
PHYSICAL REVIEW D, VOLUME 62, 014016
Pion structure function within the instanton model
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The leading-twist valence-quark distribution function in the pion is obtained at a low normalization scale of
an order of the inverse average size of an instantonrc . The momentum dependent quark mass and the
quark-pion vertex are constructed in the framework of the instanton liquid model, using a gauge invariant
approach. The parameters of instanton vacuum, the effective instanton radius and quark mass, are related to the
vacuum expectation values of the lowest dimension quark-gluon operators and to the pion low energy observ-
ables. An analytic expression for the quark distribution function in the pion for a general vertex function is
derived. The results are QCD evolved to higher momentum-transfer values, and reasonable agreement with
phenomenological analyses of the data on parton distributions for the pion is found.

PACS number~s!: 12.38.Aw, 11.10.Hi, 12.38.Lg, 14.40.Aq
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I. INTRODUCTION

Hadron structure functions, in terms of quark and glu
distributions specifying the fractionxp of the initial hadron
momentump carried by the active parton, play an importa
role in QCD inclusive processes. Although the evolution
parton distributions at sufficiently large virtualityQ2 is con-
trolled by the renormalization scale dependence of twis
quark and gluon operators within QCD perturbation theo
the derivation of the parton distributions themselves at
initial Q2 value from first principles still remains a challeng
Hence, central predictions unknown in QCD are parton d
tributions at relatively low virtuality determined in a nonpe
turbative scheme.

There is some recent progress in the calculation of m
ments of the pion andr meson parton distributions@1#
within lattice QCD ~LQCD! using Wilson fermions in the
quenched approximation, where internal quark loops are
glected. These LQCD predictions for the moments of
pion distribution function confirm the results of previou
analyses@2#, being also in qualitative agreement with th
extracted phenomenologically@3,4# from experiment@5#.
However, the calculated moments are still of a relatively l
accuracy. In addition, only a few lowest-order moments
available, while the reconstruction of thex-dependent distri-
butions needs, in principle, the knowledge of all momen
Furthermore, the QCD sum rules calculations of parton d
tributions in the pion are only moderately successful@6#, the
results being justified in a limited region of the scaling va
ablex. Recently, in Ref.@7#, the quark distribution function
of pion from lowest quark-antiquark Fock state has been
tained within the hard scattering approach including tra
verse momentum effects and Sudakov corrections. It fe
phenomenological quark distribution at largex.

The quark distribution function in the pion was consi
ered@8# in the framework of the Nambu–Jona-Lasinio~NJL!
model @9#. These and similar studies are based on the
sumption that the calculation of the twist-2 matrix elemen
0556-2821/2000/62~1!/014016~15!/$15.00 62 0140
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within the QCD inspired effective approaches, gives dis
butions at a low momentum scalem0&1 GeV, where such
effective theories make sense. The distributions obtained
extrapolated to higher experimentally accessible momen
scales using perturbative QCD, so that comparison with
perimental data can be made. However, the problem of
NJL model is that it is nonrenormalizable and thus, to av
this defect, differentad hocassumptions about momentu
cutoff parameters are introduced.

The instanton model of the QCD vacuum~for recent re-
view see, e.g.,@10,11#!, which gives the dynamical mecha
nism of chiral symmetry breaking and provides the solut
of the UA(1) problem@12#, describes well the properties o
pion @13–15# and kaon@16#. Moreover, it dynamically gen-
erates the momentum-dependent effective quark massMq
and quark-pion vertexgpqq , and, as a consequence, provid
inherently a natural ultraviolet cutoff parameter in the qua
loop integrals through the effective instanton sizerc . On
these grounds, one may believe that the instanton vac
framework represents an important advance with respec
NJL-type models. The first attempt to calculate the pi
structure function within the instanton model has been m
in @17#. More recently, important progress has been achie
@18,19# in calculating quark distributions in the nucleo
within instanton inspired approaches.

In the present paper, based on the quark-pion dynamic
the framework of the instanton liquid model, we calcula
the leading-twist valence-quark distribution in the pion a
low normalization point of the order of the inverse avera
instanton sizerc . The calculations are performed in a gaug
invariant manner by taking into accountP2exp factor ex-
plicitly in the definition of nonlocal quantities@20,21# and
gauging the nonlocal quark-pion interaction@22,23#. The
momentum dependent quark mass and quark-pion vertex
constructed in terms of nonlocal quark condensate@24#. The
parameters of the instanton vacuum, effective instanton
dius and quark mass, are related to the vacuum expecta
values~VEV! of the lowest dimension quark-gluon operato
©2000 The American Physical Society16-1
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and to the pion low energy observables. We derive the qu
distribution in the pion and all its moments for the gene
form of the effective quark-pion vertex function. The validi
of the isospin and total momentum parton sum rules is
sured by the pion compositeness condition@26#, and it is
consistent with the gauge invariant approach. As the ef
tive instanton model is valid for values of the quark relati
momentum up top;rc

21'0.5– 1 GeV, the parton distribu
tions calculated here are defined at this~low! normalization
point m0;rc

21 . The results are QCD evolved to higher m
mentum transfers, and we found reasonable agreement
phenomenological analyses of the data on the pion distr
tion function.

The paper is organized as follows. In Sec. II, we brie
outline the instanton liquid model and introduce the qua
pion vertex. In Secs. III and IV, the parameters of the inst
ks
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ton vacuum model are related to the vacuum expecta
values of the lowest dimension quark-gluon operators an
the pion low energy observables. Then, we derive the exp
sions for the moments of the pion distribution~Sec. V! and
for the x-dependent distribution itself~Sec. VI!, followed by
the QCD evolution to higher values of the momentum tra
fer. In the last section, the results are discussed.

II. THE INSTANTON LIQUID MODEL
AND THE QUARK-PION VERTEX

We start with the instanton induced nonlocal, chirally i
variant Lagrangian, which describes the soft quark fie
with the soft gluon fields being integrated out. The cor
sponding action can be expressed in a form similar to tha
the NJL model
Sinst5E d4xq̄~x!i ]̂q~x!1GE d4xd4x8d4yd4y8K~x,x8;y,y8!
1

4~Nc
221!

3H F2Nc21

2Nc
„q̄R~x8!taqL~x!…„q̄R~y8!taqL~y!…1

1

8Nc
„q̄R~x8!tasmnqL~x!…„q̄R~y8!tasmnqL~y!…G1~R↔L !J .

~1!
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In the local limit the four fermion term describes quar
interacting through the ’t Hooft vertex@12#. Here, ta

5(1,i tW ) are the matrices for theSU(2) sector of the flavor
space,Nc53 is the number of colors, and

qR(L)~x!5
16g5

2
q~x!

are the quark fields with definite chirality. In Eq.~1!, the
kernel of the four-quark interactionK(x,x8;y,y8) character-
izes the region of the nonlocal quark-~anti!quark instanton
induced interaction. In the present model we assume the
lowing separable form of it:

K~x,x8;y,y8!5
1

2E d4X f~x2X! f ~x82X!

3 f ~y2X! f ~y82X!. ~2!

In order to define the form factorf (x) and coupling con-
stant G, we consider the dressed quark propagator in
instanton vacuum

S21~p!5S0
21~p!2 iM q~p!,

~3!
S0

21~p!5 p̂2 imc ,

wheremc is the current-quark mass. In Eq.~3!, the momen-
tum dependent quark massMq(p) is dynamically developed
due to the effect of spontaneous breaking of the chiral s
l-

e

-

metry in the instanton vacuum. We should emphasize t
the momentum dependence of the quark mass is only du
the nonperturbative vacuum interaction and does not con
the strong perturbative corrections at all. In the ladder
proximation, the momentum dependent quark mass ob
the well-known gap equation@15#1

4NcG f̃2~p!E d4k

~2p!4
f̃ 2~k!

Mq~k!

k21Mq
2~k!

5Mq~p!, ~4!

where f̃ (k) is the Fourier transform off (x). The solution of
Eq. ~4! has the form

Mq~p!5Mqf̃ 2~p!. ~5!

From another side, the nonperturbative part of the qu
propagator has been calculated in the effective single ins
ton model@20,21#, as

Mq~p!5MqQ̃~p!, ~6!

1Here and in the following, all Feynman diagrams are calcula
in the Euclidean space (k252kE

2) where the instanton induce
form factor is defined and rapidly decreases, so that no ultravi
divergences arise. At the very end we simply rotate back to
Minkowski space. One can verify that the numerical dependenc
the results on the pion mass and the current quark mass is negli
and can be dispensed with in the following considerations.
6-2
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where

Mq5
~2prc!

2nc

m*
, ~7!

and
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01401
Q̃~p!5
1

2~2p!2

p2

rc
2E d4x exp~2 ip•x!Q~x2!,

~8!
Q̃~0!51 ~p5upu!.

In the above equations,rc denotes the effective size of in
stantons,nc is the effective density of instantons,Mq is the
effective quark mass, and
Q~x2!5K :q̄~0!P expH 2 ig
la

2 E
0

x

dzmAm
a ~z!J q~x!:L Y ^:q̄~0!q~0!:&, Q~0!51 ~9!
-
ob-

e

m
r
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nd
fec-
is the normalized instanton induced nonperturbative par
the gauge invariant quark propagator in configuration sp
which describes the nonlocal properties of the quark cond
sate@24,25#. In Eq. ~7! the parameterm* is defined by

m* 5mc1 i ^C I uS0
21~S2S0!S0

21uC I&, ~10!

where^C I u . . . uC I& means independent averaging over t
instanton vacuum configuration. By substituting the qu
propagator~3!, with the quark mass~6!, into Eq. ~10!, we
obtain ~in the chiral limit!

E d4k

~2p!4

Mq
2~k!

k21Mq
2~k!

5
nc

4Nc
, ~11!

which is equivalent to the self-consistency condition given
Ref. @15#. Comparing Eqs.~4! and ~11!, we find that

f̃ ~p!5AQ̃~p! and G5
Mq

2

nc
. ~12!

We have to note that, by using the standard operator p
f
ce
n-

k

d-

uct expansion~OPE!, in Refs.@27#, the perturbative and non
perturbative contributions to the quark propagator were

tained. The nonperturbative part, proportional to^q̄q& has
the leading term with momentumd(p) distribution and the
as correction;p24. The first term is gauge invariant and th
second one is not. The contribution considered in Eq.~6!
corresponds to the first, gauge invariant, leading inas term,
which ~due to nonlocal properties of the instanton vacuu!
smears the momentumd function into a smooth form facto
Q̃(p). This means that the quarks can scatter in the vacu
with nonzero virtuality @compare withd(p50) of OPE#.
Formally, it reduces to resummation of the infinite subset
OPE terms. Thus, the nonperturbative mass in this order d
not depend on the gauge. In the next-to-leading order,
gauge dependence appears like in@27#, but these terms are
suppressed by the small coupling constant.~The soft part of
the gluon field is effectively integrated out within the effe
tive theory approach.!

Using the explicit expressions for the instanton field a
quark zero mode, the nonlocal quark condensate in the ef
tive single instanton approximation is given by@28,20,21#
at the
Q~x2!5
8rc

2

p E
0

`

drr 2E
2`

`

dt

cosF r

R
XarctanS t1uxu

R D2arctanS t

RD CG
@R21t2#3/2@R21~ t1uxu!2#3/2

, ~13!

whereR25rc
21r 2,r 5uzWu,t5z4. In the derivation of these equations a reference frame is used, where the instanton is

origin andxm is parallel to one of the coordinate axes, saym54, serving as a ‘‘time’’ direction~i.e., xW50,x45uxu). The
propagator has the following expansions at small and large Euclidean distances:

Q~x2!55 12
1

4

x2

rc
2

1••• as x2→0,

2
rc

2

x2
1••• as x2→`.
6-3
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The gauge-invariant quark propagators in configurat
and momentum representation are plotted in Figs. 1 an
respectively, along with the propagators derived in negle
ing P2exp factor in Eq.~9! and using the expressions fo
the quark zero mode in the singular and regular gauges
the regular gauge, one has

FIG. 1. Euclidean configuration space representation of the
malized instanton induced nonperturbative part of the gau
invariant quark propagator, Eq.~13! ~solid line!; and the corre-
sponding propagators derived withoutP2exp factor in the singular
~short-dashed! and regular, Eq.~14!, ~long-dashed! gauges.

FIG. 2. Normalized momentum space representation for
same propagators given in Fig. 1, corresponding to Eqs.~8! ~solid
line!, ~15! ~long-dashed! and Eq.~16! ~short-dashed!.
01401
n
2,
t-

In

Qreg~x2!5
2

y2 S 12
1

A11y2D U
y5x/2rc

. ~14!

In the momentum representation, the normalized qu
propagators~without P2exp factor! are proportional to the
square of the quark zero mode in the corresponding reg
and singular gauges:

Q̃reg~p!5exp~22rcp!, ~15!

Q̃sing~p!5H z
d

dz
@ I 1~z!K1~z!2I 0~z!K0~z!#uz5rcp/2J 2

.

~16!

From Fig. 2, one can observe that in the momentum rep
sentation the shape of the propagator is very sensitive to
P2exp factor.2

So, our model is based on the gauge invariant expres
for the dressed quark propagator in the instanton vacu
with the instanton resummation effect given by theP2exp
factor included. The motivation for this choice is that th
physical quantities, like the quark condensate or quark vi
ality ~see below!, are defined in terms of the gauge invaria
objects. Another element of the model is the four-quark k
nel. In the separable approximation, its form, Eq.~2!, is com-
pletely fixed by the dressed quark propagator through the
equation. The actual calculations, dominated by the con
bution of the zero mode quark wave functions in the field
~anti-!instanton, can be done in any gauge for the instan
field, including singular one.3

The spin-flavor structure of the action, Eq.~1!, is invariant
under the global axialq(x)→exp(ig5t•u)q(x) and vector
transformationsq(x)→exp(it•u)q(x) and it anomalously
violates theUA(1) symmetry:q(x)→exp(ig5u)q(x). Within
the instanton liquid model@28,14,15# it is argued that due to
the long range instanton–anti-instanton interaction, confi
rations with large size instantons are strongly suppressed
the instanton density is sharply peaked at some finite ave
instanton sizerc in the form n(r)5ncd(r2rc). Since the
instanton liquid is assumed to be dilute, the mean separa
between instantons is much larger than the average insta
size and the effective densitync is a small parameter of the
approach. The values ofnc and rc are estimated from the
phenomenology of the QCD vacuum and hadron spect
copy to benc;1 fm24, and rc changes within an interva
~1.5–2! GeV21, where we put less restrictive limits on th
range of values. The dimensionless parameter, that cha
terizes the diluteness of the instanton liquid vacuum, ish
5(rcMq)2. The smallness ofh means that the dynamicall
generated quark mass is not large enough to destroy th

2To avoid inconsistency with gauge invariance, one cannot use
treatment of the quark propagator in thep representation, in factor-
izable form, as done in Ref.@20#.

3In @15#, the quark propagator is used in the formQ(x2)

5^:q̄(0)q(x):&/^:q̄(0)q(0):&.

r-
e-

e
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PION STRUCTURE FUNCTION WITHIN THE . . . PHYSICAL REVIEW D62 014016
stanton vacuum. It is important to note that the effect
instanton sizerc , which defines the range of nonlocalit
serves as a natural cutoff parameter of the effective low
ergy model. Moreover, the coupling constants of the mod
Eq. ~2!, are also expressed through the fundamental par
eters describing the QCD instanton vacuum,nc andrc . The
model incorporates all attractive features of the NJL mo
and, at the same time, is free of arbitrariness in the choic
the ultraviolet cutoff procedure and physically all paramet
are well understood. These peculiarities provide import
advantages of the instanton model as compared to diffe
versions of the NJL model@9#.

The instanton induced interaction of quarks is respons
for strong spin-dependent forces in hadron multiplets~for a
review, see@29#!. In particular, this force is attractive fo
quark-antiquark states with vacuum and pion quantum n
bers, repulsive for the singlet part ofh8, and absent~in the
zero mode approximation! in the vectorlike channelsr,v,
etc. If the attraction is sufficiently large, it can rearrange
vacuum and bind a quark and an antiquark to form a li
~Goldstone! meson state.

To study the formation of quark-antiquark bound states
the instanton liquid, it is convenient to rewrite the fou
fermion term in the action, Eq.~1!, linearizing the bilocals
q̄(x)q(y) and q̄(x)g5tWq(y) by introducing the auxiliary
composite meson4 fields F(x) @30# ~mean field approxima-
tion! by virtue of the separability of the four-quark kerne
Then, we arrive at the following form of the effective no
local action corresponding to Eq.~1!:

S5S01Sint , ~17!

whereS0 is the free action for quark and meson fields

S05E d4xH q̄~x!iD̂ q~x!1
1

2
@s~x!~D2ms

2 !s~x!#

1
1

2
@pW ~x!~D2mp

2 !pW ~x!#J , ~18!

andSint is the quark-meson interaction part

Sint52E d4Xd4x1d4x2F~x1 ,x2 ;m0
2!q̄~X1x1!

3Eg~X1x1 ;X!@Mq1gMq̄q~G•T!F~X!#

3Eg~X;X2x2!q~X2x2!, ~19!

with Dirac and isospin matrices for different meson sta
according to (G•T)s5I •I ,(G•T)p5 ig5•tW . In Eq. ~19!,
gMq̄q is the quark-meson coupling constant andMq is the
effective quark mass fixed in a gauge-invariant manner~see
below! by the compositeness condition, Eq.~22!, and the gap
equation~4! in terms of the instanton densitync and the
instanton sizerc . In Eqs. ~18!,~19! we neglect the terms

4In this work we do not include explicitly the diquark part of th
interaction generated by instantons.
01401
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induced by tensor interaction in Eq.~1! since they do not
contribute to the scalar channels. We also neglect in the
lowing the current quark mass and restrict ourselves only
the nonstrange quark sector.

To ensure the gauge invariance of the bilocal quark
erators, which enters in Eq.~19!, with respect to externa
electromagneticAm(z) gauge field, we include into Eq.~19!,
following @22#, the path-ordered Schwinger phase factors

Eg~x;y!5P expH 2 ieQE
x

y

dzmAm~z!J , ~20!

where the charge matrix isQ5(1/31t f
3)/2, and the partial

derivative ]m is replaced by the covariant oneDm5]m
2 ieAm . We adopt here that the integral in the exponen
evaluated along a straight line withP being the path-ordering
operator. The incorporation of a gauge-invariant interact
with gauge fields is of principal importance in order to tre
correctly the hadron characteristics probed by exter
sources such as hadron form factors, structure functions,

The Fourier transformed gauge-invariant nonlocal ver
function F̃(k1 ,k2 ;m0

2) describes the amplitude of soft trans
tion of a pion with momentump into a quark and an anti
quark with momentak15p1k/2 and k25p2k/2, respec-
tively. This function represents the full interaction verte
with all quark-gluon excitations harder than the scalem0
;1/rc , strongly ~exponentially! suppressed. It is define
through the nonperturbative part of the quark propagator

F~k1 ,k2 ;m0
2!5AQ̃~k1!Q̃~k2!. ~21!

One of the advantages of using the gauge-invariant
malism is that the parameters of the model, such as the
of instantons and the effective quark mass, gain phys
meaning. As a consequence, all other physical quantities
pressed through these parameters become automati
gauge-invariant ones. Moreover, they could be compa
with those calculated in the lattice QCD, QCD sum rules
other QCD inspired approaches. In contrast, when one d
with noninvariant-gauge objects there can be chosen
convenient gauge. It is most correct to consider the instan
vacuum field in the singular gauge and to construct the
fective action in this specific gauge@10,11#. In the coordinate
space in the singular gauge the instantons fall off rapi
enough to provide small overlaps of neighbor pseudop
ticles and quasiclassical considerations are justified. Bu
the end the action has to be independent on the choice o
gauge, otherwise the form of the action and other obse
ables look rather awkward. This explicitly gauge invaria
form was assumed by us in Eq.~19! by introducing path-
ordered SchwingerP exp factors in Eqs.~9! and ~20!. The
factor Eg will effectively take into account the radiation e
fects of photon field when two quarks become separa
Note also that the quark propagator, Eq.~9!, has a direct
physical interpretation in the heavy quark effective theory
heavy-light mesons as it describes the propagation of a l
quark in the color field of an infinitely heavy quark@28#.
6-5
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It is important to emphasize that the meson fields ente
the action, Eq.~17!, are renormalized and the field renorma
ization constants of composite mesons are set equal to z

ZM512gFqq̄
2 ]PF~p2!

]p2 U
p252m

F
2

50, ~22!

wherePF(p2) is the meson field polarization operator. Th
condition@26# fixes the couplings of meson fields to quark
gFqq̄ ~see Sec. IV! and is a consequence of the composi
ness of hadron states manifesting themselves as poles i
quark-~anti!quark scattering amplitude. As we will see b
low, it is precisely this condition supplemented by the gau
invariance of the effective action, given by Eq.~17!, that
leads to the correct parton isospin and momentum sum r
in the model.

III. EXPECTATION VALUES OF QUARK-GLUON
OPERATORS

Let us consider the lowest dimensional vacuum expe
tion values within the instanton model. Given the dynami
mass, Eq.~6!, the values of the quark condensate,

^q̄q&524NcE d4k

~2p!4

Mq~k!

k21Mq
2~k!

, ~23!

and the average quark virtuality in the vacuum@24#,

lq
2[

^:q̄D2q:&

^:q̄q:&
52

4Nc

^q̄q&
E d4k

~2p!4
k2

Mq~k!

k21Mq
2~k!

, ~24!

can be found. The average quark virtuality defines the
rivative of the quark condensate and thus nonlocal prop
of it. One of the main suggestions of the QCD sum ru
method@31# was that the local quark and gluon condensa
dominate in the light hadron physics and introduction
higher dimensional corrections or even nonlocal condens
themselves@24# have not to change the standard results
much. Thus, at least for consistency of local and nonlo
QCD sum rules, the derivative~virtuality! value has to be
relatively small. Phenomenologically, there is rather fi
QCD sum rule analysis of this valuelq

2'0.460.2 GeV2,
based on consideration of the light hadrons@32# and heavy-
light quark meson systems@33#. The LQCD calculation
yields lq

250.5560.05 GeV2 @34#. Certainly, there is correc
tions from direct instantons to the QCD sum rule result,
they have not to change the result drastically. It would a
be urgent if the LQCD estimation could be confirmed
new calculations.

For the moment, it is instructive to consider Eq
~4!,~23!,~24!, neglecting the termMq

2(k) compared tok2 in
the denominator of the integrands. This approximation is j
tified in the dilute liquid regime wherêk2&5lq

2@Mq
2(lq).

The observed accuracy of such procedure is better than~20–
30!% if the diluteness parameter is smallh,1. Then, from
Eqs.~23! and~24!, by using the explicit forms given in Eqs
~13!,~8!,~5!, we have
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^q̄q&52
NcMq

2p2rc
2

, lq
25

2

rc
2

. ~25!

The first relation, put in the formMq52(2p2/Nc)rc
2^q̄q&,

coincides with the result obtained in Ref.@35#, where the
effective quark mass has been defined in a system of s
size instantons interacting with long wave vacuum fiel
The coefficient in this relation is equal to the normalizati
factor of the momentum representation of the quark pro
gator. It turns out that this factor, which is equal to (2p)2, as
seen in Eq.~8!, is the same that appears in the gaug
invariant propagator and also in the singular gauge propa
tor ~without P2exp). Further, this relation resembles th
known result from the NJL model @9# ^q̄q&
'2NcMqLNJL

2 /(4p2), whereLNJL is a momentum cutoff
for the covariant regularization scheme in the two-flav
model. Since the instanton induced nonlocality is analog
to the covariant regularization, we can estimateLNJL

2 'lq
2 .

The second relation in Eq.~25! has recently been obtaine
in Ref. @21#, wherenonlocalproperties of the quark conden
sate are studied within the instanton model. The same re
was also obtained in Ref.@36# from direct calculations of the
local mixed quark-gluon condensate:

lq
2

2
5

K :q̄S igsmnGmn
a la

2 Dq: L
^:q̄q:&

. ~26!

It is clear, from the expressions for the average quark vir
ality, that the range of the quark-antiquark interaction
characterized by the effective sizerc of the instanton fluc-
tuations in the QCD vacuum. The natural gauge-invari
definition for the average quark virtuality, Eq.~24! @and also
that in Eq.~23! for the quark condensate#, with Mq(k) de-
fined in Eqs.~8! and ~5!, is valid only if the zero mode
solution in Eq.~8! is written in the gauge-invariant way. I
we substituted its expression in the singular gauge~in ne-
glecting P2exp factors! in Eq. ~24!, we would obtainlq

2

59/(2rc
2), with a coefficient far from the correct one. Th

reason for such inconsistency, in the calculations ofnonlocal
quantities, is that the covariance of the derivative in the m
trix element of Eq.~24! is missing. This implies that one
needs to add extra terms in Eq.~24! to take into account
effects of gluon field; terms which restore the correct res
However, by using the present invariant approach, with
~9!, such effects are taken into account effectively by theP
2exp factor.

Inverting the relations, Eq.~25!, we express the param
eters of the instanton vacuum model in terms of the fun
mental parameters of QCD vacuumrc

252/lq
2 ,Mq

52(4p2/Nc)(^q̄q&/lq
2). If one expected ‘‘standard’’ values

for the quark condensate,^q̄q&'2(230 MeV)3 ~see, e.g.,
@11#!, and for the average quark virtuality to take,lq

2'0.6
GeV2 @32,34#, one would obtainrc

21'0.55 GeV andMq

'0.27 GeV. As we will see in the next section, the join
6-6
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PION STRUCTURE FUNCTION WITHIN THE . . . PHYSICAL REVIEW D62 014016
analysis of the vacuum and pion properties confirms
estimation. The diluteness parameter expressed in term
physical parameters is

h1/25
4A2p2

Nc
S u^q̄q&u1/3

lq
D 3

.

This expression is proportional to the parametrically sm
factor 1/Nc and to the ratio of the value of quark condens
to the size of its nonlocality in momentum space. Howev
the smallness of 1/Nc is compensated by the large nume
coefficient. Thus, the diluteness of the instanton vacu
comes from the second factor and means that quarks
through the vacuum with rather large average momen
lq'A^k2& in comparison with the quark condensate sc
u^q̄q&u1/3. The formal dilute liquid limit corresponds to th
small size instanton limit. By substituting the real numbe
we get the estimationh'0.24.

Within the dilute liquid approximation, the gap equatio
Eq. ~4!, leads to

nc5
NcMq

2lq
2

4p2
I n , with I n5E

0

`

duuQ̃2~u/rc!'0.61,

~27!

where the constantI n is independent ofrc . There are other
different useful combinations relating vacuum paramet
with each other. For example,

^q̄q&52
1

I n

nc

Mq
52

1

2pAI n

ANcnclq
2. ~28!

These relations have the same parametric dependence
the estimations obtained in@28,11# but with different coeffi-
cients. The first one expresses the quark condensate in t
of the effective single instanton contribution times the de
sity of instantons. The reason for the difference in the co
ficients is that in@28#, where it looks aŝq̄q&52nc /Mq , the
expressions were obtained from the instanton formula in
gas approximation byad hoc replacing the current quar
mass by the effective quark mass. In contrast, in deriving
~28! this replacing procedure is fixed by the gap equati
Eq. ~4!, with a definite coefficient mainly defined by th
slope of the form factorMq(k). The second relation repre
sents a self-consistent value of the quark condensate in
instanton vacuum model~cf. @11#!. Further, since the instan
ton contribution to the value of the gluon condensate is gi
by ^(as /p)G2&u inst58nc , it can be expressed through th
quark condensate and the average quark virtuality

K as

p
G2L U

inst

5
25p2I n

Nc

^q̄q&2

lq
2

&0.019 GeV4. ~29!

The ‘‘standard’’ value of the gluon condensate estimated
the original work, in Ref.@31#, was ^(as /p)G2&.0.012
GeV4. The latest reanalysis@37# of the QCD sum rules for
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heavy and light mesons and also recent lattice results@38#
provide values which are twice or even larger than the ‘‘st
dard’’ one.

IV. PION LOW ENERGY OBSERVABLES

Let us now consider the low-energy observables of
pion. The pion-quark coupling constant is determined by
compositeness condition, Eq.~22!, with the pion mass opera
tor being

Pp~p2!5NcE d4k

~2p!4
F̃2~k,k1p;m0

2!

3Tr$g5S~k1p!g5S~k!%, ~30!

where the normalized nonlocal vertex is given in Eq.~21!

and the quark Green function isS(k)5@MqQ̃(k)1 k̂#21 with
Q̃(k) defined in Eq.~8!.

From the definition, Eq.~22!, we derive the expression fo
the pion-quark coupling constantgpqq̄

gpqq̄
2

5
2p2

NcI gp~2mp
2 !

. ~31!

In the case of a massless pion, the integralI gp reduces to

I gp~0!5E
0

`dkk3Q̃~k!2

D2~k!
F12

k

2

Q̃8~k!

Q̃~k!
1S k

2

Q̃8~k!

Q̃~k!
D 2G ,

~32!

where

Q̃8~k!5
d

dk
Q̃~k!, D~k!5Mq

2Q̃2~k!1k2. ~33!

The expression forgpqq̄ given in Eqs.~31! and ~32! agrees
with that derived in@15#.

To fix the parameters in the instanton model, we consi
the low energy decay constants of the pion. As it has rece
been shown in@23#, in the presence of nonlocal separab
interaction the axial current conserved in the chiral limit c
be constructed from the action, Eq.~1!, by using a Noether-
like method.5 The full current is the sum of local,

j 5(loc)
ma ~x!5

1

2
q̄~x!gmg5taq~x!, ~34!

and nonlocal,

5One of us~A.E.D.! thanks M. C. Birse for discussion of th
problem of current conservation in the nonlocal models.
6-7
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j 5(nl)
ma ~x!5E dx1dx2dx3dx4K~x1 ,x2 ,x3 ,x4!

3H F E
x1

x4
dzmd~z2x!2E

x2

x3
dzmd~z2x!G

3q̄~x1!ig5taq~x3!q̄~x2!q~x4!1E
x1

x3
dzmd~z2x!

3 i«abcq̄~x1!tbq~x3!q̄~x2!ig5tcq~x4!J , ~35!

pieces, where the integrals withd functions are the path in
tegrals along straight lines. This expression is derived in R
@23# and, in principle, depend on the gauge fixing procedu
Fortunately, there is no path dependence for the longitud
components of the current, and thus, the decay const
considered below are well defined.

The axial and vector currents in different isospin sta
have a similar structure@23#. As a result, various Ward iden
tities which follow from ~partial! current conservation an
the low-energy theorems are satisfied. In particular,
Goldberger-Treiman relation for the quark-pion coupli
constant has the usual form

gpqq5
Mq

f p
~36!

and thep0→gg decay constant

gpgg5
1

4p2f p

~37!

is consistent with the requirement of axial anomaly.
We fix the model parameters to give the pion weak de

constantf p , within 1% of accuracy. In Table I, we prese
the results. For the two model parameters,Mq and rc , we
show the predictions for the quark-pion couplinggpqq , the
quark condensatêq̄q&, the average vacuum quark virtualit
lq

2 and the instanton densitync .
From Table I it is clear that with growth of the quark ma

the values of the quark and gluon condensates decrease.
is an expected effect of suppression of condensates by
mion. As shown in Table I, the values of the parametersMq
and rc that reproduce the lowest dimension VEV with a
accuracy of an order of 30% are in the ‘‘window’’Mq

TABLE I. The values of the low energy vacuum and pion o
servables discussed in the text.

Mq rc f p u^q̄q&u1/3 lq
2 nc

~GeV! ~GeV21) ~MeV! gpqq ~MeV! ~GeV2) ~fm24)

0.16 1.0 93 1.7 283 2.2 1.36
0.21 1.5 92 2.3 230 1.0 0.87
0.23 1.7 91 2.5 215 0.83 0.75
0.28 2.0 92 3.1 201 0.61 0.68
01401
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5(2202260) MeV,rc5(1.522.0) GeV21. In the follow-
ing we use the typical set of parameters:

Mq5230 MeV, rc51.7 GeV21. ~38!

The diluteness conditionh!1 is satisfied within the whole
‘‘window.’’

The momentum dependence of the vertices in the num
tors of the integrands~which are defining physical quantities!
is important because it provides the ultraviolet regulari
tion. Also, due to momentum dependence of the vertices,
measure in the integrals looks like product of some pow
of k2 and the functionQ̃(k). This measure has maximum a
k2 of order 1/rc

2 and, at small momenta, the momentum d
pendent quark mass in denominators can be substituted b
effective constant mass parametermq'Mq(k;rc

21). With
the form of momentum distribution shown in Fig. 2, it a
proximately equals to the mass at zero,Mq(0). This mass
parametermq has to be identified with the standard constit
ent quark mass. Corresponding to this substitution, we re
fine the functionD(k) given in Eq.~33! asD(k)5mq

21k2.
The choice of the mass parameter,

mq5230 MeV, ~39!

well reproduces the integrals defining the VEV given by E
~4!–~24!. This constant-mass approximation is often used
practice with the quark mass in the region 250–350 M
~see, e.g.,@19,39,40#!.

The model parameters and predictions for vacuum
pion observables are obtained within a set of approximatio
We are working in the chiral limit of zero current quar
mass. Further, within the zero mode approximation sm
contributions coming from vector mesons are neglect
Also only the lowest two-quark Fock intermediate state
the pion is taken into account, which corresponds to
quenched approximation. We regard that all these factors
change a little the numbers in Table I, but the qualitat
results discussed are not greatly affected.

V. MOMENTS OF THE QUARK DISTRIBUTION
FUNCTION

The standard QCD analysis based on the operator pro
expansion~OPE! relates moments of parton distributions a
given scale to the hadronic matrix elements of local twis
operators. This formalism is employed to separate the h
and soft parts of the forward scattering amplitude. Within t
OPE, the hard part is calculable within perturbation theory
the form of Wilson coefficients. The soft part is represen
by a set of local operators classified by the twist. Their m
trix elements accumulate information on the nonperturba
structure of the QCD vacuum.

The twist-2 gauge-invariant nonsinglet local quark6 opera-
tors with flavorj are defined by

6As in Ref. @19#, we will neglect gluon operators in the covaria
derivatives, justified by the smallness of the diluteness parameteh.
6-8
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Om1m2 . . . mN

j 5 i Nq̄j$gm1
Dm2

. . . DmN
%Sqj , ~40!

whereDm5]m2 igAm
a ta is the covariant derivative and th

symbol$•••%S means the traceless and symmetric part of
tensor. The matrix elementsAN

j of the local operatorsON
j

between pion statesup(p)& with momentump, renormalized
at the normalization scalem, are defined by

AN
j ~m2!5

i N

2
^p~p!uq̄ j n̂~nnDn!N21qj up~p!&um , ~41!

wherenn is a lightlike vector, withn250 and (np)51, in-
troduced to select the symmetric traceless part of the op
tor ON

j , Eq.~40!. Let us now define the quark distribution fo
the j th flavor in terms of its moments, viz.
c
l
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AN
j ~m2!5E

0

1

dxxN21qj~x,m2!. ~42!

The x variable is the fraction of the longitudinal pion mo
mentum carried by a quark in the infinite-momentum fram
The m2 dependence ofAN

j is known exactly from the solu-
tion of the perturbative QCD evolution equations, while t
nonperturbative dynamical model provides the initial inp
for this evolution. These initial values of the moments a
calculated here in the instanton model, which specifies a
momentum transfer value related to the scalem0

2}1/rc
2 .

The contribution of the lowest Fock quark-antiquark v

lence state to theNth moment,AN
qq̄(m0

2), in the instanton
model, is given by~see Fig. 3!
AN
qq̄~m0

2!pm1
pm2

. . . pmN
52Ncgpqq̄

2 E d4k

~2p!4 H F̃2~k,k1p;m0
2!Tr@g5S~k1p!$gm1

~k1p!m2
. . . ~k1p!mN

%SS~k1p!g5S~k!#

22F ]F̃2~k,k1p;m0
2!

]~k1p!2 GTr@g5S~k1p!$~k1p!m1
~k1p!m2

. . . ~k1p!mN
%Sg5S~k!#J. ~43!
he

an-

is
ion

n
line
h

In general the moments are defined in Minkowski spa
and can be expanded inpm andgmn . The terms proportiona
to gmn are of higher twist nature and have to be ignored. T
formal way to do this is to multiply the matrix elements b
lightlike vectorsnm and use the propertiespn51 and n2

50. The remaining loop integral has to be analytically co
tinued in Euclidean space@12#, where the instanton induce
vertex is well defined.

In order to obtain the above equation we have conside
the Compton scattering amplitude in deep inelastic kinem
ics at leading order in perturbative QCD, and took its ima
nary part. During the Compton process, both incoming a
outgoing virtual photons have momentumq,q2[2Q2 and
the initial and final pions have momentump,p250. And the
Bjorken limit corresponds to largeQ2 at fixed x
5Q2/2(pq). The gauge invariant set of diagrams, induc
by the nonlocal action~17! and ~19! include, in addition to
the one-loop box diagrams, the processespg→p→pg,
pgg→p. It can be shown~see Appendix A and Ref.@41#!
that only the second type of the process survives in
Bjorken limit of the corresponding amplitudes and leads
the vertex correction~term with derivative! in Eq. ~43!.

The term with a derivative, which comes from
P exp-factor in Eq.~20!, ensures gauge invariance of th
approach@41# and enables us to satisfy the isospin and m
mentum conservation sum rules. Indeed, from Eq.~43! for
the first two moments we obtain

A1
qq̄~m0

2![E
0

1

dxqqq̄~x,m0
2!5gpqq̄

2 ]Pp~p2!

]p2 U
p250

,

e

e

-

d
t-
-
d

e
o

-

A2
qq̄~m0

2![E
0

1

dxxqqq̄~x,m0
2!5

gpqq̄
2

2

]Pp~p2!

]p2 U
p250

.

~44!

And, to establish the~normalization! isospin and momentum
sum rules for the valence-quark distribution function, t
compositeness condition, Eq.~22!, has to be used

FIG. 3. Graphical representation of the operator product exp
sion. The left hand side of this diagram is the imaginary part~Dis-
continuity! of the forward scattering amplitude. Within OPE it
represented by the convolution of the Wilson coefficient funct
CNS(Q

2) of a ‘‘hard’’ parton subprocess~upper block of the right
diagram! and the ‘‘soft’’ parton distribution functionq(x,Q2)
~lower block of the right diagram!. The constituent quark and pio
are depicted by solid and double lines, respectively. The wavy
denotes the virtual photons.ONS is the local operator and the slas
on the quark line corresponds tod„x2(kn)….
6-9



n

a
se
a
ne

or
re
lt
e
-

in

r,

in
e

e

ef
ow

e
m

y

he
le

e

n

rk-

n-

d

the
s

A. E. DOROKHOV AND LAURO TOMIO PHYSICAL REVIEW D62 014016
A1
qq̄~m0

2!51 and A2
qq̄~m0

2!1Ā2
qq̄~m0

2!51, ~45!

where Ā2 is the valence antiquark contribution to the pio
momentum. The fact that, at the low momentum scalem0,
the whole momentum in the pion is carried off by the v
lence quarks is due to the quenched approximation u
when only valence quark-antiquark intermediate states
included and all intrinsic quark-gluon sea states are
glected.

Thus, in the quenched approximation the dynamical inf
mation contained in the first two moments is strongly
stricted by the symmetries and kinematics, and as a resu
is model independent. The nontrivial dynamics is contain
in the moments withN.2. The general structure of the mo
ments of the structure function~SF!, from Eq. ~43!, can be
written in the form

AN
SF~m0

2!5
1

2N21 (
i 50

[(N21)/2]
1

2i 11 S N21

2i D Ji
SF~m0

2!,

~46!

N51,2, . . . ,

with the coefficientsJi
SF given by

Ji
SF~m0

2!5
1

I gp~0! H E0

`dkk4i 13Q̃~k!2

~k21mq
2!2i 13

3@2k21~2i 13!mq
2#1•••J , ~47!

where the vertex terms with derivatives, like that appear
in Eq. ~32! for I gp(0), aredenoted by dots. In Eq.~46!, the
square brackets@•••# mean the integer part of the numbe
and (b

a) are the binomial coefficients.
It is instructive to consider two extreme cases, depend

on the physics under consideration. If the QCD vacuum w
a very dense medium,h@1, thenJi

SF50 for all i excepti
50. As a result, it leads to the set of momentsAN
51/2(N21) for all n and to a quark distribution which has th
form of a delta function:q(x)5d(x21/2). This extreme
case corresponds to the heavy quark limit, and the co
cientsJi

SF represent consequent corrections in inverse p
ers of the heavy quark mass:;(^k2&/mq

2) i . In the opposite
extreme case of a very dilute vacuumh!1 one getsJi

SF

51 for all i and AN51/N for the moments. This extrem
case corresponds to the momentum independent quark
and provides flat quark distributionq(x)51. Moreover, the
first term in Eq.~47! dominates over the terms indicated b
dots, since the latter are small of an order ofO(rcmq) . A
realistic situation seems to be somewhere in-between t
two extremes. Note that the role of pion mass is negligib
but the interplay of the effective quark mass and the slop
the nonlocality inQ̃(k) has an important effect.
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VI. QUARK DISTRIBUTION FUNCTION
AND ITS QCD EVOLUTION

Let us now turn our attention to the quark distributio
itself. This distribution for the pion with 4-momentump is
given by ~see a graphical representation in Fig. 3!

qqq̄~x;m0
2!pm52Ncgpqq̄

2 E d4k

~2p!4
d@x212~k•n!#

3TrH g5S~k1p!F F̃2~k,k1p;m0
2!gm

3S~k1p!22S ]F̃2~k,k1p;m0
2!

]~k1p!2 D
3~k1p!mGg5S~k!J , ~48!

whereqqq̄(x)5ū(x)val5d(x)val for p2. The subscriptqq̄
means that there is taken into account only lowest qua
antiquark component of the pion wave function. In Eq.~48!,
we arrive at the quark distribution defined in a similar ma
ner as that used in@42,43#. The d@x212(k•n)# function
appearing in Eq.~48! represents the effective vertex relate
to the composite operatorON

j given by Eq.~40!. The mo-
ments of the distribution function~43! are reproduced by
making the Mellin transformation of the above Eq.~48!, if
the light-cone vectorn is normalized by (pn)51. The light-
cone vectorn serves to project out in Eqs.~43! and ~48!
symmetric traceless tensors. It can be easily shown that
first moments ofqqq̄(x) will reproduce the parton sum rule
Eq. ~44!.

To calculate thek integral in Eq.~48!, we usea represen-
tation for the propagators,7

1

k21m2
5E

0

`

da exp@2a~k21m2!#, ~49!

and for the vertexd function,

d@x2~k•n!#5
1

2pE2`

`

da exp@ ia~x2k•n!#. ~50!

Then, a direct calculation from Eq.~48! provides the result
for the quark distribution, which in the massless case (mp

2

52p250) is reduced to

7For details, see Ref.@43#.
6-10
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qqq̄~x,m0
2!5

Ncgpqq̄
2

2p2 E
0

`E
0

`

dn1dn2F~n1!F~n2!

3expS mq
2

n1
1

mq
2

n2
D H FE1S mq

2

xn1
D 1 x̄expS 2

mq
2

xn1
D G

3Q~ x̄n2>xn1!1~x↔ x̄!J . ~51!

In the above equation,x̄512x,E1(z) is the integral expo-
nential, andF(n) is the correlation function related to th
vertex functionQ̃(k) by the Laplace transformation. Th
vertex Q̃(p), in the essential region ofp (0<p<4/rc) is
approximated by

Q̃~p!54.5 exp~21.9rcp!23.5 exp~23.6rcp!, ~52!

which leads to the Laplace transform,

F~n!5
rc

ApAn
@8.55 exp~20.9rc

2n!212.6 exp~23.24rc
2n!#.

~53!

Let us stress that the expressions Eq.~46! for the moments
and Eq.~51! for the valence-quark distribution in the pio
are universal ones and valid for any shape of the functi
Q̃(k) and F(n), which in turn are determined by the con
crete model of the quark-pion dynamics.

The quark distributionqqq̄(x,m0
2) and the momentum dis

tribution ~structure function! xqqq̄(x,m0
2) are shown graphi-

cally in Fig. 4. We have to note that the shape of the dis

FIG. 4. The valence quark distribution function~DF! q(x;m0
2)

~dashed line! and the quark momentum distribution function~MDF!
xq(x;m0

2) ~solid line! for the pion as a function of the longitudina
momentum fractionx at the low momentum scalem0

250.3 GeV2

and density parameterrcmq50.39.
01401
s
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bution is quite stable with respect to changes of the instan
model parameters, if they are fixed to reproduce the pion
energy properties. Also, we should mention that the
glected effects~momentum dependence of the quark mass
the denominators and gluon fields in the covariant deri
tives! are of the orderO(h) and do not change our resul
qualitatively. The main effect considered in the paper, wh
calculating the quark distribution in the pion, is related to t
nonlocality of quark-pion vertex induced by instanton inte
action. The role of such effect is to modify the leading tw
parton model resultq(x)51, leading to a smoothed distribu
tion with zeros at the edges of the kinematical region. W
remind that we are computing only the leading-twist dist
butions at a low normalization pointm0;rc

21 rather than the
full structure functions which contain also higher-twist co
rections. The latter may be large at lowq2. We have also to
note that these results differ strongly from those obtained
calculations with the NJL model@8# which yield distribu-
tions that are rather consistent with the strict chiral lim
q(x,m0

2)'1.
The computed distributions are then used as initial con

tions for the perturbative evolution to higher values ofQ2,
where the power corrections are expected to be suppres8

so that one can compare them with the available experim
tal data. Actually, we compare our theoretical predictio
with the phenomenological analysis by Suttonet al. @3# of
the data taken from Drell-Yan and prompt photon expe
ments performed by the groups NA10~CERN! and E615
~Fermilab! @5#. Still some limitations are underlying th
analysis, considering the experimental data. The data c
the region ofx>0.2, and an extrapolation of the proto
structure function, forx>0.75, has been used as input in t
analysis. Also such phenomenological data analysis does
take into account uncertainties induced by theoretical
sumptions underlying the analysis~e.g., K factor!.

The form of the evolved distributionqqq̄(x,Q0
2) at the

momentum scaleQ0
254 GeV2 is reconstructed from its mo

ments evolved to this scale in the leading order~LO! and
next-to-leading order~NLO! perturbative QCD in the modi-
fied minimal subtraction (MS) scheme by using the first si
Jacobi polynomials. To this goal we use the well-known e
pressions@45# for the perturbatively calculable coefficien
function of the processCi

N5C0i
N 1@as(Q

2)/4p#C1i
N and the

anomalous dimensionsg (n) calculated up to LO and NLO
Thus, the final result for the moments obtained from t
factorization procedure is

AN~Q2!5(
i

Ci
N~Q2,m2!Oi

N~m2!5E
0

1

dxxNq~x,Q2!.

~54!

In performing the evolution analysis we choose a low m
mentum scalem0

250.360.03 GeV2, and a set for the QCD

8A careful analysis about the effect of power corrections, in p
ticular, the effect of the 1/Q2 term that imitate the short-string effec
in QCD as in Ref.@44#, will be considered elsewhere.
6-11
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scale parameterLQCD
(3) 50.3 GeV in order to be consisten

with @3#. The resulting distributionqqq̄(x,Q0
2) is shown in

Fig. 5 together with the phenomenological curve deriv
from the data in@3#. The initial distribution function at the
low-momentum scalem0

2 is also shown for comparison.
The values of the first moments of the pion quark dis

bution atQ0
254 GeV2 calculated in LO and NLO are show

in Table II. The error bars quoted in Table II for our calc
lations are due to accepted uncertainty in the choice of
initial scale of evolutionm0. These values should be com
pared with those obtained from the phenomenological an
sis @3# and from LQCD simulations@1#. In Table II we also
include the moments of quark distribution in the pion o
tained from the parametrization@4#.

Let us finally discuss the uncertainties of the QCD evo
tion from the low momentum scalem0. As we see from

FIG. 5. The valence quark momentum distribution functi
xq(x;Q0

2) ~long dashed line! for the pion as a function of the vari
ablex evolved to the momentum scaleQ0

254 GeV2 ~LO approxi-
mation!, usingrcmq50.39 for the density parameter. The solid lin
denotes the phenomenological curve@3# on the same scaleQ0

2, ex-
tracted from the data. The short-dashed line shows the same d
bution on the low momentum scalem0

250.3 GeV2. The dash-dotted
line corresponds to the dashed line, multiplied by a factor 0.
which represents an estimation of the probability~65%! of
quenched configuration in the pion wave function.
01401
d

-

e

y-

-

-

Table II, the difference of the LO and NLO results is in th
range of 30%. It turns out that the use of a larger init
evolution scale, saym0

2>0.3 GeV2, gives a rather good con
vergence with deviations less than 10%, whereas in the
posite case, i.e., for scales smaller than about 0.1 GeV2 the
deviations increase and perturbative evolution loses
sense. This behavior has also been observed in ana
within the NJL model@8#.

The comparison shows that our calculations, in particu
in NLO, are consistent with the phenomenological analy
of @3# and fairly close to the LQCD results. Both theoretic
approaches~LQCD and the instanton model! predict moment
values systematically larger than the phenomenological o
One of the reasons for this disagreement may be traced to
quenched approximation which does not take into acco
any sea quark-gluon and higher Fock state contribution
the initial scale, attributing in this way the whole pion m
mentum to the valence quark-antiquark pair. Indeed, the
gin of the A2 moment at the initial scale~in the quenched
approximation! and its subsequent evolution is purely kin
matic and does not depend on the details of the model
principle, one could match the valence momentum fract
derived in our calculation with that determined in@3# by
shifting the initial valuem0

2 down to 0.01 GeV2 „see, for
instance,@8~a!#…. However, to start a perturbative evolutio
from this very low scale is formally incorrect and technica
amounts to a rather unstable procedure.

In our opinion, it is more realistic to expect that by in
cluding in our analysis contributions from the quark-glu
sea and higher Fock states the agreement between the
retical predictions and the phenomenological analysis can
considerably improved. The contribution from sea redu
the momentum fraction carried by valence quarks contai
in the momentA2. The higher Fock states contribute to bo
A1 and A2. It means that the overall normalization of th
distribution function and momentum fraction, carried by t
valence quark-antiquark component of the wave functi
has to be reduced by factors which represent the probab
of the missing configurations in the pion wave function.
Fig. 5 we are also presenting the result of our LO calculati
multiplied by a factor 0.65, corresponding to a crude e
mate of a probability of 35% for higher Fock valence sta
configurations~neglecting the contribution of the sea!. This
estimate is found by using the inequality

q~x,Q0
2!>qqq̄~x,Q0

2! ~55!

and saturating it asx→1. This inequality considered in Re

tri-

,

TABLE II. The values of the first moments atQ0
254 GeV2.

LO NLO LQCD @1# Expt. fit @3# Expt. fit @4#

~this calculation!

A2(Q0
2) 0.31860.01 0.27560.017 0.27960.083 0.23060.01 0.19360.01

A3(Q0
2) 0.14760.008 0.12060.012 0.10760.035 0.10160.005 0.08360.005

A4(Q0
2) 0.08160.006 0.06460.008 0.04860.020 0.05760.005 0.04660.005
6-12
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@7# ~and references therein! is valid for any partial contribu-
tion to the distribution function. With this assumption, o
can see from Fig. 5 that the lowest quark-antiquark vale
contribution to the distribution function is able to saturate
phenomenologically found distribution in the region ofx
>0.4. The difference in distributions for lower values ofx
may be attributed to higher Fock states which become do
nant asx→0. Such a picture is also in agreement with t
conclusions made in Ref.@7#. In addition to other source
that can change the normalization of our result, the effec
nonperturbative evolution@46# from an initial scalem0

2 up to
Q2;1 GeV2 may be important.

VII. RESULTS AND DISCUSSIONS

In summary, we have presented theoretical predictions
the valence-quark distribution function, Eq.~51!, and its mo-
ments, Eq.~46!, for the pion. The calculations are based
the instanton model of the QCD vacuum as a candidate tr
ment of nonperturbative dynamics, expressing the observ
hadron properties in terms of fundamental characteristic
the vacuum state. We found that the instanton model
scribes well the vacuum expectation values of the lowe
dimension quark-gluon operators and the pion low-ene
observables. To obtain these results, we have used g
invariant forms for the dynamically generated quark mas
and quark pion vertex, by using path-ordered Schwin
P exp factors. Such factors enter in the definition of nonlo
quantities ~like nonlocal quark condensate!, which effec-
tively take into account radiation effects of gluon and pho
fields when two quarks are separated. Thus, we are le
express the form of the pion quark distribution function
terms of the effective instanton sizerc , and the quark-mas
parametermq .

The pion quark distribution function extracted corr
sponds to a low normalization scale, where the effective
stanton approach is justified. It is shown that the validity
parton sum rules for the isospin and total momentum dis
bution is a consequence of the compositeness condition
the strict implementation of gauge invariance. We have u
techniques to derive these results which constitute a com
mentary approach to lattice simulations and to phenome
logical fits to experimental data. Using this distribution fun
tion as an input, we obtained the quark distribution funct
in the pion via standard perturbative evolution to higher m
mentum values, accessible by experiment. A reason
agreement with the data was found. In fact, the calculati
are performed in the quenched approximation, where the
fect of intrinsic quark-gluon sea is neglected. We expect t
the effects of the intrinsic quark-gluon component of t
pion wave function and the nonperturbative evolution at
termediate energy scale provide a better agreement betw
theoretical predictions and phenomenological analysis.
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APPENDIX: FEYNMAN RULES FOR NONLOCAL
VERTICES

Here we briefly show how to derive Feynman rules f
quark-hadron-photon vertices~for more details, see Ref
@41#!. Rewriting Eq.~19! for the action, we have

Sint52E d4Xd4x1d4x2f ~x1! f ~x2!q̄~X1x1!E~X1x1 ;X!

3@Mq1gMq̄q~G•T!F~X!#E~X;X2x2!q~X2x2!.

~A1!

Defining

Q~x,y![E~x,y!q~y! ~A2!

and performing the Fourier transform in the variablesx1 and
x2, we obtain

Sint52E d4XS E dk1eik1Xf̃ ~k1!Q̄~k1 ,X! D
3@Mq1gMq̄q~G•T!F~X!#

3S E dk2eik2Xf̃ ~k2!Q̄~k2 ,X! D , ~A3!

where we have used the same symbols for the functions
their Fourier transforms. Let us make the Taylor expans
of the nonlocal form-factorf̃ (k) in k2, and again doing the
Fourier transform back to coordinate representation, we h

Sint52E d4Xd4x1d4x2d~X2x1!d~X2x2!

3F(
n

f (n)~0!

n!
~]x1

2 !nGQ̄~x1 ,X!

3@Mq1gMq̄q~G•T!F~X!#

3F(
m

f (m)~0!

m!
~]x2

2 !mGQ~X,x2!. ~A4!

This expression can be considered as the generation fun
for the quark-hadron-photon matrix elements. For exam
6-13
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the quark-pion-photon matrix elements can be derived fr
this expression, which is given by

^quSupAmq̄&5E )
i 51

4

dziexp~ ik1z12 ik2z21 ipz31 iqz4!

3K d4S

dq~z1!dq̄~z2!dp~z3!dAm~z4!
L

0

. ~A5!

For the quark-photon-pion vertex we have
g

s

te
ia-

01401
Gm~k1 ,k2 ,p,q!52QGM

~2k21q!m

2k2q1q2
@ f ~k21q!2 f ~k2!#

3 f ~k1!1GMQ
~22k11q!m

22k1q1q2

3@ f ~k12q!2 f ~k1!# f ~k2!. ~A6!

In similar way, the vertices with two photon lines can b
derived. They have more complicated structure, but in
deep inelastic limit only the term with derivative, as given
Eqs.~43! and ~48!, survives.
,

n-

s.
,

.
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