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Renormalization group analysis of the QCD quark potential to order v?
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A one-loop renormalization group analysis of the ord@relativistic corrections to the static QCD potential
is presented. The velocity renormalization group is used to simultaneously smmin@nd Inf/mov?) terms.
The results are compared to previous calculations in the literature.

PACS numbgs): 12.39.Hg, 11.10.St, 12.38.Bx

The quark-antiquark interaction potential is needed top°=%+igA°, D=V —igA, and involves only ultrasoft
compute properties of heavy quark systems, such ase-  gluon fields. The ultrasoft piece of the effective Lagrangian
sons, ortt production near threshold. In this paper, we will we need contains the quark, antiquark, and ultrasoft gluon
study the renormalization group improved potential at oneinetic energies,
loop. The calculation makes use of nonrelativistic QCD
(NRQCD), formulated as an effective theory with an expan- 1 (p—iD)2  p*
sion in the velocityp [1-13]. The leading order term in is L,=— ZF’”F,WJFE ¢g{ iD0— T+ —3] o
the Coulomb potential, which has been computed to two- P 8m
loop order [14,15 using QCD perturbation theory. The
renormalization group running of this term is given by the +Xg‘ iD%—
QCD g function, as is well known. We will compute the
one-loop running of the order andv? corrections to the

quark potential, using a formulation of NRQCD introducedyhere the covariant derivatives af, and x, contain the
recently[16], and assumingnv?> A ocp. In QCD the one- : A A o ;

| ’ | to orden? has b QCD tod o] color matricesT# and T for the 3 and 3 representations,
00p potential to ordew” has been computed previously regnectively. The coefficients in E¢L) do not run due to

[17,18. For u=m the logarithms in the effective theory ronarameterization invarian§21]. The potential interaction
must agree with the logarithmic terms in these computationsgg

We find agreement when some previously neglected terms
are included in the spin-independent part of the quark poten-
tial. The renormalization group analysis allows one to resum
logarithms ofv in the effective theory, which is not possible
using only the one-loop quark potential.

The formalism we will use has been described in Ref. o )
[16], and will be called vNRQCIj In VNRQCD, one vv_herea,ﬁ,_)\,r denote c_olo_r and spin indices. It is conve-
matches onto QCD at=m and then runs to lower scales in nient to write the terms iV in matrix form. For example,
the effective theory using a velocity renormalization group
(VRG). The VRG allows one to simultaneously sum loga-
rithms of my andmu? in the effective theory. In an alterna- =
tive approach, called pNRQC[B], the matching takes place (p—p')?
in two stages, at.=m and then ajw=muv. The logarithmic
corrections to the potential were recently computed usingepresents the Coulomb interaction, and corresponds to Eq.
PNRQCD by Brambillaet al. [19]. Our results agree with (2) with
theirs when the resummed logarithms are expanded to linear
order. For the spin-dependent terms in the potential we also
compare our results to the heavy quark effective theory ) Amas _, —

(HQET) renormalization group analysis of Chenal. [20]. Vapr(P,P )=ﬁTaBT>\T- 4

The vNRQCD effective Lagrangian is written in terms of P=p
fields ¢, which annihilate a quarky, which annihilate an
antiquark, A which annihilate and create soft gluons, and The diagrams in Fig. (&), 1(b) give terms of the form
A* which annihilate and create ultrasoft gluons. The

covariant derivative iD*=g*+igA*=(D° —D), so that E : : E
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Following a suggestion of A.H. Hoang. FIG. 1. QCD diagrams for tree level matching.
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(T M(p2+p? (T) LA § oy & fmam%[;@m—wm
V=(TA2TA) Ve YR Vs g N W E
k2 2m?k? m? a8 e ,
) (b) ©)
VS\T) V{I’) V(sl)
+ FA(p’,p)Jr FT(k) +(1e1) e SN i q q'i
where k=p’—p and the notation of Titard and Yndurain LA

[18] has been used:

FIG. 2. The Compton scattering diagrar@,(b),(c) generate
the soft gluon couplingd) in the effective theory. Diagrams analo-

S= o1t o, , A(p',p)=-— ,M gous to(c) but with external ghosts or massless quarks generate the
2 k2 soft ghost and massless soft quark couplings in(&8§).
3k- ok o which are absent at tree level. Additional terms also occur
T(k):(;l.gz_—lz_ (6)  when matching the potential at higher orders in the loop
k2 expansion. For instance, at one loop the orgdeorrection
The terms with coefficient(", V™, V(D and v{" ()2
are orderv? corrections to the lowest order Coulomb term, Veingie= kT (11)
V(. Matching to the tree level diagram in Fig(al at u Snget T m[k|
=m gives
is generated. Reference[18] has V{¥=—Cg(C,
47 ag(m) — Cg/2)ag(m)? for the matching aj.=m.
ViD=4maym), V{V=4maym), V{=- —3 There are terms in the Lagrangian where ultrasoft gluons

couple to potential operators. For instance, the diagram in

Fig. 1c generates the term
mag(m)

Vi0=—6maym), v{V=——0— V=0
7 —2ig® ,
@ Lpu= 2 ﬁfABC(D—P ) (gA°)
The annihilation diagram in Fig. () gives the additional Pt (PP
contributions X[l/,p,TTA%X_p,T?BX_p]_ (12)
(Nﬁ—l) The terms in the soft Lagrangian that we need for our

1
M 1)_
Vsa= masM, Vsa 2N mas(M). & omputation are

These contributions have been separated from those in Eq. . .

(7) to facili'gate comparison with _results in'the I_iterature.' In L',S:E {|q“Ag—q”Ag|2+ eqfeqt cqqch}
the color singlet channel there is no annihilation contribu- q

tion.

1 1 1 1 1 14 (o3
We have chosen to use the basis in which the pote¥tial —g? E , {Ezpp,T[Ag, AUy
is written as a linear combination ofgll andT®T. One p.p-.a.9
can convert to the singlet and octet potential, using the linear 1 _
transformation +3 Yo (AL, AW g+ i T eqr ,Cq1Y Ol
A 1 -C o) N =
[Vsmglet}: P Vaer| © + (T2 ) (g v TR0 g) | + (3, T—T).
Voctet 1 %CA_CF VT®T
(13

whereCg=(N2—1)/(2N.) andC,=N,.
Potential terms can also be induced by operator mixing irHere U, W, Y, andZ are functions of §,p’,q,q9’) and ma-
the renormalization group flow. For instance, we will see thatrices in spin and are generated by integrating out the inter-
the running at one-loop induces order terms of the form  mediate offshell quarks and gluons in Fig. 2. The fields
the soft ghost field, ang, is the massless soft quark field

NIQ) P with n; flavor components. The index denotes the relative
V:(TA®?A)L2+(1® 1)%, (100  order in thev expansion. Performing the matching in Fig. 2
m m in Feynman gauge we find
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UO= u, Ui‘j‘)’=L52, + PRI - pcR:
(P'—p) (p'=p)
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00 2 0y2 I )2 I A2
m(q)®  m(p’—p) m(p’—p) ) 2di o _
N (ce—cp)g-é8! g Co cgo(p’' Xp)
yw—_ (PP) ice(@xe)  q’(p+p’) 4m?*q° 2m?[ 2 (p'-p)?
o 2maP 2maP 2m(p’ —p)?
. , ; 1 —n’)-
iceq’[(p—p') X o' W=, W(1)=—+w,
+ , 1224 00 2m zm(qO)Z
2m(p’—p)?
sw_ (TR ied(p-p'taxel  aprp) oy PTREAT g md g O
o’ — 0 0 ) > 0] ’ i0 0’ ij 2m’
2mq 2mq 2m(p’ —p) 2mc? 2mq
H 0 A i
L icea’l(p—p )>2<<r]" —q°
2m(p’—p) Y=
(p'=p)?
u®= iCFEijkok+[25“'q”‘+ 8™(2p’' —2p—q)’
! 2m v 3 (PFpticeo[aX(p—p')]
N4 _p 2m(p’—p)? ’
. ;o (ptp)Micee™!(p—p’) e’
+8™(p—p'—q)'] = ,
2m(p’ —p)
y@_ o4 cdo-(p'xp)g’
y@—_ S’ =P)? csie(p'xp)  (1-co)q? 8m*  4m’(p'—p)*
00 8m?q° 4m?q° 4m?q°
/ , 1
(P-q)?+(p"-q)?  (2—cp)(p—p')-q 0= , zZ©=0, z{P=o0,
+ + : (p’ —p)2 '
2m2(q°)3 4m?q° p—p
@)= [p-a(2p+a)'+p’-q(2p'—q)'] Sm_ ~ (PP —icel(p—p")x o]
4mP(q°)? ' 2m(p’ —p)? ’
L icelaxel(pp)-a  (co-1)(p—p'+a)
1 |c csio-(p' X
am*(q°)? 4m? ZP=-—| - = 0,(p 2p) . Z®=o. (14)
, | o am?[ 2 (p'—p)
L (2P =2p=a)co  Csle-(p'Xp)
4m? 2 (p'—p)? W) is not required for the calculation here. In EG4) we
_ _ have sep?=p’?, since this case is sufficient for our analy-
@) [p-q(p+p' +q)'+p' -q(p+p'—q)'] sis. One could also se°=|q|; however, for calculational
Ulo'=~ 4m2(q°)? purposes we found it simpler to keep factorsoSfexplicit
and ignore the energy poles this generates on the real axis.
ice[(p—p'+q)X ol (p+p')-q (cp—1)q The coefficients of operators in the soft effective Lagrang-
— > 0 + 5 ian can run. In the soft regime the off-shell quark propaga-
4m(q") 4m tors are identical to the quark propagators in HQED,11].
VN . ' Therefore, the divergence structure in the soft regime is the
+ u o _ M same as HQET. The running dfs can be computed indi-
4m? 2 (p'—p)? rectly using known results for the HQET Lagrangian:
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g where
Lyqer=¢ ['D0+2m+2_0' B+_[D E]
NZ—1 CT
. Ci=——5 =——, d'8%*B0=C,s%°, (20
icsg 4N dimg
+——0 (DXE—EXD) . (15)
8m

s0Cyq=(N;—4/N.). Here dim: is the dimension of the fer-
The soft Lagrangian a=mv can be computed by first mion representation. In the VRG method introduced in Ref.
scaling the HQET Lagrangian f@=mpv, and then matching [16], the scaleu in ultrasoft loops ismv?, and the ultrasoft
to the soft Lagrangian by computing the Compton scatteringoupling constant isx(mv?). Therefore, the ultrasoft con-
amplitude using HQET vertices in Figs(a?2(b),2(c). This  tribution to Eq.(17) can be written as
gives thecg ,cp andcg dependence in Eq14). The running

coefficientscg ,cp, andcg were computed in Ref§22—-25: d [Vier] 2agmi?) Vies
S
v— =————T1U9 : (21)
cr(v)=z CalPo,  cg(v)=2z CalPo—1, (16) dv|Vrigr ™ TeT
32Ck From Eqgs.(19) and(21) we see that the Coulomb potential
—2CAIB _ ,—13CA/(6B)
Co(v) =2 TAToH| 3+ 73~ 13C, [1=z A, induces running inVY, VY and V(" proportional to
v,
Herez=ay(mv)/ay(m) andBo=11C,/3—4Ten(/3, where In addition to the ultrasoft loops, one has the soft contri-
Te=1/2 is the index of the fermion representation. bution shown in Fig. 3. For the soft gluon loops all the in-

The renormalization group equation for the potential is frared divergences are converted to ultraviolet divergences
by tadpole diagrams, so with dimensional regularization all
d 17) 1/e poles contribute to the anomalous dimensions. The diver-
Md,u gent parts of the soft gluon, ghost, and quark loops in Fig. 3
give the running
wherel" is a 2X2 matrix and can be calculated as a power

V1®1 as V1®1

Vier| Vret

series inv andag. The one-loop ultrasoft contributions o d [Vies Bios

are straightforward to compute. Assume that the potential N § N (22

has the form Fdu Vier] *|Bret
V=(X*&X"V(p,p'), (18)  where forn; massless quarks we find

whereX” is eitherT? or 1. An ultrasoft loop integrates over 14

the ultrasoft loop momentum, and as a result of the multipoles, ., = —C,,
expansion does not involve the lab@lsandp’, so one can 3m

compute all one-loop divergent graphs with a single insertion

of V. In the Feynman gauge, the leading order graphs involve 7 22 (39+ 4C§) 19(p2+p'?)
the ultrasoft vertex from th®° term in £,,. The sum of all Byyr=— chﬁ— CA[

the graphs has no ultraviolet divergence, so there is no order

v ultrasoft contribution td” [16]. Thus, the running of the

3k2 M’ 3m2

quark potential involves mixing between different powers of i (11cst10ck) AP’ )+ Cz 82 SCE T(k)
v, i.e. running of they? term proportional to the° term. To 3m? T Tem?
the order we are working, we need the ultrasoft vertices from
the p- A/m operator and insertions @-V/m. Graphs with 8Ten; | 1 (ZCIZZ_CD_]-) (p?>+p'?)
one insertion oV?2/(2m) or p*/(8m?) are the same order in + 3 |2 a2 o
the power counting but do not have ultraviolet logarithmic K 2m’k
divergences. Graphs with one insertion of the operator in Eq. 2 2
(12) and onep-A/m vertex also do not contribute for the _ (Cst ZCF)A(D, _C_Sz Cr TK) . (23
same reason. The graphs which contribute to this mixing are 2m? 12m?
listed in Table | and give
rws HereB,,1 and By, 1 depend on the scale=mwv through
their dependence oy, cp, andcs. In the VRG, the soft
Ck? —C.K2 coupling constant istg(mv), so the soft contribution to the
5 F . running is
__° 1 3
“3m2| —k® | Ce+ ;Cq— ;Ca|K2+Ca(p?+p'?) |
4 4 d | Vie1 ) Bl@l(mV)} ”
(19 dv VreT as(me) Bret(mv) |’ 9
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TABLE I. Ultrasoft contributions to the running of the potential
in the Feynman gauge. The dot denotes an insertion of the potential
in Eqg. (18). The p-A column gives the momentum factor from
diagrams where the gluon coupling is due to thé\ interaction in
the Lagrangian. Th@-V column gives the factor from graphs in
which the gluon vertices are from ttiz° interaction, and there are
two insertions of thep- V operator on the quark lines in the loop. In o . .
d=4—2e¢ dimensions the ultraviolet divergent part of a diagram is  F!G- 3. Soft contributions to the running of the potential. The

—iV(p,p")as/(2em?) times the color and momentum factors. loop includes soft gluons, ghosts, and massless quarks. Graphs with
The sum of diagrams is gauge independent. two o=0 vertices from Eq(13) give the running of the coefficient

VD Graphs with oner=0 and ones=1 vertex vanish, while
those with oner=0 and oner=2 or twoo=1 vertices contribute
to the running of the order? corrections to the potential.

Diagram Color Factor p-A p-V

§ % 4 Orderv corrections to the potential such as the one in Eq.
b Yy ab a — _1l/h2 /2 .n
rxrex PP 3PP PP (11) do not run at one-loop. The non-trivial result is the
renormalization group equations for the ordérterms in the
potential. Combining Eq<21), (24), and using26) we find
K X“@TbXaTb P'PI —%(p2+p'2+p-p')
ViV(T)Z—Z B +§C a2(mv)
dv’" 0 3 A S
><§ TbXa ® TbXa pl2 %p/2 32 5
+ gcAaS(mv)as(mv ),
XeaTb XaTb 2 1.2 d 1 1
§< N ’ " v VD=1 5 Bl L+Co(v) —2CR(v)]+5 CAl28~ 11cp(v)
o 2 ! 2 4
T'X*@ X*T*  —p-p' —5(P*+p?-p-Pp) +26cr(v)]— g Cap as(mv) + 3 (4Ce+Cq
_3CA)a's(mV)as(mV2)a
% XeTh @ Tt Xe p-p —%(pz-l-P'z—P'pl)
ViV(l)=EC a2(my)— 1—6C ag(mv)agd(mv?)
dv 2 3 1%s 3 1&s 5 ’
i} d M . 2 2
>% ChXr o X —(pFep?)  pPap? v V= 2(26-TCacE(v)ad(my),
d 1
v V0= 5 (Bo=2CA)CE(v) ad(mw),

The total VRG running of the potential is given by adding
Egs.(21) and(24). The running of the Coulomb potential is Vd—V(T)={,30[Cs( ) +2CE(v)]— 4CCe(v) a2(my).

proportional to the beta function: 4
(27)
d
VEV((:T)Z—ZIBoag(mV)_ (250  Note that the soft contributions to the running depend on

ag(mv), and the ultrasoft contributions to the running de-
pend onag(mv)ag(mv?). This is because the soft gluon
Integrating Eq(25) and using the boundary condition in Eq. coupling is g(mv), and the ultrasoft gluon coupling is

(7) gives the solution g(mv?). The ultrasoft gluon couples via a multipole-
expanded interaction, so the ultrasoft interaction vertex does
Ve(v)=4mag(my), (26)  not involve momentum transfers of ordew .

Our results can be checked by comparing with the one-
loop formula for the color singlet quark potential in Ref.
and large logarithms can be avoided by choosing [18]. The nonrelativistic expansion of the QCD calculation
=|k|/m. This gives the expected result that the renormalizahas In(k|/m), In(u/m), and Ing/m) terms, where a finite
tion group improved Coulomb potential is given by choosinggluon mass\ was introduced as an infrared regulator. By
as=ag(|K]). explicit computation of the box and crossed box diagrams
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[26,27] we found that the spin independent potential in Eq.reproduced by the effective theory, so wijith=m all QCD

(19) of Ref.[18] is missing the ordep? tern?

4 (p+p"H)? [ A
_ 2} 7 _
3CrCaal=oin o). 28)

logarithms should be reproduced. We find that the Ndgy
terms are reproduced by the ultrasoft diagrams in Table | and
that the logfk|/m) terms are reproduced by the soft loops in
Fig. 3.

Solving the VRG equations in ER7) with the tree level

The In(k|) and In.) dependence in the full theory should be boundary conditions in Eq7) gives

(-4 16C, | (mv) 64mwC, | ag(mv)
Vil(v)= Was(mV)_Tas(mV)as(m)n H + 35, ag(m)in Wa
V(ZT)(V)= W[CA(352C,:+91Cd—31944CA)—3,80(33CA+ 32CF)][aS(mV)—aS(m)]
BoCa
87T(3B0_11CA)(SCA+8CF)aS(m)[2[1_13CA/(650)]_1]
13CA(6B80—13Cp)
w(Bo—5Cp) ag(mM) (1-2Ca/B0) 8m(4C+Cy—3C,p) ag(mv)
(Bo2cy & Y 38 )
14C mv\ 327C ag(my)
V(Zl)(y)zTlas(mv)as(m)ln(ﬁ)— 3B01as(m)ln W ,
2mag(m) 1 _
(T) I A - _ (1-2Cx/Bg) (1) —
V)= e s | Cat 5(260-TCh) 2 . VOm)=0,

Tag(m)
VgT)( V) = — STZ(lich/BO)'

where z= ag(mv)/ag(m). The annihilation contributions
can be accounted for by adding the expressions in&do
Eq. (29).

In Ref. [20], the leading logarithmic corrections to the

VD(v)=2may(m)[z— 4z~ Calko)],

(29

scale paramete =m. This does not seem to be the case for
the result in Ref[20], which appears to be missing the
7C,/3 term in Eq.(30).

The logarithmic corrections to the coefficients in the

spin-dependent terms in the potential were calculated using @uark potential were considered by Brambiaal. [19] us-

formulation based on HQET. Our expressions ¥ and
V(D agree with theirs, but our result for” disagrees with
their value. Re-expanding our expressionag(m) and set-
ting v=|k|/m gives

K|

VD= — daray(m)/3+(2Bo/3- TC,/3) “5(”‘)'”(? T

(30

ing pPNRQCD, but were not resummed. Since only the lead-
ing perturbative logarithms were included, we can compare
our results to theirs by expanding the resummed logarithms
in Eq. (29). Brambilla et al. give expressions for thg’s in

the color singlet channel containing terms of the form

ag(r), asag(r)in(mr), asag(r)in(ur). (31

For the soft contributions replacingg(r)— as(mv) and

The In(k|/m) term agrees with the corresponding term in the|n(r)—In(1/mv) in Ref.[19] gives agreemefiwith expand-

one-loop QCD result in Ref28] where we set the QCD

°Note that in the calculation in Ref17] an expansion was made
in (p+p’)%/k?, so that the term in Eq28) was dropped.

3In NRQED the results are simpler since the coupling in the ef-V{Y—cC VD

fective theory does not run.

ing the soft contributions in Eq29) aboutz=1 [recalling
thatz=1— By/(2) as(mv)In(mv/m)]. For the ultrasoft con-

“When comparing the expansion of the color singlet combination
the replacements C4—8Cr—3C, and C;
—CpCpl2— C,% are also necessary to obtain agreement.
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tributions replacing Ing/m)—In(m#/m) in Ref. [19] gives
agreement with the ultrasoft contributions in Eg9) with
the expansion

ag(my) | Bo mv?®
2
=f—£_a(mv)ln(m—v +eeo (32

It would be interesting to compare our resummed coeffi

cients to the analogous results computed in pPNRQCD. Recall

PHYSICAL REVIEW 2 014033

For a Coulombic system the velocity is determined by
solving ag(mv)=v. Usingm;=175 GeV and the one-loop
running of ag(u) with ni=5 givesv =0.145. Forv=v the
running coefficients in Eq(29) are

VvE=-149, V=063, V=053,
vP=0.16, V®=3.11. (34)

The most substantial change is to the valueV§? which
as zero at tree level. Using the results of Brambdtaal.

— — 2 i
that there is an important distinction between pNRQCD andVith mr=21/v andu=mo* gives

vNRQCD. In pNRQCD the scalesw andmv? are treated
independently, while vYNRQCD builds in the fact that the
scalesmv andmo? are not independent. Thus, in VYNRQCD,
the scaling of soft terms fromrm to mv, and ultrasoft terms
from m to mv?, occurs simultaneously, and ing) and
In(mv?) terms are resummed together.

To see the effect of the running on the value of the coef

ficients in the potential, consider the case of top quark pro
t

duction near threshold. Projecting onto the color single
channel gives the singlet coefficientd® =y —c V(™.
Using ag(m;) =0.108, the tree level values in E) are

vP=-181, vP=0, VP=0.60,

V=015 V®=271. (33

yO=-178 VP=068 V=053,
vP=0.16, v{¥=3.15, (39

indicating that resummation of the logarithms has the largest

effect onV{®). For the remaining coefficients the resummed

values in Eq.(34) are fairly close to the coefficients with
perturbative logarithms in Ed35).
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