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Renormalization group analysis of the QCD quark potential to order v2

Aneesh V. Manohar* and Iain W. Stewart†
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~Received 13 December 1999; published 12 June 2000!

A one-loop renormalization group analysis of the orderv2 relativistic corrections to the static QCD potential
is presented. The velocity renormalization group is used to simultaneously sum ln(m/mv) and ln(m/mv2) terms.
The results are compared to previous calculations in the literature.

PACS number~s!: 12.39.Hg, 11.10.St, 12.38.Bx
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The quark-antiquark interaction potential is needed
compute properties of heavy quark systems, such asY me-

sons, ort̄ t production near threshold. In this paper, we w
study the renormalization group improved potential at o
loop. The calculation makes use of nonrelativistic QC
~NRQCD!, formulated as an effective theory with an expa
sion in the velocity,v @1–13#. The leading order term inv is
the Coulomb potential, which has been computed to tw
loop order @14,15# using QCD perturbation theory. Th
renormalization group running of this term is given by t
QCD b function, as is well known. We will compute th
one-loop running of the orderv and v2 corrections to the
quark potential, using a formulation of NRQCD introduc
recently@16#, and assumingmv2@LQCD. In QCD the one-
loop potential to orderv2 has been computed previous
@17,18#. For m5m the logarithms in the effective theor
must agree with the logarithmic terms in these computatio
We find agreement when some previously neglected te
are included in the spin-independent part of the quark po
tial. The renormalization group analysis allows one to res
logarithms ofv in the effective theory, which is not possib
using only the one-loop quark potential.

The formalism we will use has been described in R
@16#, and will be called vNRQCD.1 In vNRQCD, one
matches onto QCD atm5m and then runs to lower scales
the effective theory using a velocity renormalization gro
~VRG!. The VRG allows one to simultaneously sum log
rithms of mv andmv2 in the effective theory. In an alterna
tive approach, called pNRQCD@8#, the matching takes plac
in two stages, atm5m and then atm5mv. The logarithmic
corrections to the potential were recently computed us
pNRQCD by Brambillaet al. @19#. Our results agree with
theirs when the resummed logarithms are expanded to li
order. For the spin-dependent terms in the potential we
compare our results to the heavy quark effective the
~HQET! renormalization group analysis of Chenet al. @20#.

The vNRQCD effective Lagrangian is written in terms
fields cp which annihilate a quark,xp which annihilate an
antiquark,Ap

m which annihilate and create soft gluons, a
Am which annihilate and create ultrasoft gluons. T
covariant derivative isDm5]m1 igAm5(D0,2D), so that

*Email address: amanohar@ucsd.edu
†Email address: iain@schwinger.ucsd.edu
1Following a suggestion of A.H. Hoang.
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D05] 01 igA0, D5“2 igA, and involves only ultrasoft
gluon fields. The ultrasoft piece of the effective Lagrangi
we need contains the quark, antiquark, and ultrasoft gl
kinetic energies,

Lu52
1

4
FmnFmn1(

p
cp

†H iD 02
~p2 iD!2

2m
1

p4

8m3J cp

1xp
†H iD 02

~p2 iD!2

2m
1

p4

8m3J xp , ~1!

where the covariant derivatives oncp and xp contain the
color matricesTA and T̄A for the 3 and 3̄ representations
respectively. The coefficients in Eq.~1! do not run due to
reparameterization invariance@21#. The potential interaction
is

Lp52(
p,p8

Vablt~p,p8!cp8a
†cpbxÀp8l

†xÀp t , ~2!

wherea,b,l,t denote color and spin indices. It is conv
nient to write the terms inV in matrix form. For example,

V5
4pas

~p2p8!2
~TA

^ T̄A! ~3!

represents the Coulomb interaction, and corresponds to
~2! with

Vablt~p,p8!5
4pas

~p2p8!2
Tab

A T̄lt
A . ~4!

The diagrams in Fig. 1~a!,1~b! give terms of the form

FIG. 1. QCD diagrams for tree level matching.
©2000 The American Physical Society33-1
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V5~TA
^ T̄A!FV c

(T)

k2
1

V r
(T)~p21p2!

2m2k2
1

V s
(T)

m2
S2

1
V L

(T)

m2
L~p8,p!1

V t
(T)

m2
T~k!G1~1^ 1!

V s
(1)

m2
S2, ~5!

where k5p82p and the notation of Titard and Yndurai
@18# has been used:

S5
s11s2

2
, L~p8,p!52 i

S•~p83p!

k2
,

T~k!5s1•s22
3k•s1k•s2

k2
. ~6!

The terms with coefficientsV r
(T) , V s

(T,1) , V L
(T) , and V t

(T)

are orderv2 corrections to the lowest order Coulomb term
V c

(T) . Matching to the tree level diagram in Fig. 1~a! at m
5m gives

V c
(T)54pas~m!, V r

(T)54pas~m!, V s
(T)52

4pas~m!

3
,

V L
(T)526pas~m!, V t

(T)52
pas~m!

3
, V s

(1)50.

~7!

The annihilation diagram in Fig. 1~b! gives the additional
contributions

V s,a
(T)5

1

Nc
pas~m!, V s,a

(1)5
~Nc

221!

2Nc
2 pas~m!. ~8!

These contributions have been separated from those in
~7! to facilitate comparison with results in the literature.
the color singlet channel there is no annihilation contrib
tion.

We have chosen to use the basis in which the potentiV

is written as a linear combination of 1̂1 andT^ T̄. One
can convert to the singlet and octet potential, using the lin
transformation

FVsinglet

Voctet
G5F1 2CF

1 1
2 CA2CF

G F V1^ 1

VT^ T
G , ~9!

whereCF5(Nc
221)/(2Nc) andCA5Nc .

Potential terms can also be induced by operator mixing
the renormalization group flow. For instance, we will see t
the running at one-loop induces orderv2 terms of the form

V5~TA
^ T̄A!

V 2
(T)

m2
1~1^ 1!

V 2
(1)

m2
, ~10!
01403
,

q.

-

ar

n
t

which are absent at tree level. Additional terms also oc
when matching the potential at higher orders in the lo
expansion. For instance, at one loop the orderv correction

Vsinglet5
V k

(s)p2

muku
~11!

is generated. Reference@18# has V k
(s)52CF(CA

2CF/2)as(m)2 for the matching atm5m.
There are terms in the Lagrangian where ultrasoft glu

couple to potential operators. For instance, the diagram
Fig. 1c generates the term

Lpu5(
p,p8

22ig2

~p82p!4
f ABC~p2p8!•~gAC!

3@cp8
†TAcp xÀp8

†T̄BxÀp #. ~12!

The terms in the soft Lagrangian that we need for o
computation are

Ls5(
q

$uqmAq
n2qnAq

mu21w̄qq”wq1 c̄qq2cq%

2g2 (
p,p8,q,q8

H 1

2
cp8

†@Aq8
m ,Aq

n#Umn
(s)cp

1
1

2
cp8

†$Aq8
m ,Aq

n%Wmn
(s)cp1cp8

†@ c̄q8 ,cq#Y(s)cp

1~cp8
†TBZm

(s)cp!~ w̄q8g
mTBwq!J 1~c→x,T→T̄!.

~13!

Here U, W, Y, andZ are functions of (p,p8,q,q8) and ma-
trices in spin and are generated by integrating out the in
mediate offshell quarks and gluons in Fig. 2. The fieldcq is
the soft ghost field, andwq is the massless soft quark fiel
with nf flavor components. The indexs denotes the relative
order in thev expansion. Performing the matching in Fig.
in Feynman gauge we find

FIG. 2. The Compton scattering diagrams~a!,~b!,~c! generate
the soft gluon coupling~d! in the effective theory. Diagrams analo
gous to~c! but with external ghosts or massless quarks generate
soft ghost and massless soft quark couplings in Eq.~13!.
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U00
(0)5

1

q0
, U0i

(0)52
~2p822p2q! i

~p82p!2
,

Ui0
(0)52

~p2p82q! i

~p82p!2
, Ui j

(0)5
22q0d i j

~p82p!2
,

U00
(1)5

~p81p!•q

2m~q0!2
2

~p81p!•q

m~p82p!2
2

icFs•@q3~p2p8!#

m~p82p!2
,

U0i
(1)52

~p1p8! i

2mq0
1

icF~q3s! i

2mq0
1

q0~p1p8! i

2m~p82p!2

1
icFq0@~p2p8!3s# i

2m~p82p!2
,

Ui0
(1)52

~p1p8! i

2mq0
2

icF@~p2p81q!3s# i

2mq0
1

q0~p1p8! i

2m~p82p!2

1
icFq0@~p2p8!3s# i

2m~p82p!2
,

Ui j
(1)5

icFe i jksk

2m
1@2d i j qm1d im~2p822p2q! j

1d jm~p2p82q! i #F ~p1p8!m1 icFemkl~p2p8!ksl

2m~p82p!2 G ,

U00
(2)52

cD~p82p!2

8m2q0
1

cSi s•~p83p!

4m2q0
1

~12cD!q2

4m2q0

1
~p•q!21~p8•q!2

2m2~q0!3
1

~22cD!~p2p8!•q

4m2q0
,

U0i
(2)52

@p•q~2p1q! i1p8•q~2p82q! i #

4m2~q0!2

1
icF@q3s# i~p1p8!•q

4m2~q0!2
1

~cD21!~p2p81q! i

4m2

1
~2p822p2q! i

4m2 FcD

2
2

cSi s•~p83p!

~p82p!2 G ,

Ui0
(2)52

@p•q~p1p81q! i1p8•q~p1p82q! i #

4m2~q0!2

2
icF@~p2p81q!3s# i~p1p8!•q

4m2~q0!2
1

~cD21!qi

4m2

1
~p2p82q! i

4m2 FcD

2
2

cSi s•~p83p!

~p82p!2 G ,
01403
Ui j
(2)5

~p1p8! i~p1p8! j

4m2q0
1

cF
2~p2p8!•qd i j

4m2q0

1
icF~p1p8! j@~p2p8!3s# i

4m2q0
2

icFe i jkqks•~p1p8!

4m2q0

1
icFe i jksk~p1p8!•q

4m2q0
1

~12cF
2 !qi~p2p81q! j

4m2q0

1
~cF

22cD!q2d i j

4m2q0
1

d i j q0

2m2 FcD

2
2

cSi s•~p83p!

~p82p!2 G ,

Wmn
(0)50, W00

(1)5
1

2m
1

~p2p8!•q

2m~q0!2
,

W0i
(1)52

~p2p81q! i

2mq0
, Wi0

(1)5
2qi

2mq0
, Wi j

(1)5
d i j

2m
,

Y(0)5
2q0

~p82p!2
,

Y(1)5
q•~p1p8!1 icFs•@q3~p2p8!#

2m~p82p!2
,

Y(2)5
cDq0

8m2
2

cSi s•~p83p!q0

4m2~p82p!2
,

Z0
(0)5

1

~p82p!2
, Zi

(0)50, Z0
(1)50,

Zi
(1)5

2~p1p8! i2 icF@~p2p8!3s# i

2m~p82p!2
,

Z0
(2)52

1

4m2 FcD

2
2

cSi s•~p83p!

~p82p!2 G , Zi
(2)50. ~14!

Wmn
(2) is not required for the calculation here. In Eq.~14! we

have setp25p82, since this case is sufficient for our anal
sis. One could also setq05uqu; however, for calculational
purposes we found it simpler to keep factors ofq0 explicit
and ignore the energy poles this generates on the real a

The coefficients of operators in the soft effective Lagran
ian can run. In the soft regime the off-shell quark propag
tors are identical to the quark propagators in HQET@10,11#.
Therefore, the divergence structure in the soft regime is
same as HQET. The running ofLs can be computed indi-
rectly using known results for the HQET Lagrangian:
3-3
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LHQET5c†H iD 01
D2

2m
1

cFg

2m
s•B1

cDg

8m2
@D•E#

1
icSg

8m2
s•~D3E2E3D!J c. ~15!

The soft Lagrangian atm5mn can be computed by firs
scaling the HQET Lagrangian tom5mn, and then matching
to the soft Lagrangian by computing the Compton scatter
amplitude using HQET vertices in Figs. 2~a!,2~b!,2~c!. This
gives thecF ,cD andcS dependence in Eq.~14!. The running
coefficientscF ,cD , andcS were computed in Refs.@22–25#:

cF~n!5z2CA /b0, cS~n!52z2CA /b021, ~16!

cD~n!5z22CA /b01S 20

13
1

32CF

13CA
D @12z213CA /(6b0)#.

Herez5as(mn)/as(m) andb0511CA/324TFnf /3, where
TF51/2 is the index of the fermion representation.

The renormalization group equation for the potential is

m
d

dm F V1^ 1

VT^ T
G5

as

p
GF V1^ 1

VT^ T
G , ~17!

whereG is a 232 matrix and can be calculated as a pow
series inv andas . The one-loop ultrasoft contributions toG
are straightforward to compute. Assume that the poten
has the form

V5~XA
^ X̄A!V~p,p8!, ~18!

whereXA is eitherTA or 1. An ultrasoft loop integrates ove
the ultrasoft loop momentum, and as a result of the multip
expansion does not involve the labelsp andp8, so one can
compute all one-loop divergent graphs with a single insert
of V. In the Feynman gauge, the leading order graphs invo
the ultrasoft vertex from theD0 term in Lu . The sum of all
the graphs has no ultraviolet divergence, so there is no o
v0 ultrasoft contribution toG @16#. Thus, the running of the
quark potential involves mixing between different powers
v, i.e. running of thev2 term proportional to thev0 term. To
the order we are working, we need the ultrasoft vertices fr
the p•A/m operator and insertions ofp•“/m. Graphs with
one insertion of¹2/(2m) or p4/(8m3) are the same order in
the power counting but do not have ultraviolet logarithm
divergences. Graphs with one insertion of the operator in
~12! and onep•A/m vertex also do not contribute for th
same reason. The graphs which contribute to this mixing
listed in Table I and give

G (us)

5
2

3m2F CFk2 2C1k2

2k2 S CF1
1

4
Cd2

3

4
CAD k21CA~p21p82!G ,

~19!
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where

C15
Nc

221

4Nc
2 5

CFTF

dimF
, dABCdABD5CddCD, ~20!

so Cd5(Nc24/Nc). Here dimF is the dimension of the fer-
mion representation. In the VRG method introduced in R
@16#, the scalem in ultrasoft loops ismn2, and the ultrasoft
coupling constant isas(mn2). Therefore, the ultrasoft con
tribution to Eq.~17! can be written as

n
d

dn F V1^ 1

VT^ T
G5

2as~mn2!

p
G (us)F V1^ 1

VT^ T
G . ~21!

From Eqs.~19! and ~21! we see that the Coulomb potenti
induces running inV 2

(1) , V 2
(T) , and V r

(T) proportional to
V c

(T) .
In addition to the ultrasoft loops, one has the soft con

bution shown in Fig. 3. For the soft gluon loops all the i
frared divergences are converted to ultraviolet divergen
by tadpole diagrams, so with dimensional regularization
1/e poles contribute to the anomalous dimensions. The div
gent parts of the soft gluon, ghost, and quark loops in Fig
give the running

m
d

dm F V1^ 1

VT^ T
G5as

2F B1^ 1

BT^ T
G , ~22!

where fornf massless quarks we find

B1^ 15
14

3m2 C1 ,

BT^ T52
7

6m2 Cd1CAH 2
22

3k2
1

~3914cF
2 !

6m2 2
19~p21p82!

3m2k2

1
~11cS110cF!

3m2 L~p8,p!1
cF

2

9m2 S21
5cF

2

18m2 T~k!J
1

8TFnf

3 H 1

k2
1

~2cF
22cD21!

4m2 1
~p21p82!

2m2k2

2
~cS12cF!

2m2 L~p8,p!2
cF

2

3m2 S22
cF

2

12m2 T~k!J . ~23!

Here B1^ 1 and BT^ T depend on the scalem5mn through
their dependence oncF , cD , andcS . In the VRG, the soft
coupling constant isas(mn), so the soft contribution to the
running is

n
d

dn F V1^ 1

VT^ T
G5as

2~mn!F B1^ 1~mn!

BT^ T~mn!
G . ~24!
3-4
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The total VRG running of the potential is given by addin
Eqs.~21! and~24!. The running of the Coulomb potential i
proportional to the beta function:

n
d

dn
V c

(T)522b0as
2~mn!. ~25!

Integrating Eq.~25! and using the boundary condition in E
~7! gives the solution

Vc~n!54pas~mn!, ~26!

and large logarithms can be avoided by choosingn
5uku/m. This gives the expected result that the renormali
tion group improved Coulomb potential is given by choosi
as5as(uku).

TABLE I. Ultrasoft contributions to the running of the potenti
in the Feynman gauge. The dot denotes an insertion of the pote
in Eq. ~18!. The p•A column gives the momentum factor from
diagrams where the gluon coupling is due to thep•A interaction in
the Lagrangian. Thep•“ column gives the factor from graphs i
which the gluon vertices are from theD0 interaction, and there are
two insertions of thep•“ operator on the quark lines in the loop. I
d5422e dimensions the ultraviolet divergent part of a diagram
2 iV(p,p8)as /(2pem2) times the color and momentum factor
The sum of diagrams is gauge independent.
01403
-

Orderv corrections to the potential such as the one in E
~11! do not run at one-loop. The non-trivial result is th
renormalization group equations for the orderv2 terms in the
potential. Combining Eqs.~21!, ~24!, and using~26! we find

n
d

dn
V r

(T)522S b01
8

3
CADas

2~mn!

1
32

3
CAas~mn!as~mn2!,

n
d

dn
V 2

(T)5H 1

2
b0@11cD~n!22cF

2~n!#1
1

6
CA@28211cD~n!

126cF~n!2#2
7

6
CdJ as

2~mn!1
4

3
~4CF1Cd

23CA!as~mn!as~mn2!,

n
d

dn
V 2

(1)5
14

3
C1as

2~mn!2
16

3
C1as~mn!as~mn2!,

n
d

dn
V s

(T)5
1

3
~2b027CA!cF

2~n!as
2~mn!,

n
d

dn
V t

(T)5
1

6
~b022CA!cF

2~n!as
2~mn!,

n
d

dn
V L

(T)5$b0@cS~n!12cF~n!#24CAcF~n!%as
2~mn!.

~27!

Note that the soft contributions to the running depend
as

2(mn), and the ultrasoft contributions to the running d
pend onas(mn)as(mn2). This is because the soft gluo
coupling is g(mn), and the ultrasoft gluon coupling i
g(mn2). The ultrasoft gluon couples via a multipole
expanded interaction, so the ultrasoft interaction vertex d
not involve momentum transfers of ordermv.

Our results can be checked by comparing with the o
loop formula for the color singlet quark potential in Re
@18#. The nonrelativistic expansion of the QCD calculatio
has ln(uku/m), ln(m/m), and ln(l/m) terms, where a finite
gluon massl was introduced as an infrared regulator. B
explicit computation of the box and crossed box diagra

FIG. 3. Soft contributions to the running of the potential. T
loop includes soft gluons, ghosts, and massless quarks. Graphs
two s50 vertices from Eq.~13! give the running of the coefficien
V c

(T) . Graphs with ones50 and ones51 vertex vanish, while
those with ones50 and ones52 or twos51 vertices contribute
to the running of the orderv2 corrections to the potential.

ial
3-5
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@26,27# we found that the spin independent potential in E
~19! of Ref. @18# is missing the orderv2 term2

2
4

3
CFCAas

2 ~p1p8!2

m2k2
lnS l

uku D . ~28!

The ln(uku) and ln(l) dependence in the full theory should b
e
ng

he

e

ef

01403
.reproduced by the effective theory, so withm5m all QCD
logarithms should be reproduced. We find that the log(l/m)
terms are reproduced by the ultrasoft diagrams in Table I
that the log(uku/m) terms are reproduced by the soft loops
Fig. 3.

Solving the VRG equations in Eq.~27! with the tree level
boundary conditions in Eq.~7! gives3
V r
(T)~n!54pas~mn!2

16CA

3
as~mn!as~m!lnS mn

m D1
64pCA

3b0
as~m!lnF as~mn!

as~mn2!
G ,

V 2
(T)~n!5

p@CA~352CF191Cd2144CA!23b0~33CA132CF!#

39b0CA
@as~mn!2as~m!#

1
8p~3b0211CA!~5CA18CF!as~m!

13CA~6b0213CA!
@z[1213CA /(6b0)]21#

1
p~b025CA!as~m!

~b022CA!
@z(122CA /b0)21#1

8p~4CF1Cd23CA!

3b0
as~m!lnF as~mn!

as~mn2!
G ,

V 2
(1)~n!5

14C1

3
as~mn!as~m!lnS mn

m D2
32pC1

3b0
as~m!lnF as~mn!

as~mn2!
G ,

V s
(T)~n!5

2pas~m!

~2CA2b0! FCA1
1

3
~2b027CA! z(122CA /b0)G , V s

(1)~n!50,

V t
(T)~n!52

pas~m!

3
z(122CA /b0), V L

(T)~n!52pas~m!@z24z(12CA /b0)#, ~29!
for
e

e

ad-
are
ms

ion
where z5as(mn)/as(m). The annihilation contributions
can be accounted for by adding the expressions in Eq.~8! to
Eq. ~29!.

In Ref. @20#, the leading logarithmic corrections to th
spin-dependent terms in the potential were calculated usi
formulation based on HQET. Our expressions forV t

(T) and
V L

(T) agree with theirs, but our result forV s
(T) disagrees with

their value. Re-expanding our expression inas(m) and set-
ting n5uku/m gives

V s
(T)524pas~m!/31~2b0/327CA/3!as

2~m!lnS uku
m D1•••.

~30!

The ln(uku/m) term agrees with the corresponding term in t
one-loop QCD result in Ref.@28# where we set the QCD

2Note that in the calculation in Ref.@17# an expansion was mad
in (p1p8)2/k2, so that the term in Eq.~28! was dropped.

3In NRQED the results are simpler since the coupling in the
fective theory does not run.
a

scale parameterm5m. This does not seem to be the case
the result in Ref.@20#, which appears to be missing th
7CA/3 term in Eq.~30!.

The logarithmic corrections to the coefficients in th
quark potential were considered by Brambillaet al. @19# us-
ing pNRQCD, but were not resummed. Since only the le
ing perturbative logarithms were included, we can comp
our results to theirs by expanding the resummed logarith
in Eq. ~29!. Brambilla et al. give expressions for theV’s in
the color singlet channel containing terms of the form

as~r !, asas~r !ln~mr!, asas~r !ln~mr !. ~31!

For the soft contributions replacingas(r )→as(mn) and
ln(r)→ln(1/mn) in Ref. @19# gives agreement4 with expand-
ing the soft contributions in Eq.~29! aboutz51 @recalling
thatz512b0 /(2p)as(mn)ln(mn/m)]. For the ultrasoft con-

-

4When comparing the expansion of the color singlet combinat
V 2

(1)2CFV 2
(T) the replacements Cd→8CF23CA and C1

→CFCA/22CF
2 are also necessary to obtain agreement.
3-6
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tributions replacing ln(m/m)→ln(mn2/m) in Ref. @19# gives
agreement with the ultrasoft contributions in Eq.~29! with
the expansion

lnF as~mn!

as~mn2!
G5

b0

2p
a~mn!lnS mn2

mn D1•••

5
b0

4p
a~mn!lnS mn2

m D1•••. ~32!

It would be interesting to compare our resummed coe
cients to the analogous results computed in pNRQCD. Re
that there is an important distinction between pNRQCD a
vNRQCD. In pNRQCD the scalesmv and mv2 are treated
independently, while vNRQCD builds in the fact that th
scalesmv andmv2 are not independent. Thus, in vNRQCD
the scaling of soft terms fromm to mv, and ultrasoft terms
from m to mv2, occurs simultaneously, and ln(mv) and
ln(mv2) terms are resummed together.

To see the effect of the running on the value of the co
ficients in the potential, consider the case of top quark p
duction near threshold. Projecting onto the color sing
channel gives the singlet coefficientsV i

(s)5V i
(1)2CFV i

(T) .
Using as(mt)50.108, the tree level values in Eq.~7! are

V r
(s)521.81, V 2

(s)50, V s
(s)50.60,

V L
(s)50.15, V t

(s)52.71. ~33!
D

01403
-
all
d

f-
-
t

For a Coulombic system the velocityv is determined by
solving as(mv)5v. Using mt5175 GeV and the one-loop
running ofas(m) with nf55 givesv50.145. Forn5v the
running coefficients in Eq.~29! are

V r
(s)521.49, V 2

(s)50.63, V s
(s)50.53,

V L
(s)50.16, V t

(s)53.11. ~34!

The most substantial change is to the value ofV 2
(s) which

was zero at tree level. Using the results of Brambillaet al.
with mr51/v andm5mv2 gives

V r
(s)521.78, V 2

(s)50.68, V s
(s)50.53,

V L
(s)50.16, V t

(s)53.15, ~35!

indicating that resummation of the logarithms has the larg
effect onV r

(s) . For the remaining coefficients the resumm
values in Eq.~34! are fairly close to the coefficients with
perturbative logarithms in Eq.~35!.
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