us to determine condensate
values with implicit consideration of lattice volume and
quark mass dependence. This could in principle serve to im-

This proportionality follows by integration in Eg¢4.2). prove the scaling analysis of the condensate near the chiral

In Fig. 5 we display the seven average distanégs),,  transition.

2

A u+1/2
p(\,u)=K E—l) , u=024..., (4.2

l) 1U(u+3/2)

<Qi1/2>°‘(i_§
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NearT., however, the microscopic spectral statistics dif-are suggestive but simulations with extended statistics are
fers from the chiral RMT prediction. By measuring the needed in order to quantify the observation. However, even
Monte Carlo time evolution of the chiral condensate, Aokiwith low statistics thed dependence of the distance between,
et al. [15] have shown that there are mixed phase signalse.g., eighth and first eigenvalue provides an excellent means
which, however, vanish towards larger volumes. The existo identify the change of the phase.
tence of a mixed phase would offer an explanation for the Atlow B, on coarse lattices, staggered fermions appear to
observed deviations from chiral RMT ne&g. In that case be blind with regard to the topological charge of the gauge
the level spacing distribution ne@g would be a mixture of configurations, and the smallest eigenvalue distribution
those from the two phases. Such a mixture would lead tagrees with the chiral RMT distribution for the=0 sector.
large spacings: the spacings are unfolded according to th&s the lattice becomes finer, topology becomes more rel-
average spacings of the total ensemble and not according &vant. Although this is maybe “good” for the continuum
that of the separate phases. limit of staggered fermions, it affects unfavorably the agree-

The observed disagreement with the RMT level spacingnent with chiral RMT since the want-to-be-zero modes and
statistics may also be interpreted as an inclination towardthe nonzero modes have similar eigenvalues, and begin to
Poissonian statistics; distribution shapes interpolating beseparate only when the nonzero modes are pushed to larger
tween Wigner and Poissonian statistics have been suggestedlues when increasing the temperature.
by Brody[38].

As may be seen from the 24 12 ensembles §8=>5.8
and 5.85, a gap develops in the spectral densityTferfT,. .
This is consistent with the observed suppression of topologi- We want to thank the MILC Collaboration for making
cal fluctuations in the latter ensemijf@9]. For the3=5.85 available the gauge configurations that we used in our analy-
ensemble we have measured the critical exponent charactesis. Special thanks go to Jim Hetrick and Doug Toussaint for
izing the steepness of the density at the inner edge. The valubeir help in accessing those and for the support in making
is found to be compatible with 1/2. This is exactly as pre-additional ensembles public. Ph. de F. thanks Jim Hetrick
dicted by chiral RMT where the chiral phase transition isand Jean-Framis Lagaefor their contribution at a prelimi-
manifested by the crossover from the Bessel hard edge to theary stage of this project. K. S. would like to thank Andrew
Airy soft edge. The indications of the Bessel to Airy scenarioJackson for discussions.

ACKNOWLEDGMENTS

[1] H. Leutwyler and A. Smilga, Phys. Rev. 46, 5607 (1992. [20] P. J. Forrester, Nucl. PhyB402, 709 (1993.
[2] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Ph4S60, [21] C. A. Tracy and H. Widom, Commun. Math. Phy9, 151
306 (1993. (1994.
[3] G. Akemann, P. H. Damgaard, U. Magnea, and S. M. Nishi-[zz] G. Akemann, P. H. Damgaard, U. Magnea, and S. M. Nishi-
gaki, Nucl. PhysB487, 721(1997. gaki, Nucl. PhysB519, 682 (1998.
E_H 1(; I;aerr]rlfzrggfa?. F?r?;:elgesu%f?gsezglgg(1980- [23] R. Pullirsch, K. Rabitsch, T. Wettig, and H. Markum, Phys.
' : . ' : Lett. B 427, 119(1998.

[6] MILC Collaboration: The MILC configurations are publicly
available through the Gauge Connection at URL 24l P H. Damgaard, Nucl. PhyB556 327(1999.

http://qcd.nersc.gov/ [25] P. H. Ginsparg and K. G. Wilson, Phys. Rev. 23, 2649
[7] R. D. Pisarski and F. Wilczek, Phys. Rev.2D, 338(1984). (1982.
[8] F. Wilczek, Int. J. Mod. Phys. A, 3911(1992; 7, 6954E)  [26] J. Smit and J. C. Vink, Nucl. Phy8286, 485 (1987).
(1992. [27] P. H. Damgaard, U. M. Heller, R. Niclasen, and K. Rummu-
[9] K. Rajagopal and F. Wilczek, Nucl. PhyB399, 395 (1993. kainen, hep-lat/9909017.
[10] K. Rajagopal, inQuark Gluon Plasma 2edited by R. Hwa [28] M. E. Berbenni-Bitsch, S. Meyer, and T. Wettig, Phys. Rev. D
(World Scientific, Singapore, 1995 58, 071502(1998.
[11] S. Gottlieb, W. Liu, R. L. Renken, R. L. Sugar, and D. Tous- [29] F. Farchioni, I. Hip, and C. B. Lang, Phys. Lett. &1, 58
saint, Phys. Rev. [35, 2531(1987. (1999.
[12] E. Laermann, Nucl. Phys. BProc. Supp). 63, 114 (1998. [30] R. A. Janik, M. A. Nowak, G. Papp, and |. Zahed, Phys. Rev.
[13] C. Bernardet al, Nucl. Phys. B(Proc. Supp).63, 400(1998. Lett. 81, 264 (1998.
[14] C. Bernardet al, Phys. Rev. D61, 054503(2000. [31] J. C. Osborn and J. J. M.Verbaarshot, Phys. Rev. B&{t268
[15] S. Aoki et al, Phys. Rev. D67, 3910(1998. (1998.
[16] A. D. Jackson and J. J. M. Verbaarschot, Phys. Re\63D  [32] D. C. Sorensen, SIAM J. Matrix Anal. Appl3, 357 (1992;
7223(1996. R. B. Lehoucq, D. C. Sorensen, and C. YangpAck User’'s
[17] T. Wettig, A. Schéer, and H. A. Weidenmiler, Phys. Lett. B Guide (SIAM, New York, 1998.
367, 28 (1996. [33] P. H. Damgaard, U. M. Heller, and A. Krasnitz, Phys. Lett. B
[18] B. Seif, T. Wettig, and T. Guhr, Nucl. PhyB548 475(1999. 445, 366(1999.
[19] S. M. Nishigaki, P. H. Damgaard, and T. Wettig, Phys. Rev. D[34] R. G. Edwards, U. M. Heller, J. Kiskis, and R. Narayanan,
58, 087704(1998. Phys. Rev. Lett82, 4188(1999.

014503-8



MICROSCOPIC UNIVERSALITY AND THE CHIRA. . .. PHYSICAL REVIEW D 62 014503

[35] R. G. Edwards, U. M. Heller, J. Kiskis, and R. Narayanan, (1998.

hep-lat/9908036. [38] T. A. Brody, Lett. Nuovo Cimento Soc. ltal. Fisl, 482
[36] B. A. Berg, H. Markum, and R. Pullirsch, Phys. Rev.5D, (1973.

097504(1999. [39] Ph. de Forcrand, M. Ga&iPeez, J. E. Hetrick, and 1.-O.
[37] E. Kanzieper and V. Freilikher, Philos. Mag. B7, 1161 Stamatescu, Nucl. Phys. @roc. Supp). 63, 549(1998.

014503-9



