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Generalized polarizabilities of the nucleon in chiral effective theories
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Using the techniques of chiral effective field theories we evaluate the so called “generalized polarizabil-
ities,” which characterize the structure dependent components in virtual Compton scattering off the nucleon as
probed in the electron scattering reactieN—e’Nvy. Results are given for both spin-dependent and spin-
independent structure effects @(p®) in SU(2) heavy baryon chiral perturbation theory and@e®) in the
SU(2) “small scale expansion.”

PACS numbes): 12.39.Fe, 13.46:f, 13.88+¢, 14.20.Dh

[. INTRODUCTION For wavelengths large compared to the size of the system,
the effective Hamiltonian for the interaction of a system of
One of the primary goals of contemporary particle orchargee and massm with an electromagnetic field is, of
nuclear physics is to understand the structure of the nucleoourse, given by the simple form
Indeed this is being pursued at the very highest energy ma-
chines such as the DES&p collider HERA and SLAC, at
which one probes the quark or parton substructure, as well as
at lower energy accelerators such as Bates, ELSA and
MAMI, wherein one examines the low energy structure of 4 the compton scattering cross section has simply the fa-
the nucleon via electron scattering. In addition, studies in the,iiiar Thomson form
intermediate energy region are taking place at facilities such
as JEFLAB. In recent years another important low energy do a2/ w2
probe has beefreal) Compton scattering, by which one can —=( em) (—)
study the deformation of the nucleon under the influence of df)
gua5| static electric and/or magneUc_ﬂe[@. For examp_le, where a., is the fine structure constant angw’ are the
in the presence of an external electric fiéldhe quark dis- ._initial, final photon energies respectively. As the energy in-

:jrlbut:jonloftthe(?uclleon becortnes distorted, leading to an In'crease:s, however, so does the resolution and one must take
uced electric dipole momen into account also polarizability effects, whereby the effective
Hamiltonian becomes

p—eA)?
H(O)=%+e¢>, (5)

1
= §(1+co§6)}, (6)

5247TaE|§ (1)

in the_ dir_eption of _the app_lied fielq, W_he@ is the ele(_:tric Heor= H(O) 1 4W(QEE2+BM92)- )
polarizability. The interaction of this dipole moment with the 2
field leads to a corresponding interaction energy

The Compton scattering cross section from such a system

1 > ken, for simplici inlesss given then
U=—§47mEE2. ) (taken, for simplicity, to be spinlesss given then by
do  [aem\?[w'\?[1
- ; ; P, —=|—| | —| |5(1+cog0)
Similarly in the presence of an applied magnetizing fidld do m o]l |2
there will be an induced magnetic dipole moment
moe’ (1( + Bu)(1+ coso)?
- = - (a cos
p=4mpyH 3 aom | 20X Py
and an interaction ener 1
ay + 5 (ag—Bu)(1—c080)° | +---|. 8)
U= ~4mpyH? 4
=~ Z4mBuH" ) It is clear from Eq.(8) that from careful measurement of the
differential scattering cross section, extraction of these struc-
ture dependent polarizability terms is possible provided that
*Email address: th.nemmert@fz-juelich.de (i) the energy is large enough that these terms are significant
TEmail address: holstein@phast.umass.edu compared to the leading Thomson piece diid that the
*Email address: knoechle@kph.uni-mainz.de energy is not so large that higher order corrections become
$Email address: drechsel@kph.uni-mainz.de important. In this way the measurement of electric and mag-

0556-2821/2000/62)/01401328)/$15.00 62014013-1 ©2000 The American Physical Society



HEMMERT, HOLSTEIN, KNOCHLEIN, AND DRECHSEL PHYSICAL REVIEW D62 014013

netic polarizabilities for the proton has recently been accomand the measurement of these various “spin-
plished using photons in the energy range 50 Me&\w polarizabilities” y; via polarized Compton scattering pro-

<100 MeV, yielding[2]* vides a rather different probe for nucleon structure. Because
of the requirement for polarization not much is known at
aP=(12.1+0.8+0.5x10"* fm3 present about such spin-polarizabilities, although from dis-
persion relations the combination
Bhy=(2.170.8+0.5x10"* fm?. 9)
—1.34x10 4 fm* SAID [9],
Note that in practice one generally exploits the strictures of Yo=Yi— 1274~ ~0.80x10°* fm* Mainz [10]
causality and unitarity as manifested in the validity of the ' (14)
forward scattering dispersion relation, which yields the Bal-
din sum rule[6] has been evaluated and from a global analysis of unpolarized
Compton data, to which it contributes &(w»*), Tonnison
ap,n+ﬁp,n:ifwd_w P et al. [11] have determined the so-called backward spin-
EOPM 202 ) 0 T polarizability to be
_ [(13.69+0.14x10°% fm* proton, Vo= Y1t Yo+ 274= (2774235 2.5 x10°* fm?.
1 (14.40:0.66 10" * fm® neutron, (15

(10 Clearly such measurements represent an important goal for
. . . tthe future.
as a rather precise constraint because of the small uncertain Y At the same time it has come to be realized that a high
associated with the photoabsorption cross seaign resolution probe of nucleon structure is available, in prin-
From these results, which imply that the polarizabilities Ofciple, via the use ofvirtual Compton scatteringVCS)

the proton are nearly a factor of a thousand smaller than it§ herein virtual photons produced from scattered electrons

volume, we learn that the nucleon is a relatively rigid objecty e seattered off a nucleon into real final state photons, trans-
when compared to the hydrogen atom, for example, for

which the electric polarizability and volume are comparable.ferrlng a three-momenturg to the target. The outcome of

Additional probes of proton structure are possible if oneSUch measurements is, in principig-dependent values of

exploits its spirS. Thus, for example, the presence of a timef[he polarizabilitiedusually termed “generalized polarizabil-

varying electric field in the plane of a rotating system of ities” (GPs] which can be thought of as the Fourier trans-

charges will lead to a charge separation with induced eIectriI:Orms of I_ocal polarization c_jensmes in the nucleon. At the
dipole moment present time a VCS experiment has already taken place at

MAMI, and there exist approved experiments at Bates and

JE JEFLAB. Preliminary results have been reported from
p=—7,SX— (11)  MAMI and will be discussed in the conclusidd2]. It is
ot therefore appropriate to have a base of solid theoretical pre-
L ) dictions with which such data can be confronted. The here
and corresponding interaction energy presented approach, which utilizes the techniques of chiral
- o . effective theories in the heavy fermion formulation, has al-
Ui=—p-E=yE-SX(VXB), (12 ready yielded several resulf3,14. In the first chiral cal-

_ i . _ culation of generalized polarizabilities utilizing 8) heavy
where we have used the Maxwe!l equations in writing _tr_"sbaryon chiral perturbation theofHBChPT) [13], the lead-
form. This is a quantum mechanical analog of the fam|llaring momentum-dependent modification of ttgeneralizey
Faraday rotation(Note that the “extra” time or spatial de- L= = = = .

T i i , , Yy electric[ ag(q)] and magneti¢ 8y,(q)] polarizabilities was
rivative is required by time reversal invariance sirgés T analyzed. Later, in a short communicatiftd], numerical
odd) Similarly other possible structures &3] studies for the fulla-dependence of all 10 generalized
(Guichon polarizabilities were presented—again using the

Uz=7.B-VS-E framework of SWY2) HBChPT. In this work we present the
o . details behind the numerical study of REt4] and, for the
Us=y3E-VS-B first time in the field of VCS, are able to present simple

analytical expressions for all GPs in a momentum range from
Us=7y4B-SX(VXE), (13) 0<g?<0.5 Ge\? utilizing SU(2) HBChPT. These new ex-

pressions greatly facilitate the study of the influence of the
chiral “pion cloud” on the GPs and the comparison with

'Results for the neutron extracted frarPb scattering cross sec- modgl calculg_ﬂon_s. Furthermore, we also investigate the
tion measurements have been repof@dut have been questioned leading modifications of the GPsj-dependence due to

[4]. Extraction via studies using a deuterium target may be possibléd (1232 resonance contributions utilizing a different effec-
in the future[5]. tive chiral Lagrangian approach—the so called “small scale

1
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terized in terms ofj-dependent GPs, in analogy to the well-
known polarizability coefficients in real Compton scattering.
However, due to the specific kinematic approximation cho-
sen in[21] there does not exist a one-to-one correspondence
between the real Compton polarizabilities and the GPs of
Guichonet al. in VCS[21-23.

The advantage of VCS lies in the virtual nature of the
initial state photon and the associated possibility ofrate-
pendentvariation of photon energy and momentum, thus ren-
dering access to a much greater variety of structure informa-
tion than in the case of real Compton scattering. For
example, one can hope to identify individual signatures of
specific nucleon resonances which cannot be obtained in
other processdd 8. In this regard, it should be noted that a
great deal of theoretical work already exists, such as predic-
tions within a non-relativistic constituent quark mo¢21], a
one-loop calculation in the linear sigma mod2#], a Born
term model including nucleon resonance effdéts], a HB-

ChPT calculation of the Ieadirﬁ-dependence of the gener-
alized electric and magnetic polarizabil{t¥3], a calculation

of ag(g?) in the Skyrme moddl26] and the numerical study

of all 10 GPs again utilizing HBChP[I14]. For an overview

_ of the status at higher energies and in the deep inelastic re-
expansion” (SSB [15]. SSE results have already been re-gime we refer tq18.

ported for real Compton scatterif$6,17], and in the present The GPs of the nucleon have been defined by Guichon

work we generalize the analysis to the VCS case. et al.in terms of electromagnetic multipoles as functions of
In the next section we shall discuss the definition of the,

generalized polarizabilities, while in Sec. Il we present anthe initial photon momenturg [21]
introduction to the way in which our heavy baryon
calculations—valid to one loop—are carried out. In Sec. IV pe'L".rL)S(g2) = _
we show how to connect our predictions to the general for- o' q"
mulation of VCS and how to extract the desired generalized

FIG. 1. The process p—e'p’y.

H(P'L,”’L)S(w'aa)] '

w'=0

polarizabilities. In Sec. V, we present the results of our cal- A o 1 . .
culations. Finally, we summarize our findings in a conclud- Pl .LS(g?) = ﬁH(P"—'Y'—)S(w’,q) ,
ing Sec. VL. L@ q =0
(16)
Il. GENERALIZED POLARIZABILITIES whereL (L') denotes the initialfinal) photon angular mo-

o . mentum,p (p') the type of multipole transition0=C (sca-

Recently a new frontier in Compton scattering has beeny, Coulomb, 1=M (magneti¢, 2=E (electrig], andS dis-

opened(see, e.9.;18]) and is now in the begin_ning of being tinguishes between non-spin-flips€0) and spin-flip 6
exgl{c:)r/ed: (;Peliigtul(;%nogréger} tg'ig‘gig ii?:::ﬁgt?c?n %?r?g:; =1) transitions. In addition, mixed-type polarizabilities,

— v (cf. Fig. T B'LL)Sq2 i i i
ing the virtual Compton scatteridg(VCS) processy* N Purel I(qt)', have belenclnt:odubCfd, Wnlgh'are tnel';hter
purely electric nor purely Coulomb type. It is important to

—9N. As will be discussed below, in addition to the two R . :
. . s . note that the above definitions are based on the kinematical
kinematical variables of real Compton scattering—the scat-

tering angled and the energys’ of the outgoing photon— approximation that the multipoles are expanded arownd

the invariant structure functions for V420,21 depend on =0 andonly terms linear inw’ are retained which, together
athird kinematical variable, e.g. the magnitude of the three-W'th current conservation, yields selection rules for the pos-

momentum transfer to the nucleon in the center of mas§ible cc_)mbi.nations of quantum ”“.mbefs of th.e GPs. In this
. — a3 approximation, 10 GPs have been introducefRit as func-
frame of the outgoing photon-nucleon systeqss|q.* As tions of g2 PO1010 p(1111)0 p(OLOL p(I11N1 p(0L12)1
shown in Ref[21], the VCS amplitude can then be charac—P(llvoz)l U100 BOLDO BOLDL BLL
However, recently it has been provd@2,23, using
crossing symmetry and charge conjugation invariance, that

2Chiral analyses of double virtual Compton scatteringp only six of the above ten GPs are independent. With
—y*p in the forward direction and its connection with the spin

structure of the nucleon have recently been publigié&d -
%The precise definitions of kinematic quantities in this frame are wo=Mpy— /M’%‘_i_azz _ q +O(1M ,?\>‘) (17)
given in Eq.(45). 2My
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andMy being the nucleon mass, the four constraints implied e 3 .
by C invariance and crossing can be written as y3=—-— —POL12Yq_.0)

Am 2
3 — 3 —
0= \/; P(Ol,Ol)O(q2)+ \[gp(ll,ll)o(qZ) e2 3\/§

Vot va=— g S PP a-0). (20

4w 2.2

These model-independent relations might provide an inter-
esting possibility to determine some of the elusfRagusa
spin-polarizabilities by the upcoming experiments.

3¢2. _
+ 2_(UOP(Ol,l)O( q2) '

_ 3 _
0= P(11,11)1(q2)+ \[Ewop(n,oz)l(qz)

Ill. THE CHIRAL FRAMEWORK

N \[gazls(ll’z)l(az), A. Pion-nucleon ChPT
We want to perform the VCS calculation 0(p®) in

heavy baryon chiral perturbation thediiBChPT) (e.g. see
[27]). We therefore need the Lagrangians

2
0= 2(1)0P(Ol'01)](a2) + 2q_ P(ll,ll)l(EZ)

o

~ PO + BTG,

=P+ (21)

We begin our discussion in the nucleon sector. For VCS

P to O(p®) we need the Lagrangians

_ a1 p(01,01)1 52y _ (11,001 2
0=3 - PO g?) — 3P g?) LO= LW L@ ) o)
_ \[5352p(11,02)1(az). 19) with

LB=N,(iv-D+gaS-u)N,,
In the scalar(i.e. spin-independentsector the first of Egs.

(18) allows us to eliminate the mixed polarizabili§(°*1° r@— = Nlw.D 2_D2_i_ S S (14 k)
in favor of P(01010gnd P10 which are simply generali- ™ 2Mg Y (v-D) R[5St w)T,
zations of the familiar electric and magnetic polarizabilities
in real Compton scattering +2(1+ kv O]+ N

)t [N,

_ e /3 —
ag(q?)=— pp EP(Ol’Ol)O(qz), s —1— :
LR= 8M2Nv{(1+ 21,)[S,,S, 140 D"
0

2
- e 3 — . .
,BM(qz)=—E\/%P(”'n)°(q2). (19 +2(ks—k,)[S,,S,v{gv,D"+H.ect - IN,,
(23
In the limit 0 they reduce to the real Compton polariz- . .
bilities o = ; Ey 9 pton p where we have only kept those tefinshich contribute to
a IIglfﬁeagéinﬁhéeopen%.e(nt).sector it is reopriori clear which our VCS calculation. Furthermore, all terms which vanish in
) the “Coulomb gauge’v-A=0, with v, being the velocity
01,01)1 p(11,11)1 p(01,12)1 p(11,02)1 M
three of ﬂje seven G » P . _P P ’ vector p2=1) of the nucleon andh, denoting a photon
p(1.001 pOLL B(L2Ishoyld be eliminated by use of Eq.
(18). However, the chiral analysis performed here shows that———
to leading order only 4 of the 7 spin GPs can be calculated— o )
“We note that to the order we are working in the VCS calculation

plOt121 P(ll'?z)l’ P(llioo)1'1P1(011'1)l'11N1;°‘t1urAalPl/2V\1’e focus on e hycleon mass parametir, can be replaced by the physical
these four spin GPs, 0101, pilint plii POSSESS an  pycleon mas#ly, the axial-vector coupling in the chiral limg,
extra suppression factor of NIjy (see Sec. VABwhich  can pe replaced with the physical axial-vector coupling constant
pushes them outside the validitiy of our analysis. Still, oneg,=1.267 and the isoscaldisovectol anomalous magnetic mo-
can reconstruct the whole set of spin GPs via@®) if one  ment of the nucleon in the chiral limit, [ «,] can be replaced with
wishes to do so. Finally, we note that in the spin-sector ongne physical isoscaldisovectol anomalous magnetic momeny

can also establish gpartia) connection between the GPs = kp+ kn=—0.120Nm [k, = k,— k,=3.71nn1. Details of the
defined in the context of VCS by Guichet al.[21] and the  renormalization of these parameters in the chiral Lagrangian by
4 real Compton spin-polarizabilitieg;, i=1—-4 of Ragusa loop effects and higher order counter terms can be found in Ref.
[7] given in Egs.(12) and (13): [28], both for HBChPT and SSE.
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) ()
N N A N

field, have been omitted. The velocity-dependent nucleon a

field N, is projected from the relativistic nucleon Dirac field

(
i
Ty via \
N,=exdiMq -x]P ¥, (24)
N

where the velocity projection operator is given by

L (b) (e)
PJ=§(1+115). (25) ' 7}{{\7 7><7
S, denotes the usual Pauli-Lubanski vecterg.[27]) and é »
D,, corresponds to the covariant derivative of the nucleon N N N A N
D,N,=[,+T,—iv{IN,. (26) ) )
7 gl 7 ¥
One also encounters the following chiral tensors in the VCS v
calculation: RLI
N N ¢ N

U=u?=expir 7/F ) i

1 3 FIG. 2. Born diagrams for VCS in the “small scale expansion.”
r

— .t e
F“_Z[ (aM |e2AM u+u

3
r
9, e—AM)uT], o _ .
2 one needs for th&(p*~) pion-pole diagram of VCS shown in
5 5 Fig. 2(f). In the Lagrangians of E430) one also encounters
s _— LT + the chiral tensors
u,=iju &M—leEAM u—u &M—IGEAM u'.
2 . e
@ V,U=3,U~i5A,[7:,U],
In Eq. (27) 7 are the conventional Pauli isospin matrices,
while 7 represents the interpolating pion field. Furthermore, X=2BM, (32)

v¥=e3 A, denotes an isoscalar photon field and the corre

2 ) s whereM denotes the S(2) quark mass matrix in the isospin
sponding field strength tensors in E§3) are defined as

limit m,=my.
WO =g O _ 5 O Finally, we emphasize that we do not require any addi-
pyo TRTY v tional diagrams compared to th@(p®) calculation for real
2 Compton scatterin§31]. The complete set of non-zero dia-
f“"=ue—=(d,A,—d,A)u’ grams we have to calculate is given in Fig[(2) s-channel,
2 \Tuy v .
(b) u-channel,(c) contact diagram andf) t-channel pole

3 term] and Fig. 3 N7-loop diagrams In the following we
+uf eE(aMAV— d,AL)U. (28 will treat the tree and loop parts of the amplitudes separately,

: o . Aj=Aleet ploop 32
From the pion sector we require information up®p*) o ! (32

for a.O(p3) VCS calculation. Utilizing “standard ChPT"  gjnce the generalized polarizabilities are contained only in
[29] (i.e. the assumption of a “large” quark condensate pa-tne |atter.

rameterB) one finds
L@= @4 @) (29) B. A(1232 and the small scale expansion
In standard S(2) HBChPT, nucleon resonances like the

with A (1232 are considered to be much heavier than the nucleon
2 and therefore only contribute via local counterterms. This
557271: %tr[(VMU)TV“UvLXTU +yUt], approach is particularly well-suited for near-threshold pro-

cessege.g. the multipoleEy, in threshold pion photopro-
duction where the resonance contributions are small and
their contribution to counterterms can be estimated by a
simple Born diagram analysis. However, if one wants to
move away from threshold, nucleon resonances, in particular
whereego3=1 and again we have omitted all terms not re-the lowest lying SU2) resonance\ (1232, contribute as dy-
quired for the VCS calculation. Note that the only piecenamical degrees of freedom and the theoretical treatment in
shown from the chiral®(p*) meson Lagrangian is the so terms of local counterterms generates a slowly converging
called “anomalous” or “Wess-Zumino” tern{30], which  perturbative series. In this kinematical regime it is therefore

4) _ va 0
5;;_——2—3277 Foeﬂ PR F apmt -, (30
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(a) (b) small momentay and the pion masm_., also includes the
v A(1232)N(940) mass splittinfgA=M,—My. Of course,
this modification of the chiral counting implies that one has
to repeat the whole procedure of construction of the La-
N grangian and the determination of counterterms and coupling
constants, even for processes which only involve nucleons in
the initial and final states. For first results regarding the
modified renormalization of nucleon parameters we refer to
[28].

For our calculation below, whickas far as the GPs are
concernell is done only to leading order&(e®)—in the
small scale expansion of th@eneralizedl polarizabilities,

i we shall require only the propagator involving th¢1232)
as well as the couplingdiNy, NNyy, NA7 and NAvy.
Details of the “small scale expansion” formalism are given

N in Ref.[32]. Here we only list the minimal structures neces-
sary for the present calculation. The systematic 1/M expan-
5 sion of the coupledNA-system starts with the most general

relativistic chiral invariant Lagrangian involving spin 1/2
(#n) and spin 3/2 (b'M) baryon fields’ The “light” spin 3/2

N N - N N ' N i N field T'M in the effective low-energy theory is projected from
G) its relativistic Rarita-Schwinger counterpaﬁt via

v ¥ ) , ]
‘ TL(0)=P; P, ¢ (X)expiM gu - X), (33

= where we have introduced a spin 3/2 projection operator for
fields with fixed velocityv ,

FIG. 3. O(p®) N#-loop diagrams for VCS. " 1

P(33)p,1/:g,u.v_§7M7v_§('b‘y,uvv+v,u’)/y¢)- (34)

advantageous to formulate an effective field theory which

keeps the resonance as an explicit degree of freedom. Iphe remaining components,

addition to this dynamical consideration there is also another

p_ractlcal concern regardmg the inclusion of resonance effects Glu(x) =(0,— pv+ P(3é23)w) Pr(x)expiMqu-x), (35

via counterterms. Even if simple Born exchange might be the

dominant contribution of a particular resonance, the locatan be shown to be “heavy[32] and are integrated out.

counterterm in the chiral Lagrangian that subsumes this efResulting from this procedure one finds tmen-relativistio

fect might be of higher order in the calculation, so that thechiral Lagrangians of the “small scale expansio(8SB:
leading and even the subleading result can misrepresent the

perturbative series. A well-known example of this type are L£SSE= £RSE L35B+ (L5SFHH.c). (36)
the so-called spin-polarizabilities of the nucleon, wherein
one encounters very large contributions dué @232 Born T4 the order we are working he&ﬁSEagrees with the chiral

graphs that only start contributing via counterterm&ép®) Lagrangianz (&’ [Eq. (22)] needed for VCS. From the chiral

n th_e chi‘r‘al calculatliorg,e.g. [17)). Situation; of this type . SSE Lagrangians explicitly involving thk field we need the
require a “resummation” of the standard chiral expansion 'nstructure{32]

order to push resonance effects into lower orders to restore
meaningful perturbative expansions for quantities of interest
in low energy baryon physics.

In order to address these two different but related issues in .
the field of resonance physics in baryon CHPT, the so called L‘,ﬁg:ngAT{‘w‘MNJr H.c.
“small scale expansion” of S(2) baryon ChPT has recently
been formulated15,32. In this chiral effective theory one ib, '
treats the nucleon and the first nucleon resonance— L@ =T~ v St
A(1232—as explicit degrees of freedom, and, to address the 0
second problem, the chiral power counting is modified to
bring A (1232 related effects into lower orders of the calcu-
lation. In the “small scale expansion” one organizes the 5n order to take into account the isospin 3/2 property of the
Lagrangian and the calculation in powers of the scadg’”  A(1232) we supply the Rarita-Schwinger spinor with an additional
which, in addition to the chiral expansion parameters ofisospin index, subject to the subsidiary conditian wiﬂ(x):o.

L£{=-Tkg, [iv-DI-AgsT+ ... T/

N+H.c., (37)
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where Ag=M,—M, can be identified with thephysical (a) (b)
delta-nucleon mass difference to the order we are working
i.e. Mg=My. The corresponding chiral tensors needed for
VCS read

Dy=d,0"—i5(1+m9)A,d" +eedA, + -

W L i B ey
wo F, u™ F, pw€ T

i
f+uv

=ed83(9,A,—d,A)+ . (38

The coupling constants defined in E®7) are determined
from fits to the strong and electromagnetic decay widths of
the Delta resonance within the “small scale expansion.” To
the order we are working one requitd47,33 gy, =1.05
+0.02 andb,;=3.85+0.15.

The leading propagator for A(1232) field with small
momentumk,, is then given by

S3/2 _ipilf ij
W o K= A+ o 39 RN

where P32 is the spini heavy baryon projector in

d-dimensiong32] e
4 FIG. 4. O(€®) Am-loop diagrams for VCS.
P =000, g7 SuS, (40)

and v*(€,0") +N(pf)— y(e"*#,q"*)+N(pf). (42

1 Here the nucleon four-momenta in the initial and final states
Elg=01- §ri 7l (41)  are denoted byp*=(E;,p;) andp*=(E;,p;) respectively.
The virtual initial[real final] state photon is characterized by

is the corresponding isospin projector. The vertices relevarits four-momentung”=(w.q), q2<0e[Q"‘=(w”q:), q'?

for our calculation can be read off directly from E§7). As  =0] and polarization vectoe*= (eq,€) [€'*= (€, € ')].

in the nucleon case, the resulting diagrams can be separated Since our discussion refers to an electron scattering ex-
into two classes—one-loop graphs and Born graphs. The sygeriment, wherein the virtual photon is exchanged between
tematics of the “small scale expansion” uniquely fixes thethe electron and hadron currents, the polarization vector of
number and type of diagrams for VCS to be calculated tahe incoming photon is given by

O(€%). It turns out that to the order we are working there are

two Born diagrams involving thé (1232) [Fig. 2(d,e] and o 1

nine A 7-loop diagramgFig. 4), which turn out to have ex- €,=€Uer(Kp) ¥ Ue(ka)—, (43
actly the same structure as their chiakr analoguescf. Fig. q

3). However, before undertaking any such calculation, it is

necessary to work out the formalism for VCS. whereug(k;),ue (k,) are electron Dirac spinors with four-
momentaky (k5) before(after) emission of the virtual pho-
IV. VIRTUAL COMPTON SCATTERING ton. The unit charge is taken ase= \47/137>0.

In addition to the proper VCS process displayed in Fig.
5(a) there are also Bethe-Heitler processes taking plBie
We begin by specifying our notation for the virtual 5(b),(c),
Compton process

A. General structure

MeNHe’Ny:MVCS—’—MBetheHemern (44)

®Note that these values are determined from the width expressior@nd such Bethe-Heitler contributions must be carefully
within the “small scale expansion” and therefore differ from those evaluated before one can infer any information about the
obtained in a relativistic analysis, e.g. see R&6]. VCS matrix element from the electron scattering cross
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FIG. 5. Genuine diagrams for the proper VCS prod@ssand for the associated Bethe-Heitler correctidns(c).

section’ In the following, however, we will focus on the \here thez-axis is defined by the three-momentum vedjor

evaluation of the VCS matrix elementt VS [Fig. 5@)]. For  of the incoming virtual photon. Utilizing the Lorentz gauye,
details onM BetheHeitler gang the calculation of the cross

section we refer t¢12] and references therein.
From now on we will work in the center of mass system

ela|

of the final state photon-nucleon subsystem, €-q=0, €=— €, (46)
|5f=—('i’, 5i=—ﬁ=—q e,
_ with €= er+ €,€,, one can express the VCS matrix element
o+ M+ 0?= 0+ VM{+d?, (45 in terms of twelvé independent kinematic forms

MVCS=i e €'* . erAr+ e -Qer-Q'Aytic-(€* Xep)As+ia-(q' Xq)e'™ - erA,

tio-(€*Xq)er-q' Ast+io-(e*XqQ' )er-q' Ag—ia-(e1Xq ) e * - qA;—io-(erXq) e * - qAg
2

+q—zez[é'*-aA9+i5-<a'xa>é'*~&Alo+i5-<é'*><a>A11+i&-<2'*xa'>A1ﬂ : (47)
w

where o, i=x,y,z are Pauli spin matrices. Utilizing Ed45), each amplituded;, i=1,12 is then a function of three
independent kinematic quantitiess—~q and 6.

B. Separation of Born and structure part
The twelve VCS amplitudeAi(w’,e,E) can be decomposed into(aucleon Born partAiBor”(w’,a,E) and a structure
dependent pai(w',6,q),
Ao’ ,0,0)=AP"(w',0,q)+A(w’,0,q). (48)

To third order in both the chiral and small scale expansions, the Born part contains the nucleon pole diaigraédfessb |, the
Thomson seagull graplFig. 2(c)] and the(anomalous pion-pole grapHFig.2(f)]. In the case of a proton target one finds

— 1
AT D(w',0,0)= = =+ OWIMT ATMy)

A" (o', 0,5):% +O(UMR , ASMy))
N

"In fact, the primary source of information about the structure of the nucleon in the prebese’Ny comes from the interference
betweenM VCS and M BetheHeitIer_

80ur calculations are actually performed in the Coulomb gauge, see the discussion in Appendix B.
91t is helpful to employ the identity given in Appendix E when reducing Pauli structures to the 12 structure amplitudes employed here.
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. (1+2kp e’ —(1+kp%c0s8 @  ga  o'(0'2+9*—20'qcos)

Agorn (3)((1)’,0,

~

oM2, 87°F2 ml+w'?+ 02— 2w’ qcosd

+O(MY,AMY))

_ q(1+x,)?
Agorn (3)((0/'0' ):_M‘FO(U(MEI’A?(MN))
N
_ a(l‘FK )2 da w'za
Agorn (3)((0/'0' )= P > — — +O(1/(M§,A)2(MN))
2M3 8mFL mi+w'?+0?— 20’ qcosd
© (1+Kp)  Oa '’

Agorn (3)(w/’0'a):_ +O(l/(M§,A)2(M N))

2 * 2p2 2 2,2
2M§, 87 FL m2+w'?+9°— 2w’ qcosh

_ a(l‘f'K )2 g w'?q
ABOM )7 9q) = P 2’*2 — ———— + O(L(MF ,A2M )
2M?2 8mF, mi+w'?+0?— 20’ qcosl
14k, g2 ¢ »'g?
ABO () g q) = — P2l ——— + O(L(M ,AZM )

2MZ o' 87FZ mZ+ w2+ g%~ 20 qcosd

_ 1 2 w'gcosf+q?
ABorn (3) w,0,)=——+———+ 0 M3 .AZM )
9 ( q My ZMﬁw’ (M A

Born (3) P w’za
Alo ((U,,e, ):_

+OU(MY,ASMy))

22 —3
8mF, m2+w'?+g°— 2w’ qcosd

_ (1+2kp) e U o' %' —qcosh)
A" O’ 0,0)= S T T, . = TOWME AMY)
2M{ 87F, m2+w'?+q°— 2w’ qcosd
_ (1+kpw'cosd  ga w'%(q— ' cosh)
AR B, 6,q)=— 5 — a7 = ——— + O(LUMR, AZMY)),
2My 8m°F m2+w'?+q°—2w’'qcosd

(49

where A,=4xF . denotes the scale of chiral symmetry tional contributions are contained in the structure-dependent

breaking[34]. One can easily verify that the low energy parts E(w’,e,a) of the amplitudes, from which one can
forms of these structure functions are in agreement with thextract the(generalizedl polarizabilities.
constraints implied by the Low theorem in the case of real

Compton scatteringl35]—qg=0—and with the generalized
low energy theorem in the case of V@31,36. From the
above expressions it can also be seen that the pion-pole In this section we present the formulas by which the GPs
contributions—Fig. &)—which scale linearly withg,, af- are related to the twelve structure-dependent amplitudes
fect only the spin-dependent structure amplitudes, as eXT\i(w',&,a), i=1...12to O(p3) in HBChPT and taO(e%)
pected from the pion-nucleon coupling structure. All addi-in SSE First, we focus on the spin-independent GPs.

C. Connection with the GPs
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To leading order in both the_chﬂalind_small scale expan-
sions the spin-independent GRs(q), Bu(q) can be found

from the structure functiongg(w’,8,q), As(w',60,q) via
[13]

eZ 2
@)= g —AP 00)|
e 1 4
B == 74— E;K%S)(w',a,q) . (50
@ w'=0

Note that the structure amplitudes in general have a depen-

PHYSICAL REVIEW D62 014013

B 0= - AP0, 0
(01,109 32| d0'? 0,

2 9 _
q (9(1) w!70

2
(.L)O 0” , —_
—[AR(w',6,0)

P{&).ond) :3_5 P

—AB(0',6,0) ] -0

. — o J —
dencg on trf scatt_erlng anghe whereas the GPs are only P%ii i )=:0 2_&3)@,,0,(})
functions ofg. The independence of the GPs énherefore ’ 30%| dw’ L
serves as a non-trivial check on the calculation. “
Likewise, the four independent spin-dependent GPs can wé 52

be found from the relation37]

n — V2 1
p() ———— = —[2A%(w’, 6,
(o1,01(a) 33 ¢ -[2A57(0',60,0)

— 21 9
P2(3)%,12)1(002— 3= —Kg)(w’,ﬁ,q)
Jw o0
_ J2 1 2
P& =——= = AB(w',0,
(11,02)1(Q) 3\/§ q PRT: 10/( q) .
= 2
p@) P A(w' 0
(11,0019) 7 90 17(0',6,q)
2 e
3 AlY(w',6,0) (51

w'=0

We note that these relations are only exact to third order i
the chiral and in the small scale expansion. The analysis o
Ref. [37] must be generalized before one can perform an);

- ? awrz[x(é)(w’,ﬂ,a)

—KS%)(w’,BE)]wf—o}

with wg=My— \/M§+ g°. Note that the spin-dependent GPs
are just functions of the three-momentum transfewhereas
their generating structure amplitudes in E¢s1),(52) also
depend on the scattering angle—leading again to a non-
trivial check on the calculation as in the case of the spin-
ri]ndependent GPs.

f With these definitions of the GPs we now turn to the
esults of the chiral and small scale expansions.

fourth order calculations. Thus, to the order we are working,

the remaining three ~ spin-dependent (%PBES}MM,
P31 111, PE) )1 and the additional scalar GP(S) ), can

only be reconstructéd with the help of the charge-

conjugation constraint of Eq$18), yielding

The origin of this impediment lies in the fact that the quantity
wo=My— \/M§,+EZ strictly speaking is suppressed by a factor of

V. RESULTS

In this section we present the results for the generalized
polarizabilities calculated inwo different chiral effective
theories—O(p®) HBChPT and®(e®) SSE.

A. O(p® heavy baryon ChPT

1. Structure amplitudes

1/My in both the chiral and small scale expansions. Full sensitivity '
to w, dependent quantities can therefore only be achieved in The only diagrams left a®(p3) for the structure depen-

O(p*), respectivelyO(e*) calculations.

dent part are the niné&ls-continuum diagramgFig. 3,
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which correspond to the pion-cloud of the nucleon in thethe 12 VCS structure amplitudes defined in Ety), with all
formalism of baryon chiral perturbation theory. All other dia- our results given in the CMS of the final state photon-
grams have already been accounted for in the Born part afucleon subsystem. From Appendix B one can read off the
Sec. IV B. We can now calculate ti(p®) contributions to  spin-independent structure amplitudes@p?), yielding

2 2
1 1 m: —4m;
f dxf dy[ —+2\/mi—w’2—2\/mi—w’2x2
0

KSS)(w,,G,E): -

167F2J0 Jm?

2 22 AN
. ’—ﬁz—w’2x2+2(1—y)K T+(6m*—m2—6T?)w ]
Y - T2

m2—

AP(w',0,9)=+

Oa (1 (1 do'(1-y)
fdxf dy———1 —1+x—8xy+7(y—y?+xy?)
wF2Jo 0

,/r'hZ_TZ

(mi—ﬁnzﬂz)w’—KzT]

+(1-x)y(1-
(1=x)y(1=y) o (1)

AP(w',6,0)=AP(w’,6,q)+costAP(w',6,q) +

2

g 11
Afdxfdyq2
167F2Jo  Jo

X(1—2X) (M2—m?+T?) ' —K?T (1-y)(1—9y+14y?)
————(1=2y)y(1~y) > s - , (33
'r-nz_wrz w (m _T) m2_T2

with the “energy” and “mass” variables
T=w'x(1-y)
K2=w'2—w’qcosh
m?=m?%—qg?x(1—x)
mP=m’—g?y(1-y)+24-9'(1-x)y(1-y)
mi=mZ—(q—a")*(1-x). (54)

The spin-dependent structure amplitudeXg?) in the chiral expansion can also be found from the expressions in
Appendix B

!

w X

w/
AP(w’,0,q)= - zf dxf dy| —Vmi—o’ arcsw{
m7T

w'X
+Vm2— o' 2x%arcsin —
m

w

+\Vm2— w’zxzarcsw{

|

m

_ — R T
qzw’2< TVmM2—T2+ mzarcsir[ —

m 2 3 m
+ w’xlog _,, +sirf(1—x)x(1—y)°y T2y
—3) _ 1 1 a T T
A (w',6,0)= dx | dy(l—y)——=———arcsin —
4 A472E2Jo 0 Vm2—T2 m
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5 g w'arcsin—
_ Oa 1 1 m
AP (w’,0,0)= fdxf dy | (x=1)(1-y)*———=—==—+coso(1-x)x(1-y)%
47,-2|:;2T 0 0 V2= T2
_ = R T
q°w’?| TVm?—T2+m2arcsin —
m
X

r’.\nZ( r'hZ _ T2)3/2

-
. w'?arcsin —
A 0,3 = — 2 Jld fld (1-x)(1-y)? T (1-xx(1-y)?
o', 0,q)= X —X)(1-y)2———— — (1—Xx)x(1—
6 q 4772F3T 0 0 y y \/ﬂ y y
_ — R T
qzw’z(T\/mz—Ter mzarcsi{T )
m
X

r'hZ( rAnZ _ T2) 312

T

,[r:hZ_TZ
_ — R T
g°w'?| TVm?—T?+m?arcsin —

X
-

m
o _ — R T
qzarcsi{rl qzw’z( TVM?—T2+ mzarcsir{r

w'garcsi

3

2
— da 1 1
Ao’ ,0,0)= fodxfody y(y—1)

+cosf(1—x)x(1—y)3y
4m?F2

r'hZ( r':nZ _ T2)3/2

9a

1 1 m m
AL ',0,_= J dXJ d 1-y) —————(1—x)x(1—y)®

ﬁ]Z(ﬁ,]Z_TZ)S/Z
_ _ _ ga (1 1
A0’ 0,0) = AP, 08)+ AP ' 0.0+ o [ “ax| ay(1-y)x(2y-1)y
8m2F2Jo  Jo
T )

QPo’| TVM2 -T2+ &zarcsir{r
m

X

r’hZ( ﬁ,]2_ T2)3/2

w'X
5 arcsin —
_ _ _ Ja 1 1 _
ﬂfﬁ(m',e,q>=A3<w’,e,q>+A5<w',e,q>+Tf dxf dy | x(1-2x)¢?
8mFJo 0 2= o' 2x2
T ~ . T
arcsir[ 7] TVM?—T2+ mzarcsir{ —
m

_ m _
+(1-y)(1-2y)g*————= —x(1-X)y(1-y)’q*w’
,/r'hZ_TZ

r’hZ( r’hZ_ T2)3/2
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T
' qarcsi
m

dy (1=-y)(2y-1)—F——

ﬁr’hZ_TZ
_ — R T
qzw’2<T\/m2—T2+ mzarcsir[r )

m
Equations(53),(55) constitute thefull O(p®) HBChPT results for the structure part in virtual Compton scattering off the
nucleon. As such, they are independent of the particular formalism of Guichon and could also be used to extract alternative

descriptions of generalized polarizabilities, e.g. see the recent paper by Urdnagif38].

dx

AR(w’,0,q)=coss AP(w’,6,q)+

(59

_ —_v)3
+2c0sH(1—x)x(1—y)%y R (2 —T2)32

2. Spin-independent polarizabilities

From theO(p®) HBChPT results for the 12 structure amplitudes given in the previous section one can now extract the GPs
as defined by Guichon, following the general formulas given in E§8—(52). In this subsection we first focus on the
spin-independent GPe:(q), Bu(q).

The Ieadinga-dependent modification Q?E(a), EM(E) has already been analyzed in Ref3] and one finds

. sefgy [ 7 9
@) = %A A P A 6
D Sgan2r2m, |1 50m2 " 280057 )

— €% [ 19 399
28y~ 9A I 6

First, we note that in the limig— 0 one recovers the well-known real Compton resultgZt 0 [31]:

_ e?04
;(E3):;(E3)(q=0)=m=12.5>< 10* fm?
e’ga
BO—BE(q=0)=—— A _125¢1074 fm?, (57)
A =Bu(a=0) 7687°F2m,

which work extremely well when compared with the existing experimental information given i(OEq.

As already pointed out in Ref13], the slope ofaE(q) BM(q) with respect toq shows theopposite sigrfor the two
spin-independent polarizabilities. These respective slopes are uniquely determined by the chiral structure of the nucleon, i.e.
the “pion-cloud,” as given by therN-loop diagrams of Fig(3). At O(p®) ChPT therefore leads to the remarkable prediction
that the(generalizegl magnetic poIarizabiIit)EM (a) riseswith increasing three-momentum transfer in a small window near
q=0. The subleading, i.€)(p*), correction to this result is not known at this point, but in Sec. V B we discuss the leading

modification of the slopes due to tidg1232) resonance.
Starting from the expression for the individual Feynman diagrams given in Appendix BrNhpop contributions to

ae(q), Bm(q) can be shown to possess analytic expressions forqhé@pendence TO(p®) we find the remarkably simple
closed form expressions
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2
q q
44+2——|8-2—— — :arctanz—
—3) ezgimw m727 ( mi’ m q m”
ag () =——— = )
64mF 2l a4 o}
q m
2 ~4 o
q q q
ezgzm —(4+ 2—2) +(8+6m—+ F ?arctarm
B =——— z T . (58)
M 1280%F2 , 2
q 4+—2

These HBChPT predictions farg(q), By(q) are also shown in Fig. 6. One observes a relatively sharp fall-off in the electric

GP, whereas the magnetic GP showsrieimg behavior for low values oa as described above. This remarkable effect has its
origin in the chiral structure of the pion cloud surrounding the nucleon and poses a formidable challenge to form-factor-

be

Bn(q=2.38m,)=1.29% B(0),

supplemented Born-models of the Gesy. sed25]). From Eq.(58) the maximum of the magnetic GP can be determined to

(59

indicating a 30% enhancement of this GP relative to its value at the real photon point. Usi@gnveriance relations Eqs.

(18), we can also read off the remaining spin-independent GP

2 "2

q4

q g _q*|\m, q
5 4+2—+| —8+10— +3— :arctanz—
IS(Olyl)O(_)__ gam; ﬂ m7T m’JT m7T q m;
q 167TF37 E‘ -
4+ —
m
1193 6 o’ q
A N ) + 6
5767F2Mym, | - 55mz ' 560t O\ ) (60
|
Once more we note tha®(©>Y9q) is not an independent _ V292 ¢  3q9° _
- inationad? () Pl 1) = 1-—+ +0(q°)
GP, but can be found as a linear combmatlon% (q), (01,12)1 28872F2m2 5m2  70m®
E(,\ff’)(q) via the charge-conjugation constraint E§8). The T " "
extra suppression by Wy compared to Eq(56) arises from
the expansion of the, factor defined in Eq(17). \/fgz ) 3%
Having discussed the scalépin-independeitstructure P§2102)1@= A _ + q
of the nucleon, we now move on to the spin-dependent 144\372F2m?2 5m2  70m?
analysis.
+0(q°)
3. Spin-dependent generalized polarizabilities
Following the identification of the GPs from the 12 struc-
ture amplitudes via Eqg51),(52) we can also analyze the 542 az 754
behavior of the spin-dependent GPs ngar0. For the four  P() o (q)=— ———>—| 0+— — —+O(aﬁ)1
independent spin GPs we find 144\37%F2 mZ 50m;
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\/_gA

)_—
11 2)1(q 2880\/_772F2

q2
0+(1+5u%)—
m

m

aP@) 107’

(62)

2 15 p*\ gt
I 2 L 6

with w=m_/My. As in the case oP°DY(q) of Eq. (60),

one can clearly see that these three GPs are formally sup-
pressed by an additional factor ofM{ relative to the four
independent spin GPs of E¢1) and therefore ordinarily
would not be accessible in@(p®) calculation. It is only the

=2 2
R 73 03 o5 7 [GeV7] charge-conjugation constraint that allows us to extract them
. from theKw) VCS amplitudes. It is also interesting to note
7 (@%)  [1074fm’] that four of the generalized spin-polarizabilitiesnishin the

reaI Compton I|m|t—q—>0 In the case ofP(11 00)1(Q)
. (01 01)1(q) P(11,11)1(Q) this follows from charge conjuga-

15 tion invariance and crossing symmetry, as pointed out by

/\ Drechselet al. [23]. On the other hand, foP|;%,(q) the

L zero appears to be a numerical accident which is only true at

this order, since the linear sigma model calculation of Ref.
[24] violates this condition. Nevertheless the zero in the first
three cases is a powerful confirmation of the internal consis-
tency of the ChPT approach to generalized polarizabilities.

As in the case of the spin-independent sector it is possible

to give analytic expressions for the 7 spin-dependent GPs.

Defining the auxiliary function
FIG. 6. O(p®) HBChPT results for the two spin-independent

. . . . . 2 [GeV?]
0.1 0.2 0.3 0.4 0.5

generalized polarizabilitiea=(q?), Bu(?) of Eq. (58). sinh (%)
900 =———, (63
XV1+x
ca — 9a 29° ¢
ng)l,m(Q): - > 5|1 5 2 the four independent generalized spin-polarizabilities to third
48\6m?F2m? 15m7  42m; order in the chiral expansion read
% a q
+0 . 61 (3) — _
(a”) (61) Po1,12)(d) = 24\/— 2F2 9<2m77”
9A q
whereas the remaining three spin-dependent GPs can be depgﬂ 02)1(@: - A {1_g< H
termined via Eq(52) as a consequence of ti@invariance ' 12\/67%F 2m;
relations Eq(18):
2 ) -
gA 3q ( q )
P = 2+ ——
, i o (11 00)1(Q) 12\/§ 22 4mi g om,.
Por 01)1 144772|:fT My m2 120 4 /m* 50 T g2 - Z q
B (01 nid —24\/— 252 727 g om.
+0(q°) (64)
The O(p®) HBChPT results for these four spin-dependent
GPs are shown in Fig. 7. All are found to be negative in the
2 low energy regime and three of them show a steep rise with
1.0. X/ _ gA 1
Parin(d=—

9> (1 w®\q — Y =
+——|—=- 7 q at low three-momentum transfer—except fbﬁl’oo)l(q),
My which vanishes fog—0 and is strongly falling off for small

finite values ofa The remaining three C-constrained GPs
are found to be

—— —|0
288m2F2 My

+0(q%
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FIG. 7. O(p®) HBChPT results for the four independent generalized spin-polarizabilities af6By.Note that the “anomaly contribu-
tions” of Appendix D are not included here but plotted separately in Fig. 12.

2 2 -
— gawo q q
l.0. — _ L
P‘°1'°1§1(q)_24w2|=2§2 (1+ 2m? )g(Zm )
ooy _ 9a0oMR [ (209 307 Plothun(7) (10731
(i) = 2472F2g | | My W2 .
_ 6
(3mi+a® @ | wo , O
- JR— + RN
MZ  m?: My m?2 !
o 2
q 3 2
% 7 [GeV?)
g 2m7-r) 0.1 0.2 0.3 0.4 0.5
o Pl1i11)1( %) [1073fm?) S ,
B Lo x(q)= gawoMy ﬂ+2_qz T 0T 03 0T s [Gev]
AT 6 10m2F2g° || My M2 -2 ]
1{ w, . ) -4
2\W| > 02
—\ = — -8
2 2
a 1 q q
e M—g)g(—zmw) ©9 P (@) 10741
2.0
with wq defined in Eq(l?) Their resultlngq dependence is
shown in Fig. 8P g1, 01)1(q) Paa, 11)1(Q) vanish forqﬂo as s
required by C-invariancé¢23], whereas the unconstrained 1.0l
spin-dependent Gf’(llyz)l(q)_rises at lowq and shows an
unusual turnover point near’~0.2 Ge\,. Once more we 0.5
note that these three particular GPs, strictly speaking, lie be- 3 [GeV?)
yond aO(p?) calculation and could only be deduced via the 0.1 0.2 0.3 0.4 0.5

C-invariance constraints of E¢L8).

From an analysis of the corresponding spin-
polarizabilities in real Compton scatterii@?7] one knows polarizabilities of Eq.(65), reconstructed from the C-invariance
that in some cases there exist large correctiong’at0 to  constraints of Eq(18). Note that the “anomaly contributions” of
these chiral®(p?) results of the spin-polarizabilities due to Appendix D are not included here but plotted separately in Fig. 12.

FIG. 8. O(p® HBChPT results for the three redundant spin
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the Delta resonance. On the other hand, the spin-independedBChPT calculation plus some additional diagrams with ex-
polarizabilities ZE, EM are known to be well described plicit Delta degrees of freedom. SSE constitutes a chiral ef-
within O(p3) =N HBChPT[see Eq(56) in the limitq—0  fective theory separate from HBChPT—for example, even
and[31]]. In the next section we will therefore analyze the Single nucleon coupling structures which look the same in
leading effects of theA(1232) on the GPs in alifferent  the (bare Lagrangians of the two theories can undergo quite
chiral effective frameworkwhich contains theA(1232) as @ different coupling constant renormalization or acquire dif-

an explicit degree of freedom. ferent beta-functions, for details we refer the interested
reader to Ref[28]. For the particular case dfea) Compton
B. O(€%) small scale expansion scattering we would like to remind the reader that HBChPT

) _ and SSE show quite a different convergence behavior for the
1. General comments regarding SSE and Compton scattering (rea) Compton polarizabilitied17], which is expected to
In HBChPT the effects ofA(1232 are incorporated via also hold true for the here discussed generalized polarizabil-
higher order contact interactions, i.e. the effects of this parities of VCS.
ticular resonance are not directly tractable in the calculation. In principle there are two kinds cddditional contribu-
If one is interested in such kind of questions, one needs &ons to the®(p®) HBChPT results presented in the previous
chiral effective framework which include&(1232) as an section—A(1232 pole graphs[Fig. 2d),(e)] and Amx-
explicit degree of freedonm a consistent power counting continuum effectFig. 4). The latter are straightforwardly
framework—one approach of this kind is SSE as laid out in gptained from the results given in Appendix C, whereas the

Sec._ II'B. ) _ Delta pole effects to be discussed here are identical to their
First, we would like to stress again that any SSE calcula(reab Compton contributions discussed [ib7].
tion to O(e%) does not just equal the correspondiédgp®)

2. Spin-independent results

First we discuss the@(e®) SSE results for the spin-independent G#$')(q), B\"’(q) nearq=0 to facilitate the
comparison between HBChPT and SSE. One finds

(g Se’gh , €gha [ 94 AP-domy )o@ TR eghw
: 384m2F2m,  2167%F2 | AZ—mZ  (A2—m2)32 m2|  384072F2m, 1080m3F2
2A%—17Am2 8A2m§+7mil r| |+ o
2 2\2 5N +0(q
(A _mﬂ.) (Az_mi)i
LS q*
:{ 12.5+4.22+ —[—1.75-0.240+ —[0.362+ 0.018 + . . ] x10™4 fm?
m7T m’IT
BN (q) = e’0; e’2bf €’9%na 1 INR+ E e’g; CR AN
M 7687°F2m, 9wM2A  2167°F2 JA2-m? m?2 | 384072F2m,  1080m°F2
A My InR | |+0O(q*")
X - n +
(B7m2) " xe_ )3 q
LS q*
=11.25+7.20+0.725+ —[0.250+0.078 + —; [ —0.087-0.020 + - - - X 10 * fm? (66)
m7T m7T
with
R= = A 1 6
Ve 7

The important point to note in Eq66) is the fact that thea—dependence is only modified in a very weak fashion by the
inclusion of explicit delta degrees of freedom. In that respect SSB(&’) and HBChPT tog(p?’) are quite compatible.

However, the same problems known from real Compton scatt¢tifd 7] appear in the limig— 0, which in the Guichon

definition of the GPs corresponds to the real photon poingg(‘O)—sz the A -continuum of Fig.(4) produces a shift of
4.2x 10 * fm3, which when added to the 12810 * fm® from theNr-continuum of Fig(3), leads to a much larger number

014013-17



HEMMERT, HOLSTEIN, KNOCHLEIN, AND DRECHSEL PHYSICAL REVIEW D62 014013

than the current values af: [2]. In 8y (0)— By the effect is even more dramatic. Here it is the large magnetic contriBltion
of 7.2x10™ 4 fm® coming from theg-independentelta pole graphs of Fig.(8),(e) which spoil any agreement with the
currently accepted number f@h, of the proton[2]. On the other hand, the sum of the contributions fromNhe and from
the A wr-continuum has the right magnitude of 2x 10~ fm® for the magnetic polarizability, constituting the “chiral ver-
sion” of the unwanted presence of a larg€1232)-induced paramagnetism, which is well-known in the literaf3eg. A
large source of diamagnetism due to the pion-cloud has been identified in&Bf the case ofrea) Compton scattering,
but this mechanism, which leads to a sensilentra) value of 8y,~3.5 10 *fm? for the proton, can only be implemented
in a O(p*) HBChPT[respectivelyO(e*) SSE 7 calculation and is therefore beyond the scope of this analysis.
Keeping these problems in mind, we nevertheless are convinced thgidigendence is described reasonably well by the
O( 63) calculation and that the problems described above only refer to the correct normalization of the theory at the real photon

point g—0. We base this expectation on the observation that the relevant scale qfelmiutlon in Eqg.(66) at small

momentum transfer is given by the quantq%/m i.e. the momentum dependence arises from the “pion-cloud” of the
nucleon. At the next order&(eh—new dlagrams are expected to correct the normalization at the photon point. The

g-dependence of these diagrams however is then expected to scaq?WMy\,m,T) i.e. it should be much weaker due to the
appearance of the extra suppression faoigf M, of the next order. Whether this expectation will hold true can, of course,

only be decided oncec(q), Bv(q) have been explictly calculated t@(e*). An analysis of the renormalization 0sz, ,BM
in real Compton scattering t©(e*) is under way[40] and will later be extended to the case of VCSHie?).

For completeness we also give formal expressions for the two spin-independent GPs. Unlike the(gsd 6fBChPT
in SSE toO(e%) we were not able to obtain closed form expressions:

Y

"2
v+2%—( 8-2%-

qt\m, q
m mt g em, e SgiNAfld fl &
X

2 2
gAm m1T T T
—(|||) _ + — dy —
Sy 2F2 _2( q2> 8w 9F2 0o aw?
q 4+—2
X{Jo(@'—A,m2)+Jo(—w' —A,m2)—2[J5(w'x— A, m2)+ J5(— w'x— A, m?) + Jy(w'x— A, m?)
+35(— ' x— A, M) ]+4(1-y)[5(I4T—A,Mm?)+J5(—T—A,m?) — (T?+m2—-m’~T w')
X (I5(T—A,m?) +35(=T—A,m?))]—2[3I5(— A,mf) +(mZ —m%)I( = A,mf)]
—X(1=2X)Q3(Jg( @' x— A, M)+ J5(— ' x— A, m?)) — 2[ (1—y)(14y>— 9y + 1)q(J5(T—A,m?)
+35(=T—A,m) +y(1-y)(1-2y)qX(T2+m%—m?—T w) (J5(T—A,m?) + Jg(— T—A,m?)]} ,
cosf— 0,0’ —0
2 2 4 o
m’JT
5 - 4+2q—2 + 8+6q—2+q—4 —arcta 5 )
AU () e’gam, ™ mz Mg/ g M. e’2b; €& 1 SZQWNAJJ‘ fld
— + +— = ——
b 128772F2 - q 9rM2ZA 47 q 9F2 Y
q 4+—2

X{[(1=y) (= 1+ x—8xy+7(y—y?>+xy?))qw(Jy(T—A,m?) + J5(— T—A,m?))

—y(1-y)2(1—x)(T2+m2—m2=T w)qw(d(T—A,m?) +J5(— T—A,m?)]} (69)

cosf—0,w’ —0

We note that the relevant J-functions are defined in Appendix A and the mass/energy variables occurri@3dnhage been
given in Eq.(54).

as expected;E is completely free of delta pole contributions to this order, quite analogous to the case of real Compton scattering
[16,17.
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The results of Eq(68) are also shown in Fig. 9. Once momee do not advocatéhe use of thesé(e®) SSE curves in a
realistic analysis of VCS at this point since, as shown in R&f], there exist significant known cancellations which are not
yet included yet to the order we are working. A more realistic use of these curves could be the prescription

ren( ) _(lll)(q) _(lll)(0)+

Bie™(a)=84"(a)- B4 (0)+B5P, (69)

where the indexexp. refers to the current experimental numbers dgr, By of Ref.[2]. The results of this operation are
shown in Fig. 10. There one can clearly see thatAli#232 related effects a®(e®) SSEenhancaheq -trend already seen
atO(p®) HBChPT. Of course, we want to emphasize that the prescription oféByleaves the strict realm of chiral effective
theories and just constitutes ad hocfix to include someeffects that are of higher order in tlislowly converging SSE
expansion for the spin-independent GPs.

This completes our discussion of the spin-independent GPs and we now move to the corresponding generalized spin-
polarizabilities in SSE.

3. Spin-dependent results

Once more we start from a discussion of the GPs gead. First, it should be noted that there aremgole contribution¥’
to any of the generalizedGuichon spin-polarizabilities at?(e®), quite in contrast to the real ComptdRagusa spin-
polarizabilitiesy,, v, [17]! The O(€®) results for the four independent spin GPs therefore exclusively arise froNthand
Agr-continuum graphs of Figs. 3,4 and can be found from the expressions given in Appendices B and C. One obtains

V2gi  V2ghw [ 1A
288m2F2m?  324m?F2\ AZ—m7 (A%—m2)372
q

9 \/Egi \/querA

m2 | 144072F2m2  324072F2

PEE'BH)@ = InR

o2 A2+2m?2 3Am2

(A2-m2)2 (A2—m2)52

T

InR| | +O(g*

2 )
:[ —7.28+0.735+ q—2[1.4& 0.067+ q—4[—o.312+ 0.009+ - - - ] X10°2 fm4
m m

w m

— V203 2 9
Pl ) =———=55>5- V3

1443 72F2m2 3 1627°F2

1

— InR
AZ_me (Az—mi)S/Z n

A%+2m2 3Am2
(A?—m?)2 (A2—m2)52

E \/Eg/zx _ \/g gerA
m2 | 720(37%F2m? 3 16207°F2
2 4

={ —8.41+0.848+ q—2[1.68— 0.077+ q—4[—0.360+ 0.010... ] X103 fm*
m m

ko w

InR | | +O(g*)

m? Am?

m

LS
2 AZ_me_ (A2—m2)32

2
mg

P 00)1(Q):0+ IR | | +0(g%

B 502 _\ﬁ 502Na
144372F2 V3 16272F2

~2 ~4
{o+o+q—[ 149+015]+q—[0208—0002_|+ ]xlo2 fm?
m

ks m

'2We observe that there does exisAgpole contribution to the spin GPo1.1/q),
2
pole 4(1)0 bl
(01 10— 27? _M 2N
which, however, is suppressed by an additional factor bfylbriginating inwg of Eq. (17) and therefore is counted as élfe*) effect.

(70)
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Pl (a)z_g—f\_\ﬁ e ! - A INR +E g—f\
LDt 486w F2m2 N 65472F2 | AP—mT (AZ—m?2)32 mZ | 360\67°F2mZ
1 g3\ [ A%+2m2 3Am2 —
_\[5810772527 (AZ—m?)? (Az—mi)szlnR ol
LG q*
={ —12.6+1.272+ —[1.68-0.077+ — [ —0.300+0.009 + - - } x10°% fm?. (7D)
m7T m’7T

First, we observe that SSE t0(e®) obeys the C-invariance constraif23] IimgﬁoPE'l'{’)oo)l(q)=0, as does the)(p®)
HBChPT calculation in Eq(61). Second, we note that there is no strong renormalization of the &bspia-dependent GPs
at the real photon point due t(1232) related effects. We observe that in general the effects from theontinuum are
small andalways interfere destructivelywith the corresponding contribution from thHés-continuum, in contrast to the
constructiveinterference in the spin-independent sector of Sec. V B 2.

As in the previous section, we were not able to give the full spin-deper@st) results in a closed form expression but
utilize a Feynman-parameter representation and the J-functions defined in Appendix A:

2 - 2
— Oa q V2 1 169N (1 1 d — ~
() . S _ Y= = o _ 2/ _ 2
Pto112)14) 24\/5 WZFiaz meﬂ 3 E—9Fi fo dxf0 dy W {ly(1-y)q7(I5(T—A,m?)
—35(=T—A,m?)+x(1-x)y(1-y)3q? 2(Ig(T—A,m>) — J5(—T—A,m?)]}
cosf— 0,0’ —0
2 - 2 2
— i q V2 1802t (1 9
p(ih =——_[1— ( ”— i defd xy(1—y)2(1—2
(110219 12V62F2 P 9 2m. 33 g oF2 Jo o y PYE {Ixy(1—-y)“(1-2y)
XG0 (IH(T—A,m?) = Jg(—T—A,m?))]+2[x(1-y)2q o' (I5(T—A,m>) = J5(—~T—A,m?))]
—2[y(1-y)q o' (I5(T—A,m?) = J5(—T—A,m?)]}
cosf— 0,0’ —0
2 2 - - 2 2
— ga 3q q —, — g 8guna L, [ d
() _ _ 2 p(l) _
P (11,00« )_12\/5772':727 2+ 4m727)9(2mw V207 P(11/02)1a) 3 oF2 fodxfody pwE
X{[(1=y)(1-2y)q o' (J5(T—A,m?) —J5(—T—A,m?))]}
c0sf—0,w’ —0
2 -2 -
— Oa q q 1 —
1 _ 1
Plound TN 3_(3+ F)Q(me +\[§PE°1?12>1(Q)

33 g 9F2

22 1 Agons (1, (1
Joex],
o Jo

J
dy—{[—(Jaw'—A,mi)—Ja(—w'—A,mim
ow’
3 ’ 2 ’ 2 ’ ~2 ’ -2
+2m[J2(w’x—A,mw)—J2(—w’x—A,mﬁ)JrJz(w’x—A,m )—Jo(—w'x—A,m%)]

(73

—4[X(1—X)y(l—Y):Ezw'z(JS(T—Aﬁ12)—38(—T—A,fnz))]]

cosf— 0,0’ —0

BThis is to be contrasted with the individuaka) Compton spin-polarizabilities, and y, defined by Ragusa, see RE7]. To be more
specific about the connection between VCS and real Compton scattering we utiliZZ0Egnd find

fh=1.0x10"* fm*

Y8+ 40 =1.0x10"* fm?, (72
with the input from Eq(72). This is in complete agreement with the results of RET]. It turns out that the larga (1232 pole contribution
cancels in this particular linear combination #f and y,.
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Note that the auxiliary functiom(x) has already been de- though relativistic forward-focussing allowed access to
fined in Eq.(63) and the mass/energy variables again correevents as much as26 degrees out of plane. Nevertheless
spond to the structures introduced in Ef4). We present the desired generalized polarizabilities were hidden behind a
the absolute®(e®) SSE predictions for the four independent very large Bethe-Heitler background and their extraction was
spin GPs in Fig. 11. It clearly shows that tfi¥e®) curves  a real experimental tour de force. Consulting Fig. 6, we note

are always lying higher than the correspondidp®)  that atq?=0.36 Ge\? the O(p®) HBChPT calculation pre-

HBChPT ones. In all cases the two curves share a similagicts thatac(q) should have decreased by as much as 50%
behavior in theirg-dependence—leading to the conclusionfrom its real photon value, whereas the much smaller GP
that there is “no dramatic” S|gne3ll of tha (1232 resonance g 4y is predicted to have slightly increased. As can be seen
in the spin-dependent GPs @(e”) compared to the domi-  f5m "the HBChPT predictions in Figs. 7, 8, the spin-
nant contributions from thél-continuum. We stress again gependent GPs will dramatically change with regard to the
that this new finding is in dramatic contrast to the analysis ot ) photon point. Thus the confrontation of theoretical pre-
spin-polarizabilities tested in real Compton scatterit@].  gictions with the MAMI results offers a chance to realisti-
There it was shown that for some structufies. the isoscalar oy test theoretical pictures of nucleon structure. Essen-
spin-polarizabilitiesy,, y,) A(1232 related effects are of gy two quantities were determined experimentally—the
the same magnitude as the leading chiral contribution fro“%ombinationP,_,_—PTT/e of longitudinal and transverse re-
the pion-cloud, giving rise to strong interference effects. Thesponse functions, which is primarily sensitive to the gener-
conclusion in[17] was that SW2) HBChPT is not adequate lized electri larizabilityee(q) (plus I binati

for a calculation of theséRagusa spin-polarizabilities un- alized electric polariza llityre(q) (p us linear combinations
less one pushes the HBChPT calculation@¢p®). It is of spin QP$ [12.21, as wgll as the |ntferferen(.:e terﬁll
therefore not surprising that recently 2 differeai(p4) ~ depending on the generalized magnetic polarizabsifyq)
HBChPT calculationg§42,43 found a largeO(p*) correc- and the spin GRP(®0DYq) [12,2]] [which itself can be
tion to the knownO(p®) result of the so called “forward expressed as a linear combination of the 2 spin GPs
spin-polarizability” yo. As shown in Eq.(14) y, involves  p(L09%q) and P(*192%q) via the C-invariance constraint
the linear combinatiory,+ 2y, which will give rise to large  of Eq. (18)]. Results of the experiment together with predic-
corrections even &(p°). Given this background we are not tions from O(p3) HBChPT® and other theoretical models
discouraged by the largeg)(p*) corrections found in are given in Table I. It is obvious that the chiral picture
[42,43—a new analysis regarding these issues is in prepargRefs.[13,14]; Secs. V A 2, V A 3 of this work; Figs. 6, 7,)8
tion [40]. At present, the only hope to find a convergentis in astonishing agreement with the experimental results at
perturbation series fofRagusa spin-polarizabilities is the this point. Of course, this is only a single experiment at a
SSE formalism where one can resum some of the large cosingle momentum transfer—and indeed the momentum

rections already aD(e’) [17]. . . transfer q=0.6 GeV is somewhat above that where one
In VCS the situation for the spin GPs as defined bywould expect the chiral predictions to be strictly valid.

Guichon appears to be quite different from the real Cogmptoﬁ'herefore results from other laboratories and other values of

case, as can be seen by the similarity of the HBCURP") g° are needed and eagerly awaited in order to check our

3 . .
and the SSEX(€”) curves in Fig. 11. As far as we can tell at fpredictions. Specifically, the Bates experiment, which will

this point this is due to the special choice of kinematics o ,
take place atj=0.24 GeV, should be a more appropriate test

Gwcl?_on,t_wmch felxéen n t’he case olf v_eryb_llc_lt}_'vtestfs linear of the chiral predictions. Nevertheless the present agreement
combinations of Ragusa’s spin-polarizabilities [for ex- is certainly encouraging.

ample: y,+ v,4; see Eq.(20)], which are different from the
RCS case and seem to be better behaved as judged by the

difference of the HBChPT-SSE curves in Fig. 11. Finally we VIl. SUMMARY

note j[hat .th.e remlﬁlnln@mﬁ?rly dAerl)Ielndemtgenerallzed spln Virtual Compton scattering-eN— e’ Ny—opens the way
polarizabilities PEOl,)ol)l,Pgll,)ll)l,l:’fll,)z)l may be found via to high resolution study of nucleon structure by measuring
the charge-conjugation constraint E48). generalized polarizabilitiesGP9, which are momentum-

dependent analogues of the familiar polarizabilities deter-
mined in real Compton scattering. In this work, we have
VI. THE MAINZ EXPERIMENT calculated these quantities within the framework of conven-

. . . . tional heavy baryon chiral perturbation theory to third order
As mentioned above, the pioneering VCS experirtfent I vy bary Iral perturbat y !

has taken place at Mainz, and preliminary results of the
analysis are now availabld2]. The measurement was per-

formed atq2=0.36 GeV? and used parallel kinematics al- SWe do not give predictions for the response function€)é®)

SSE due to the discussed normalization problena I)(q:0).

However, we believe that thé@(e®) SSE predictions for the spin

. GPs will be helpful for ongoing studies on double polarization VCS
we note that the theoretical predictions of thelependence in  experiments, which might provide the possibility to study the con-

the GPs given in Ref§13,14 precededhe analysis of the experi- nection between Ragusa and Guichon spin-polarizabilities as indi-

ment at Mainz. cated by Eq(20).
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) FIG. 9. Absolutg O(e) ‘_SSE_ ) r_esh'lti for ltlrl'eJWO spin- FIG. 10. Comparison between th@(e®) SSE results for
independent general|zed3polar|zab|I|tE% '(0?), B )_(qz) of Eqg. (02, BE™(q?) with O(p®) HBCHPT (in gray shading Note
(68), compared to thé)(p”) HBChPT results shown in gray shad- that all curves have been normalized to the experimental results of

ng- ag, EM of the proton at the real photon poiabo.

|n the”morr|1entum e>.<par,1’5|orr]1. T}S well as to thl|r2d3grder n thet:alculations and generally not found in simple quark model
small-scale expansion,” which contains th§(1232) as an o5 ,ations. It expresses the feature that chiral invariance
explicit degree of freedom. As originally defined by Gmchor_lLEquireS local regiondoth of paramagnetiqat small dis-

etal, tgere e(;(ist ten Sufh.GPS’ th(;ee being aSSOCiat%d WItthnces and diamagnetidat larger distancespolarizability

spin-independent correlations and seven connected Withegjties in the nucleon. Aside from the widely discussed
spin-flip structures. At third order both in HBChPT and in — . . .
SSE only six of these—two spin-independent and four Sping—dependences of the generalized electric and magnetic po-

dependent—survive, and we have calculated these directll.”zab'“t'es’ the strong variation of the GPs in the spin-

In the case of theA-pole and#N loop contributions, we ector Is likely to be of interest f(_)r furt_her study_, bo_th on the
were able to obtain results for the GPs which are simpleeXpe”mental a_md on the t_heoret|cal 5|de_. Consu_;lermg_the_re-
analytic forms, while in the case of the Corrrespondingsults of the chiral calt_:ulanons fqr the spin poéarlzabmtles in
7A(1232)-continuum contributions only numerical results real (_:ompton scattering we believe _that tﬂe_e ) SSE Cfl'
could be given. We briefly discussed the results from the firs ulation ShOUId. be quite competitive with th@(p ) .
VCS experiment on the proton from Mainz &?=0.33 BChPT_q_naIyS|s at least as far as the generalized spin-
Ge\2. The success in predicting the measured response fun olarizabilities are concerned. Future measurements at Bates,

tions resulted from a combination of a sharp falloff of AMI and JEFLAB will clarify this issue.

— . . — . . It goes without saying that our calculation is preliminary
2©) i3(3) _ _ ; ; _ o
g (0), a slight rise of3y°(q) and a strong increase in the i that jt does not include important corrections arising at

contributing spin GPs with momentum-transErAll these  O(p*)/O(e*)—see, e.g., the discussed normalization prob-
effects are intimately related to the chiral dynamics of theg,o inE(EIII)(O) E('\}lu)(o)_ An O(p*) HBChPT analysis has

pion cloud, which can be calculated very precisely in chiralyen carried out in the case of the real Compton electric and
effective theories like HBChPT and SSE—with HBChPT ataqnetic polarizabilities in Ref41] and important correc-

least in the spin-independent sector having the better CONVefHns and uncertainties were found which, while not drasti-

gence behavior as far as we can tell at this point. In partiCuz, modifying the basic numerical predictions obtained at
lar, for the case of the generalized magnetic polanzabllltyo(ps), did introduce sizable uncertainties into the predic-

both HBChPT and SSE predictsing behavior as one goes tions due to unknown counterterms which had to be esti-

away from the real photon pointg?=0—up to a momen- mated via resonance exchange. We may then anticipate a
tum g°~0.1 Ge\,. This is a distinctive feature of the chiral similar behavior here—that such higher order corrections
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FIG. 11. O(€®) SSE results for the four independent generalized spin polarizabilities ¢78gcompared to thé(p®) HBChPT results
of Eq. (64) in gray shading. Note that the “anomaly contributions” of Appendix D are not included but plotted separately in Fig. 12.

will not change the basic pattern of the chita{p®)/O(e®) has been described in detail in the appendices of Rél.
predictions, but mainly only correct tH@hoton-point nor- ~ Therefore we shall only give some definitions of the basic
malization. However, verification of this assumption awaitsbuilding blocks.

detailed future calculations. Lastly, we stress once more the We express the invariant amplitudes of Feynman dia-
motivation for performing electron scattering experiments orgrams — containing  pion-nucleon loops in terms of
the nucleon: Different theoretical approaches may yield comd-dimensional J-functions, defined via

parable results at the real photon point, but the details of the

underlying dynamics can be analyzed in @ much more pow-q - 4d g0,

. . ’ ’ via'B
erful way by studying theQ2-dependence. In conclusion, - 3 R -
VCS on the nucleon has matured to become a precise testind 7 (27)" (v-1=W=in)(M?=I?~i7)
ground for our notions of nucleon structure at low energies.

:{Jo(W,M ) YgMV‘]Z(Wl M)
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APPENDIX A: LOOP FUNCTIONS 1
Jz(W.M)=d_—l[(Mz—Wz)Jo(W,M)—W Al
The formalism to calculate the loop diagrams for Comp-

ton scattering both in ChPT and in the small scale expansion

2
TABLE |. Experimental values of the response functions mea- Js(W,M)= Fy (M2=W?)J5(W,M)— d Ayl
sured at MAMI atQ?=0.33 Ge\f compared with predictions from
chiral perturbation theory ad(p3), the linear sigma modéLSM) (A2)
of Metz and Drechsdl24], the effective Lagrangian mod&ELM) ith Av. d . h . |
of Vanderhaeghen25], and the nonrelativistic quark model wit m denoting the meson Integra
(NRQM) of Guichonet al.[21]. This table is taken from Ref12].
. 10 di 1
Quantity Expt. ChPT LSM ELM NRQM Ay=— (A3)
M~ d \p2_12_:.'
1) (2m)% M°=1—ig
1 23.7+2.2+0.6x4.3 26.3 109 59 17.0
PL— < Prr ; ; i i
Py -50+08+11+14 57 0 -19 -1.7 and Jo(W,M) being the basic meson-baryon integral with

arbitrary energyWV.and mass variabl&l. Explicit represen-
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tations for these building blocks can be found in Appendix A APPENDIX B: Nz LOOP AMPLITUDES IN VCS

of Ref.[16].
Finally, we remind the reader that all propagator struc-
tures encountered in the calculation can be reduced to th

Using the J-function formalism defined in Appendix A,
Qne can get exact solutions for the niMer-loop diagrams of

basic forms of Eq.(Al) by taking derivatives of the Fig.3. By'e, (d,) we denote the polarization—vect()‘ou’r-
J-functions with respect to the square of the mass: momentum of the incoming virtual photon, and by, (d,,)

the corresponding quantities in the outgoing real photon with

) J energyw’. In order to make contact with the VCS ampli-
Ji (W,M)= mJi(W,M), tudes defined in Eq47), we use the Coulomb gauge
? weloes & aa) (B1)
" _ €= ,E € .
Ji (W,M)—W\L(W,M)- (Ad) T2
For a more detailed discussion we refer to R88]. The amplitudes can then be cast in the form

with

2
Am N7 __; % T (v _]_'“' ’ ’ 2 PN 2 S €S - ’ 2\ _ PN 2
p1+2_|F2 u2(r ) 26'6 [\]0((1) lmw)+‘]0( (O] lmﬂ')]—’_[ C€, 6][‘]0(0‘) 1m7r) ‘]O( w 1mq-r):| ul(r)

2 0 ~ -
Amp§I6=iE—’§f dxUp(r'){e- €' [I5(w'x,m2)+ 35— w'x,m2)]—2[S- €' ,S- €][Ip( @' x,m?)
0

—35(— w'x,m2) T}uy(r)

Oi (1. — [~ - - - - -
Ampz'fsziF—zfodxuz(r’)[e-e'[Jg(w'x,m2)+Jg(—w’x,mz)]—z[s-e’,s-e][J;(w’x,mZ)—Jg(—w'x,mz)]

1 - - - ~ -

—5X(1-2x)e-q € -q[Io(@'x,m?)+I5(— 0'x,m?) ]+ x(1—2X)[S-€',S-q] €-q[Io(w'x,m?)

—Jé(—w’x,ﬁﬂz)]]ul(r)

—2(d+1)(IHT, M)+ I5(—T,m))

2
N - 9a ! ! eI
Amp7+8:||:—2 de Ody(1—y)u2(r )y €€

q-q’

+2( T2 ( m?—m?+ T (J5(T,m?)+35(—T,m?)

+[(1—d)e’-ae-b—¢’-(c+d)e-b—2¢€"-ae- (c+d)](I5(T,m?) +J5(—T,m?))

q-q’

+| T2— | m?—mi+ 9
w/

e -ae-b(IY(T,m?) +J5(—T,m?)) +2e-b[S-€',S- (q—q') ](I5(T,m?)
—J5(—T,m?)+4€"-a[S'€,S-(q—q’)](I5(T,m?) = J5(—T,m?)) + 4€- €'[S-¢,S- d](I5(T,m?)
—J5(=T,m?)+2¢' - ae-b [s-c,s-d](Jg(T,ﬁmz)—Jg(—T,ﬁ]z))]ul(r)

2
AmpyT=i % Uy(r' Ve erul(r)foldx{(d—1)Jg(o,m$)+(m?—mf,)a(’,(o,mi)}, (B2)

w
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a,=—q, Y
=(q,(2y+2x—2yx—2)—q,(2y—1)
=0, (y+X=yx)—q,y
d,=q,(y+x—yx—1)—q,(y—1), (B3)

and the energy and mass variabTe:erﬁme as defined in Sec. VA 1.

APPENDIX C: Aw LOOP AMPLITUDES IN VCS

The 97A continuum diagrams are shown in Fig. 4. We find

.89727NA — [ 1d-2 , 2
Amp; 7, = |z U]~ 5 goge €/ Molo’ —Am 2)+3o(— o' —A,m2)]

w

1 2 , ~ ’ 2 ’ 2
— 5 =7 [S € S ElIo(0 —A,mE) = Jo(— 0’ —A,m?)] fus(r)

Am SQWNA d—2.
Ampz Tg= 3F2 dx U (r") g-1¢€ "I’ x—A,m )+J2( w'X—A,m )]

2 -
+977 [S-€,S e][Jg(w'x—A,mi)—Jg(—w'x—A,mi)]]ul(r)

2 d—2.
Amp3 =i 89, NAJ dxuy(r’ )[d €€ TI5(w'x—A,m?)+ 35— w'x—A,m?)]

2 - - ~ 1d-2 ~
91 [S-€,S e][Jé(w’x—A,mZ)—Jé(—w’x—A,mZ)]—zﬁx(l 2x)e-q' €' - q[I(w'x—A,m?)

- 1 - - -
+J)(—w'x—A,m?)]— d_—lx(1—2x)[8~ €,S-qle-q[Ih(@'x—A,m?*) —J\(—w'x—A,m?)] fuy(r)

892 d+1)(d—
AmMp; =i EFNAJ dxf dy(1—y)u(r’ ){e €' Z%(\] (T—A,mM)+JI5(—T—A,m?))
d-2 -
+2d_—1 T2—| m?—m2+ aa ))(J’Z’(T A,m?)+35(—T—A,m?))
(1)

d—2 - - ~ - -
+ T[(1—o|),s' -ae-b—€'-(c+d)e-b—2¢-a e (c+d)](5(T—A,m?)+I5(—T—A,m?))

+3—i(T2 “2—m§,+q(;)—(?/T €'-ae-bAY(T—A,m?)+J5(—T—A,m?))
—éz-b[se',S-<q—q'>](J'2’<T—A,rh2)—JS(—T—A,r”nzn
—dfle'-a[s.E,s.(q—q')](Jg(T—A,ﬁwz)—Jg(—T—A,FnZ))—dfl”e-e'[s-c,s-d](J;(T—A,r%\Z)
—J5(—T—A,m?)— 216 -ae-b[S-¢,S-d]((T—A,m)—J5(—T—A m2))}u1(r)

Ampé”=|8§; Uy(r')e €' ul(r)f dx{ d—2)3y(~ Amf>+d—(mf mZ)Jg(— Amf>] (CD)

m
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APPENDIX D: 7°-POLE CONTRIBUTIONS

In this section we explicitly give th&(p3)=O(€®) con-
tribution of 7%-exchange in the t-channel—Fig(f2—to the
generalized spin-polarizabilities of Eq$64),(65). In the
main part of this work we had included this particular effect
in the Born part of the structure amplitudas° ™" (o', 6,q)

[cf. Eq. (49)]. However, in the existing literature of VCS
many authors prefer to considet’-exchange as a genuine
contribution to the spin-polarizabilities. For easier compari-
son we list our results below and show the resulting GPs in
Fig. 12:

ag(q)=Bu(q)=0

Sanom __ \/: 9a 1
OO N 3247%F2 m2 + 2

PHYSICAL REVIEW D62 014013

"2
panom _ _ \ﬁg_ _q
(11,0001 3 12772':727 m727+q2
panom :|5anom _ panom _
(11,2)1~ F(o1,10~ F(01,01)1
panom 9a 1

(11,111~ — wom W
(DY)

APPENDIX E: A USEFUL IDENTITY

It should be noted that, while making the transition from

the chiral loop amplitudes in Appendices B and C to the

9 1
247°F% m2+ 2

anom

(01,12)1= — \/E

anom _ \ﬁ 9a 1
(11,02)1 3 127TZF2 m2 +az

panom

(01,12)1(52) [10*3fm4]

7 [GeV?] 80

0.2 0.2 0.3 0.4 0.5
0 60

-20

40
-40

20
-60

-80

twelve VCS structure amplitudes , i=1...12 of Eq.(47),
one also encounters the matrix element

A A

€'-9e-q'a-(q'XQ)

=—(e'Xe)-(q'Xq)a-(q'xq), (ED

P(“l’i?(’r"‘zn("ig) {10-3 fm4]

7 [GeV?]

P

P @) (107 fm?)

0.1 0.2 0.3 0.4 0.5

7 [GeV] 44
30
20

10

o o o v

panom
(01,1)1
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Parain(@®)
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FIG. 12. O(p®) HBChPTO(e%) SSE = -pole contributions to the generalized spin polarizabilities.
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which has to be brought into a form which accompanies ongyith c=q cos#—q’. Noting that
of the twelve structure amplitudes. To achieve this we start
from the identity
e e aa L a-c b-c=sirffa-b+(axc)-(cxb),
a-eb-e,+a-eb-eta-eb-e,=a-b
and then construct the 3 orthonormal unit vectegs a (6'X€)-qo-q=—€-qo-(e'XqQ)+ €' -qo-(eXq)
=x,y,z from the direction vectors,q’ via o
+o-(e' Xe),

1.
_(q XQ)! €;,=q.

A 1 . .~ . .
= ,X X =
€x sma(q A%, e siné one obtains

Identifyinga= (€’ X €) andb= o one finds a relation for the

structure of interest, EqE1), (e'X€)-(q'xXqQ)a-(q'Xq)
(€'X€)-(q'xq)o-(q'Xq) =€-qo-(e'Xq)—€'-qo- (€Xq)—COSOe-qo- (€’
=sirto-(e' X e)—a-ch-c Xq')—cosfe-q' o-(e' Xq)+e-q o (e Xq")
—sirf0(e’' X €)-qo-q, +cosbe’-qo-(exq’)—sirfbo-(e' Xe).  (E2)
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