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Generalized polarizabilities of the nucleon in chiral effective theories
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Using the techniques of chiral effective field theories we evaluate the so called ‘‘generalized polarizabil-
ities,’’ which characterize the structure dependent components in virtual Compton scattering off the nucleon as
probed in the electron scattering reactioneN→e8Ng. Results are given for both spin-dependent and spin-
independent structure effects toO(p3) in SU~2! heavy baryon chiral perturbation theory and toO(e3) in the
SU~2! ‘‘small scale expansion.’’

PACS number~s!: 12.39.Fe, 13.40.2f, 13.88.1e, 14.20.Dh
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I. INTRODUCTION

One of the primary goals of contemporary particle
nuclear physics is to understand the structure of the nucl
Indeed this is being pursued at the very highest energy
chines such as the DESYep collider HERA and SLAC, at
which one probes the quark or parton substructure, as we
at lower energy accelerators such as Bates, ELSA
MAMI, wherein one examines the low energy structure
the nucleon via electron scattering. In addition, studies in
intermediate energy region are taking place at facilities s
as JEFLAB. In recent years another important low ene
probe has been~real! Compton scattering, by which one ca
study the deformation of the nucleon under the influence
quasi-static electric and/or magnetic fields@1#. For example,
in the presence of an external electric fieldEW the quark dis-
tribution of the nucleon becomes distorted, leading to an
duced electric dipole moment

pW 54paEEW ~1!

in the direction of the applied field, whereaE is the electric
polarizability. The interaction of this dipole moment with th
field leads to a corresponding interaction energy

U52
1

2
4paEEW 2. ~2!

Similarly in the presence of an applied magnetizing fieldHW
there will be an induced magnetic dipole moment

mW 54pbMHW ~3!

and an interaction energy

U52
1

2
4pbMHW 2. ~4!
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For wavelengths large compared to the size of the syst
the effective Hamiltonian for the interaction of a system
chargee and massm with an electromagnetic field is, o
course, given by the simple form

H (0)5
~pW 2eAW !2

2m
1ef, ~5!

and the Compton scattering cross section has simply the
miliar Thomson form

ds

dV
5S aem

m D 2S v8

v D 2F1

2
~11cos2u!G , ~6!

whereaem is the fine structure constant andv,v8 are the
initial, final photon energies respectively. As the energy
creases, however, so does the resolution and one must
into account also polarizability effects, whereby the effect
Hamiltonian becomes

Heff5H (0)2
1

2
4p~aEEW 21bMHW 2!. ~7!

The Compton scattering cross section from such a sys
~taken, for simplicity, to be spinless! is given then by

ds

dV
5S aem

m D 2S v8

v D 2F1

2
~11cos2u!

2
mvv8

aem
S 1

2
~aE1bM !~11cosu!2

1
1

2
~aE2bM !~12cosu!2D1•••G . ~8!

It is clear from Eq.~8! that from careful measurement of th
differential scattering cross section, extraction of these str
ture dependent polarizability terms is possible provided t
~i! the energy is large enough that these terms are signifi
compared to the leading Thomson piece and~ii ! that the
energy is not so large that higher order corrections beco
important. In this way the measurement of electric and m
©2000 The American Physical Society13-1
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netic polarizabilities for the proton has recently been acco
plished using photons in the energy range 50 MeV,v
,100 MeV, yielding@2#1

aE
p5~12.160.860.5!31024 fm3

bM
p 5~2.170.870.5!31024 fm3. ~9!

Note that in practice one generally exploits the strictures
causality and unitarity as manifested in the validity of t
forward scattering dispersion relation, which yields the B
din sum rule@6#

aE
p,n1bM

p,n5
1

2p2E
0

`dv

v2 s tot
p,n

5H ~13.6960.14!31024 fm3 proton,

~14.4060.66!31024 fm3 neutron,

~10!

as a rather precise constraint because of the small uncert
associated with the photoabsorption cross sections tot

p .
From these results, which imply that the polarizabilities

the proton are nearly a factor of a thousand smaller than
volume, we learn that the nucleon is a relatively rigid obje
when compared to the hydrogen atom, for example,
which the electric polarizability and volume are comparab

Additional probes of proton structure are possible if o
exploits its spinSW . Thus, for example, the presence of a tim
varying electric field in the plane of a rotating system
charges will lead to a charge separation with induced elec
dipole moment

pW 52g1SW 3
]EW

]t
~11!

and corresponding interaction energy

U152pW •EW 5g1EW •SW 3~¹W 3BW !, ~12!

where we have used the Maxwell equations in writing t
form. This is a quantum mechanical analog of the famil
Faraday rotation.~Note that the ‘‘extra’’ time or spatial de
rivative is required by time reversal invariance sinceSW is T
odd.! Similarly other possible structures are@7,8#

U25g2BW •¹W SW •EW

U35g3EW •¹W SW •BW

U45g4BW •SW 3~¹W 3EW !, ~13!

1Results for the neutron extracted fromn-Pb scattering cross sec
tion measurements have been reported@3# but have been questione
@4#. Extraction via studies using a deuterium target may be poss
in the future@5#.
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and the measurement of these various ‘‘sp
polarizabilities’’ g i via polarized Compton scattering pro
vides a rather different probe for nucleon structure. Beca
of the requirement for polarization not much is known
present about such spin-polarizabilities, although from d
persion relations the combination

g0
p[g1

p2g2
p22g4

p'H 21.3431024 fm4 SAID @9#,

20.8031024 fm4 Mainz @10#
~14!

has been evaluated and from a global analysis of unpolar
Compton data, to which it contributes atO(v4), Tonnison
et al. @11# have determined the so-called backward sp
polarizability to be

gp5g11g212g45~27.762.362.5!31024 fm4.
~15!

Clearly such measurements represent an important goa
the future.

At the same time it has come to be realized that a h
resolution probe of nucleon structure is available, in pr
ciple, via the use ofvirtual Compton scattering~VCS!
wherein virtual photons produced from scattered electr
are scattered off a nucleon into real final state photons, tra
ferring a three-momentumq̄ to the target. The outcome o
such measurements is, in principle,q̄-dependent values o
the polarizabilities@usually termed ‘‘generalized polarizabi
ities’’ ~GPs!# which can be thought of as the Fourier tran
forms of local polarization densities in the nucleon. At th
present time a VCS experiment has already taken plac
MAMI, and there exist approved experiments at Bates a
JEFLAB. Preliminary results have been reported fro
MAMI and will be discussed in the conclusion@12#. It is
therefore appropriate to have a base of solid theoretical
dictions with which such data can be confronted. The h
presented approach, which utilizes the techniques of ch
effective theories in the heavy fermion formulation, has
ready yielded several results@13,14#. In the first chiral cal-
culation of generalized polarizabilities utilizing SU~2! heavy
baryon chiral perturbation theory~HBChPT! @13#, the lead-
ing momentum-dependent modification of the~generalized!
electric @āE(q̄)# and magnetic@b̄M(q̄)# polarizabilities was
analyzed. Later, in a short communication@14#, numerical
studies for the full q̄-dependence of all 10 generalize
~Guichon! polarizabilities were presented—again using t
framework of SU~2! HBChPT. In this work we present th
details behind the numerical study of Ref.@14# and, for the
first time in the field of VCS, are able to present simp
analytical expressions for all GPs in a momentum range fr
0,q̄2,0.5 GeV2 utilizing SU~2! HBChPT. These new ex
pressions greatly facilitate the study of the influence of
chiral ‘‘pion cloud’’ on the GPs and the comparison wi
model calculations. Furthermore, we also investigate
leading modifications of the GPs’q̄-dependence due to
D~1232! resonance contributions utilizing a different effe
tive chiral Lagrangian approach—the so called ‘‘small sc

le
3-2
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GENERALIZED POLARIZABILITIES OF THE NUCLEON . . . PHYSICAL REVIEW D 62 014013
expansion’’ ~SSE! @15#. SSE results have already been r
ported for real Compton scattering@16,17#, and in the presen
work we generalize the analysis to the VCS case.

In the next section we shall discuss the definition of
generalized polarizabilities, while in Sec. III we present
introduction to the way in which our heavy baryo
calculations—valid to one loop—are carried out. In Sec.
we show how to connect our predictions to the general
mulation of VCS and how to extract the desired generali
polarizabilities. In Sec. V, we present the results of our c
culations. Finally, we summarize our findings in a conclu
ing Sec. VI.

II. GENERALIZED POLARIZABILITIES

Recently a new frontier in Compton scattering has be
opened~see, e.g.,@18#! and is now in the beginning of bein
explored: the study of the electron scattering processep
→e8p8g ~cf. Fig. 1! in order to obtain information concern
ing the virtual Compton scattering2 ~VCS! processg* N
→gN. As will be discussed below, in addition to the tw
kinematical variables of real Compton scattering—the sc
tering angleu and the energyv8 of the outgoing photon—
the invariant structure functions for VCS@20,21# depend on
a third kinematical variable, e.g. the magnitude of the thre
momentum transfer to the nucleon in the center of m
frame of the outgoing photon-nucleon system,q̄[uqW u.3 As
shown in Ref.@21#, the VCS amplitude can then be chara

2Chiral analyses of double virtual Compton scatteringg* p
→g* p in the forward direction and its connection with the sp
structure of the nucleon have recently been published@19#.

3The precise definitions of kinematic quantities in this frame
given in Eq.~45!.

FIG. 1. The processe p→e8p8g.
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terized in terms ofq̄-dependent GPs, in analogy to the we
known polarizability coefficients in real Compton scatterin
However, due to the specific kinematic approximation ch
sen in@21# there does not exist a one-to-one corresponde
between the real Compton polarizabilities and the GPs
Guichonet al. in VCS @21–23#.

The advantage of VCS lies in the virtual nature of t
initial state photon and the associated possibility of aninde-
pendentvariation of photon energy and momentum, thus re
dering access to a much greater variety of structure infor
tion than in the case of real Compton scattering. F
example, one can hope to identify individual signatures
specific nucleon resonances which cannot be obtained
other processes@18#. In this regard, it should be noted that
great deal of theoretical work already exists, such as pre
tions within a non-relativistic constituent quark model@21#, a
one-loop calculation in the linear sigma model@24#, a Born
term model including nucleon resonance effects@25#, a HB-
ChPT calculation of the leadingq̄-dependence of the gene
alized electric and magnetic polarizability@13#, a calculation
of āE(q̄2) in the Skyrme model@26# and the numerical study
of all 10 GPs again utilizing HBChPT@14#. For an overview
of the status at higher energies and in the deep inelastic
gime we refer to@18#.

The GPs of the nucleon have been defined by Guic
et al. in terms of electromagnetic multipoles as functions
the initial photon momentumq̄ @21#,

P(r8L8,rL)S~ q̄2!5F 1

v8Lq̄L
H (r8L8,rL)S~v8,q̄!G

v850

,

P̂(r8L8,L)S~ q̄2!5F 1

v8Lq̄L11
Ĥ (r8L8,L)S~v8,q̄!G

v850

,

~16!

whereL (L8) denotes the initial~final! photon angular mo-
mentum,r (r8) the type of multipole transition@05C ~sca-
lar, Coulomb!, 15M ~magnetic!, 25E ~electric!#, andSdis-
tinguishes between non-spin-flip (S50) and spin-flip (S
51) transitions. In addition, mixed-type polarizabilitie
P̂(r8L8,L)S(q̄2), have been introduced, which are neith
purely electric nor purely Coulomb type. It is important
note that the above definitions are based on the kinema
approximation that the multipoles are expanded aroundv8
50 andonly terms linear inv8 are retained, which, together
with current conservation, yields selection rules for the p
sible combinations of quantum numbers of the GPs. In t
approximation, 10 GPs have been introduced in@21# as func-
tions of q̄2: P(01,01)0, P(11,11)0, P(01,01)1, P(11,11)1, P(01,12)1,
P(11,02)1, P(11,00)1, P̂(01,1)0, P̂(01,1)1, P̂(11,2)1.

However, recently it has been proven@22,23#, using
crossing symmetry and charge conjugation invariance,
only six of the above ten GPs are independent. With

v0[MN2AMN
2 1q̄252

q̄2

2MN
1O~1/MN

3 ! ~17!e
3-3
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HEMMERT, HOLSTEIN, KNÖCHLEIN, AND DRECHSEL PHYSICAL REVIEW D62 014013
andMN being the nucleon mass, the four constraints impl
by C invariance and crossing can be written as

05A3

2
P(01,01)0~ q̄2!1A3

8
P(11,11)0~ q̄2!

1
3q̄2

2v0
P̂(01,1)0~ q̄2!,

05P(11,11)1~ q̄2!1A3

2
v0P(11,02)1~ q̄2!

1A5

2
q̄2P̂(11,2)1~ q̄2!,

052v0P(01,01)1~ q̄2!12
q̄2

v0
P(11,11)1~ q̄2!

2A2q̄2P(01,12)1~ q̄2!1A6q̄2P̂(01,1)1~ q̄2!,

053
q̄2

v0
P(01,01)1~ q̄2!2A3P(11,00)1~ q̄2!

2A3

2
q̄2P(11,02)1~ q̄2!. ~18!

In the scalar~i.e. spin-independent! sector the first of Eqs
~18! allows us to eliminate the mixed polarizabilityP̂(01,1)0

in favor of P(01,01)0 andP(11,11)0, which are simply generali-
zations of the familiar electric and magnetic polarizabiliti
in real Compton scattering

āE~ q̄2!52
e2

4p
A3

2
P(01,01)0~ q̄2!,

b̄M~ q̄2!52
e2

4p
A3

8
P(11,11)0~ q̄2!. ~19!

In the limit q̄→0 they reduce to the real Compton polari
abilities āE , b̄M of Eq. ~9!.

In the spin-dependent sector it is nota priori clear which
three of the seven GPsP(01,01)1, P(11,11)1, P(01,12)1, P(11,02)1,
P(11,00)1, P̂(01,1)1, P̂(11,2)1 should be eliminated by use of Eq
~18!. However, the chiral analysis performed here shows
to leading order only 4 of the 7 spin GPs can be calculate
P(01,12)1, P(11,02)1, P(11,00)1, P̂(01,1)1. Naturally we focus on
these four spin GPs, asP(01,01)1, P(11,11)1, P̂(11,2)1 possess an
extra suppression factor of 1/MN ~see Sec. V A 3! which
pushes them outside the validitiy of our analysis. Still, o
can reconstruct the whole set of spin GPs via Eq.~18! if one
wishes to do so. Finally, we note that in the spin-sector
can also establish a~partial! connection between the GP
defined in the context of VCS by Guichonet al. @21# and the
4 real Compton spin-polarizabilitiesg i , i 51 –4 of Ragusa
@7# given in Eqs.~12! and ~13!:
01401
d

at

e

e

g352
e2

4p

3

A2
P(01,12)1~ q̄→0!

g21g452
e2

4p

3A3

2A2
P(11,02)1~ q̄→0!. ~20!

These model-independent relations might provide an in
esting possibility to determine some of the elusive~Ragusa!
spin-polarizabilities by the upcoming experiments.

III. THE CHIRAL FRAMEWORK

A. Pion-nucleon ChPT

We want to perform the VCS calculation toO(p3) in
heavy baryon chiral perturbation theory~HBChPT! ~e.g. see
@27#!. We therefore need the Lagrangians

L VCS
(3) 5L N

(3)1L p
(4) . ~21!

We begin our discussion in the nucleon sector. For V
to O(p3) we need the Lagrangians

L N
(3)5L pN

(1)1L pN
(2)1L pN

(3) , ~22!

with

L pN
(1)5N̄v~ iv•D1ġAS•u!Nv ,

L pN
(2)5

1

2M0
N̄vH ~v•D !22D22

i

2
@Sm,Sn#@~11k̇v! f mn

1

12~11k̇s!vmn
(s)#1 . . . J Nv ,

L pN
(3)5

21

8M0
2
N̄v$~112k̇v!@Sm ,Sn# f 1

msvsDn

12~ k̇s2k̇v!@Sm ,Sn#v (s)
msvsDn1H.c.1•••%Nv ,

~23!

where we have only kept those terms4 which contribute to
our VCS calculation. Furthermore, all terms which vanish
the ‘‘Coulomb gauge’’v•A50, with vm being the velocity
vector (v251) of the nucleon andAm denoting a photon

4We note that to the order we are working in the VCS calculat
the nucleon mass parameterM0 can be replaced by the physica

nucleon massMN , the axial-vector coupling in the chiral limitġA

can be replaced with the physical axial-vector coupling cons
gA51.267 and the isoscalar@isovector# anomalous magnetic mo

ment of the nucleon in the chiral limitk̇s @ k̇v# can be replaced with
the physical isoscalar@isovector# anomalous magnetic momentks

5kp1kn520.120 nm @kv5kp2kn53.71 nm#. Details of the
renormalization of these parameters in the chiral Lagrangian
loop effects and higher order counter terms can be found in R
@28#, both for HBChPT and SSE.
3-4
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field, have been omitted. The velocity-dependent nucl
field Nv is projected from the relativistic nucleon Dirac fie
CN via

Nv5exp@ iM 0v•x#Pv
1CN , ~24!

where the velocity projection operator is given by

Pv
15

1

2
~11v” !. ~25!

Sm denotes the usual Pauli-Lubanski vector~e.g. @27#! and
Dm corresponds to the covariant derivative of the nucleo

Dm Nv5@]m1Gm2 ivm
(s)#Nv . ~26!

One also encounters the following chiral tensors in the V
calculation:

U5u25exp~ i tW•pW /Fp!

Gm5
1

2 H u†S ]m2 i e
t3

2
AmDu1uS ]m2 i e

t3

2
AmDu†J ,

um5 i H u†S ]m2 i e
t3

2
AmDu2uS ]m2 i e

t3

2
AmDu†J .

~27!

In Eq. ~27! tW are the conventional Pauli isospin matrice
while pW represents the interpolating pion field. Furthermo

vm
(s)5e 1

2 Am denotes an isoscalar photon field and the co
sponding field strength tensors in Eq.~23! are defined as

vmn
(s)5]mvn

(s)2]nvm
(s) ,

f 1
mn5u e

t3

2
~]mAn2]nAm!u†

1u† e
t3

2
~]mAn2]nAm!u. ~28!

From the pion sector we require information up toO(p4)
for a O(p3) VCS calculation. Utilizing ‘‘standard ChPT’’
@29# ~i.e. the assumption of a ‘‘large’’ quark condensate p
rameterB) one finds

L p
(4)5L pp

(2)1L pp
(4) ~29!

with

L pp
(2)5

F0
2

4
tr@~¹mU !†¹mU1x†U1xU†#,

L pp
(4)52

e2

32p2F0
emnabFmnFabp01•••, ~30!

wheree012351 and again we have omitted all terms not r
quired for the VCS calculation. Note that the only pie
shown from the chiralO(p4) meson Lagrangian is the s
called ‘‘anomalous’’ or ‘‘Wess-Zumino’’ term@30#, which
01401
n

S

,
,

-

-

-

one needs for theO(p3) pion-pole diagram of VCS shown in
Fig. 2~f!. In the Lagrangians of Eq.~30! one also encounter
the chiral tensors

¹mU5]mU2 i
e

2
Am@t3 ,U#,

x52 B M, ~31!

whereM denotes the SU~2! quark mass matrix in the isospi
limit mu5md .

Finally, we emphasize that we do not require any ad
tional diagrams compared to theO(p3) calculation for real
Compton scattering@31#. The complete set of non-zero dia
grams we have to calculate is given in Fig. 2@~a! s-channel,
~b! u-channel,~c! contact diagram and~f! t-channel pole
term# and Fig. 3 (Np-loop diagrams!. In the following we
will treat the tree and loop parts of the amplitudes separat

Ai5Ai
tree1Ai

loop , ~32!

since the generalized polarizabilities are contained only
the latter.

B. D„1232… and the small scale expansion

In standard SU~2! HBChPT, nucleon resonances like th
D~1232! are considered to be much heavier than the nucl
and therefore only contribute via local counterterms. T
approach is particularly well-suited for near-threshold p
cesses~e.g. the multipoleE01 in threshold pion photopro-
duction! where the resonance contributions are small a
their contribution to counterterms can be estimated by
simple Born diagram analysis. However, if one wants
move away from threshold, nucleon resonances, in partic
the lowest lying SU~2! resonanceD~1232!, contribute as dy-
namical degrees of freedom and the theoretical treatmen
terms of local counterterms generates a slowly converg
perturbative series. In this kinematical regime it is therefo

FIG. 2. Born diagrams for VCS in the ‘‘small scale expansion.
3-5
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advantageous to formulate an effective field theory wh
keeps the resonance as an explicit degree of freedom
addition to this dynamical consideration there is also ano
practical concern regarding the inclusion of resonance eff
via counterterms. Even if simple Born exchange might be
dominant contribution of a particular resonance, the lo
counterterm in the chiral Lagrangian that subsumes this
fect might be of higher order in the calculation, so that t
leading and even the subleading result can misrepresen
perturbative series. A well-known example of this type a
the so-called spin-polarizabilities of the nucleon, wher
one encounters very large contributions due toD~1232! Born
graphs that only start contributing via counterterms atO(p5)
in the chiral calculation~e.g. @17#!. Situations of this type
require a ‘‘resummation’’ of the standard chiral expansion
order to push resonance effects into lower orders to res
meaningful perturbative expansions for quantities of inter
in low energy baryon physics.

In order to address these two different but related issue
the field of resonance physics in baryon CHPT, the so ca
‘‘small scale expansion’’ of SU~2! baryon ChPT has recentl
been formulated@15,32#. In this chiral effective theory one
treats the nucleon and the first nucleon resonanc
D~1232!—as explicit degrees of freedom, and, to address
second problem, the chiral power counting is modified
bring D~1232! related effects into lower orders of the calc
lation. In the ‘‘small scale expansion’’ one organizes t
Lagrangian and the calculation in powers of the scale ‘‘e,’’
which, in addition to the chiral expansion parameters

FIG. 3. O(p3) Np-loop diagrams for VCS.
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small momentaq and the pion massmp , also includes the
D(1232)-N(940) mass splittingD5MD2MN . Of course,
this modification of the chiral counting implies that one h
to repeat the whole procedure of construction of the L
grangian and the determination of counterterms and coup
constants, even for processes which only involve nucleon
the initial and final states. For first results regarding t
modified renormalization of nucleon parameters we refer
@28#.

For our calculation below, which~as far as the GPs ar
concerned! is done only to leading order—O(e3)—in the
small scale expansion of the~generalized! polarizabilities,
we shall require only the propagator involving theD(1232)
as well as the couplingsNNg, NNgg, NDp and NDg.
Details of the ‘‘small scale expansion’’ formalism are give
in Ref. @32#. Here we only list the minimal structures nece
sary for the present calculation. The systematic 1/M exp
sion of the coupledND-system starts with the most gener
relativistic chiral invariant Lagrangian involving spin 1/
(cN) and spin 3/2 (cm

i ) baryon fields.5 The ‘‘light’’ spin 3/2
field Tm

i in the effective low-energy theory is projected fro
its relativistic Rarita-Schwinger counterpartcm

i via

Tm
i ~x![Pv

1P(33)mn
3/2 c i

n~x!exp~ iM 0v•x!, ~33!

where we have introduced a spin 3/2 projection operator
fields with fixed velocityvm

P(33)mn
3/2 5gmn2

1

3
gmgn2

1

3
~v”gmvn1vmgnv” !. ~34!

The remaining components,

Gm
i ~x!5~gmn2Pv

1P(33)mn
3/2 !c i

n~x!exp~ iM 0v•x!, ~35!

can be shown to be ‘‘heavy’’@32# and are integrated out
Resulting from this procedure one finds the~non-relativistic!
chiral Lagrangians of the ‘‘small scale expansion’’~SSE!:

L SSE5L N
SSE1L D

SSE1~LND
SSE1H.c.!. ~36!

To the order we are working hereL N
SSEagrees with the chira

LagrangianL N
(3) @Eq. ~22!# needed for VCS. From the chira

SSE Lagrangians explicitly involving theD field we need the
structures@32#

L D
(1)52T̄i

mgmn@ iv•Di j 2D0d i j 1 . . . #Tj
n

L ND
(1)5gpNDT̄i

mwm
i N1H.c.

L ND
(2)5T̄i

mF ib1

M0
Sn f 1mn

i 1•••GN1H.c., ~37!

5In order to take into account the isospin 3/2 property of t
D(1232) we supply the Rarita-Schwinger spinor with an additio
isospin indexi, subject to the subsidiary conditiont i cm

i (x)50.
3-6
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where D05MD2M0 can be identified with thephysical
delta-nucleon mass difference to the order we are work
i.e. M0[MN . The corresponding chiral tensors needed
VCS read

Dm
i j 5]md i j 2 i

e

2
~11t3!Amd i j 1ee i3 jAm1•••

wm
i 52

1

Fp
]mp i2

e

Fp
Ame i3 jp j1•••

f 1mn
i 5ed i3~]mAn2]nAm!1•••. ~38!

The coupling constants defined in Eq.~37! are determined
from fits to the strong and electromagnetic decay widths
the Delta resonance within the ‘‘small scale expansion.’’
the order we are working one requires6 @17,33# gpND51.05
60.02 andb153.8560.15.

The leading propagator for aD(1232) field with small
momentumkm is then given by

Smn
3/25

2 iPmn
3/2

v•k2D1 ih
j I 53/2

i j , ~39!

where Pmn
3/2 is the spin-32 heavy baryon projector in

d-dimensions@32#

Pmn
3/25gmn2vmvn1

4

d21
SmSn , ~40!

and

j I 53/2
i j 5d i j 2

1

3
t it j ~41!

is the corresponding isospin projector. The vertices relev
for our calculation can be read off directly from Eq.~37!. As
in the nucleon case, the resulting diagrams can be sepa
into two classes—one-loop graphs and Born graphs. The
tematics of the ‘‘small scale expansion’’ uniquely fixes t
number and type of diagrams for VCS to be calculated
O(e3). It turns out that to the order we are working there a
two Born diagrams involving theD(1232) @Fig. 2~d,e!# and
nine Dp-loop diagrams~Fig. 4!, which turn out to have ex-
actly the same structure as their chiralNp analogues~cf. Fig.
3!. However, before undertaking any such calculation, it
necessary to work out the formalism for VCS.

IV. VIRTUAL COMPTON SCATTERING

A. General structure

We begin by specifying our notation for the virtu
Compton process

6Note that these values are determined from the width express
within the ‘‘small scale expansion’’ and therefore differ from tho
obtained in a relativistic analysis, e.g. see Ref.@16#.
01401
g,
r

f

nt

ted
s-

o
e

s

g* ~em,qm!1N~pi
m!→g~e8* m,q8m!1N~pf

m!. ~42!

Here the nucleon four-momenta in the initial and final sta
are denoted bypi

m5(Ei ,pW i) and pf
m5(Ef ,pW f) respectively.

The virtual initial @real final# state photon is characterized b
its four-momentumqm5(v,qW ), q2,0 @q8m5(v8,qW 8), q82

50# and polarization vectorem5(e0 ,eW ) @e8m5(e08 ,eW 8)#.
Since our discussion refers to an electron scattering

periment, wherein the virtual photon is exchanged betw
the electron and hadron currents, the polarization vecto
the incoming photon is given by

em5eūe8~k1!gmue~k2!
1

q2
, ~43!

whereue(k1),ūe8(k2) are electron Dirac spinors with four
momentak1

m (k2
m) before~after! emission of the virtual pho-

ton. The unit chargee is taken ase5A4p/137.0.
In addition to the proper VCS process displayed in F

5~a! there are also Bethe-Heitler processes taking place~Fig.
5~b!,~c!,

MeN→e8Ng5M VCS1M Bethe-Heitler, ~44!

and such Bethe-Heitler contributions must be carefu
evaluated before one can infer any information about
VCS matrix element from the electron scattering cro

ns

FIG. 4. O(e3) Dp-loop diagrams for VCS.
3-7
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FIG. 5. Genuine diagrams for the proper VCS process~a! and for the associated Bethe-Heitler corrections~b!,~c!.
s

m

,

nt
section.7 In the following, however, we will focus on the
evaluation of the VCS matrix elementM VCS @Fig. 5~a!#. For
details onM Bethe-Heitler and the calculation of the cros
section we refer to@12# and references therein.

From now on we will work in the center of mass syste
of the final state photon-nucleon subsystem,

pW f52qW 8, pW i52qW 52q̄ êz ,

v81AMN
2 1v825v1AMN

2 1q̄2, ~45!
01401
where thez-axis is defined by the three-momentum vectorqW
of the incoming virtual photon. Utilizing the Lorentz gauge8

e•q50, e05
q̄

v
ez , ~46!

with eW5eWT1ezêz , one can express the VCS matrix eleme
in terms of twelve9 independent kinematic forms
here.
M VCS5 i e2H eW8* •eWTA11eW8* •q̂eWT•q̂8A21 isW •~eW8* 3eWT!A31 isW •~ q̂83q̂!eW8* •eWTA4

1 isW •~eW8* 3q̂!eWT•q̂8A51 isW •~eW8* 3q̂8!eWT•q̂8A62 isW •~eWT3q̂8!eW8* •q̂A72 isW •~eWT3q̂!eW8* •q̂A8

1
q2

v2
ez@eW8* •q̂A91 isW •~ q̂83q̂!eW8* •q̂A101 isW •~eW8* 3q̂!A111 isW •~eW8* 3q̂8!A12#J , ~47!

where s i , i 5x,y,z are Pauli spin matrices. Utilizing Eq.~45!, each amplitudeAi , i51,12 is then a function of three
independent kinematic quantities—v8,q̄ andu.

B. Separation of Born and structure part

The twelve VCS amplitudesAi(v8,u,q̄) can be decomposed into a~nucleon! Born partAi
Born(v8,u,q̄) and a structure

dependent partĀi(v8,u,q̄),

Ai~v8,u,q̄!5Ai
Born~v8,u,q̄!1Āi~v8,u,q̄!. ~48!

To third order in both the chiral and small scale expansions, the Born part contains the nucleon pole diagrams@Fig. 2~a,b!#, the
Thomson seagull graph@Fig. 2~c!# and the~anomalous! pion-pole graph@Fig.2~f!#. In the case of a proton target one finds

A1
Born (3)~v8,u,q̄!52

1

MN
1O„1/~MN

3 ,Lx
2MN!…

A2
Born (3)~v8,u,q̄!5

q̄

MN
2

1O„1/~MN
3 ,Lx

2MN!…

7In fact, the primary source of information about the structure of the nucleon in the processeN→e8Ng comes from the interference
betweenM VCS andM Bethe-Heitler.

8Our calculations are actually performed in the Coulomb gauge, see the discussion in Appendix B.
9It is helpful to employ the identity given in Appendix E when reducing Pauli structures to the 12 structure amplitudes employed
3-8
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A3
Born (3)~v8,u,q̄!5

~112kp!v82~11kp!2cosu q̄

2MN
2

2
gA

8p2Fp
2

v8~v821q̄222v8q̄cosu!

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A4
Born (3)~v8,u,q̄!52

q̄~11kp!2

2MN
2

1O„1/~MN
3 ,Lx

2MN!…

A5
Born (3)~v8,u,q̄!5

q̄~11kp!2

2MN
2

2
gA

8p2Fp
2

v82q̄

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A6
Born (3)~v8,u,q̄!52

v8~11kp!

2MN
2

1
gA

8p2Fp
2

v83

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A7
Born (3)~v8,u,q̄!5

q̄~11kp!2

2MN
2

2
gA

8p2Fp
2

v82q̄

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A8
Born (3)~v8,u,q̄!52

11kp

2MN
2

q̄2

v8
1

gA

8p2Fp
2

v8q̄2

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A9
Born (3)~v8,u,q̄!52

1

MN
1

2 v8q̄cosu1q̄2

2MN
2 v8

1O„1/~MN
3 ,Lx

2MN!…

A10
Born (3)~v8,u,q̄!52

gA

8p2Fp
2

v82q̄

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A11
Born (3)~v8,u,q̄!5

~112kp!v8

2MN
2

2
gA

8p2Fp
2

v82~v82q̄cosu!

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…

A12
Born (3)~v8,u,q̄!52

~11kp!v8cosu

2MN
2

2
gA

8p2Fp
2

v82~ q̄2v8cosu!

mp
2 1v821q̄222v8q̄cosu

1O„1/~MN
3 ,Lx

2MN!…,

~49!
ry

y
th
ea

po

e
di

ent

n

Ps
des
where Lx54pFp denotes the scale of chiral symmet

breaking @34#. One can easily verify that the low energ
forms of these structure functions are in agreement with
constraints implied by the Low theorem in the case of r

Compton scattering@35#—q̄50—and with the generalized
low energy theorem in the case of VCS@21,36#. From the
above expressions it can also be seen that the pion-
contributions—Fig. 2~f!—which scale linearly withgA , af-
fect only the spin-dependent structure amplitudes, as
pected from the pion-nucleon coupling structure. All ad
01401
e
l

le

x-
-

tional contributions are contained in the structure-depend

parts Āi(v8,u,q̄) of the amplitudes, from which one ca
extract the~generalized! polarizabilities.

C. Connection with the GPs

In this section we present the formulas by which the G
are related to the twelve structure-dependent amplitu
Āi(v8,u,q̄), i 51 . . . 12 to O(p3) in HBChPT and toO(e3)
in SSE. First, we focus on the spin-independent GPs.
3-9
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To leading order in both the chiral and small scale exp
sions the spin-independent GPsāE(q̄), b̄M(q̄) can be found
from the structure functionsĀ9(v8,u,q̄), Ā2(v8,u,q̄) via
@13#

āE
(3)~ q̄!5

e2

8p

]2

]v82
Ā9

(3)~v8,u,q̄!U
v850

,

b̄M
(3)~ q̄!52

e2

4p

1

q̄

]

]v8
Ā2

(3)~v8,u,q̄!U
v850

. ~50!

Note that the structure amplitudes in general have a de
dence on the scattering angleu, whereas the GPs are on
functions ofq̄. The independence of the GPs onu therefore
serves as a non-trivial check on the calculation.

Likewise, the four independent spin-dependent GPs
be found from the relations@37#

P̂(01,1)1
(3) ~ q̄!52

A2

3A3

1

q̄2

]

]v8
@2Ā3

(3)~v8,u,q̄!

1Ā8
(3)~v8,u,q̄!#v850

P(01,12)1
(3) ~ q̄!52

A2

3

1

q̄2

]

]v8
Ā8

(3)~v8,u,q̄!U
v850

P(11,02)1
(3) ~ q̄!52

A2

3A3

1

q̄

]2

]v82
Ā10

(3)~v8,u,q̄!U
v850

P(11,00)1
(3) ~ q̄!5

q̄

A3

]2

]v82 F Ā12
(3)~v8,u,q̄!

2
2

3
Ā10

(3)~v8,u,q̄!G
v850

. ~51!

We note that these relations are only exact to third orde
the chiral and in the small scale expansion. The analysi
Ref. @37# must be generalized before one can perform a
fourth order calculations. Thus, to the order we are worki
the remaining three spin-dependent GPsP(01,01)1

(3) ,

P(11,11)1
(3) ,P̂(11,2)1

(3) and the additional scalar GPP̂(01,1)0
(3) can

only be reconstructed10 with the help of the charge
conjugation constraint of Eqs.~18!, yielding

10The origin of this impediment lies in the fact that the quant

v05MN2AMN
2 1q̄2 strictly speaking is suppressed by a factor

1/MN in both the chiral and small scale expansions. Full sensitiv
to v0 dependent quantities can therefore only be achieved
O(p4), respectivelyO(e4) calculations.
01401
-

n-

n

in
of
y
,

P̂(01,1)0
(3) ~ q̄!5

v0

3q̄2 F ]2

]v82
Ā9

(3)~v8,u,q̄!

2
2

q̄

]

]v8
Ā2

(3)~v8,u,q̄!G
v850

P(01,01)1
(3) ~ q̄!5

v0

3q̄

]2

]v82
@Ā12

(3)~v8,u,q̄!

2Ā10
(3)~v8,u,q̄!#v850

P(11,11)1
(3) ~ q̄!5

v0

3q̄2 H 2
]

]v8
Ā3

(3)~v8,u,q̄!U
v850

2
v0

2

q̄

]2

]v82
@Ā12

(3)~v8,u,q̄!

2Ā10
(3)~v8,u,q̄!#v850J

P̂(11,2)1
(3) ~ q̄!5

A2v0

3A5q̄3 H Fv0
2

q̄2

]2

]v82
Ā12

(3)~v8,u,q̄!

1S 12
v0

2

q̄2 D ]2

]v82
Ā10

(3)~v8,u,q̄!G
v850

2
2

q̄

]

]v8
Ā3

(3)~v8,u,q̄!U
v850

J , ~52!

with v05MN2AMN
2 1q̄2. Note that the spin-dependent GP

are just functions of the three-momentum transferq̄, whereas
their generating structure amplitudes in Eqs.~51!,~52! also
depend on the scattering angleu—leading again to a non
trivial check on the calculation as in the case of the sp
independent GPs.

With these definitions of the GPs we now turn to t
results of the chiral and small scale expansions.

V. RESULTS

In this section we present the results for the generali
polarizabilities calculated intwo different chiral effective
theories—O(p3) HBChPT andO(e3) SSE.

A. O„p3
… heavy baryon ChPT

1. Structure amplitudes

The only diagrams left atO(p3) for the structure depen
dent part are the nineNp-continuum diagrams~Fig. 3!,

y
in
3-10
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which correspond to the pion-cloud of the nucleon in t
formalism of baryon chiral perturbation theory. All other di
grams have already been accounted for in the Born par
Sec. IV B. We can now calculate theO(p3) contributions to
01401
of

the 12 VCS structure amplitudes defined in Eq.~47!, with all
our results given in the CMS of the final state photo
nucleon subsystem. From Appendix B one can read off
spin-independent structure amplitudes toO(p3), yielding
Ā1
(3)~v8,u,q̄!52

gA
2

16pFp
2
E

0

1

dxE
0

1

dyH mp
2 24mf

2

Amf
2

12Amp
2 2v8222Amp

2 2v82x2

22Am̃22v82x212~12y!
K2T1~6m̂22mp

2 26T2!v8

v8Am̂22T2
J

Ā2
(3)~v8,u,q̄!51

gA
2

8pFp
2
E

0

1

dxE
0

1

dy
q̄v8~12y!

Am̂22T2
H 211x28xy17~y2y21xy2!

1~12x!y~12y!
~mp

2 2m̂21T2!v82K2T

v8~m̂22T2!
J

Ā9
(3)~v8,u,q̄!5Ā1

(3)~v8,u,q̄!1cosuĀ2
(3)~v8,u,q̄!1

gA
2

16pFp
2
E

0

1

dxE
0

1

dy q̄2

3F x~122x!

Am̃22v82

2~122y!y~12y!
~mp

2 2m̂21T2!v82K2T

v8~m̂22T2!3/2
1

~12y!~129y114y2!

Am̂22T2 G , ~53!

with the ‘‘energy’’ and ‘‘mass’’ variables

T5v8x~12y!

K25v822v8q̄cosu

m̃25mp
2 2q2x~12x!

m̂25mp
2 2q2y~12y!12q•q8~12x!y~12y!

mf
25mp

2 2~q2q8!2x~12x!. ~54!

The spin-dependent structure amplitudes toO(p3) in the chiral expansion can also be found from the expressions in
Appendix B

Ā3
(3)~v8,u,q̄!5

gA
2

4p2Fp
2
E

0

1

dxE
0

1

dyH 2Amp
2 2v82arcsinF v8

mp
G1Amp

2 2v82x2arcsinFv8x

mp
G1Am̃22v82x2arcsinFv8x

m̃
G

1v8xlogF m̃

mp
G1sin2u~12x!x~12y!3y

q̄2v82S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2
J

Ā4
(3)~v8,u,q̄!5

gA
2

4p2Fp
2
E

0

1

dxE
0

1

dy~12y!
q̄ T

Am̂22T2
arcsinF T

m̂
G

3-11
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Ā5
(3)~v8,u,q̄!5

gA
2

4p2Fp
2
E

0

1

dxE
0

1

dyH ~x21!~12y!2

q̄ v8arcsinF T

m̂
G

Am̂22T2
1cosu~12x!x~12y!3y

3

q̄2v82S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2
J

Ā6
(3)~v8,u,q̄!5

gA
2

4p2Fp
2
E

0

1

dxE
0

1

dyH ~12x!~12y!2

v82arcsinF T

m̂
G

Am̂22T2
2~12x!x~12y!3y

3

q̄2v82S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2
J

Ā7
(3)~v8,u,q̄!5

gA
2

4p2Fp
2
E

0

1

dxE
0

1

dyH y~y21!

v8q̄arcsinF T

m̂
G

Am̂22T2
1cosu~12x!x~12y!3y

3

q̄2v82S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2
J

Ā8
(3)~v8,u,q̄!5

gA
2

4p2Fp
2
E

0

1

dxE
0

1

dyH y~12y!

q̄2arcsinF T

m̂
G

Am̂22T2
2~12x!x~12y!3y

q̄2v82S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2
J

Ā10
(3)~v8,u,q̄!5Ā4

(3)~v8,u,q̄!1Ā7
(3)~v8,u,q̄!1

gA
2

8p2Fp
2 E0

1

dxE
0

1

dy~12y!2x~2y21!y

3

q̄3v8S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2

Ā11
(3)~v8,u,q̄!5A3~v8,u,q̄!1A5~v8,u,q̄!1

gA
2

8p2Fp
2 E

0

1

dxE
0

1

dyH x~122x!q̄2

arcsinFv8x

m̃
G

Am̃22v82x2

1~12y!~122y!q̄2

arcsinF T

m̂
G

Am̂22T2
2x~12x!y~12y!3q̄3v8

TAm̂22T21m̂2arcsinF T

m̂
G

m̂2~m̂22T2!3/2
J

014013-12
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Ā12
(3)~v8,u,q̄!5cosu Ā6

(3)~v8,u,q̄!1
gA

2

8p2Fp
2
E

0

1

dxE
0

1

dyH ~12y!~2y21!

v8q̄arcsinF T

m̂
G

Am̂22T2

12cosu~12x!x~12y!3y

q̄2v82S TAm̂22T21m̂2arcsinF T

m̂
G D

m̂2~m̂22T2!3/2
J . ~55!

Equations~53!,~55! constitute thefull O(p3) HBChPT results for the structure part in virtual Compton scattering off
nucleon. As such, they are independent of the particular formalism of Guichon and could also be used to extract al
descriptions of generalized polarizabilities, e.g. see the recent paper by Unkmeiret al. @38#.

2. Spin-independent polarizabilities

From theO(p3) HBChPT results for the 12 structure amplitudes given in the previous section one can now extract t
as defined by Guichon, following the general formulas given in Eqs.~50!–~52!. In this subsection we first focus on th

spin-independent GPsāE(q̄), b̄M(q̄).

The leadingq̄-dependent modification ofāE(q̄), b̄M(q̄) has already been analyzed in Ref.@13# and one finds

āE
(3)~ q̄!5

5e2gA
2

384p2Fp
2 mp

F12
7

50

q̄2

mp
2

1
81

2800

q̄4

mp
4

1O~ q̄6!G ,

b̄M
(3)~ q̄!5

e2gA
2

768p2Fp
2 mp

F11
1

5

q̄2

mp
2

2
39

560

q̄4

mp
4

1O~ q̄6!G . ~56!

First, we note that in the limitq̄→0 one recovers the well-known real Compton results atq250 @31#:

āE
(3)5āE

(3)~ q̄50!5
5e2gA

2

384p2Fp
2 mp

512.531024 fm3

b̄M
(3)5b̄M

(3)~ q̄50!5
e2gA

2

768p2Fp
2 mp

51.2531024 fm3, ~57!

which work extremely well when compared with the existing experimental information given in Eq.~9!.

As already pointed out in Ref.@13#, the slope ofāE(q̄), b̄M(q̄) with respect toq̄ shows theopposite signfor the two
spin-independent polarizabilities. These respective slopes are uniquely determined by the chiral structure of the nuc
the ‘‘pion-cloud,’’ as given by thepN-loop diagrams of Fig.~3!. At O(p3) ChPT therefore leads to the remarkable predict
that the~generalized! magnetic polarizabilityb̄M(q̄) riseswith increasing three-momentum transfer in a small window n
q̄50. The subleading, i.e.O(p4), correction to this result is not known at this point, but in Sec. V B we discuss the lea
modification of the slopes due to theD(1232) resonance.

Starting from the expression for the individual Feynman diagrams given in Appendix B, thepN-loop contributions to
āE(q̄), b̄M(q̄) can be shown to possess analytic expressions for theirq̄-dependence. ToO(p3) we find the remarkably simple
closed form expressions
014013-13
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āE
(3)~ q̄!5

e2gA
2mp

64p2Fp
2

412
q̄2

mp
2

2S 822
q̄2

mp
2

2
q̄4

mp
4 D mp

q̄
arctan

q̄

2mp

q̄2S 41
q̄2

mp
2 D ,

b̄M
(3)~ q̄!5

e2gA
2mp

128p2Fp
2

2S 412
q̄2

mp
2 D 1S 816

q̄2

mp
2

1
q̄4

mp
4 D mp

q̄
arctan

q̄

2mp

q̄2S 41
q̄2

mp
2 D . ~58!

These HBChPT predictions forāE(q̄), b̄M(q̄) are also shown in Fig. 6. One observes a relatively sharp fall-off in the elec
GP, whereas the magnetic GP shows therising behavior for low values ofq̄ as described above. This remarkable effect has
origin in the chiral structure of the pion cloud surrounding the nucleon and poses a formidable challenge to form
supplemented Born-models of the GPs~e.g. see@25#!. From Eq.~58! the maximum of the magnetic GP can be determined
be

b̄M
max~ q̄52.38mp!51.293b̄M~0!, ~59!

indicating a 30% enhancement of this GP relative to its value at the real photon point. Using theC-invariance relations Eqs.
~18!, we can also read off the remaining spin-independent GP

P̂(01,1)0~ q̄!52
gA

2mp

16pFp
2

v0

q̄4

412
q̄2

mp
2

1S 28110
q̄2

mp
2

13
q̄4

mp
4 D mp

q̄
arctan

q̄

2mp

S 41
q̄2

mp
2 D

52
11gA

2

576pFp
2 MNmp

F12
6

55

q̄2

mp
2

1
123

560

q̄4

mp
4

1O~ q̄6!G . ~60!
t

en

c-
e

Once more we note thatP̂(01,1)0(q̄) is not an independen

GP, but can be found as a linear combination ofāE
(3)(q̄),

b̄M
(3)(q̄) via the charge-conjugation constraint Eq.~18!. The

extra suppression by 1/MN compared to Eq.~56! arises from
the expansion of thev0 factor defined in Eq.~17!.

Having discussed the scalar~spin-independent! structure
of the nucleon, we now move on to the spin-depend
analysis.

3. Spin-dependent generalized polarizabilities

Following the identification of the GPs from the 12 stru
ture amplitudes via Eqs.~51!,~52! we can also analyze th
behavior of the spin-dependent GPs nearq̄50. For the four
independent spin GPs we find
01401
t

P(01,12)1
(3) ~ q̄!52

A2gA
2

288p2Fp
2 mp

2 F12
q̄2

5mp
2

1
3q̄4

70mp
4

1O~ q̄6!G

P(11,02)1
(3) ~ q̄!52

A2gA
2

144A3p2Fp
2 mp

2 F12
q̄2

5mp
2

1
3q̄4

70mp
4

1O~ q̄6!G

P(11,00)1
(3) ~ q̄!52

5gA
2

144A3p2Fp
2 F01

q̄2

mp
2

2
7q̄4

50mp
4

1O~ q̄6!G
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P̂(01,1)1
(3) ~ q̄!52

gA
2

48A6p2Fp
2 mp

2 F12
2q̄2

15mp
2

1
q̄4

42mp
4

1O~ q̄6!G , ~61!

whereas the remaining three spin-dependent GPs can be
termined via Eq.~52! as a consequence of theC-invariance
relations Eq.~18!:

P(01,01)1
l .o. x ~ q̄!5

gA
2

144p2Fp
2

1

MN
F01

q̄2

mp
2

2S 3

20
1

m2

4 D q̄4

mp
4

1O~ q̄6!G

P(11,11)1
l .o. x ~ q̄!52

gA
2

288p2Fp
2

1

MN
F01

q̄2

mp
2

2S 1

10
2

m2

4 D q̄4

mp
4

1O~ q̄6!G

FIG. 6. O(p3) HBChPT results for the two spin-independen

generalized polarizabilitiesāE(q̄2), b̄M(q̄2) of Eq. ~58!.
01401
de-

P̂(11,2)1
l .o. x~ q̄!5

A2gA
2

2880A5p2Fp
2 mp

2

1

MN
F01~115m2!

q̄2

mp
2

2S 2

7
1m21

15 m4

4 D q̄4

mp
4

1O~ q̄6!G , ~62!

with m5mp /MN . As in the case ofP̂(01,1)0(q̄) of Eq. ~60!,
one can clearly see that these three GPs are formally
pressed by an additional factor of 1/MN relative to the four
independent spin GPs of Eq.~61! and therefore ordinarily
would not be accessible in aO(p3) calculation. It is only the
charge-conjugation constraint that allows us to extract th
from the Āi

(3) VCS amplitudes. It is also interesting to no
that four of the generalized spin-polarizabilitiesvanishin the
real Compton limit—q̄→0. In the case ofP(11,00)1

(3) (q̄),

P(01,01)1
l .o.x (q̄),P(11,11)1

l .o.x (q̄) this follows from charge conjuga
tion invariance and crossing symmetry, as pointed out
Drechselet al. @23#. On the other hand, forP̂(11,2)1

l .o.x (q̄) the
zero appears to be a numerical accident which is only tru
this order, since the linear sigma model calculation of R
@24# violates this condition. Nevertheless the zero in the fi
three cases is a powerful confirmation of the internal con
tency of the ChPT approach to generalized polarizabilitie

As in the case of the spin-independent sector it is poss
to give analytic expressions for the 7 spin-dependent G
Defining the auxiliary function

g~x!5
sinh21~x!

xA11x2
, ~63!

the four independent generalized spin-polarizabilities to th
order in the chiral expansion read

P(01,12)1
(3) ~ q̄!52

gA
2

24A2p2Fp
2 q̄2 F12gS q̄

2mp
D G

P(11,02)1
(3) ~ q̄!52

gA
2

12A6p2Fp
2 q̄2 F12gS q̄

2mp
D G

P(11,00)1
(3) ~ q̄!5

gA
2

12A3p2Fp
2 F22S 21

3q̄2

4mp
2 D gS q̄

2mp
D G

P̂(01,1)1
(3) ~ q̄!5

gA
2

24A6p2Fp
2 q̄2 F32S 31

q̄2

mp
2 D gS q̄

2mp
D G .

~64!

The O(p3) HBChPT results for these four spin-depende
GPs are shown in Fig. 7. All are found to be negative in
low energy regime and three of them show a steep rise w
q̄ at low three-momentum transfer—except forP(11,00)1

(3) (q̄),

which vanishes forq̄→0 and is strongly falling off for small
finite values ofq̄. The remaining three C-constrained GP
are found to be
3-15
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FIG. 7. O(p3) HBChPT results for the four independent generalized spin-polarizabilities of Eq.~64!. Note that the ‘‘anomaly contribu-
tions’’ of Appendix D are not included here but plotted separately in Fig. 12.
d
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12.
P(01,01)1
l .o. x ~ q̄!5

gA
2v0

24p2Fp
2 q̄2 F12S 11

q̄2

2mp
2 D gS q̄

2mp
D G ,

P(11,11)1
l .o. x ~ q̄!52

gA
2v0MN

2

24p2Fp
2 q̄4 F S 2v0

MN
1

3q̄2

MN
2 D

2X3mp
2 1q̄2

MN
2

q̄2

mp
2

1
v0

MN
S 21

q̄2

mp
2 D C

3gS q̄

2mp
D G ,

P̂(11,2)1
l .o. x~ q̄!5

gA
2v0MN

2

6A10p2Fp
2 q̄6 F S v0

MN
1

2q̄2

MN
2 D

2
1

2
Xv0

MN
S 21

q̄2

mp
2 D

1S 41
q̄2

mp
2 D q̄2

MN
2 CgS q̄

2mp
D G , ~65!

with v0 defined in Eq.~17!. Their resultingq̄-dependence is
shown in Fig. 8.P(01,01)1(q̄), P(11,11)1(q̄) vanish forq̄→0 as
required by C-invariance@23#, whereas the unconstraine
spin-dependent GPP̂(11,2)1(q̄) rises at lowq̄ and shows an
unusual turnover point nearq̄2;0.2 GeV2. Once more we
note that these three particular GPs, strictly speaking, lie
yond aO(p3) calculation and could only be deduced via t
C-invariance constraints of Eq.~18!.

From an analysis of the corresponding sp
polarizabilities in real Compton scattering@17# one knows
that in some cases there exist large corrections atq250 to
these chiralO(p3) results of the spin-polarizabilities due t
01401
e-

- FIG. 8. O(p3) HBChPT results for the three redundant sp
polarizabilities of Eq.~65!, reconstructed from the C-invarianc
constraints of Eq.~18!. Note that the ‘‘anomaly contributions’’ of
Appendix D are not included here but plotted separately in Fig.
3-16
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the Delta resonance. On the other hand, the spin-indepen
polarizabilities āE , b̄M are known to be well describe
within O(p3) pN HBChPT @see Eq.~56! in the limit q̄→0
and @31# #. In the next section we will therefore analyze th
leading effects of theD(1232) on the GPs in adifferent
chiral effective framework, which contains theD(1232) as
an explicit degree of freedom.

B. O„e3
… small scale expansion

1. General comments regarding SSE and Compton scattering

In HBChPT the effects ofD~1232! are incorporated via
higher order contact interactions, i.e. the effects of this p
ticular resonance are not directly tractable in the calculat
If one is interested in such kind of questions, one need
chiral effective framework which includesD(1232) as an
explicit degree of freedomin a consistent power countin
framework—one approach of this kind is SSE as laid out
Sec. III B.

First, we would like to stress again that any SSE calcu
tion to O(e3) does not just equal the correspondingO(p3)
01401
ent

r-
n.
a

-

HBChPT calculation plus some additional diagrams with e
plicit Delta degrees of freedom. SSE constitutes a chiral
fective theory separate from HBChPT—for example, ev
single nucleon coupling structures which look the same
the ~bare! Lagrangians of the two theories can undergo qu
a different coupling constant renormalization or acquire d
ferent beta-functions, for details we refer the interes
reader to Ref.@28#. For the particular case of~real! Compton
scattering we would like to remind the reader that HBCh
and SSE show quite a different convergence behavior for
~real! Compton polarizabilities@17#, which is expected to
also hold true for the here discussed generalized polariza
ities of VCS.

In principle there are two kinds ofadditional contribu-
tions to theO(p3) HBChPT results presented in the previo
section—D~1232! pole graphs @Fig. 2~d!,~e!# and Dp-
continuum effects~Fig. 4!. The latter are straightforwardly
obtained from the results given in Appendix C, whereas
Delta pole effects to be discussed here are identical to t
~real! Compton contributions discussed in@17#.
the

r

2. Spin-independent results

First we discuss theO(e3) SSE results for the spin-independent GPsāE
(III )(q̄), b̄M

(III )(q̄) near q̄50 to facilitate the
comparison between HBChPT and SSE. One finds

āE
(III )~ q̄!5

5e2gA
2

384p2Fp
2 mp

1
e2gpND

2

216p3Fp
2 S 9D

D22mp
2 1

D2210mp
2

~D22mp
2 !3/2

lnRD 1
q̄2

mp
2 F2

7e2gA
2

3840p2Fp
2 mp

2
e2gpND

2

1080p3Fp
2

3S 2D3217Dmp
2

~D22mp
2 !2 1

8D2mp
2 17mp

4

~D22mp
2 !

5
2

lnRD G1O~ q̄4!

5H 12.514.221
q̄2

mp
2 @21.7520.240#1

q̄4

mp
4 @0.36210.018#1 . . . J 31024 fm3

b̄M
(III )~ q̄!5

e2gA
2

768p2Fp
2 mp

1
e22 b1

2

9pMN
2 D

1
e2gpND

2

216p3Fp
2

1

AD22mp
2

lnR1
q̄2

mp
2 F e2gA

2

3840p2Fp
2 mp

1
e2gpND

2

1080p3Fp
2

3S D

~D22mp
2 !

2
mp

2

~D22mp
2 !

3
2

lnRD G1O~ q̄4!

5H 1.2517.2010.7251
q̄2

mp
2 @0.25010.078#1

q̄4

mp
4 @20.08720.020#1•••J 31024 fm3 ~66!

with

R5
D

mp
1AD2

mp
2 21. ~67!

The important point to note in Eq.~66! is the fact that theq̄-dependence is only modified in a very weak fashion by
inclusion of explicit delta degrees of freedom. In that respect SSE toO(e3) and HBChPT toO(p3) are quite compatible.
However, the same problems known from real Compton scattering@16,17# appear in the limitq̄→0, which in the Guichon
definition of the GPs corresponds to the real photon point. InāE(0)→āE the Dp-continuum of Fig.~4! produces a shift of
4.231024 fm3, which when added to the 12.531024 fm3 from theNp-continuum of Fig.~3!, leads to a much larger numbe
3-17
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than the current values ofāE @2#. In b̄M(0)→b̄M the effect is even more dramatic. Here it is the large magnetic contributi11

of 7.231024 fm3 coming from theq̄-independentdelta pole graphs of Fig. 2~d!,~e! which spoil any agreement with th
currently accepted number forb̄M of the proton@2#. On the other hand, the sum of the contributions from theNp- and from
the Dp-continuum has the right magnitude of; 231024 fm3 for the magnetic polarizability, constituting the ‘‘chiral ve
sion’’ of the unwanted presence of a largeD(1232)-induced paramagnetism, which is well-known in the literature@39#. A
large source of diamagnetism due to the pion-cloud has been identified in Refs.@41# in the case of~real! Compton scattering,
but this mechanism, which leads to a sensible~central! value of b̄M;3.5 1024 fm3 for the proton, can only be implemente
in a O(p4) HBChPT @respectivelyO(e4) SSE ?# calculation and is therefore beyond the scope of this analysis.

Keeping these problems in mind, we nevertheless are convinced that theq̄-dependence is described reasonably well by
O(e3) calculation and that the problems described above only refer to the correct normalization of the theory at the rea
point q̄→0. We base this expectation on the observation that the relevant scale of theq̄-evolution in Eq.~66! at small
momentum transfer is given by the quantityq̄2/mp

2 , i.e. the momentum dependence arises from the ‘‘pion-cloud’’ of
nucleon. At the next order—O(e4)—new diagrams are expected to correct the normalization at the photon point
q̄-dependence of these diagrams however is then expected to scale withq̄2/(MNmp), i.e. it should be much weaker due to th
appearance of the extra suppression factormp /MN of the next order. Whether this expectation will hold true can, of cou
only be decided onceāE(q̄), b̄M(q̄) have been explictly calculated toO(e4). An analysis of the renormalization ofāE , b̄M
in real Compton scattering toO(e4) is under way@40# and will later be extended to the case of VCS atO(e4).

For completeness we also give formal expressions for the two spin-independent GPs. Unlike the case ofO(p3) HBChPT
in SSE toO(e3) we were not able to obtain closed form expressions:

āE
(III )~ q̄!5

e2gA
2mp

64p2Fp
2

412
q̄2

mp
2

2S 822
q̄2

mp
2

2
q̄4

mp
4 D mp

q̄
arctan

q̄

2mp

q̄2S 41
q̄2

mp
2 D 1

e2

8p

8gpND
2

9Fp
2 E

0

1

dxE
0

1
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]2

]w 2

3$J0~v82D,mp
2 !1J0~2v82D,mp

2 !22@J28~v8x2D,mp
2 !1J28~2v8x2D,mp

2 !1J28~v8x2D,m̃2!

1J28~2v8x2D,m̃2!#14~12y!@5~J69~T2D,m̂2!1J69~2T2D,m̂2!!2~T21mp
2 2m̂22T v8!

3„J29~T2D,m̂2!1J29~2T2D,m̂2!…#22@3 J28~2D,mf
2!1~mf

22mp
2 !J08~2D,mf

2!#

2x~122x!q̄2~J08~v8x2D,m̃2!1J08~2v8x2D,m̃2!!22@~12y!~14y229y11!q̄2~J29~T2D,m̂2!

1J29~2T2D,m̂2!!1y~12y!~122y!q̄2~T21mp
2 2m̂22T w!„J09~T2D,m̂2!1J09~2T2D,m̂2!…#%U

cosu→0,v8→0

,

b̄M
(III )~ q̄!5

e2gA
2mp

128p2Fp
2

2S 412
q̄2

mp
2 D 1S 816

q̄2

mp
2

1
q̄4

mp
4 D mp

q̄
arctan

q̄

2mp

q̄2S 41
q̄2

mp
2 D 1

e22 b1
2

9pMN
2 D

1
e2

4p

1

q̄

32gpND
2

9 Fp
2 E

0

1

dxE
0

1

dy
]

]w

3$@~12y!„211x28xy17~y2y21xy2!…q̄ w„J29~T2D,m̂2!1J29~2T2D,m̂2!…

2y~12y!2~12x!~T21mp
2 2m̂22T w!q̄ w„J09~T2D,m̂2!1J09~2T2D,m̂2!…#%U

cosu→0,v8→0

. ~68!

We note that the relevant J-functions are defined in Appendix A and the mass/energy variables occurring in Eq.~68! have been
given in Eq.~54!.

11As expected,āE is completely free of delta pole contributions to this order, quite analogous to the case of real Compton sc
@16,17#.
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The results of Eq.~68! are also shown in Fig. 9. Once more,we do not advocatethe use of theseO(e3) SSE curves in a
realistic analysis of VCS at this point since, as shown in Ref.@41#, there exist significant known cancellations which are n
yet included yet to the order we are working. A more realistic use of these curves could be the prescription

āE
ren.~ q̄!5āE

(III )~ q̄!2āE
(III )~0!1āE

exp.

b̄M
ren.~ q̄!5b̄M

(III )~ q̄!2b̄M
(III )~0!1b̄M

exp. , ~69!

where the indexexp. refers to the current experimental numbers forāE , b̄M of Ref. @2#. The results of this operation ar
shown in Fig. 10. There one can clearly see that theD~1232! related effects atO(e3) SSEenhancethe q̄-trend already seen
at O(p3) HBChPT. Of course, we want to emphasize that the prescription of Eq.~69! leaves the strict realm of chiral effectiv
theories and just constitutes anad hocfix to include someeffects that are of higher order in the~slowly converging! SSE
expansion for the spin-independent GPs.

This completes our discussion of the spin-independent GPs and we now move to the corresponding generaliz
polarizabilities in SSE.

3. Spin-dependent results

Once more we start from a discussion of the GPs nearq̄50. First, it should be noted that there are noD pole contributions12

to any of the generalized~Guichon! spin-polarizabilities atO(e3), quite in contrast to the real Compton~Ragusa! spin-
polarizabilitiesg2 , g4 @17#! The O(e3) results for the four independent spin GPs therefore exclusively arise from theNp- and
Dp-continuum graphs of Figs. 3,4 and can be found from the expressions given in Appendices B and C. One obtai
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144A3p2Fp
2 mp

2
2A2

3

gpND
2

162p2Fp
2 S 1

D22mp
2 2

D

~D22mp
2 !3/2

lnRD
1

q̄2

mp
2 F A2gA

2

720A3p2Fp
2 mp

2
2A2

3

gpND
2

1620p2Fp
2 S D212mp

2

~D22mp
2 !22

3Dmp
2

~D22mp
2 !5/2

lnRD G1O~ q̄4!

5H 28.4110.8481
q̄2

mp
2 @1.6820.077#1

q̄4

mp
4 @20.36010.010# . . . J 31023 fm4

P(11,00)1
(III ) ~ q̄!501

q̄2

mp
2 F2

5gA
2

144A3p2Fp
2

2A1

3

5gpND
2

162p2Fp
2 S mp

2

D22mp
2 2

Dmp
2

~D22mp
2 !3/2

lnRD G1O~ q̄4!

5H 0101
q̄2

mp
2 @21.4910.15#1

q̄4

mp
4 @0.20820.002#1•••J 31022 fm2

12We observe that there does exist aD-pole contribution to the spin GPP̂(01,1)0(q̄),

P̂(01,1)0
D2pole52

4v0

27q̄2

b1
2

M2D
, ~70!

which, however, is suppressed by an additional factor of 1/MN originating inv0 of Eq. ~17! and therefore is counted as anO(e4) effect.
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HEMMERT, HOLSTEIN, KNÖCHLEIN, AND DRECHSEL PHYSICAL REVIEW D62 014013
P̂(01,1)1
(III ) ~ q̄!52

gA
2

48A6p2Fp
2 mp

2
2A1

6

gpND
2

54p2Fp
2 S 1

D22mp
2 2

D

~D22mp
2 !3/2

lnRD 1
q̄2

mp
2 F gA

2

360A6p2Fp
2 mp

2

2A1

6

gpND
2

810p2Fp
2 S D212mp

2

~D22mp
2 !22

3Dmp
2

~D22mp
2 !5/2

lnRD G1O~ q̄4!

5H 212.611.2721
q̄2

mp
2 @1.6820.077#1

q̄4

mp
4 @20.30010.009#1•••J 31023 fm4. ~71!

First, we observe that SSE toO(e3) obeys the C-invariance constraint@23# limq̄→0P(11,00)1
(III ) (q̄)50, as does theO(p3)

HBChPT calculation in Eq.~61!. Second, we note that there is no strong renormalization of the above13 spin-dependent GP
at the real photon point due toD(1232) related effects. We observe that in general the effects from theDp-continuum are
small andalways interfere destructivelywith the corresponding contribution from theNp-continuum, in contrast to the
constructiveinterference in the spin-independent sector of Sec. V B 2.

As in the previous section, we were not able to give the full spin-dependentO(e3) results in a closed form expression b
utilize a Feynman-parameter representation and the J-functions defined in Appendix A:

P(01,12)1
(III ) ~ q̄!52

gA
2

24A2 p2Fp
2 q̄2 F12gS q̄

2mp
D G2

A2

3

1

q̄

16gpND
2

9Fp
2 E

0

1

dxE
0

1

dy
]

]w
$@y~12y!q̄2~J29~T2D,m̂2!

2J29~2T2D,m̂2!!1x~12x!y~12y!3q̄2v82
„J09~T2D,m̂2!2J09~2T2D,m̂2!…#%U

cosu→0,v8→0

.

P(11,02)1
(III ) ~ q̄!52

gA
2

12A6p2Fp
2 q̄2 F12gS q̄

2mp
D G2

A2

3A3

1

q̄

8gpND
2

9Fp
2 E

0

1

dxE
0

1

dy
]2

]w82
$@xy~12y!2~122y!

3q̄3v8~J09~T2D,m̂2!2J09~2T2D,m̂2!!#12@x~12y!2q̄ v8~J29~T2D,m̂2!2J29~2T2D,m̂2!!#

22@y~12y!q̄ v8~J29~T2D,m̂2!2J29~2T2D,m̂2!!#%U
cosu→0,v8→0

P(11,00)1
(III ) ~ q̄!5

gA
2

12A3p2Fp
2 F22S 21

3q̄2

4mp
2 D gS q̄

2mp
D G1A2 q̄2 P(11,02)1

(III ) ~ q̄!2
q̄

A3

8gpND
2

9Fp
2 E

0

1

dxE
0

1

dy
]2

]w82

3$@~12y!~122y!q̄ v8~J29~T2D,m̂2!2J29~2T2D,m̂2!!#%U
cosu→0,v8→0

P̂(01,1)1
(III ) ~ q̄!5

gA
2

24A6p2Fp
2 q̄2 F32S 31

q̄2

mp
2 D gS q̄

2mp
D G1A1

3
P(01,12)1

(III ) ~ q̄!

2
2A2

3A3

1

q̄2

4gpND
2

9Fp
2 E

0

1

dxE
0

1

dy
]

]w8
H @2~J08~v82D,mp

2 !2J08~2v82D,mp
2 !!#

12
3

d21
@J28~v8x2D,mp

2 !2J28~2v8x2D,mp
2 !1J28~v8x2D,m̃2!2J28~2v8x2D,m̃2!#

24@x~12x!y~12y!3q̄2v82
„J09~T2D,m̂2!2J09~2T2D,m̂2!…#J U

cosu→0,v8→0

. ~73!

13This is to be contrasted with the individual~real! Compton spin-polarizabilitiesg2 andg4 defined by Ragusa, see Ref.@17#. To be more
specific about the connection between VCS and real Compton scattering we utilize Eq.~20! and find

g3
(III )51.031024 fm4

g2
(III )1g4

(III )51.031024 fm4, ~72!

with the input from Eq.~71!. This is in complete agreement with the results of Ref.@17#. It turns out that the largeD~1232! pole contribution
cancels in this particular linear combination ofg2 andg4.
014013-20
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Note that the auxiliary functiong(x) has already been de
fined in Eq.~63! and the mass/energy variables again cor
spond to the structures introduced in Eq.~54!. We present
theabsoluteO(e3) SSE predictions for the four independe
spin GPs in Fig. 11. It clearly shows that theO(e3) curves
are always lying higher than the correspondingO(p3)
HBChPT ones. In all cases the two curves share a sim
behavior in theirq̄-dependence—leading to the conclusi
that there is ‘‘no dramatic’’ signal of theD~1232! resonance
in the spin-dependent GPs toO(e3) compared to the domi
nant contributions from theNp-continuum. We stress agai
that this new finding is in dramatic contrast to the analysis
spin-polarizabilities tested in real Compton scattering@17#.
There it was shown that for some structures~i.e. the isoscalar
spin-polarizabilitiesg2 , g4) D~1232! related effects are o
the same magnitude as the leading chiral contribution fr
the pion-cloud, giving rise to strong interference effects. T
conclusion in@17# was that SU~2! HBChPT is not adequate
for a calculation of these~Ragusa! spin-polarizabilities un-
less one pushes the HBChPT calculation toO(p5). It is
therefore not surprising that recently 2 differentO(p4)
HBChPT calculations@42,43# found a largeO(p4) correc-
tion to the knownO(p3) result of the so called ‘‘forward
spin-polarizability’’ g0. As shown in Eq.~14! g0 involves
the linear combinationg212g4 which will give rise to large
corrections even atO(p5). Given this background we are no
discouraged by the largeO(p4) corrections found in
@42,43#—a new analysis regarding these issues is in prep
tion @40#. At present, the only hope to find a converge
perturbation series for~Ragusa! spin-polarizabilities is the
SSE formalism where one can resum some of the large
rections already atO(e3) @17#.

In VCS the situation for the spin GPs as defined
Guichon appears to be quite different from the real Comp
case, as can be seen by the similarity of the HBChPTO(p3)
and the SSEO(e3) curves in Fig. 11. As far as we can tell
this point this is due to the special choice of kinematics
Guichon, which even in the case of very lowq̄ tests linear
combinations of Ragusa’s spin-polarizabilitiesg i @for ex-
ample:g21g4; see Eq.~20!#, which are different from the
RCS case and seem to be better behaved as judged b
difference of the HBChPT-SSE curves in Fig. 11. Finally w
note that the remaining~linearly dependent! generalized spin
polarizabilitiesP(01,01)1

(III ) ,P(11,11)1
(III ) ,P̂(11,2)1

(III ) may be found via
the charge-conjugation constraint Eq.~18!.

VI. THE MAINZ EXPERIMENT

As mentioned above, the pioneering VCS experimen14

has taken place at Mainz, and preliminary results of
analysis are now available@12#. The measurement was pe
formed at q̄250.36 GeV2 and used parallel kinematics a

14We note that the theoretical predictions of theq̄-dependence in
the GPs given in Refs.@13,14# precededthe analysis of the experi
ment at Mainz.
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though relativistic forward-focussing allowed access
events as much as626 degrees out of plane. Neverthele
the desired generalized polarizabilities were hidden behin
very large Bethe-Heitler background and their extraction w
a real experimental tour de force. Consulting Fig. 6, we n
that atq̄250.36 GeV2 the O(p3) HBChPT calculation pre-
dicts thatāE(q̄) should have decreased by as much as 5
from its real photon value, whereas the much smaller
b̄M(q̄) is predicted to have slightly increased. As can be s
from the HBChPT predictions in Figs. 7, 8, the spi
dependent GPs will dramatically change with regard to
real photon point. Thus the confrontation of theoretical p
dictions with the MAMI results offers a chance to realis
cally test theoretical pictures of nucleon structure. Ess
tially two quantities were determined experimentally—t
combinationPLL2PTT /e of longitudinal and transverse re
sponse functions, which is primarily sensitive to the gen
alized electric polarizabilityaE(q̄) ~plus linear combinations
of spin GPs! @12,21#, as well as the interference termPLT ,
depending on the generalized magnetic polarizabilitybM(q̄)
and the spin GPP(01,01)1(q̄) @12,21# @which itself can be
expressed as a linear combination of the 2 spin G
P(11,00)1(q̄) and P(11,02)1(q̄) via the C-invariance constrain
of Eq. ~18!#. Results of the experiment together with pred
tions from O(p3) HBChPT15 and other theoretical model
are given in Table I. It is obvious that the chiral pictu
~Refs.@13,14#; Secs. V A 2, V A 3 of this work; Figs. 6, 7, 8!
is in astonishing agreement with the experimental result
this point. Of course, this is only a single experiment a
single momentum transfer—and indeed the moment
transfer q̄50.6 GeV is somewhat above that where o
would expect the chiral predictions to be strictly vali
Therefore results from other laboratories and other value
q̄2 are needed and eagerly awaited in order to check
predictions. Specifically, the Bates experiment, which w
take place atq̄50.24 GeV, should be a more appropriate te
of the chiral predictions. Nevertheless the present agreem
is certainly encouraging.

VII. SUMMARY

Virtual Compton scattering—eN→e8Ng—opens the way
to high resolution study of nucleon structure by measur
generalized polarizabilities~GPs!, which are momentum-
dependent analogues of the familiar polarizabilities de
mined in real Compton scattering. In this work, we ha
calculated these quantities within the framework of conv
tional heavy baryon chiral perturbation theory to third ord

15We do not give predictions for the response functions ofO(e3)

SSE due to the discussed normalization problem ināE
(III )(q̄50).

However, we believe that theO(e3) SSE predictions for the spin
GPs will be helpful for ongoing studies on double polarization VC
experiments, which might provide the possibility to study the co
nection between Ragusa and Guichon spin-polarizabilities as i
cated by Eq.~20!.
3-21
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in the momentum expansion as well as to third order in
‘‘small-scale expansion,’’ which contains theD(1232) as an
explicit degree of freedom. As originally defined by Guich
et al., there exist ten such GPs, three being associated
spin-independent correlations and seven connected
spin-flip structures. At third order both in HBChPT and
SSE only six of these—two spin-independent and four sp
dependent—survive, and we have calculated these dire
In the case of theD-pole andpN loop contributions, we
were able to obtain results for the GPs which are sim
analytic forms, while in the case of the corrrespondi
pD(1232)-continuum contributions only numerical resu
could be given. We briefly discussed the results from the fi
VCS experiment on the proton from Mainz atQ250.33
GeV2. The success in predicting the measured response f
tions resulted from a combination of a sharp falloff
āE

(3)(q̄), a slight rise ofb̄M
(3)(q̄) and a strong increase in th

contributing spin GPs with momentum-transferq̄. All these
effects are intimately related to the chiral dynamics of
pion cloud, which can be calculated very precisely in chi
effective theories like HBChPT and SSE—with HBChPT
least in the spin-independent sector having the better con
gence behavior as far as we can tell at this point. In part
lar, for the case of the generalized magnetic polarizabi
both HBChPT and SSE predict arising behavior as one goe
away from the real photon point—q̄250—up to a momen-
tum q̄2;0.1 GeV2. This is a distinctive feature of the chira

FIG. 9. Absolute O(e3) SSE results for the two spin

independent generalized polarizabilitiesāE
(III )(q̄2), b̄M

(III )(q̄2) of Eq.
~68!, compared to theO(p3) HBChPT results shown in gray shad
ing.
01401
e

ith
ith

-
ly.

e

st

c-

e
l
t
er-
-

y

calculations and generally not found in simple quark mo
evaluations. It expresses the feature that chiral invaria
requires local regionsboth of paramagnetic~at small dis-
tances! and diamagnetic~at larger distances! polarizability
densities in the nucleon. Aside from the widely discuss
q̄-dependences of the generalized electric and magnetic
larizabilities, the strong variation of the GPs in the sp
sector is likely to be of interest for further study, both on t
experimental and on the theoretical side. Considering the
sults of the chiral calculations for the spin polarizabilities
real Compton scattering we believe that theO(e3) SSE cal-
culation should be quite competitive with theO(p3)
HBChPT analysis at least as far as the generalized s
polarizabilities are concerned. Future measurements at B
MAMI and JEFLAB will clarify this issue.

It goes without saying that our calculation is prelimina
in that it does not include important corrections arising
O(p4)/O(e4)—see, e.g., the discussed normalization pro
lems ināE

(III )(0), b̄M
(III )(0). An O(p4) HBChPT analysis has

been carried out in the case of the real Compton electric
magnetic polarizabilities in Ref.@41# and important correc-
tions and uncertainties were found which, while not dras
cally modifying the basic numerical predictions obtained
O(p3), did introduce sizable uncertainties into the pred
tions due to unknown counterterms which had to be e
mated via resonance exchange. We may then anticipa
similar behavior here—that such higher order correctio

FIG. 10. Comparison between theO(e3) SSE results for

āE
ren.(q̄2), b̄M

ren.(q̄2) with O(p3) HBCHPT ~in gray shading!. Note
that all curves have been normalized to the experimental resul

āE , b̄M of the proton at the real photon pointq̄→0.
3-22
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FIG. 11.O(e3) SSE results for the four independent generalized spin polarizabilities of Eq.~73!, compared to theO(p3) HBChPT results
of Eq. ~64! in gray shading. Note that the ‘‘anomaly contributions’’ of Appendix D are not included but plotted separately in Fig. 1
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will not change the basic pattern of the chiralO(p3)/O(e3)
predictions, but mainly only correct the~photon-point! nor-
malization. However, verification of this assumption awa
detailed future calculations. Lastly, we stress once more
motivation for performing electron scattering experiments
the nucleon: Different theoretical approaches may yield co
parable results at the real photon point, but the details of
underlying dynamics can be analyzed in a much more p
erful way by studying theQ2-dependence. In conclusion
VCS on the nucleon has matured to become a precise te
ground for our notions of nucleon structure at low energi
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APPENDIX A: LOOP FUNCTIONS

The formalism to calculate the loop diagrams for Com
ton scattering both in ChPT and in the small scale expan

TABLE I. Experimental values of the response functions m
sured at MAMI atQ250.33 GeV2 compared with predictions from
chiral perturbation theory atO(p3), the linear sigma model~LSM!
of Metz and Drechsel@24#, the effective Lagrangian model~ELM!
of Vanderhaeghen@25#, and the nonrelativistic quark mode
~NRQM! of Guichonet al. @21#. This table is taken from Ref.@12#.

Quantity Expt. ChPT LSM ELM NRQM

PLL2
1
e

PTT

23.762.260.664.3 26.3 10.9 5.9 17.0

PLT 25.060.861.161.4 -5.7 0 -1.9 -1.7
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has been described in detail in the appendices of Ref.@16#.
Therefore we shall only give some definitions of the ba
building blocks.

We express the invariant amplitudes of Feynman d
grams containing pion-nucleon loops in terms
d-dimensional J-functions, defined via

1

i E ddl

~2p!d

$1,l ml n ,l ml nl al b%

~v• l 2W2 ih!~M22 l 22 ih!

5$J0~W,M !,gmnJ2~W,M !

1vmvnJ3~W,M !,~gmngab1perm.!J6~W,M !1•••%,

~A1!

with the small imaginary parth denoting the location of the
pole.

In the case of Compton scattering atO(p3) or O(e3), all
loop-integrals can be expressed in terms of the four functi
DM ,J0(W,M ),J2(W,M ),J6(W,M ), which are related via

J2~W,M !5
1

d21
@~M22W2!J0~W,M !2W DM#

J6~W,M !5
1

d11 F ~M22W2!J2~W,M !2
M2W

d
DM G ,

~A2!

with DM denoting the meson integral

DM5
1

i E ddl

~2p!d

1

M22 l 22 ih
, ~A3!

and J0(W,M ) being the basic meson-baryon integral wi
arbitrary energyW and mass variableM. Explicit represen-

-

3-23
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tations for these building blocks can be found in Appendix
of Ref. @16#.

Finally, we remind the reader that all propagator stru
tures encountered in the calculation can be reduced to
basic forms of Eq.~A1! by taking derivatives of the
J-functions with respect to the square of the mass:

Ji8~W,M !5
]

]~M2!
Ji~W,M !,

Ji9~W,M !5
]2

]~M2!2
Ji~W,M !. ~A4!

For a more detailed discussion we refer to Ref.@33#.
01401
-
he

APPENDIX B: Np LOOP AMPLITUDES IN VCS

Using the J-function formalism defined in Appendix A
one can get exact solutions for the nineNp-loop diagrams of
Fig. 3. By ẽm (qm) we denote the polarization-vector~four-
momentum! of the incoming virtual photon, and byem8 (qm8 )
the corresponding quantities in the outgoing real photon w
energyv8. In order to make contact with the VCS ampl
tudes defined in Eq.~47!, we use the Coulomb gauge

ẽm5S 0,eWT1
q2

v2eW•q̂q̂D. ~B1!

The amplitudes can then be cast in the form
Amp112
Np 5 i

gA
2

Fp
2

ū2~r 8!H 2
1

2
ẽ•e8@J0~v8,mp

2 !1J0~2v8,mp
2 !#1@S•e8,S• ẽ #@J0~v8,mp

2 !2J0~2v8,mp
2 !#J u1~r !

Amp316
Np 5 i

gA
2

Fp
2 E0

1

dxū2~r 8!$ẽ•e8@J28~v8x,mp
2 !1J28~2v8x,mp

2 !#22@S•e8,S• ẽ #@J28~v8x,mp
2 !

2J28~2v8x,mp
2 !#%u1~r !

Amp415
Np 5 i

gA
2

Fp
2 E0

1

dxū2~r 8!H ẽ•e8@J28~v8x,m̃2!1J28~2v8x,m̃2!#22@S•e8,S• ẽ #@J28~v8x,m̃2!2J28~2v8x,m̃2!#

2
1

2
x~122x!ẽ•q e8•q@J08~v8x,m̃2!1J08~2v8x,m̃2!#1x~122x!@S•e8,S•q# ẽ•q@J08~v8x,m̃2!

2J08~2v8x,m̃2!#J u1~r !

Amp718
Np 5 i

gA
2

Fp
2 E0

1

dxE
0

1

dy~12y!ū2~r 8!H ẽ•e8F22~d11!~J69~T,m̂2!1J69~2T,m̂2!!

12S T22S m̂22mp
2 1

q•q8

v8
TD D ~J29~T,m̂2!1J29~2T,m̂2!!G

1@~12d!e8•aẽ•b2e8•~c1d!ẽ•b22e8•aẽ•~c1d!#~J29~T,m̂2!1J29~2T,m̂2!!

1S T22S m̂22mp
2 1

q•q8

v8
TD D e8•aẽ•b~J09~T,m̂2!1J09~2T,m̂2!!12ẽ•b@S•e8,S•~q2q8!#~J29~T,m̂2!

2J29~2T,m̂2!!14e8•a@S• ẽ,S•~q2q8!#~J29~T,m̂2!2J29~2T,m̂2!!14ẽ•e8@S•c,S•d#~J29~T,m̂2!

2J29~2T,m̂2!!12e8•aẽ•b @S•c,S•d#~J09~T,m̂2!2J09~2T,m̂2!!J u1~r !

Amp9
Np5 i

gA
2

Fp
2

ū2~r 8!ẽ•e8u1~r !E
0

1

dx$~d21!J28~0,mf
2!1~mf

22mp
2 !J08~0,mf

2!%, ~B2!

with
3-24
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am52qm y

bm5qm8 ~2y12x22yx22!2qm~2y21!

cm5qm8 ~y1x2yx!2qmy

dm5qm8 ~y1x2yx21!2qm~y21!, ~B3!

and the energy and mass variablesT,m̂,m̃,mf as defined in Sec. V A 1.

APPENDIX C: Dp LOOP AMPLITUDES IN VCS

The 9pD continuum diagrams are shown in Fig. 4. We find

Amp112
Dp 5 i

8gpND
2

3Fp
2

ū2~r 8!H 2
1

2

d22
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APPENDIX D: p0-POLE CONTRIBUTIONS

In this section we explicitly give theO(p3)[O(e3) con-
tribution of p0-exchange in the t-channel—Fig. 2~f!—to the
generalized spin-polarizabilities of Eqs.~64!,~65!. In the
main part of this work we had included this particular effe
in the Born part of the structure amplitudesAi

Born(v8,u,q̄)
@cf. Eq. ~49!#. However, in the existing literature of VCS
many authors prefer to considerp0-exchange as a genuin
contribution to the spin-polarizabilities. For easier compa
son we list our results below and show the resulting GP
Fig. 12:
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APPENDIX E: A USEFUL IDENTITY

It should be noted that, while making the transition fro
the chiral loop amplitudes in Appendices B and C to t
twelve VCS structure amplitudesAi , i 51 . . . 12 of Eq.~47!,
one also encounters the matrix element

eW8•q̂eW•q̂8sW •~ q̂83q̂!

52~eW83eW !•~ q̂83q̂!sW •~ q̂83q̂!, ~E1!
FIG. 12. O(p3) HBChPT/O(e3) SSEp0-pole contributions to the generalized spin polarizabilities.
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which has to be brought into a form which accompanies
of the twelve structure amplitudes. To achieve this we s
from the identity

aW •êxbW •êx1aW •êybW •êy1aW •êzbW •êz5aW •bW

and then construct the 3 orthonormal unit vectorsêa , a

5x,y,z from the direction vectorsq̂,q̂8 via

êx5
1

sinu
~ q̂83q̂!3q̂, êy5

1

sinu
~ q̂83q̂!, êz5q̂.

Identifying aW 5(eW83eW ) andbW 5sW one finds a relation for the
structure of interest, Eq.~E1!,

~eW83eW !•~ q̂83q̂!sW •~ q̂83q̂!

5sin2us•~eW83eW !2aW •cWbW •cW

2sin2u~eW83eW !•q̂sW •q̂,
l.

n

.

r-
x-

,

,

B

D

to
re

01401
e
rt
with cW5q̂ cosu2q̂8. Noting that

aW •cW bW •cW5sin2uaW •bW 1~aW 3cW !•~cW3bW !,

~eW83eW !•q̂sW •q̂52eW•q̂sW •~eW83q̂!1eW8•q̂sW •~eW3q̂!

1sW •~eW83eW !,

one obtains

~eW83eW !•~ q̂83q̂!sW •~ q̂83q̂!

5eW•q̂sW •~eW83q̂!2eW8•q̂sW •~eW3q̂!2cosueW•q̂sW •~eW8

3q̂8!2cosueW•q̂8sW •~eW83q̂!1eW•q̂8sW •~eW83q̂8!

1cosueW8•q̂sW •~eW3q̂8!2sin2usW •~eW83eW !. ~E2!
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