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Helicity skewed quark distributions of the nucleon and chiral symmetry
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We compute the helicity skewed quark distributiddsand E in the chiral quark-soliton model of the
nucleon. This model emphasizes correctly the role of spontaneously broken chiral symmetry in the structure of
the nucleon. Itis based on the larije-picture of the nucleon as a soliton of the effective chiral Lagrangian and
allows us to calculate the leading twist quark and antiquark distributions at a low normalization point. We
discuss the role of chiral symmetry in the helicity skewed quark distributibrend E. We show that a
generalization of soft pion theorems, based on chiral Ward identities, leads in the regiafof< ¢ to the
pion pole contribution t& which dominates at small momentum transfer.

PACS numbds): 12.38.Lg, 13.60.Fz, 13.60.Le

I. INTRODUCTION —&<x<¢ have properties of distribution amplitudes. This
feature, being very important for the understanding of

Recently, a new type of parton distributions—4] has SPD’s, requires a field theoretic description of nucleon’s
attracted considerable interest, the so-called skewed part@®nstituents and that is the reason why it can not by repro-
distributions (SPD’s, which are generalizations simulta- duced in the bag model.
neously of the usual parton distributions, distribution ampli- ~Our aim now is to compute helicity skewed quark distri-
tudes, and the elastic nucleon form facttir a review see  butions of the nucleon using the methods of Réfl]. We
[5]). Taking thenth moment of the SPD’s one obtains the shall see that generallzatlog of low energy theorems requires
form factors(i.e., nonforward matrix elementsf the spinn,  that the skewed distributioR develops a pion pofeat AZ
twist-two quark, and gluon operators. On the other hand, ir=. of the form
the forward limit the SPD’s reduce to the usual quark, anti-
quark, and gluon distributions. In other words, the SPD’'s =(3) 5 49,M{ X
interpolate between the traditional inclusifgarton distribu- lim EZ(x,§,A%)=— |§|(A2—_mz)0(|x|<|§|)®w £
tions) and exclusive(form factors characteristics of the AZom? g
nucleon and thus provide us with a considerable amount of @)
new information on nucleon structure. o . .

The SPD’s are not accessible in standard inclusive meav_vhere(bw(z) is distribution amplitude of tEe pion. In Refs.
surements. They can, however, be measured in deeply virtub» 13| it was shown that this contribution 6 leads to con-
Compton scatteringDVCS) and in hard exclusive leptopro- S|derabl_e enhancement (_)f the amplitude of hf_;lrd exclu5|_ve
duction of mesons. The very possibility to probe SPD’s inProduction of charged pions and to large azimuthal spin
these reactions is due to QCD factorization theorem of Ref@Symmetry in excluswgr prodgctlon[13]. .

[4]. Feasibility of experimental measurements of SPD’s in . We shall see_tha_t n f[he chiral quark-soliton moplel the
hard exclusive reactions is currently being studied9]. A pion pole_: contrlbut_lon IS rela_ted to _the_ large distance
guantitative description of these classes of processes requir ymptotic .Of the pion mean f|e_|d, which is controlled by
nonperturbative information in the form of the SPD’s at AC (partial conservation of axial vector currgnt

some initial normalization point. Although the skewed par-

ton distributions can be reduced in certain limiting cases to  Il. DEFINITION OF SKEWED HELICITY QUARK

already known quantitiegarton distributions, form factors DISTRIBUTIONS

even their qualitative behavior is unknown to large extent.
That is why model calculations of these quantities are of bi
importance. There were already model calculations o
SPD’s: in the bag modglL0] and in the chiral quark-soliton
model [11]. In the latter calculation a drastic variation of
flavor singletH(x,¢,t) at x nearx=|£| was observed. Such  The contribution of the pion pole & was discussed at qualitaive
behavior is related to the fact that the SPD’s in the regionlevel in Ref.[12].

2

In QCD the helicity skewed quark distributions are de-
ined through nondiagonal matrix elements of the product of
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quark fields at light-cone separation. Here and in the follow-based on the N, expansion. Although in reality the number
ing, we shall use the notation of R¢b]: of colorsN.=3, the academic limit of larghl; is known to

be a useful guideline. At largd, the nucleon is heavy and
can be viewed as a classical soliton of the pion fjalél, 17].

In this paper we work with the effective chiral action given
by the functional integral over quarks in the background pion

dn — -
f Ze”‘X(P’|¢f(—)\n/2)ny5¢f()\n/2)|P>

=H(x,£4%)U(P")nysU(P) field [18—20;
1 . — — — A
oM B EADUP)(n-4) ysU(P). 2 exp(iseﬁ[w<x>]>=f D¢D¢exp(if dUx y(id—MUs) ],
Heren,, is a light-cone vector, U =exp(i 73(x) 73), )
n?=0, n-(P+P’)=2n-P=2, (3) 14 1
U 7s=expli 72(X) 72yg) = Sy By,
A is the four-momentum transfer, 2 2
A=P'—P, (4)  Herey is the quark fieldM is the effective quark mass,

which is due to the spontaneous breakdown of chiral sym-
My denotes the nucleon mass, do@P) is a standard Dirac metry (generally speaking, it is momentum depengleand
spinor. The skewed quark distribution8i(x,£,A2) and U is theSU(2) chiral pion field. The effective chiral action
E(x £,A?), are regarded as functions of the variaklehe given by Eq.(9) is known to contain automatically the Wess-

square of the four-momentum transfa?=1t and its lonai- Zumino term and the four-derivative Gasser-Leutwyler
qu S 9 terms, with correct coefficients. Equatidf) has been de-
tudinal component

rived from the instanton model of the QCD vacu(i2®,21],
1 which provides a natural mechanism of chiral symmetry
E=——=(n-A). (5) breaking and enables one to express the dynamical Mass
2 and the ultraviolet cutoff intrinsic in Eq(9) through the

In the forward caseP=P’, both A and ¢ are zero, and Aqcp parameter. The ultraviolet regularization of the effec-

; : tive theory is provided by the specific momentum depen-
the second term on the right-hand sitRHS) of Eq. (2
S 9 IdeHS a. ) dence of the mas#$/ (p?), which drops to zero for momenta

of order of the inverse instanton size in the instanton
vacuum, 1p~600 MeV. For simplicity we shall neglect this

disappears. In this limit the functio becomes the usual
polarized parton distribution function,

Ag(x) x>0 momentum dependence in the general discussion; it will be
ﬁf(x,§=0,A2=0) _ _f ' ' (6) taken into account again in the theoretical analysis and in the
Ags(—x), x<O0. numerical estimates later.

An immediate application of the effective chiral theory
On the other hand, taking the first moment of &2). one  (9) js the quark-soliton model of baryons of REE5], which
reduces the operator on the LHS to the local axial vectofs in the spirit of the earlier workg22,23. According to this
current. The dependenceldfandE on ¢ disappears, and the model nucleons can be viewed &k ‘“valence” quarks
functions reduce to the usual axial form factors of thebound by a self-consistent pion fie{the “soliton”) whose
nucleon: energy coincides with the aggregate energy of the quarks of
the negative-energy Dirac continuum. Similarly to the

v~ o 2 Skyrme model largeN. is needed as a parameter to justify
f,ldXH(X’g’A )=Ca(A%), ™ the use of the mean-field approximation; however, thé, 1/
corrections can be—and, in some cases, have been—
1 computed 24].
f 1dXE(X,§,A2):GP(A2)- (8) Let us remind the reader how the nucleon is described in

the effective low-energy theory9). Integrating out the
Taking higher moments of the distribution functions oneduarks in Eq.(9) one finds the effective chiral action,

obtains the form factors of the twist-2, spineperators. S 73(x)]=—N.SplogD(U), D(U)=idy—H(U),
10
I1l. CHIRAL QUARK-SOLITON MODEL (10
OF THE NUCLEON whereH(U) is the one-particle Dirac Hamiltonian,
Recently a new approach to the calculation of quark dis- H(U)=—iy°y*g,+ MU s, (11

tribution functions of the nucleon has been develofdet] in

the framework of the chiral quark-soliton model of the and Sp...denotes the functional trace. For a given time-
nucleon[15]. In present paper we apply this approach to theindependent pion fieltd = exp(i 7#(x) 7*) one can determine
calculation of skewed quark distributions. It is essentiallythe spectrum of the Dirac Hamiltonian,
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H®, =E,,. (12 V. SKEWED QUARK DISTRIBUTIONS IN THE CHIRAL
QUARK-SOLITON MODEL

It contains the upper and lower Dirac contin@hstorted by
the presence of the external pion figldnd, in principle, also

discrete bound-state leys), if the pion field is strong : :

S ) T ._of the nucleon is based on theNLfexpansion. At largeN.
e)r:outgllh. Irfthbe plnodrl f;e![d lha\lls IuvT/Ir?i/ \r']wt?d\'/n? nu”rr;Eer\,Nthe;? 'rithe nucleon is heavy—its mass @&(N). For the largeN,
exactly one bound-state leve ch travels atl the way 1ro réucleon Eq.(2) simplifies as follows:

the upper to the lower Dirac continuum as one increases th
spatial size of the pion field from zero to infinifst5]. We
denote the energy of the discrete level Bs,,— M <E, dr s ol .

<M. One has to occupy this level to get a nonzero baryon f 5 &P ,Sal (= Anl2)nys i (An/2)|P,S;)
number state. Since the pion field is color blind, one can put

We now turn to the calculation of the skewed quark dis-
tributions in the chiral quark-soliton model. This description

N, quarks on that level in the antisymmetric state in color. Tﬁf . SAT :

The limit of large N, allows us to use the mean-field =5 28%H(x, &) — 2M2Ef(xa§:t) Ty,
approximation to find the nucleon mass. To get the nucleon N
mass one has to addi.E,., and the energy of the pion field. (18)

Since the effective chiral Lagrangian is given by the deter-

minant (10) the energy of the pion field coincides exactly , o )
with the aggregate energy of the lower Dirac continuum, theVhere S;,S; denote the projections of the nucleon spin.

free continuum subtracted. The self-consistent pion field i§Tom this expression we immediately see that in the leading

thus found from the minimization of the functiondl5] order of the 1N, expansion only the flavor isovector part of
My=minNg{ Ee[U]+ > (E[UI-EP)}. (19 H®(x,£A%) =Hy(x,£,A%) —Hy(x,£A2)
U E <0

From symmetry considerations one looks for the minimumand
in a hedgehog ansatz:

U (x) = expli m2(x) 7%) = exp(in®72P(r)), EC)(x,£,A%)=E (x,£,A%) —E4(x,£,A2)
(14)

X ~
r=[x[, n= o are nonzero. The isosinglet part id{x,¢,A2) and the isos-
inglet part of E(x,&,A%) appear only in the next-to-leading
order of the 1N, expansion, i.e., after taking into account the

The minimum of the energyl3) is degenerate with re- f|n|tBe ?ngular velqcnyr?f tr|1(e solcljton roliac}!on_.b on func
spect to translations of the soliton in space and to rotations of 2€'0r¢ computing the skewed quark distribution functions

the soliton field in ordinary and isospin space. For the hedgelV® Must determine the parametric order iNdbf the kine-

hog field (14) the two rotations are equivalent. The projec- Matical variables involved. Generally, when describing par-
tion on a nucleon state with given spiy) and isospin T3) t‘?” distributions in the largék, “m't’ one hasx~1/MNc,
components is obtained by integrating over all spin-isospirsinc€ the nucleon momentum is distributed amoNg

whereP(r) is called the profile of the soliton.

rotations,R [17,15: quarks. Furthermore, as in the calculation of nucleon form
’ ' factors we consider momentum transfers to be of otder
(S=T,S;,T3|...|S=T,S;,T3) ~NZ; hence, in particularg~1/N,, so that¢ is of the same

parametric order as.
_ $S=T S=T Technically the calculation of the skewed parton distribu-
_f de)SaTa (R)... P5y(R)- (19 tions proceeds in much the same way as that of the usual
parton distributiong14,11]. Using the formalism developed
Here ¢§3~=TT3(R) is the rotational wave function of the nucleon in [14,11] we obtain

given by the Wigner finite-rotation matrid.7,15:

- - ~ NM
STR=(-1)T 725+ 1D g (R).  (19) A, 6,49 =~ S0 f 420 f 33X expliA-X)
TA]
Analogously, the projection on a nucleon state with given
momentumP is obtained by integrating over all shift, of X expliz’[ (x+ &) My—E,])
the soliton, occup.

XOI(X) (AT T3+ 2EM\A, - 7))

(PlP= [P X(1+7°99)ysPn(X~2e)),  (19)
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- N.M?2 H (x,8,A)
EG)(x,&A2)=— — Nz f dZOJ d3X exp(iA-X) in the forward limit
37T€AL 3.0 - -
2 — - — Dirac continuum
A :8 - discret'e Igve[
% 2 eXF(iZO[(X‘I‘f)MN—En]) total distribution
occup.
1.0
XPUX) (AL 71)(1+9%%%)
X ysPn(X—2%;3). 0 [
Before going ahead with the evaluation of the expressions %10 0.0 ' ‘ 10
Egs.(19) and(20) we would like to demonstrate that the two X

limiting cases of the skewed distributions—usual parton dis-
tri.bultions a”‘?' elastic form_ factors—are cc_)rreptly reprOduceqimit, A=0. Dashed line: contribution from the discrete level.
within th(—_:‘ C_h'ral quark-soliton model. Taking in EQL9) the Dashed-dotted line: contribution from the Dirac continuum accord-
forward limit, A—0, one recovers the formula for the usual j,q {o the interpolation formula, E423). Solid line: total distribu-
polarized(anti-) quark distributions in our model which was tjon (sum of the dashed and dashed-dotted curves

obtained in Ref[14]. Thus the forward limit, Eq(6), is

reproduced. On the other hand, integrating Exp) over [14]. We shall see below that also in the case of skewed
—1s=x=1 one obtains(up to corrections parametrically qyark distributions the contribution of the Dirac continuum

small in 1N.) the expressions for the axial form factors of grastically changes the shape of the distribution function.
the nucleon derived in Ref25]: That is especially important to reproduce the pion pole con-

tribution to the spin-flip SPCE®) required by chiral Ward
identities.

The contribution of the discrete bound-state level to Egs.
(19) and (20) can be computed using the expressions given
in the Appendix. The result is shown in Fig. 1 for the for-
ward case and Fig. 2 for a nonzero momentum transfer. Be-
ing taken by itself this contribution resembles qualitatively

the shape of SPD’sl andE obtained in the bag modg10].

To calculate the contribution of the Dirac continuum to
Egs. (19) and (20) we resort to an approximation which
proved to be very successful in the computation of usual
parton distributions, the so-called interpolation formfdléd].

One first expresses the continuum contribution as a func-
tional trace involving the quark propagator in the back-
ground pion field. The quark propagator can then be ex-
panded in powers of the formal paramefét/(— 3>+ M?),
which becomes small in three limiting casés: low mo-
menta,|dU|<M; (i) high momentajdU|>M; (iii) any mo-
menta but small pion fieldgJogU|<1. One may therefore
expect that this approximation has good accuracy also in the
general case. As was shown in Rdf$4] for usual parton

FIG. 1. The isovector distributiorﬁ(x,g,Az) in the forward

1 N, .
f dxH(3)(X,§,A2)=—?J d3X exp(iA- X)
-1

X X DHX) 7202 ys®y(X)

occup.

=G{Y(A?). (22)
Actually experimentaGY =Y (A?) is very well reproduced in
the chiral quark-soliton model up to momenta of order
~1 Ge\? [24].

Now if one integrates Eq20) over —1<x=<1 one ob-
tains (up to corrections parametrically small inNi) the
following expression:

1 2N M
f dx E<3>(x,g,A2)=—°—2Nf d3X exp(iA- X)
-1 3EAT

X D D)y AL 7))

occup.

X 7504(X). (22 .
H (x,ﬁ,A)

Using the “hedgehog” symmetry of the pion mean-field one

can easily show that the expressi@®) is a function of only

0.9

A2 and coincides with expression for pseudoscalar nucleor

form factor in the chiral quark soliton model, see e.g. Ref. o7
[24]. 05
Equation(19) and (20) express the SPD’s as a sum over 03

quark single-particle levels in the soliton field. This sum runs

over all occupied levels, including both the discrete bound- 0.1
state level and the negative Dirac continuum. We remind the_ ,
reader that in the case of usual parton distributions it was
demonstrated that in order to ensure the positivity of the

£=02
Al=-0.

5GeV

_________

- -~ discrete level
— -— Dirac continuum
total distribution

"-1.0

1.0

antiquark distributions it is essential to take into account the FIG. 2. The same as Fig. 1 but for no-forward case= —0.5
contributions ofall occupied levels of the Dirac Hamiltonian GeV? and£=0.2.
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distributions this approximation preserves the positivity ofover the negative-energy levels.

the antiquark distributions and all sum rules; moreover, it Simple generalization of the technique developed in
gives results very close to those obtained by exact numericéll4,11] allows us to express the Dirac continuum contribu-
diagonalization of the Dirac Hamiltonian and summationtion to the SPD’s directly in terms of pion mean figlt4):

. M N d*%k [ d% M3 M3?
AG(x,£,A2) o= — — CImf f S (x—&My—v-p]
(88 con 34? (2m?3) (2m)* LMy P p2—M2+i0) (p2-M2+i0)
1 » 3 - A\l ~ A\l
X k-v+§A~v Tra| (AT T+ 2EMGA | - 7)U k_§ U k+§ +(é—=—EA——A), (23
EG)(x,£,A2)con= — —— Clmf f X—EMy—v-
CoE8eon™ " 3ea2 ™) Gl (ot 1T OMNTU PR 1+i0> (pz_M2+i0)
1 ~ A\l - A"
X[ kot 580 Tr (A7)0 k=5 || Tl k+5 || |[+(é=—£A--A), (24)
|
wherev =(1,0,0,-1) is a light cone vector and the Fourier where
transform of the soliton field is defined as
Uk)= f d®x ek xy(x). (25) U(K) smootr= f d*xe” ™ [U(x) - 1]. (29

Also we introduced short notatiopl—p+A p,=p—Kk

— A2, My=M(p?) andM,=M(p2). In Egs. (23) and (24) Now if we substitute the representation of the Fourier trans-

Sform of the pion mean field28) into expressiong23) and
M(p?). cuts the loop momentum and thus regularizes the @4) we see immediately that the delta function piece in Eq.

UV divergence. Let us note that expressiq@8) and (24)  (28) does not contribute t6i, which means that in Eq23)
are explicitly symmetric under transformatiga- — & what ~ We can always repladé by its smooth part smeem. ON the
follows from charge conjugation symmeti§,5]. contrary, in the expressiof24) for E the contribution of the
. . ~ delta function is nonzero and has the fofme denote this
Before presenting the numerical results for the SPB’s contributionE )
andE let us discuss the specific contribution to these SPD’s
originating from the long range pion tail of the pion mean

field. The behavior of the mean pion field at large distances. k) N ( 2)
is governed by linearized equations of motion and PCAC: (x,£,4%)= (2 )4 (X=§My—v-p]
3 xara 172 2 32~ A2
lim U(x)=1+%(1 i exp =D, L MPEprYY  MTH(p-A)Y
Ko mf2]x| K - (p+A)2—=M2+i0) (p—A)2—M2+i0)
+(§——§A—-—-A), (30

whereg,~1.25 is the axial charge of the nucledin,~ 93

MeV is the pion decay constant. This asymptotic implies that

the Fourier transforni25) has the following small momen- Where we introduced the following form factor:
tum asymptotic:

*2_4MNf727f 3 % " 3
O (K)~ (2m)%8(K) + g? (2 7) . 27 F(—k?) e d3x exp(ik - x) Tr[(U(x)—1)7].
2f2 ko+ (31)
It is useful to split the Fourier transform of the pion mean
field into two pieces: Now the crucial observation is that the integral opecoin-
cidesexactly(up to a trivial renaming of the variablevith
U(K)=U0(K) smootit (277)38(K), (28)  the expression for the light-cone pion distribution amplitude
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in the instanton model of the QCD vacul@6,27.2 There-

1
~ H T=1 2y— i =(3) 2
fore the expressiori30) for the E_ can be written in the lim Gp (A% = |Im2f_ldX ED(x.£,4%)

compact form: A%om? AZomy
56 2 _F(AY X (2 =——4gAM§' : (37)
EX (X &A= o(|x[<[¢D)P o) (32 (A2—m?2)

| We see that the appearance of the pion pol&# is re-
quired by spontaneously broken chiral symmetry. In order to
reproduce it in some model the latter should respect the chi-
L ral Ward identities. For example, in computation of SPD’s in
f dzd_(2,A%)=1. (33) the bag mode[10] the chiral Ward identities are violated
-1 i and the pion pole contributiof35) is missed. The chiral
quark-soliton model respects all chiral Ward identities what

Generalizing slightly the technique of Ref&6,27), we com-  allows to splitunambiguoush8PDE® into two pieces:
puted theA? dependence of the virtual pion distribution am-

where® _(z,A?) is the distribution amplitude of the virtua
pion, normalized by

plitude. At smallA? it has the form EC(x, 1) =E®(x, &) +ES) 4(x,&1), (38)
N(AZ—m?) the result forE® is given by Eq.(32), the results for
D (2,A%)=| 1- ————"|D.(2) £3) i ai ith O :
247722 Ecmoonl X, €,1) is given by Eq.(24) with U replaced by its
smooth partd gmootn
3 5 NC(AZ—me) Let us note that the form factd¥(t) (t=A?) in a para-
+7(1-29 2dm2f2 te (34 metrically wide regionmZ<|t|<M? contains significant

contributions other than the simple pion p@g&5). Numeri-
cally we found that the form factd¥(t) can be parametrized

The pion distribution amplitude calculated in the instantonat|t|<Mﬁ in the following form:

model of QCD vacuum[26,27] is very close to the
asymptotic onab . (z)=® (z,A’>—m?2)=3(1—2?). There-
fore from Eq.(34) we can conclude that the dependence of F(t)~— 4.4 (1+
the distribution amplitude on the virtuality of the pion is —m?
rather weak. In addition, under evolution this dependence

disappears and we have asymptotically,(z,A%),5,=5(1  where all dimensional quantities are in units of GeV.
—2%). In what follows we shall therefore drop the depen- It is worth mentioning that although we obtain the pion
dence of distribution amplitude of the virtual pion ar. pole contribution to the spin-flip SPB (36) in the model

_ Using the small momentum asymptotic of the pion mearg|cylation, actually the existence of this contribution as such
field (27) one gets immediately the small® asymptotic of  t5lows from general considerations of the chiral Ward iden-

1.7(t—m?2)
(1-0.5)2

: (39

the form factorF(A?) of Eq. (31): tities [12].
49 M2 V. NUMERICAL RESULTS AND DISCUSSION
lim F(A%)=——"—"-. (35)
AZ 2 (A°=m?7) We have calculated numerically the isovector distribu-

™

tions H®)(x,£,A%) and E®)(x,&,A?). For the calculations
The expressioli35) then yields the pion pole contribution to We use the variational estimate of the soliton profile, Eq.

the SPDE®): (14), of Ref.[15] (M(;=350 MeV),
2 ré
- 4g,M X P(ry=—2arctan —|, ro=1.0M,, My=~1170 MeV,
lim Ef“Xf'Az):—%a(lxklglm(g), ) 2)r To=10Mo, My

(36)
which has been used in the calculation of usual parton dis-
and as a consequence of the sum (8lethe pion pole con- tributions in Refs.[14]. Furthermore, we approximate the

tribution to the pseudoscalar nucleon form fad&l=1(A2): momentum-dependent mass predicted by the instanton
P cIBj_[r (49 model of the QCD vacuurf20] by the simple form

MoA®
>More precisely, with distribution amplitude of virtual pion with M(— p2)= 0

— (41)
virtuality A2, (A%+p?)?

014024-6
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where the parametek is related to the averaged instanton H, 8 A%
size, p, by A=6Y3p"1. This expression reproduces the
asymptotic behavior oM (p?) at large Euclidearp? ob-

tained in the instanton vacuum, 08
0.6
36M,
M(_pz)N 6.6 (p2_>00) 0.4
PP

0.2
We have explored also other forms of the momentum depen

dence of the mass and found that numerically the results ari %,3
very close to each other.

0.9
£=02 — A=-05GeV

A. Results for F (x,£,A2) o7

We estimate the Dirac continuum contribution to °°

H®)(x,£,A?) using the interpolation formula, Eq23), 03

which gives a reliable approximation preserving all qualita- o

tive features of the continuum contribution. The contribution

of the discrete level is calculated using E45). Lo -5 00 05 10
First we computeH©®)(x,£,A?) in the forward limit, A

—0, where it coincides with the usual quark and antiquark FIG. 3. Calculated isovector SPB at various values o2 and

distributions: £

Au(x)—Ad(x), x>0, In order to illustrate the dependencettf®)(x,£,A%) on &

Au(—x)—Ad(—x), x<O0. andA? we plot this function for a fixed momentum transfer
(42) of A>=—0.5 Ge\ for various values of (see upper panel

_ o of Fig. 3), and for fixedé=0.2 and various values of mo-
The result is shown in Fig. 1, where we plot separately thenentum transfe(see lower Fig. B We clearly see from the
contributions of the discrete level and that of Dirac con-figures that the distribution has “cusps” at = &.
tinuum (computed from the interpolation formyjas well as Using the results foFI(3)(x ¢,A2) we computedt andA?
their sum. The forward limit reproduces the polarized quarkyependence of its Mellin moments. Lorentz invariance re-

distribution obtained iy{14]_ in the same model and at the quires that thé\th Mellin moment should be a polynomial of
same level of approximation. From Fig. 1 we see that th%rderN in £ [5]:

Dirac continuum contribution leads to new qualitative pre-

H®(x,6=0A%=0)=

diction for polarized quark distribution: the exist@ce of 1 ~ [N/2]
large flavor asymmetry of antiquark distributioAu(x) J_ldx XN_lH(g)(X,f,AZ)ZKZO E4NiAY. (43

—Ad(x), the feature which was noted first jh4] (see also
[28]). To our best knowledge all parametrizations of polar-Here we prefer to use decomposition of Mellin moments in

ized quark distributions assume flavor symmetric antiquarkyartial waves ofyq pairs in thet channel[29]:
distributions.

The importance of the Dirac continuum contribution to 1 . ) N N ) oo
H®)(x,£,A?) is also shown on Fig. 2. We plot there sepa- fﬁldXXN HO(x.£,4%)=¢ 26 Py € af(a?).
rately the discrete level and continuum contributions Ar (44)
=—0.5 GeV and ¢é=0.2. Comparing Fig. 1 and Fig. 2 we
see that the-dependence ofi®)(x,£,A2) is mostly due to  WhereP(x) are Legendre polynomials arids an angular
the £-dependence of Dirac continuum contribution. Since themomentum of exchangeglq pairs, it runs overodd even
Dirac continuum contribution is symmetric in variabdewe  values for(odd) evenN. If we now take the forward limit in
can expect strong-dependence only in part 63 whichis ~ Ed. (44) we obtain
even inx . This observation aIIovvzs us to conclude that with . 1 T(2N+1)
good accuracy we can p(aboutA“ dependence see belpw f dON I [AUX) — Ad(x)]= a(NN)(O).

-1

~ - _ _ N T(N+1)2
HE(x, &) —HB(=x,8)~Au(x)—Au(x) — Ad(x) + Ad(x). (45)

The message which might be useful for modeling of SPD’s  Qualitatively we may expect that the slope &f depen-

in terms of double distributiong3,30]. Additionally we see  dence of the form fact(HI(N)(Az) is governed by the mass of
that “antiquark” skewed distributioni® at negativex) is  a low-lying isovector resonance with spinand unnatural
large and it is dominated by the Dirac continuum contribu-parity. This dependence can be phenomenologically de-
tion. scribed by a simple dipole fit:
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TABLE |. Values of parameters of dipole fit for Mellin mo- E%%x g 0Y

ments of isovectoH ; see Eq.(46). 00

(NI av(0) MM Gev oL A=-05GeV — gig.;5 i

11 1.25 0.9 FAN - z=02

(20) 0.06 0.9 0or " ]

(22 0.12 1.1 00

(31 0.08 0.9

33 0.04 14 005 o5 05 10

140 [ ‘ ' ]
N oz — Azz_o.see$
) A2 a™(0) ol 7 - A
(l_ A /M| ) a0l i

whererN) is a phenomenological parametéipole mass ol ’
The results of the calculation and of the fits are given in
Table I. One should note thaf"(0) is identical to the usual -0 . - — — J

axial coupling constang, and M(ll) to the corresponding x
dipole mass parameter. We see that our theoretical values of . . I
these parameters are very close to experimental ones. On FIG. 5. C~ompar|son of pion pole contribution and nonpole part
should not overestimate this in view of the approximationso‘feiSOVeCtOrE at various values o* and¢. The positive curves
done in the present approa@hterpolation formula, no rota- correspond to pion pole contributions.

tional 1N, corrections, etg. Still the result shows that the

method is well founded. As far as the ot}m(IN)(AZ) con- fl dx H(x, &,t,)
cerns, we see that the chiral quark-soliton model reproduces H(x, &) J-1 e
the qualitative expectation that the dipole mass in the form :ﬁ(x et [F .- . (47)
factorsa{M(A?), describing an exchange with angular mo- ot f 1dX H(x,&,to)

mentuml, in fact increasing with.
In modelling of A2 dependence of SPD’s usually the fac-

torization ansatzH (x,£,A%) =H(x,£) GA(A?), is used. This
. . ) . _
ansatz would imply, e.g., that dipole mas:wg\‘ are inde deviates from unity by up to 25% ag=0.8 Ge\A,

pendent ofN and |. By explicit calculation in the chiral Let us note that the hard exclusive reactions can be

quark-soliton m0(_je| we demons_trated that this is n(?t.?h%/iewed as a “tool” to create fundamental probes which are
case. In order to illustrate numerically the nonfactora2|b|lltyabsent in nature. For example, among the form factors

of thet dependence dfi (x, ,t) we plot in Fig. 4 the follow- a,(N)(AZ) only one (N=1, 1=1) can be measured by a probe

ing ratio forto~0, t;= —0.8 GeV and¢=0.1: provided by nature\W,Z bosons, all others are not acces-
sible for electroweak probes. Since in hard exclusive reac-

If the t dependence of SPD’s factors out tHes 1 indepen-
dently oftg,t; andx,£. From Fig. 4 we see that the raii7)

13 tions we can extract the higher spin form factors, this allows
us to studylow energyobservables with probes of any spin.
12 L £=01 | In this respect the hard exclusive reactions can be used not
t, -1, = 0.8 GeV* only for checking of predictions of perturbative QCD but

also as a new way to study low energy properties of hadrons.
11 |

B. Results for E(x,£,A?)

The skewed distributio&®)(x, £,A2) is dominated by the
pion pole contribution(32). We computed also the smooth
part of EC)(x,&,A?) [see Eq(38)]. The results are presented
in Fig. 5, where we plot the pole and the smooth parts sepa-
rately at various values of and A%. We see that the pole
contribution dominate€®)(x,£,A%) in large range ofA?
and¢. The results for the total distributidpole+nonpole at
0.7 : - - - - - ‘ A%=-0.5 GeV* and various values of are presented on

08 06 04 -02 0 02 04 06 08 Fig. 6. The ¢ dependence of Mellin moments of

FIG. 4. Ratio equatiorf47) as a function ofx describing the E®)(x,£ A?) has also polynomial form and we checked that
deviation from the factorization ansatz fodependence dfi. our model calculations reproduce this feature.

0.9

0.8
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B9 (&, A7) distributions requires that itsith Mellin moment is a poly-
total distrioution nomial of ordemM — 2 in variable¢, which is in contradiction

10 ' B 2 with Eq. (44) for evenN. This problem can be easily cured if

£=02 - one adds one additional function to the double distribution

parametrization of light-cone nucleon matrix elements; see

[31].

As we saw in our model the even momentsHi, £,A?)
are almost¢ independent because the contribution of the

Dirac sea drops out. Owing to this featurefdfx, £,A?) the
5 ‘ , , ‘ additional function which one needs to add to the double
-1.0 -0.5 0.0 0.5 1.0 distribution parametrization of light-cone nucleon matrix el-
x ements is very small.

FIG. 6. Total result(pole+nonpolg for isovectorE at £=0.2

and various values af?. VI. CONCLUSIONS

- _ We have shown that the helicity skewed distributt®ris
The arguments presented here fbrcan be easily ex- gominated in a large range af and¢ by contribution of the
tended to the analogous SPD Y SPD's (Y is @ hy-  pjon pole(36). This result can be viewed as a generalization
peron from the octeY=A,X). In this case the flavor chang-  of the well known chiral Ward identities for local currents to
ing E has a contribution from of the kaon pole of the form pjjocal quark operators on the light cone. The fact t&as
fixed to great extent by the pion pole contribution opens the

, (49) possibility to measurél by choosing observables which are

proportional to the producH-E. One of the examples of

] o ] v such quantity is azimuthal spin asymmetry in hard exclusive
where®y is the kaon distribution amplitude arg}' " the production of pions and kaori43].

constant entering in the description of the semileptonic de-
cays of hyperons.

4gy MR

X
|€[(A%—m})

3

NE‘N—>Y: _

e<|x|<|g|>q>K(

The skewed quark distributiod has been computed in a
wide range ofA2 and¢ using the chiral quark-soliton model.
We have demonstrated that the contribution of the Dirac con-
C. Comparison with other models tinuum is crucial to describe the transition between two re-
Helicity skewed quark distributions were computed previ-gions|x|> ¢ and|x|<&. Also we saw that thé dependence
ously in the bag moddlL0]. Unfortunately in this model the ©f the SPD’s is mostly due to the Dirac continuum contribu-
chiral symmetry is broken explicitly by boundary conditions tion. Since the Dirac continuum contribution it is sym-
at the bag surface. Therefore the crucial contribution of themetric in variablex, we can expect that the dependence of
pion pole toE®)(x,£,A2) is missed in this model. Neverthe- the combinationH®)(x,&)—H®)(—x,£) on ¢ is rather
less the bag model describes qualitative features of theveak. This, in particular, implies that in the modeling of
skewed quark distributions for which the “resonance part” SPD’s in terms of double distributions the functibx,y)*
is relatively small, these are oddven in x part of isovector  should strongly depend on ti@ parity of the SPD.
(isoscalay H(x,£,A) andE(x,¢,A). Studying theA? dependence of the helicity skewed parton
In another approach, proposed by RadyusiiRig0], one  distributions we have seen that the factorization ansatz
writes a spectral representation for the matrix element of thél(x,£,A%) =H(x,£)GA(A?) is in contradiction with our cal-
light-ray operator in terms of a so-called double distribution.culations.
The skewed distribution for a given value éfis then ob- For models which use the usual quark distributions to
tained as a particular one-dimensional reduction of this twomodel SPD’s(see e.g[3,30,37) one can use the replace-
variable distribution. The advantage of this approach is thament of the slope of the Regge trajectory in smafiaram-
the resulting skewed parton distribution satisfies automatietrization of Aq(x) ~1/x“0 at a low normalization point by
cally polynomiality conditions(44). However, as it was the Regge trajectorg,— ay+ ' A?. Such replacement de-
shown in Ref[31] the parametrization of skewed quark dis- scribes qualitatively correctly th&? dependence of the Mel-
tributions in terms of double distributions is not complete.lin moments of SPD’s as was discussed in the present paper.
This incompleteness can be seen especially clearly if one
considers the Mellin moments of skewed quark distributions.
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The bound-state level contribution to theandE distri-
bution function can be simply obtained from the general Egs.
(19) and(20). Compactly the corresponding expressions can

We present here the contributions of the discrete boundP€ Written as

APPENDIX: BOUND-STATE LEVEL CONTRIBUTION TO
H®(X,£A%) AND E®(X,£,A2)

state level to the isovectdt (®)(x,&,A%) and E®)(x,&,A?). A3AD
The bound-state level occurs in the grand siis0 and H,(,S\Z(x,g,Az)bﬂb—ﬁff\}(x,g,Az)-
parity II=+ sector of the Dirac Hamiltoniafll). In that A?

sector the eigenvalue equation takes the form

2
:ZNCMNWJ d% i{h(k)h(k’)é\?‘b

a 2 /
McosP(r) ————— M sinP(r) 3 (2m)? kk
ar r ho(r)
; () =[h(k)j(K)n®+ h(k")j(kyn]
gr “MsinP(n) - ~McosP(r) ik (0[N +n2n°= 8%(n, )]}, (AS)
hq(r) where
- 'EV(j )’ - 2
! k= KT+ ((x+&My—Epe)’, (A6)
We assume that the radial wave functions are normalized by ) > 5
the condition k'=V(k, + A7)+ (x— &) My—Ep)’.
(A7)
jwdr r2[h3(r)+j%(r)]=1. (A2) Unit vectorsn andn, have components
0
1
We introduce the Fourier transforms of the radial wave func- n= 1 ki, (x+EMy—Eje)
tions:
w o 1
h(k)zf dr r2ho(r)Ryo(r), j(k)zj dr r2j5(r)Rya(r), o= (kK tAr, (= HMy=Epey).
0 0
(A3) o . - = .
The individual expressions fé# andE can be obtained from
where Eq. (A5) contracting indesb with (8°2— APA%/A2) andAP .
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