
PHYSICAL REVIEW D, VOLUME 62, 014024
Helicity skewed quark distributions of the nucleon and chiral symmetry
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We compute the helicity skewed quark distributionsH̃ and Ẽ in the chiral quark-soliton model of the
nucleon. This model emphasizes correctly the role of spontaneously broken chiral symmetry in the structure of
the nucleon. It is based on the large-Nc picture of the nucleon as a soliton of the effective chiral Lagrangian and
allows us to calculate the leading twist quark and antiquark distributions at a low normalization point. We

discuss the role of chiral symmetry in the helicity skewed quark distributionsH̃ and Ẽ. We show that a
generalization of soft pion theorems, based on chiral Ward identities, leads in the region of2j,x,j to the

pion pole contribution toẼ which dominates at small momentum transfer.

PACS number~s!: 12.38.Lg, 13.60.Fz, 13.60.Le
rt
-
li

e

,
t
’

t

e
rtu
-
in
e
i

ui
at
r
t

n
bi
o

f

on

is
of

n’s
ro-

ri-

ires

.

ive
pin

he
ce
y

e-
t of

e

I. INTRODUCTION

Recently, a new type of parton distributions@1–4# has
attracted considerable interest, the so-called skewed pa
distributions ~SPD’s!, which are generalizations simulta
neously of the usual parton distributions, distribution amp
tudes, and the elastic nucleon form factors~for a review see
@5#!. Taking thenth moment of the SPD’s one obtains th
form factors~i.e., nonforward matrix elements! of the spin-n,
twist-two quark, and gluon operators. On the other hand
the forward limit the SPD’s reduce to the usual quark, an
quark, and gluon distributions. In other words, the SPD
interpolate between the traditional inclusive~parton distribu-
tions! and exclusive~form factors! characteristics of the
nucleon and thus provide us with a considerable amoun
new information on nucleon structure.

The SPD’s are not accessible in standard inclusive m
surements. They can, however, be measured in deeply vi
Compton scattering~DVCS! and in hard exclusive leptopro
duction of mesons. The very possibility to probe SPD’s
these reactions is due to QCD factorization theorem of R
@4#. Feasibility of experimental measurements of SPD’s
hard exclusive reactions is currently being studied@6–9#. A
quantitative description of these classes of processes req
nonperturbative information in the form of the SPD’s
some initial normalization point. Although the skewed pa
ton distributions can be reduced in certain limiting cases
already known quantities~parton distributions, form factors!,
even their qualitative behavior is unknown to large exte
That is why model calculations of these quantities are of
importance. There were already model calculations
SPD’s: in the bag model@10# and in the chiral quark-soliton
model @11#. In the latter calculation a drastic variation o
flavor singletH(x,j,t) at x nearx5uju was observed. Such
behavior is related to the fact that the SPD’s in the regi
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2j,x,j have properties of distribution amplitudes. Th
feature, being very important for the understanding
SPD’s, requires a field theoretic description of nucleo
constituents and that is the reason why it can not by rep
duced in the bag model.

Our aim now is to compute helicity skewed quark dist
butions of the nucleon using the methods of Ref.@11#. We
shall see that generalization of low energy theorems requ
that the skewed distributionẼ develops a pion pole1 at D2

5mp
2 of the form

lim
D2→mp

2

Ẽp
(3)~x,j,D2!52

4gAMN
2

uju~ D22mp
2 !

u~ uxu,uju!FpS x

j D ,

~1!

whereFp(z) is distribution amplitude of the pion. In Refs
@9,13# it was shown that this contribution toẼ leads to con-
siderable enhancement of the amplitude of hard exclus
production of charged pions and to large azimuthal s
asymmetry in exclusivep6 production@13#.

We shall see that in the chiral quark-soliton model t
pion pole contribution is related to the large distan
asymptotic of the pion mean field, which is controlled b
PCAC ~partial conservation of axial vector current!.

II. DEFINITION OF SKEWED HELICITY QUARK
DISTRIBUTIONS

In QCD the helicity skewed quark distributions are d
fined through nondiagonal matrix elements of the produc

1The contribution of the pion pole toẼ was discussed at qualitaiv
level in Ref.@12#.
©2000 The American Physical Society24-1
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quark fields at light-cone separation. Here and in the follo
ing, we shall use the notation of Ref.@5#:

E dl

2p
eilx^P8uc̄ f~2ln/2!n̂g5c f~ln/2!uP&

5H̃ f~x,j,D2!Ū~P8!n̂g5U~P!

1
1

2MN
Ẽf~x,j,D2!Ū~P8!~n•D!g5U~P!. ~2!

Herenm is a light-cone vector,

n250, n•~P1P8!52n• P̄52, ~3!

D is the four-momentum transfer,

D5P82P, ~4!

MN denotes the nucleon mass, andU(P) is a standard Dirac
spinor. The skewed quark distributions,H̃(x,j,D2) and
Ẽ(x,j,D2), are regarded as functions of the variablex, the
square of the four-momentum transfer,D25t, and its longi-
tudinal component

j52
1

2
~n•D!. ~5!

In the forward case,P5P8, both D and j are zero, and
the second term on the right-hand side~RHS! of Eq. ~2!

disappears. In this limit the functionH̃ becomes the usua
polarized parton distribution function,

H̃ f~x,j50,D250!5H Dqf~x!, x.0,

Dq̄f~2x!, x,0.
~6!

On the other hand, taking the first moment of Eq.~2! one
reduces the operator on the LHS to the local axial vec
current. The dependence ofH̃ andẼ on j disappears, and th
functions reduce to the usual axial form factors of t
nucleon:

E
21

1

dxH̃~x,j,D2!5GA~D2!, ~7!

E
21

1

dxẼ~x,j,D2!5GP~D2!. ~8!

Taking higher moments of the distribution functions o
obtains the form factors of the twist-2, spin-n operators.

III. CHIRAL QUARK-SOLITON MODEL
OF THE NUCLEON

Recently a new approach to the calculation of quark d
tribution functions of the nucleon has been developed@14# in
the framework of the chiral quark-soliton model of th
nucleon@15#. In present paper we apply this approach to
calculation of skewed quark distributions. It is essentia
01402
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based on the 1/Nc expansion. Although in reality the numbe
of colorsNc53, the academic limit of largeNc is known to
be a useful guideline. At largeNc the nucleon is heavy and
can be viewed as a classical soliton of the pion field@16,17#.
In this paper we work with the effective chiral action give
by the functional integral over quarks in the background p
field @18–20#:

exp„iSeff@p~x!#…5E DcDc̄expS i E d4x c̄~ i ]̂2MUg5!c D ,

U5exp„ipa~x!ta
…, ~9!

Ug55exp„ipa~x!tag5…5
11g5

2
U1

12g5

2
U†.

Here c is the quark field,M is the effective quark mass
which is due to the spontaneous breakdown of chiral sy
metry ~generally speaking, it is momentum dependent!, and
U is theSU(2) chiral pion field. The effective chiral action
given by Eq.~9! is known to contain automatically the Wes
Zumino term and the four-derivative Gasser-Leutwy
terms, with correct coefficients. Equation~9! has been de-
rived from the instanton model of the QCD vacuum@20,21#,
which provides a natural mechanism of chiral symme
breaking and enables one to express the dynamical masM
and the ultraviolet cutoff intrinsic in Eq.~9! through the
LQCD parameter. The ultraviolet regularization of the effe
tive theory is provided by the specific momentum depe
dence of the mass,M (p2), which drops to zero for moment
of order of the inverse instanton size in the instant
vacuum, 1/r;600 MeV. For simplicity we shall neglect thi
momentum dependence in the general discussion; it will
taken into account again in the theoretical analysis and in
numerical estimates later.

An immediate application of the effective chiral theo
~9! is the quark-soliton model of baryons of Ref.@15#, which
is in the spirit of the earlier works@22,23#. According to this
model nucleons can be viewed asNc ‘‘valence’’ quarks
bound by a self-consistent pion field~the ‘‘soliton’’ ! whose
energy coincides with the aggregate energy of the quark
the negative-energy Dirac continuum. Similarly to th
Skyrme model largeNc is needed as a parameter to justi
the use of the mean-field approximation; however, the 1Nc
corrections can be—and, in some cases, have bee
computed@24#.

Let us remind the reader how the nucleon is described
the effective low-energy theory~9!. Integrating out the
quarks in Eq.~9! one finds the effective chiral action,

Seff@pa~x!#52NcSp logD~U !, D~U !5 i ]02H~U !,

~10!

whereH(U) is the one-particle Dirac Hamiltonian,

H~U !52 ig0gk]k1Mg0Ug5, ~11!

and Sp . . . denotes the functional trace. For a given tim
independent pion fieldU5exp„ipa(x)ta

… one can determine
the spectrum of the Dirac Hamiltonian,
4-2
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HFn5EnFn . ~12!

It contains the upper and lower Dirac continua~distorted by
the presence of the external pion field!, and, in principle, also
discrete bound-state level~s!, if the pion field is strong
enough. If the pion field has unity winding number, there
exactly one bound-state level which travels all the way fr
the upper to the lower Dirac continuum as one increases
spatial size of the pion field from zero to infinity@15#. We
denote the energy of the discrete level asElev ,2M<Elev
<M . One has to occupy this level to get a nonzero bary
number state. Since the pion field is color blind, one can
Nc quarks on that level in the antisymmetric state in colo

The limit of large Nc allows us to use the mean-fiel
approximation to find the nucleon mass. To get the nucl
mass one has to addNcElev and the energy of the pion field
Since the effective chiral Lagrangian is given by the det
minant ~10! the energy of the pion field coincides exact
with the aggregate energy of the lower Dirac continuum,
free continuum subtracted. The self-consistent pion field
thus found from the minimization of the functional@15#

MN5min
U

NcH Elev@U#1 (
En,0

~En@U#2En
(0)!J . ~13!

From symmetry considerations one looks for the minim
in a hedgehog ansatz:

Uc~x!5exp„ipa~x!ta
…5exp„inataP~r !…,

~14!

r 5uxu, n5
x

r
,

whereP(r ) is called the profile of the soliton.
The minimum of the energy~13! is degenerate with re

spect to translations of the soliton in space and to rotation
the soliton field in ordinary and isospin space. For the hed
hog field ~14! the two rotations are equivalent. The proje
tion on a nucleon state with given spin (S3) and isospin (T3)
components is obtained by integrating over all spin-isos
rotations,R @17,15#:

^S5T,S3 ,T3u . . . uS5T,S3 ,T3&

5E dRfS3T3
* S5T~R! . . . fS3T3

S5T~R!. ~15!

HerefS3T3

S5T(R) is the rotational wave function of the nucleo

given by the Wigner finite-rotation matrix@17,15#:

fS3T3

S5T~R!5~21!T1T3A2S11D2T3 ,S3

S5T ~R!. ~16!

Analogously, the projection on a nucleon state with giv
momentumP is obtained by integrating over all shifts,X, of
the soliton,

^P8u . . . uP&5E d3Xei (P82P)•X . . . . ~17!
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IV. SKEWED QUARK DISTRIBUTIONS IN THE CHIRAL
QUARK-SOLITON MODEL

We now turn to the calculation of the skewed quark d
tributions in the chiral quark-soliton model. This descriptio
of the nucleon is based on the 1/Nc-expansion. At largeNc
the nucleon is heavy—its mass isO(Nc). For the large-Nc
nucleon Eq.~2! simplifies as follows:

E dl

2p
eilx^P8,S38uc̄ f~2ln/2!n̂g5c f~ln/2!uP,S3&

5
t f f

3

2 H 2d3i H̃ f~x,j,t !2
D3D i

2MN
2

Ẽf~x,j,t !J sS
38S3

i
,

~18!

where S3 ,S38 denote the projections of the nucleon sp
From this expression we immediately see that in the lead
order of the 1/Nc expansion only the flavor isovector part o

H̃ (3)~x,j,D2!5H̃u~x,j,D2!2H̃d~x,j,D2!

and

Ẽ(3)~x,j,D2!5Ẽu~x,j,D2!2Ẽd~x,j,D2!

are nonzero. The isosinglet part ofH̃(x,j,D2) and the isos-
inglet part ofẼ(x,j,D2) appear only in the next-to-leadin
order of the 1/Nc expansion, i.e., after taking into account th
finite angular velocity of the soliton rotation.

Before computing the skewed quark distribution functio
we must determine the parametric order in 1/Nc of the kine-
matical variables involved. Generally, when describing p
ton distributions in the large-Nc limit, one hasx;1/Nc ,
since the nucleon momentum is distributed amongNc
quarks. Furthermore, as in the calculation of nucleon fo
factors we consider momentum transfers to be of ordet
;Nc

0 ; hence, in particular,j;1/Nc , so thatj is of the same
parametric order asx.

Technically the calculation of the skewed parton distrib
tions proceeds in much the same way as that of the u
parton distributions@14,11#. Using the formalism developed
in @14,11# we obtain

H̃ (3)~x,j,D2!52
NcMN

6pD'
2 E dz0E d3X exp~ i D•X!

3 (
occup.

exp„iz0@~x1j!MN2En#…

3Fn
†~X!~D'

2 t312jMND'•t'!

3~11g0g3!g5Fn~X2z0e3!, ~19!
4-3
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Ẽ(3)~x,j,D2!52
NcMN

2

3pjD'
2 E dz0E d3X exp~ i D•X!

3 (
occup.

exp„iz0@~x1j!MN2En#…

3Fn
†~X!~D�•t�!~11g0g3!

3g5Fn~X2z0e3!. ~20!

Before going ahead with the evaluation of the expressi
Eqs.~19! and~20! we would like to demonstrate that the tw
limiting cases of the skewed distributions—usual parton d
tributions and elastic form factors—are correctly reproduc
within the chiral quark-soliton model. Taking in Eq.~19! the
forward limit, D→0, one recovers the formula for the usu
polarized~anti-! quark distributions in our model which wa
obtained in Ref.@14#. Thus the forward limit, Eq.~6!, is
reproduced. On the other hand, integrating Eq.~19! over
21<x<1 one obtains~up to corrections parametricall
small in 1/Nc) the expressions for the axial form factors
the nucleon derived in Ref.@25#:

E
21

1

dxH̃(3)~x,j,D2!52
Nc

3 E d3X exp~ i D•X!

3 (
occup.

Fn
†~X!t3g0g3g5Fn~X!

5GA
(T51)~D2!. ~21!

Actually experimentalGA
(T51)(D2) is very well reproduced in

the chiral quark-soliton model up to momenta of orderD2

;1 GeV2 @24#.
Now if one integrates Eq.~20! over 21<x<1 one ob-

tains ~up to corrections parametrically small in 1/Nc) the
following expression:

E
21

1

dx Ẽ(3)~x,j,D2!52
2NcMN

3jD'
2 E d3X exp~ i D•X!

3 (
occup.

Fn
†~X!g0g3~D�•t�!

3g5Fn~X!. ~22!

Using the ‘‘hedgehog’’ symmetry of the pion mean-field o
can easily show that the expression~22! is a function of only
D2 and coincides with expression for pseudoscalar nucl
form factor in the chiral quark soliton model, see e.g. R
@24#.

Equation~19! and ~20! express the SPD’s as a sum ov
quark single-particle levels in the soliton field. This sum ru
over all occupied levels, including both the discrete boun
state level and the negative Dirac continuum. We remind
reader that in the case of usual parton distributions it w
demonstrated that in order to ensure the positivity of
antiquark distributions it is essential to take into account
contributions ofall occupied levels of the Dirac Hamiltonia
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@14#. We shall see below that also in the case of skew
quark distributions the contribution of the Dirac continuu
drastically changes the shape of the distribution functi
That is especially important to reproduce the pion pole c
tribution to the spin-flip SPDẼ(3) required by chiral Ward
identities.

The contribution of the discrete bound-state level to E
~19! and ~20! can be computed using the expressions giv
in the Appendix. The result is shown in Fig. 1 for the fo
ward case and Fig. 2 for a nonzero momentum transfer.
ing taken by itself this contribution resembles qualitative
the shape of SPD’sH̃ andẼ obtained in the bag model@10#.

To calculate the contribution of the Dirac continuum
Eqs. ~19! and ~20! we resort to an approximation whic
proved to be very successful in the computation of us
parton distributions, the so-called interpolation formula@14#.
One first expresses the continuum contribution as a fu
tional trace involving the quark propagator in the bac
ground pion field. The quark propagator can then be
panded in powers of the formal parameter]U/(2]21M2),
which becomes small in three limiting cases:~i! low mo-
menta,u]Uu!M ; ~ii ! high momenta,u]Uu@M ; ~iii ! any mo-
menta but small pion fields,u logUu!1. One may therefore
expect that this approximation has good accuracy also in
general case. As was shown in Refs.@14# for usual parton

FIG. 1. The isovector distributionH̃(x,j,D2) in the forward
limit, D50. Dashed line: contribution from the discrete leve
Dashed-dotted line: contribution from the Dirac continuum acco
ing to the interpolation formula, Eq.~23!. Solid line: total distribu-
tion ~sum of the dashed and dashed-dotted curves!.

FIG. 2. The same as Fig. 1 but for no-forward caseD2520.5
GeV2 andj50.2.
4-4
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distributions this approximation preserves the positivity
the antiquark distributions and all sum rules; moreover
gives results very close to those obtained by exact nume
diagonalization of the Dirac Hamiltonian and summati
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over the negative-energy levels.
Simple generalization of the technique developed

@14,11# allows us to express the Dirac continuum contrib
tion to the SPD’s directly in terms of pion mean field~14!:
H̃ (3)~x,j,D2!cont52
MNNc

3D'
2

Im E d3k

~2p!3E d4p

~2p!4
d@~x2j!MN2v•p#

M1
1/2

~p1
22M1

21 i0!

M2
3/2

~p2
22M2

21 i0!

3S k•v1
1

2
D•v DTrfl.F ~D'

2 t312jMND�•t'!ŨS k2
D

2 D F ŨS k1
D

2 D G1G1~j→2j,D→2D!, ~23!

Ẽ(3)~x,j,D2!cont52
2MN

2 Nc

3jD'
2

Im E d3k

~2p!3E d4p

~2p!4
d@~x2j!MN2v•p#

M1
1/2

~p1
22M1

21 i0!

M2
3/2

~p2
22M2

21 i0!

3S k•v1
1

2
D•v DTrfl.F ~D'•t'!ŨS k2

D

2 D F ŨS k1
D

2 D G1G1~j→2j,D→2D!, ~24!
ns-

q.

de
wherev5(1,0,0,21) is a light cone vector and the Fourie
transform of the soliton field is defined as

Ũ~k![E d3x e2 ik•xU~x!. ~25!

Also we introduced short notationp15p1D, p25p2k
2D/2, M15M (p1

2) andM25M (p2
2). In Eqs.~23! and ~24!

the momentum dependence of the constituent quark m
M (p2), cuts the loop momentump and thus regularizes th
UV divergence. Let us note that expressions~23! and ~24!
are explicitly symmetric under transformationj→2j what
follows from charge conjugation symmetry@6,5#.

Before presenting the numerical results for the SPD’sH̃

andẼ let us discuss the specific contribution to these SP
originating from the long range pion tail of the pion me
field. The behavior of the mean pion field at large distan
is governed by linearized equations of motion and PCAC

lim
uxW u→`

U~x!511
3gA

8p f p
2 uxW u2

~11mpuxW u!
ixata

uxW u
exp~2mpuxW u!,

~26!

wheregA'1.25 is the axial charge of the nucleon,f p'93
MeV is the pion decay constant. This asymptotic implies t
the Fourier transform~25! has the following small momen
tum asymptotic:

Ũ~kW !;~2p!3d~kW !1
3gA

2 f p
2

~kW•tW !

kW21mp
2

. ~27!

It is useful to split the Fourier transform of the pion me
field into two pieces:

Ũ~kW !5Ũ~kW !smooth1~2p!3d~kW !, ~28!
ss,

’s

s

t

where

Ũ~kW !smooth5E d3xe2 ik•x@U~x!21#. ~29!

Now if we substitute the representation of the Fourier tra
form of the pion mean field~28! into expressions~23! and
~24! we see immediately that the delta function piece in E
~28! does not contribute toH̃, which means that in Eq.~23!

we can always replaceŨ by its smooth partŨsmooth. On the
contrary, in the expression~24! for Ẽ the contribution of the
delta function is nonzero and has the form~we denote this
contributionẼp)

Ẽp
(3)~x,j,D2!5

F~D2!

f p
2 E d4p

~2p!4
d@~x2j!MN2v•p#

3
M1/2

„~p1D!2
…

„~p1D!22M21 i0…

M3/2
„~p2D!2

…

„~p2D!22M21 i0…

1~j→2j,D→2D!, ~30!

where we introduced the following form factor:

F~2kW2!5
4MN

2 f p
2

3k3 E d3x exp~ ikW•xW ! Tr@„U~xW !21…t3#.

~31!

Now the crucial observation is that the integral overp coin-
cidesexactly~up to a trivial renaming of the variable! with
the expression for the light-cone pion distribution amplitu
4-5
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in the instanton model of the QCD vacuum@26,27#.2 There-
fore the expression~30! for the Ẽp can be written in the
compact form:

Ẽp
(3)~x,j,D2!5

F~D2!

uju
u~ uxu,uju!FpS x

j
,D2D , ~32!

whereFp(z,D2) is the distribution amplitude of the virtua
pion, normalized by

E
21

1

dzFp~z,D2!51. ~33!

Generalizing slightly the technique of Refs.@26,27#, we com-
puted theD2 dependence of the virtual pion distribution am
plitude. At smallD2 it has the form

Fp~z,D2!5S 12
Nc~D22mp

2 !

24p2f p
2 D Fp~z!

1
3

4
~12z2!

Nc~D22mp
2 !

24p2f p
2

1 ••• . ~34!

The pion distribution amplitude calculated in the instant
model of QCD vacuum@26,27# is very close to the
asymptotic oneFp(z)5Fp(z,D2→mp

2 )5 3
4 (12z2). There-

fore from Eq.~34! we can conclude that the dependence
the distribution amplitude on the virtuality of the pion
rather weak. In addition, under evolution this depende
disappears and we have asymptoticallyFp(z,D2)asy5

3
4 (1

2z2). In what follows we shall therefore drop the depe
dence of distribution amplitude of the virtual pion onD2.

Using the small momentum asymptotic of the pion me
field ~27! one gets immediately the smallD2 asymptotic of
the form factorF(D2) of Eq. ~31!:

lim
D2→mp

2

F~D2!52
4gAMN

2

~D22mp
2 !

. ~35!

The expression~35! then yields the pion pole contribution t
the SPDẼ(3):

lim
D2→mp

2

Ẽp
(3)~x,j,D2!52

4gAMN
2

uju~D22mp
2 !

u~ uxu,uju!FpS x

j D ,

~36!

and as a consequence of the sum rule~8! the pion pole con-
tribution to the pseudoscalar nucleon form factorGP

T51(D2):

2More precisely, with distribution amplitude of virtual pion wit
virtuality D2.
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lim
D2→mp

2

GP
T51~D2!5 lim

D2→mp
2
E

21

1

dx Ẽp
(3)~x,j,D2!

52
4gAMN

2

~D22mp
2 !

. ~37!

We see that the appearance of the pion pole inẼ(3) is re-
quired by spontaneously broken chiral symmetry. In orde
reproduce it in some model the latter should respect the
ral Ward identities. For example, in computation of SPD’s
the bag model@10# the chiral Ward identities are violate
and the pion pole contribution~35! is missed. The chiral
quark-soliton model respects all chiral Ward identities wh
allows to splitunambiguouslySPD Ẽ(3) into two pieces:

Ẽ(3)~x,j,t !5Ẽp
(3)~x,j,t !1Ẽsmooth

(3) ~x,j,t !, ~38!

the result for Ẽp
(3) is given by Eq. ~32!, the results for

Ẽsmooth
(3) (x,j,t) is given by Eq.~24! with Ũ replaced by its

smooth partŨsmooth.
Let us note that the form factorF(t) (t5D2) in a para-

metrically wide regionmp
2 !utu!MN

2 contains significant
contributions other than the simple pion pole~35!. Numeri-
cally we found that the form factorF(t) can be parametrized
at utu!MN

2 in the following form:

F~ t !'2
4.4

t2mp
2 S 11

1.7~ t2mp
2 !

~120.5t !2 D , ~39!

where all dimensional quantities are in units of GeV.
It is worth mentioning that although we obtain the pio

pole contribution to the spin-flip SPDẼ ~36! in the model
calculation, actually the existence of this contribution as su
follows from general considerations of the chiral Ward ide
tities @12#.

V. NUMERICAL RESULTS AND DISCUSSION

We have calculated numerically the isovector distrib
tions H̃ (3)(x,j,D2) and Ẽ(3)(x,j,D2). For the calculations
we use the variational estimate of the soliton profile, E
~14!, of Ref. @15# (M05350 MeV!,

P~r !522 arctanS r 0
2

r 2D , r 0'1.0/M0 , MN'1170 MeV,

~40!

which has been used in the calculation of usual parton
tributions in Refs.@14#. Furthermore, we approximate th
momentum-dependent mass predicted by the instan
model of the QCD vacuum@20# by the simple form

M ~2p2!5
M0L6

~L21p2!3
, ~41!
4-6
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where the parameterL is related to the averaged instanto
size, r, by L561/3r21. This expression reproduces th
asymptotic behavior ofM (p2) at large Euclideanp2 ob-
tained in the instanton vacuum,

M ~2p2!;
36M0

r6p6
~p2→`!.

We have explored also other forms of the momentum dep
dence of the mass and found that numerically the results
very close to each other.

A. Results for H̃ „x,j,D2
…

We estimate the Dirac continuum contribution
H̃ (3)(x,j,D2) using the interpolation formula, Eq.~23!,
which gives a reliable approximation preserving all quali
tive features of the continuum contribution. The contributi
of the discrete level is calculated using Eq.~A5!.

First we computeH̃ (3)(x,j,D2) in the forward limit, D
→0, where it coincides with the usual quark and antiqu
distributions:

H̃ (3)~x,j50,D250!5H Du~x!2Dd~x!, x.0,

Dū~2x!2Dd̄~2x!, x,0.
~42!

The result is shown in Fig. 1, where we plot separately
contributions of the discrete level and that of Dirac co
tinuum~computed from the interpolation formula!, as well as
their sum. The forward limit reproduces the polarized qu
distribution obtained in@14# in the same model and at th
same level of approximation. From Fig. 1 we see that
Dirac continuum contribution leads to new qualitative p
diction for polarized quark distribution: the existence
large flavor asymmetry of antiquark distributionDū(x)
2Dd̄(x), the feature which was noted first in@14# ~see also
@28#!. To our best knowledge all parametrizations of pol
ized quark distributions assume flavor symmetric antiqu
distributions.

The importance of the Dirac continuum contribution
H̃ (3)(x,j,D2) is also shown on Fig. 2. We plot there sep
rately the discrete level and continuum contributions forD2

520.5 GeV2 andj50.2. Comparing Fig. 1 and Fig. 2 w
see that thej-dependence ofH̃ (3)(x,j,D2) is mostly due to
thej-dependence of Dirac continuum contribution. Since
Dirac continuum contribution is symmetric in variablex, we
can expect strongj-dependence only in part ofH̃ (3) which is
even inx . This observation allows us to conclude that w
good accuracy we can put~aboutD2 dependence see below!

H̃ (3)~x,j!2H̃ (3)~2x,j!'Du~x!2Dū~x!2Dd~x!1Dd̄~x!.

The message which might be useful for modeling of SP
in terms of double distributions@3,30#. Additionally we see
that ‘‘antiquark’’ skewed distribution (H̃ (3) at negativex) is
large and it is dominated by the Dirac continuum contrib
tion.
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In order to illustrate the dependence ofH̃ (3)(x,j,D2) on j
andD2 we plot this function for a fixed momentum transf
of D2520.5 GeV2 for various values ofj ~see upper pane
of Fig. 3!, and for fixedj50.2 and various values of mo
mentum transfer~see lower Fig. 3!. We clearly see from the
figures that the distribution has ‘‘cusps’’ atx56j.

Using the results forH̃ (3)(x,j,D2) we computedj andD2

dependence of its Mellin moments. Lorentz invariance
quires that theNth Mellin moment should be a polynomial o
orderN in j @5#:

E
21

1

dx xN21H̃ (3)~x,j,D2!5 (
k50

[N/2]

j2khk
N~D2!. ~43!

Here we prefer to use decomposition of Mellin moments
partial waves ofqq̄ pairs in thet channel@29#:

E
21

1

dx xN21H̃ (3)~x,j,D2!5jN(
l 50

N

Pl S 1

j Dal
(N)~D2!.

~44!

WherePl(x) are Legendre polynomials andl is an angular
momentum of exchangedqq̄ pairs, it runs over~odd! even
values for~odd! evenN. If we now take the forward limit in
Eq. ~44! we obtain

E
21

1

dx xN21@Du~x!2Dd~x!#5
1

2N

G~2N11!

G~N11!2
aN

(N)~0!.

~45!

Qualitatively we may expect that the slope ofD2 depen-
dence of the form factoral

(N)(D2) is governed by the mass o
a low-lying isovector resonance with spinl and unnatural
parity. This dependence can be phenomenologically
scribed by a simple dipole fit:

FIG. 3. Calculated isovector SPDH̃ at various values ofD2 and
j.
4-7
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al
(N)~D2!5

al
(N)~0!

~12D2/Ml
(N)2!2

, ~46!

whereMl
(N) is a phenomenological parameter~dipole mass!.

The results of the calculation and of the fits are given
Table I. One should note thata1

(1)(0) is identical to the usua
axial coupling constantgA and M1

(1) to the corresponding
dipole mass parameter. We see that our theoretical value
these parameters are very close to experimental ones.
should not overestimate this in view of the approximatio
done in the present approach~interpolation formula, no rota-
tional 1/Nc corrections, etc.!. Still the result shows that the
method is well founded. As far as the otheral

(N)(D2) con-
cerns, we see that the chiral quark-soliton model reprodu
the qualitative expectation that the dipole mass in the fo
factorsal

(N)(D2), describing an exchange with angular m
mentuml, in fact increasing withl.

In modelling ofD2 dependence of SPD’s usually the fa
torization ansatz,H̃(x,j,D2)5H̃(x,j)GA(D2), is used. This
ansatz would imply, e.g., that dipole massesMl

(N) are inde-
pendent ofN and l. By explicit calculation in the chiral
quark-soliton model we demonstrated that this is not
case. In order to illustrate numerically the nonfactorazibil
of the t dependence ofH̃(x,j,t) we plot in Fig. 4 the follow-
ing ratio for t0'0, t1520.8 GeV2 andj50.1:

TABLE I. Values of parameters of dipole fit for Mellin mo

ments of isovectorH̃; see Eq.~46!.

(Nl) al
(N)(0) Ml

(N) GeV

~11! 1.25 0.9
~20! 0.06 0.9
~22! 0.12 1.1
~31! 0.08 0.9
~33! 0.04 1.4

FIG. 4. Ratio equation~47! as a function ofx describing the

deviation from the factorization ansatz fort dependence ofH̃.
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R5
H̃~x,j,t0!

H̃~x,j,t1!

E
21

1

dx H̃~x,j,t1!

E
21

1

dx H̃~x,j,t0!

. ~47!

If the t dependence of SPD’s factors out thenR51 indepen-
dently of t0 ,t1 andx,j. From Fig. 4 we see that the ratio~47!
deviates from unity by up to 25% att150.8 GeV2.

Let us note that the hard exclusive reactions can
viewed as a ‘‘tool’’ to create fundamental probes which a
absent in nature. For example, among the form fact
al

(N)(D2) only one (N51, l 51) can be measured by a prob
provided by nature (W,Z bosons!, all others are not acces
sible for electroweak probes. Since in hard exclusive re
tions we can extract the higher spin form factors, this allo
us to studylow energyobservables with probes of any spi
In this respect the hard exclusive reactions can be used
only for checking of predictions of perturbative QCD b
also as a new way to study low energy properties of hadro

B. Results for Ẽ„x,j,D2
…

The skewed distributionẼ(3)(x,j,D2) is dominated by the
pion pole contribution~32!. We computed also the smoot
part ofẼ(3)(x,j,D2) @see Eq.~38!#. The results are presente
in Fig. 5, where we plot the pole and the smooth parts se
rately at various values ofj and D2. We see that the pole
contribution dominatesẼ(3)(x,j,D2) in large range ofD2

andj. The results for the total distribution~pole1nonpole! at
D2520.5 GeV2 and various values ofj are presented on
Fig. 6. The j dependence of Mellin moments o
Ẽ(3)(x,j,D2) has also polynomial form and we checked th
our model calculations reproduce this feature.

FIG. 5. Comparison of pion pole contribution and nonpole p

of isovectorẼ at various values ofD2 and j. The positive curves
correspond to pion pole contributions.
4-8
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The arguments presented here forẼ can be easily ex-
tended to the analogous SPD forN→Y SPD’s (Y is a hy-
peron from the octetY5L,S). In this case the flavor chang
ing Ẽ has a contribution from of the kaon pole of the form

ẼN→Y52
4g1

N→YMN
2

uju~D22mK
2 !

u~ uxu,uju!FKS x

j D , ~48!

whereFK is the kaon distribution amplitude andg1
N→Y the

constant entering in the description of the semileptonic
cays of hyperons.

C. Comparison with other models

Helicity skewed quark distributions were computed pre
ously in the bag model@10#. Unfortunately in this model the
chiral symmetry is broken explicitly by boundary conditio
at the bag surface. Therefore the crucial contribution of
pion pole toẼ(3)(x,j,D2) is missed in this model. Neverthe
less the bag model describes qualitative features of
skewed quark distributions for which the ‘‘resonance par3

is relatively small, these are odd~even! in x part of isovector
~isoscalar! H̃(x,j,D) and Ẽ(x,j,D).

In another approach, proposed by Radyushkin@3,30#, one
writes a spectral representation for the matrix element of
light-ray operator in terms of a so-called double distributio
The skewed distribution for a given value ofj is then ob-
tained as a particular one-dimensional reduction of this tw
variable distribution. The advantage of this approach is t
the resulting skewed parton distribution satisfies autom
cally polynomiality conditions~44!. However, as it was
shown in Ref.@31# the parametrization of skewed quark di
tributions in terms of double distributions is not comple
This incompleteness can be seen especially clearly if
considers the Mellin moments of skewed quark distributio
For example, the expression forH̃(x,j,D) in terms of double

3The notion of virtual hadron cannot be defined in QCD ap
from special cases~large Nc limit, pions, etc.!. We use the term
‘‘resonance part’’ to denote specific contributions to SPD aris
only in the nonforward limit.

FIG. 6. Total result~pole1nonpole! for isovectorẼ at j50.2
and various values ofD2.
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distributions requires that itsNth Mellin moment is a poly-
nomial of orderN22 in variablej, which is in contradiction
with Eq. ~44! for evenN. This problem can be easily cured
one adds one additional function to the double distribut
parametrization of light-cone nucleon matrix elements;
@31#.

As we saw in our model the even moments ofH̃(x,j,D2)
are almostj independent because the contribution of t
Dirac sea drops out. Owing to this feature ofH̃(x,j,D2) the
additional function which one needs to add to the dou
distribution parametrization of light-cone nucleon matrix e
ements is very small.

VI. CONCLUSIONS

We have shown that the helicity skewed distributionẼ is
dominated in a large range ofD2 andj by contribution of the
pion pole~36!. This result can be viewed as a generalizati
of the well known chiral Ward identities for local currents
bilocal quark operators on the light cone. The fact thatẼ is
fixed to great extent by the pion pole contribution opens
possibility to measureH̃ by choosing observables which a
proportional to the productH̃•Ẽ. One of the examples o
such quantity is azimuthal spin asymmetry in hard exclus
production of pions and kaons@13#.

The skewed quark distributionH̃ has been computed in
wide range ofD2 andj using the chiral quark-soliton mode
We have demonstrated that the contribution of the Dirac c
tinuum is crucial to describe the transition between two
gionsuxu.j anduxu,j. Also we saw that thej dependence
of the SPD’s is mostly due to the Dirac continuum contrib
tion. Since the Dirac continuum contribution toH̃ (3) is sym-
metric in variablex, we can expect that the dependence
the combination H̃ (3)(x,j)2H̃ (3)(2x,j) on j is rather
weak. This, in particular, implies that in the modeling
SPD’s in terms of double distributions the functionh(x,y)4

should strongly depend on theC parity of the SPD.
Studying theD2 dependence of the helicity skewed part

distributions we have seen that the factorization ans
H̃(x,j,D2)5H̃(x,j)GA(D2) is in contradiction with our cal-
culations.

For models which use the usual quark distributions
model SPD’s~see e.g.@3,30,32#! one can use the replace
ment of the slope of the Regge trajectory in smallx param-
etrization ofDq(x);1/xa0 at a low normalization point by
the Regge trajectorya0→a01a8 D2. Such replacement de
scribes qualitatively correctly theD2 dependence of the Mel
lin moments of SPD’s as was discussed in the present pa
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APPENDIX: BOUND-STATE LEVEL CONTRIBUTION TO
H̃ „3…

„X,j,D2
… AND Ẽ „3…

„X,j,D2
…

We present here the contributions of the discrete bou
state level to the isovectorH̃ (3)(x,j,D2) and Ẽ(3)(x,j,D2).
The bound-state level occurs in the grand spinK50 and
parity P51 sector of the Dirac Hamiltonian~11!. In that
sector the eigenvalue equation takes the form

S M cosP~r ! 2
]

]r
2

2

r
2M sinP~r !

]

]r
2M sinP~r ! 2M cosP~r !

D S h0~r !

j 1~r !
D

5ElevS h0~r !

j 1~r !
D . ~A1!

We assume that the radial wave functions are normalized
the condition

E
0

`

dr r 2@h0
2~r !1 j 1

2~r !#51. ~A2!

We introduce the Fourier transforms of the radial wave fu
tions:

h~k!5E
0

`

dr r 2h0~r !Rk0~r !, j ~k!5E
0

`

dr r 2 j 1~r !Rk1~r !,

~A3!

where
ys

J.

,

01402
n
aft

d-

y

-

Rkl~r !5Ak

r
Jl 11/2~kr !5~21! lA2

p

r l

kl S 1

r

d

dr D
l sinkr

r
.

~A4!

The bound-state level contribution to theH̃ and Ẽ distri-
bution function can be simply obtained from the general E
~19! and~20!. Compactly the corresponding expressions c
be written as

H̃ lev
(3)~x,j,D2!d3b2Ẽlev

(3)~x,j,D2!•
D3Db

D2

5
2NcMNp

3 E d2k�

~2p!2

1

kk8
$h~k!h~k8!d3b

2@h~k! j ~k8!nb1h~k8! j ~k!n
*
b #

1 j ~k8! j ~k!@n3n
*
b 1n

*
3 nb2d3b~n* •n!#%, ~A5!

where

k5Ak'
2 1„~x1j!MN2Elev…

2, ~A6!

k85A~k'1DT!21„~x2j!MN2Elev…
2.

~A7!

Unit vectorsn andn* have components

n5
1

k
„k�,~x1j!MN2Elev…

n* 5
1

k8
~k'1DT , ~x2j!MN2Elev!.

The individual expressions forH̃ andẼ can be obtained from
Eq. ~A5! contracting indexb with (db32DbD3/D2) andD'

b .
n,

C.

s.
e
ool
ain,
n-
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