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Techniques for QCD calculations by numerical integration

Davison E. Soper
Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403

~Received 11 October 1999; published 24 May 2000!

Calculations of observables in quantum chromodynamics are typically performed using a method that
combines numerical integrations over the momenta of final state particles with analytical integrations over the
momenta of virtual particles. I describe the most important steps of a method for performing all of the
integrations numerically.

PACS number~s!: 12.38.Bx, 13.65.1i
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I. INTRODUCTION

This paper concerns a method, which was introduced
@1#, for performing perturbative calculations in quantu
chromodynamics~QCD! and other quantum field theorie
The method is intended for calculations of quantities
which one measures something about the hadronic final s
produced in a collision and in which the observable is inf
red safe—that is, insensitive to long-distance effects.
amples include jet cross sections in hadron-hadron
lepton-hadron scattering and ine1e2→hadrons. There have
been many calculations of this kind carried out at next-
leading order in perturbation theory. These calculations
based on a method introduced by Ellis, Ross, and Terrano@2#
in the context ofe1e2→hadrons. Stated in the simple
terms, the Ellis-Ross-Terrano method is to do some inte
tions over momentalW i analytically, others numerically. In th
method discussed here, one does all of these integra
numerically. Evidently, if one performs all of the integr
tions numerically, one gains flexibility to quite easily modi
the integrand. There may be other advantages, as we
some disadvantages, to the numerical integration met
compared to the numerical-analytical method.

In this paper, I address only the processe1e2→hadrons.
I discuss three-jet-like infrared safe observables at next
leading order, that is orderas

2 . Examples of such observ
ables include the thrust distribution and the fraction of eve
that have three jets.

The main techniques of the numerical integration meth
for e1e2→hadrons were presented briefly in@1#. The prin-
ciple purpose of this paper is to explain in detail some of
most important of these techniques. In the numeric
analytical method, one has to work hard to implement
cancellation of ‘‘collinear’’ and ‘‘soft’’ divergences that oc
cur in the integrations. In the numerical method, as we w
see, this cancellation happens automatically. On the o
hand, in the completely numerical method one has the c
plication of having to deform some of the integration co
tours into the complex plane. We will see how to do th
deformation. In both the numerical-analytical method a
the completely numerical method, one must arrange that
density of integration points is singular near a soft glu
singularity of the integrand~even after cancellations!. How-
ever, the precise behavior of the densities needed in the
cases is different. We will see what is needed in the num
cal method.
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These techniques are presented in Secs. II–VI. They
illustrated in Sec. VII with a numerical example. Although
full understanding of the example requires the preceding s
tions, the reader may want to look briefly at Sec. VII befo
starting on Secs. II–VI. A brief summary of techniques n
presented in detail in this paper is given in Sec. VIII.

In @1#, I presented results from a concrete implementat
of the numerical method in computer code. Since then,
logical error in the code has been discovered and fixed
the performance of the program has been improved. Res
from the improved code@3# are presented in Sec. IX.

Let us begin with a precise statement of the problem.
consider an observable such as a particular moment of
thrust distribution. The observable can be expanded in p
ers ofas /p:

s5(
n

s [n] , s [n]}~as /p!n. ~1!

The orderas
2 contribution has the form

s [2]5
1

2!E dkW1dkW2

ds2
[2]

dkW1dkW2

S2~kW1 ,kW2!

1
1

3!E dkW1dkW2dkW3

ds3
[2]

dkW1dkW2dkW3

S3~kW1 ,kW2 ,kW3!

1
1

4!E dkW1dkW2dkW3dkW4

ds4
[2]

dkW1dkW2dkW3dkW4

S4~kW1 ,kW2 ,kW3 ,kW4!.

~2!

Here thedsn
[2] are the orderas

2 contributions to the parton
level cross section, calculated with zero quark masses. E
contains momentum and energy conserving delta functio
Thedsn

[2] include ultraviolet renormalization in the modifie
minimal subtraction (MS) scheme. The functionsS describe
the measurable quantity to be calculated. We wish to ca
late a ‘‘three-jet-like’’ quantity. That is,S250. The normal-
ization is such thatSn51 for n52,3,4 would give the order
as

2 perturbative contribution the total cross section. The
are, of course, infrared divergences associated with Eq.~2!.
For now, we may simply suppose that an infrared cutoff h
been supplied.
©2000 The American Physical Society09-1
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DAVISON E. SOPER PHYSICAL REVIEW D 62 014009
The measurement, as specified by the functionsSn , is to
be infrared safe, as described in Ref.@4#: the Sn are smooth
functions of the parton momenta and

Sn11„kW1 , . . . ,lkWn ,~12l!kWn…5Sn~kW1 , . . . ,kWn! ~3!

for 0<l,1. That is, collinear splittings and soft particles d
not affect the measurement.

It is convenient to calculate a quantity that is dimensio
less. Let the functionsSn be dimensionless and eliminate th
remaining dimensionality in the problem by dividing bys0,
the totale1e2 cross section at the Born level. Let us al
remove the factor of (as /p)2. Thus, we calculate

I5
s [2]

s0~as /p!2
. ~4!

Our problem is thus to calculateI. Let us now see how to
set up this problem in a convenient form. We note thatI is a
function of the c.m. energyAs and theMS renormalization
scale m. We will choosem to be proportional toAs: m
5AUVAs. ThenI depends onA. But, because it is dimen
sionless, it is independent ofAs. This allows us to write

I5E
0

`

dAsh~As!I~AUV ,As!, ~5!

whereh is any function with

E
0

`

dAsh~As!51. ~6!

The quantityI can be expressed in terms of cut Feynm
diagrams, as in Fig. 1. The dots where the parton lines c
the cut represent the functionSn(kW1 , . . . ,kWn). Each diagram
is a three loop diagram, so we have integrations over l
momental 1

m , l 2
m and l 3

m . We first perform the energy inte
grations. For the graphs in which four parton lines cross
cut, there are four mass-shell delta functionsd(kJ

2). These
delta functions eliminate the three energy integrals overl 1

0 ,
l 2
0, andl 3

0 as well as the integral~6! overAs. For the graphs
in which three parton lines cross the cut, we can elimin
the integration overAs and two of thel J

0 integrals. One in-
tegral over the energyE in the virtual loop remains. We
perform this integration by closing the integration contour
the lower halfE plane. This gives a sum of terms obtain
from the original integrand by some algebraic substitutio
as we will see in the following sections. Having perform
the energy integrations, we are left with an integral of t
form

FIG. 1. Two cuts of one of the Feynman diagrams that cont
ute toe1e2→hadrons.
01400
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I5E d lW1d lW2d lW3(
G

(
C

g~G,C; lW1 , lW2 , lW3!. ~7!

Here there is a sum over graphsG ~of which one is shown in
Fig. 1! and there is a sum over the possible cuts of a giv
graph.

The problem of calculatingI is now set up in a conve
nient form for calculation. If we were using the Ellis-Ros
Terrano method, we would calculate some of the integral
Eq. ~7! numerically and some analytically. In the metho
described here, we first perform certain contour deform
tions, then calculate all of the integrals by Monte Carlo n
merical integration. In the following sections, we will lear
the main techniques for performing the integrations in E
~7!. We will do this by studying a simple model problem th
will enable us to see the essential features of the nume
method with as few extraneous difficulties as possible.

II. A SIMPLIFIED MODEL

In the following sections, we consider a simplified mod
in which all complications that are not needed for a fi
understanding of the numerical method are stripped aw
The model is represented by the graph shown in Fig.
There are contributions from all of the two and three par
cuts of this diagram, as shown in Fig. 3. Since QCD nume
tor functions do not play a major role, we consider this gra
in f3 theory. Thus, also, we can avoid the complications
ultraviolet renormalization. We consider the incoming m
mentumqW to be fixed and nonzero. We calculate the integ
of the graph over the incoming energyq0. This is analogous
to the technical trick of integrating overAs in the full three

-

FIG. 2. Diagram for a simple calculation. All two and thre
parton cuts of this diagram inf3 theory are used, with a measure
ment function that gives the average transverse energy in the
state.

FIG. 3. The two and three parton cuts of the simplef3 diagram.
9-2
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TECHNIQUES FOR QCD CALCULATIONS BY . . . PHYSICAL REVIEW D62 014009
loop QCD calculation~see Sec. I! and serves to provide thre
energy integrations to perform against three mass-shell d
functions for the three-parton cuts.

We need a nontrivial measurement functionS. As an ex-
ample, we choose to measure the transverse energy in
final state normalized to the total energy:

S2~kW1 ,kW2!5~ ukWT,1u1ukWT,2u!/~ ukW1u1ukW2u!

S3~kW1 ,kW2 ,kW3!5~ ukWT,1u1ukWT,2u1ukWT,3u!/~ ukW1u1ukW2u1ukW3u!,
~8!

wherekWT, j is the part of the momentumkW j of the j th final
state particle that is orthogonal toqW .

There are two loops in our diagram. We choose the in
pendent loop momenta to bel 2

m and l 4
m . The other momenta

are understood to be expressed in terms ofl 2
m , l 4

m , andqm.
Thus the example integral that we seek to calculate is

I5
g4

2 E dq0

2p E d4l 2

~2p!4E d4l 4

~2p!4W. ~9!

Here g is the coupling, 1/2 is the statistical factor for th
graph, and the integrandW consists of four parts, one fo
each of the cuts in Fig. 3:

W5Wa1Wb1Wc1Wd , ~10!

where

Wa5 iS2~ lW4 , lW5!

3
1

l 1
21 i e

1

l 2
21 i e

1

l 3
21 i e

~2p!D~ l 4!~2p!D~ l 5!,

FIG. 4. The eight contributions to the sample diagram after p
forming the energy integrations. The line through a propagator
loop indicates that this propagator is put on shell, with posit
energy flowing in the direction of the arrow. The direction for po
tive energy flow around the loop depends on whether the con
over loop energy is closed in the upper or the lower half plane
01400
lta

the

-

Wb52 iS2~ lW1 ,2 lW3!~2p!D~ l 1!

3
1

l 2
22 i e

~2p!D~2 l 3!
1

l 4
22 i e

1

l 5
22 i e

,

Wc5S3~ lW1 ,2 lW2 , lW5!~2p!D~ l 1!~2p!D~2 l 2!

3
1

l 3
2

1

l 4
2~2p!D~ l 5!,

Wd5S3~ lW4 , lW2 ,2 lW3!
1

l 1
2~2p!D~ l 2!~2p!D~2 l 3!

3~2p!D~ l 4!
1

l 5
2 . ~11!

Here we have used the notation

D~k!5d~k2!u~k0!. ~12!

III. THE INTEGRATION OVER ENERGIES

We begin by performing the integrals over the energies
Eq. ~9!. In the case of three partons in the final state,
three delta functions eliminate the three integrations. In
case of two partons in the final state, the two delta functio
eliminate two of the energy integrations. This leaves o
integration over the energy that circulates around the virt
loop. There are three poles in the upper half plane and th
in the lower half plane. Closing the contour in one half pla
or the other gives three contributions. Each of these con
butions corresponds to putting one of the particles in the lo
on shell. Thus altogether there are eight contributions toI, as
indicated in Fig. 4.

In Fig. 4, the small arrows on the lines cutting the prop
gators indicate the direction of positive energy flow. Thus
diagram~a2! we havel 2

051u lW2u while in diagram~b2! we

havel 2
052u lW2u. The direction of positive energy flow aroun

a virtual loop is determined by whether we close the cont
for the energy integration in the upper or the lower h
plane. For an individual diagram in Fig. 4~but not for the
sum of diagrams!, the direction of positive energy flow mat
ters. For instance, the integrand for contribution~a1! is sin-
gular whenlW1 and 2 lW2 lie in the same direction, while the
integrand for contribution~a3! is not singular whenlW3 and
2 lW2 lie in the same direction.

After integrating over energies, we writeI as

I5
g4

2~2p!6E d lW4E d lW2G, ~13!

where the integrandG has eight parts:

G5Ga11Ga21Ga31Gb51Gb21Gb41Gc1Gd . ~14!

The contributions toG are

r-
a

ur
9-3
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Ga15S2~ lW4 , lW5!
1

2u lW1u

1

~ u lW1u2u lW4u!22 lW2
21 i e

1

~ u lW1u2u lW4u2u lW5u!22 lW3
21 i e

1

2u lW4u

1

2u lW5u
,

Ga25S2~ lW4 , lW5!
1

~ u lW2u1u lW4u!22 lW1
21 i e

1

2u lW2u

1

~ u lW2u2u lW5u!22 lW3
21 i e

1

2u lW4u

1

2u lW5u
,

Ga35S2~ lW4 , lW5!
1

~ u lW3u1u lW4u1u lW5u!22 lW1
21 i e

1

~ u lW3u1u lW5u!22 lW2
21 i e

1

2u lW3u

1

2u lW4u

1

2u lW5u
,

Gb55S2~ lW1 ,2 lW3!
1

2u lW1u

1

~ u lW3u1u lW5u!22 lW2
22 i e

1

2u lW3u

1

~ u lW1u1u lW3u1u lW5u!22 lW4
22 i e

1

2u lW5u
,

Gb25S2~ lW1 ,2 lW3!
1

2u lW1u

1

2u lW2u

1

2u lW3u

1

~ u lW1u1u lW2u!22 lW4
22 i e

1

~ u lW3u2u lW2u!22 lW5
22 i e

,

Gb45S2~ lW1 ,2 lW3!
1

2u lW1u

1

~ u lW1u2u lW4u!22 lW2
22 i e

1

2u lW3u

1

2u lW4u

1

~ u lW1u1u lW3u2u lW4u!22 lW5
22 i e

,

Gc5S3~ lW1 ,2 lW2 , lW5!
1

2u lW1u

1

2u lW2u

1

~ u lW2u1u lW5u!22 lW3
2

1

~ u lW1u1u lW2u!22 lW4
2

1

2u lW5u
,

Gd5S3~ lW4 , lW2 ,2 lW3!
1

~ u lW2u1u lW4u!22 lW1
2

1

2u lW2u

1

2u lW3u

1

2u lW4u

1

~ u lW2u1u lW3u!22 lW5
2

. ~15!
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So far, the operations that we have performed have b
purely algebraic. They are evidently of a sort that can
easily implemented in a computer program in an autom
fashion. We are left with an integral over the loop mome
lW2 and lW4. We seek to perform this integration numerical
However, the integrandG has singularities, so it is not com
pletely self-evident how to proceed. It is to this question t
we now turn.

IV. CANCELLATION OF SINGULARITIES

In this section, we discuss the cancellation of singularit
in a numerical calculation of the integral in Eq.~13!.

Let us concentrate to begin with on the cut shown in F
3~a!. Then there is a virtual loop consisting of the propag
tors with momentum labelsl 1 , l 2 and l 3. Recall that we are
taking lW2, and lW4 as the independent loop momenta. Put
integration overlW2 inside the integration overlW4. Then we
can considerlW4 as fixed whilelW2 varies. Figure 5 illustrates
the space of the loop momentumlW2 for a particular choice of
qW and at a particular point in the integration overlW4. The
origin of coordinates is at the point labeledlW250. The vector
lW4 is indicated as an arrow with its head atlW250. Then the
point lW150 is at the tail of this vector, as indicated. Th
vector lW55qW 2 lW4 is indicated as an arrow with its tail atlW2
01400
en
e
ic
a

t

s

.
-

e

50. Then the pointlW350 is at the head of this vector, a
indicated. Finally, the vectorqW is indicated as an arrow with
its tail at lW150.

Where are the singularities of the integrand for our grap
There is, first of all, a singularity when the momentum

any propagator vanishes since there is always a contribu
in which that propagator is put on-shell, with a singular
1/(2u lWu). Since an integration*d lW/(2u lWu) is convergent in the
infrared by two powers, these singularities do not cau
much difficulty. We simply have to choose a density
points with a matching 1/u lWu singularity, as described later i
Sec. VI. We do not discuss these singularities further in t
section.

The singularities of concern to us here are
~1! A collinear singularity atlW252x lW4 with 0,x,1.

FIG. 5. Space of loop momentumlW2 for the virtual loop in the

graph of Fig. 3~a! for a representative choice ofqW , lW4, and lW55qW

2 lW4.
9-4
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~2! A collinear singularity atlW25x lW5 with 0,x,1.
~3! A soft singularity atlW250.
~4! A scattering singularity atu lW1u1u lW3u5u lW4u1u lW5u.
The locations of these singularities are indicated in Fig

A. The collinear singularities

In this subsection, we examine the collinear singularity
lW252x lW4 with 0,x,1. The principles that we discover fo
this case will hold for the other collinear singularities
well.

The termsGa1 and Gc in the integrandG, Eq. ~14!, are
singular along the linelW252x lW4 , 0,x,1. In order to ex-
amine this singularity, let us writeGa1 andGc as given in Eq.
~15! in the form

Ga15
1

2u lW21 lW4u

1

~E2
(a1)!22 lW2

2

1

2u lW4u

3R~E1 ,E2
(a1) ,E5 , lW2 , lW4!S2~ lW4 ,qW 2 lW4!, ~16!

Gc5
1

2u lW21 lW4u

1

2u lW2u

1

~E12E2
(c)!22 lW4

2

3R~E1 ,E2
(c) ,E5 , lW2 , lW4!S3~ lW1 ,2 lW2 ,qW 2 lW4!. ~17!

Here the first factors exhibit the denominators for the th
propagators that carry collinear momenta at the singula
R denotes the rest of the Feynman graph, and theS func-
tions are the measurement functions for the final state
ticles. The functionsR depend on the loop momentalW2 and
lW4 and on three loop energies, which we take to beE15 l 1

0,
E25 l 2

0 andE55 l 5
0. The energies are determined by the o

shell delta functions for the two contributions. ForE1 and
E5, the values are the same for the two contributions:

E15u lW21 lW4u,

E55uqW 2 lW4u. ~18!

For E2, the values are different:

E2
(a1)5u lW21 lW4u2u lW4u,

E2
(c)52u lW2u. ~19!

FIG. 6. Locations of singularities ofGa .
01400
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In order to examine the behavior ofGa1 and Gc near the
singularity, let

lW252x lW41 lWT , ~20!

where lWT• lW450. The singularity is atlWT→0.
In Ga1 the denominator (E2

(a1))22 lW2
2 vanishes atlWT→0:

~E2
(a1)!22 lW2

252
lWT

2

12x
„11O~ lWT

2!…. ~21!

Thus there is a 1/lWT
2 singularity which would give a logarith-

mically divergent result for the integral ofGa1 alone. Alto-
gether, the denominator factors forGa1 are

1

2u lW21 lW4u

1

~E2
(a1)!22 lW2

2

1

2u lW4u
52

1

4 lW4
2

1

lWT
2
„11O~ lWT

2!….

~22!

Let us now look at the denominator factors forGc . The
denominator (E12E2

(c))22 lW4
2 takes the form

„~E12E2
(c)!22 lW4

2
…

25
lWT

2

x~12x!
„11O~ lWT

2!…, ~23!

so that the denominator factors together take the form

1

2u lW21 lW4u

1

2u lW2u

1

~E12E2
(c)!22 lW4

2
5

1

4 lW4
2

1

lWT
2
„11O~ lWT

2!….

~24!

Again, we have a 1/lWT
2 singularity.

Note, however, that the denominator factors in Eqs.~22!
and~24! are equal except for their sign, up to corrections th
are not singular aslWT

2→0. Thus if the remaining factorsR
andS were exactly the same forGa1 andGc there would be
no singularity in their sum.

We thus need to explore the matching ofR and S. The
two versions ofR are the same functions with the sam
arguments except for the fact thatE2

(c)ÞE2
(a1) . However,

E2
(c)5E2

(a1)1O~ lWT
2!. ~25!

Thus

R~E1 ,E2
(c) ,E5 , lW2 , lW4!5R~E1 ,E2

(a1) ,E5 , lW2 , lW4!1O~ lWT
2!.
~26!

For the functionsS used in our example, we have

S3„~12x! lW41 lWT ,x lW42 lWT ,qW 2 lW4…5S2~ lW4 ,qW 2 lW4!1O~ lWT
2!.
~27!

Using these matching equations we find that

Ga11Gc5O~1! ~28!

as lWT→0. There is no collinear singularity inG.
9-5
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DAVISON E. SOPER PHYSICAL REVIEW D 62 014009
How general is this result? First of all note that, in the p
of the argument not involving the measurement functionsS,
we used only the explicit structure of the denominators
three propagators that meet at a vertex. In the limit in wh
the momenta carried on these propagators become collin
there is a cancellation of the collinear singularity arisi
from these denominators. The three propagators can be
of a much larger graph, and there can be non-trivial nume
tor factors, as in QCD. All of the other factors can be lump
into a functionR and treated as above. Thus this cancellat
works in QCD as well asf3 theory and it works for cut
graphs with at most one virtual loop at any order of pert
bation theory.

As for the measurement functions, in general we need
consider the difference between the measurement funct
with n andn11 particles in the final state,

F~ lWT!5Sn11„kW1 , . . . ,kWn21 ,xkWn2 lWT ,~12x!kWn1 lWT…

2Sn~kW1 , . . . ,kWn21 ,kWn!. ~29!

Assuming thatF is an analytic function oflWT , it will have an
expansion aroundlWT50 of the form

F~ lWT!5a1bi• l T
i 1ci j l T

i l T
j 1•••. ~30!

Infrared safety requires thata50. If biÞ0 thenF vanishes
on a surface that intersects the pointlWT50. Measurement
functionsS with this property would define an infrared sa
measurement, but I do not know of any example in comm
use. More typically,F is non-zero in a neighborhood oflWT

50 while vanishing atlWT50. Then botha and thebi must
vanish and theci j should be a positive definite~or negative
definite! matrix. Thus, for typical measurement functions,

F~ lWT!5O~ lWT
2! ~31!

as lWT→0. Then the integrand does not have collinear sin
larities.

For an atypical measurement function withbiÞ0, one
would be left with an integrable singularity of the form
bW • lWT / lWT

2 . The current version of the computer code@3# has a
mechanism to deal with this contingency, but I do not d
cuss it here since I know of no case in which it is neede

B. The soft singularities

In this subsection, we examine the soft singularity atlW2
50.

Let us concentrate to begin with on the cut graph sho
in Fig. 3~a!. When we perform the integration over the e
ergy circulating in the virtual loop, there is a contributio
from the term in which the propagator carrying momentu
l 1
m is put on shell, as in Fig. 4~a1!. This contribution isGa1 in

Eq. ~15!. Let us examine this contribution in the limitlW2

→0. Expanding in powers oflW2, we have

l 1
05u lW1u5u lW41 lW2u5u lW4u1u lW2uuW 2•uW 41•••, ~32!
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where we adopt the notation

uW J5 lWJ /u lWJu. ~33!

Then

l 2
252u lW2u2@12~uW 2•uW 4!2#1••• ~34!

and

l 3
252u lW5uu lW2uuW 2•~uW 52uW 4!1•••. ~35!

Thus

Ga1;S2

1

2u lW4u

21

u lW2u2@12~uW 2•uW 4!2#

3
1

2u lW5uu lW2uuW 2•~uW 52uW 4!1 i e

1

2u lW4u

1

2u lW5u

5
S2

16u lW4u2u lW5u2
1

u lW2u3

1

12~uW 2•uW 4!2

1

uW 2•~uW 52uW 4!1 i e
.

~36!

We proceed in this fashion to evaluate the contribution c
responding to Fig. 4~a2!. Then we evaluate the contributio
of Fig. 4~a3!, but we find that this contribution is not singula
as lW2→0. Adding the three contributions, we obtain the n
integrand for the cut graph of Fig. 3~a! in the soft limit lW2
→0:

Ga;
2S2

32u lW4u2u lW5u2

1

u lW2u3
1

11uW 2•uW 4

3
1

12uW 2•uW 5

22uW 2•~uW 52uW 4!

uW 2•~uW 52uW 4!1 i e
. ~37!

Some comments are in order here. First, we have inclu
the leading term, with a 1/u lW2u3 singularity, and dropped les
singular terms. If we decompose the integration overlW2 into
*dV2* u lW2u2du lW2u, then a 1/u lW2u3 singularity produces a loga
rithmic divergence in the integration overu lW2u. The less sin-
gular terms will lead to a finite integration overu lW2u, al-
though the integration*dV over the anglesuW 2 can still be
divergent. There are, in fact, singularities in the angular
tegration. The factor 1/@12uW 2•uW 5# is singular whenlW2 is
collinear with lW5, while the factor 1/@11uW 2•uW 4# is singular
when 2 lW2 is collinear with lW4. These singularities produc
logarithmically divergent integrations overuW 2. However, the
analysis of the previous subsection shows that the collin
singularities cancel among the cuts of our graph. There
also a singularity on the planeuW 2•(uW 52uW 4)50. This is the
scattering singularity on the ellipseu lW1u1u lW3u5u lW4u1u lW5u.
This ellipse passes through the pointlW250 and the plane
tangent to the ellipse at this point is the planeuW 2•(uW 52uW 4)
9-6
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50. I will have more to say about this singularity later. He
we note simply that it comes with ani e prescription, which
has been preserved in Eq.~37!.

We now consider the cut graph shown in Fig. 3~b!. Again,
there are three contributions to consider, corresponding
the diagrams~b5!, ~b2! and ~b4! in Fig. 4. Adding the three
contributions, we obtain the net integrand for the cut gra
of Fig. 3~b! in the soft limit lW2→0:

Gb;
S2

32u lW4u2u lW5u2

1

u lW2u3

1

12uW 2•uW 4

1

11uW 2•uW 5

3
21uW 2•~uW 52uW 4!

uW 2•~uW 52uW 4!1 i e
. ~38!

As in Eq. ~37!, there are a scattering singularity and tw
collinear singularities. However, the signs that indicate
location of the collinear singularities are reversed compa
to Eq. ~38!. If we addGa andGb we obtain

Ga1Gb;
2S2

16u lW4u2u lW5u2

1

u lW2u3

3
11~uW 2•uW 4!~uW 2•uW 5!

@12~uW 2•uW 4!2#@12~uW 2•uW 5!2#
. ~39!

Thus, the overall 1/u lW2u3 singularity remains and the collinea
singularities remain, but the scattering singularities cance
the soft limit, lW2→0, between the two cuts that leave virtu
subgraphs.

There are two more cut graphs to consider. The gr
shown in Fig. 3~c! gives

Gc;
S3

32u lW4u2u lW5u2

1

u lW2u3

1

@11uW 2•uW 4#

1

@11uW 2•uW 5#
. ~40!
ul
w
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The graph shown in Fig. 3~d! gives

Gd;
S3

32u lW4u2u lW5u2
1

u lW2u3
1

@12uW 2•uW 4#

1

@12uW 2•uW 5#
. ~41!

Adding these together, we find

Gc1Gd;
S3

16u lW4u2u lW5u2
1

u lW2u3

11~uW 2•uW 4!~uW 2•uW 5!

@12~uW 2•uW 4!2#@12~uW 2•uW 5!2#
.

~42!

We note that when we add the contributions of the c
which leave virtual subgraphs to the contributions of the c
which have no virtual subgraphs, the leading soft singula
cancels:

Ga1Gb1Gc1Gd;0. ~43!

That is, after cancellation, the overall singularity is at wo
proportional to 1/u lW2u2. It is thus an integrable singularity
provided that all of the singularities of the angular integ
tion overuW 2 cause no problems.

The cancellation of the leading soft singularity is bu
into the structure of Feynman diagrams, so that we do
have to do anything special to make it happen. Howev
there is a certain subtlety in arranging for the singularities
the angular integrations to be convergent in a Monte Ca
integration. Thus, we will return to the cancellation of th
soft singularity after we have discussed contour deformati
in the following section.

V. THE SCATTERING SINGULARITY AND CONTOUR
DEFORMATION

Consider the contribution from Fig. 4~a1!, as given in Eq.
~15!. There is a factor
1

~ u lW1u2u lW4u2u lW5u!22 lW3
21 i e

5
1

~ u lW3u1u lW4u1u lW5u2u lW1u!~ u lW4u1u lW5u2u lW1u2u lW3u1 i e!
, ~44!
for
the

-

use

a-

an
o

a
ion
which has a singularity whenu lW1u1u lW3u5u lW4u1u lW5u. In an
analysis using time-ordered perturbation theory, the sing
factor emerges from the energy denominator associated
the intermediate state consisting of partons 1 and 3,

EF2E~ lW2!1 i e, ~45!

whereEF5u lW4u1u lW5u and

E~ lW2!5u lW1u1u lW3u5u lW41 lW2u1u2 lW51 lW2u. ~46!
ar
ith

Thus the singularity appears when the momenta are right
particles 1 and 3 to be on-shell and scatter to produce
final state particles 4 and 5.

The contribution from Fig. 4~b4! has a scattering singu
larity at the same place as that from the cut diagram~a1!.
However, these singularities do not cancel in general beca
the functionsS2( lW4 , lW5) and S2( lW1 , lW3) do not match. We
thus have a problem if we would like to perform the integr
tion numerically.

We notice, however, that the singularity is protected by
i e prescription. Thei e in the denominator tells us what to d
in an analytic calculation and it also tells us what to do in
numerical calculation: we need to deform the integrat
9-7
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DAVISON E. SOPER PHYSICAL REVIEW D 62 014009
contour.
We are integrating over a loop momentumlW2. Let us re-

placelW2 by a complex momentumlW2,c5 lW21 ikW , wherekW is a
function, which remains to be determined, oflW2. Then as we
integrate over the real vectorlW2, we are integrating over a
contour in the space of the complex vectorlW2,c . When we
deform the original contourlW2,c5 lW2 to the new contourlW2,c

5 lW21 ikW , the integral does not change provided that we
not cross any points where the integrand is singular and
vided that we include a Jacobian

J~ lW2!5detS ] l 2,c
i

] l 2
j D . ~47!

There are some subtleties associated with this; the rele
theorem is proved in the Appendix.

We need to choosekW as a function oflW2. Consider first
the direction ofkW . On the deformed contour, the energy d
nominator~45! has the form

EF2E~ lW21 ikW !1 i e. ~48!

In order to fix the direction of deformation, it is useful t
consider what happens when we deform the contour ju
little way from the reallW2 space. For smallk, we have

E~ lW21 ikW !'u lW1u1u lW3u1 ikW •wW , ~49!

where

wW 5
lW1

u lW1u
1

lW3

u lW3u
. ~50!

Thus the energy denominator isEF2E( lW2)2 ikW •wW 1 i e for
small kW . In order to keep on the proper side of the singul
ity, we wantkW •wW to be negative. The simplest way to insu
this is to choosekW in the direction of2wW . Thus we choose

kW 52D~ lW2!wW , D~ lW2!>0. ~51!

Then the singular factor is approximately

1

EF2E~ lW2!1 iD ~ lW2!wW 2
~52!

for a small deformation. For a larger deformation, it is not
simple to see that we stay on the correct side of the sin
larity, but it is easy to check numerically.

The next question is how should we chooseD( lW2)? We
want D not to be small whenlW2 is near the surfaceE( lW2)
5EF in order that the integrand not be large there. We w
D( lW2) not to grow aslW2

2→` in order to satisfy the condition
for the theorem that deforming the contour does not cha
value of the integral. Since there is no reason to keep
01400
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finite contour deformation for largelW2
2, we will simply

choose to haveD( lW2)→0 as lW2
2→`.

There is another condition thatD( lW2) should obey: it
should vanish at points whereG has collinear and soft singu
larities. To see why takes some discussion.

Consider the contributions from three parton cuts,
which there is no virtual loop. For these contributions, we
not want to deform the contours. This is because if any of
loop momenta were complex then at least one of the m
menta of the final state particles would be complex. In pr
ciple, one could have complex momenta for final state p

ticles as long as the measurement functionsSn(kW1 , . . . ,kWn)
are analytic. However, I have in mind applications in whi
the numerical integration program acts as a subroutine
produces ‘‘events’’ with final state particle momen

$kW1 , . . . ,kWn% and weights computed by the subroutine. Th
the events could be the input to, for example, a Monte Ca
program that generates parton showers and hadroniza
Surely complex momenta for the final state particles are
desirable.

Now recall that there is a cancellation among the con
butionsGC from different cutsC at points where theGC have
collinear and soft singularities. Evidently, if we deform th
contour for a contribution with a virtual graph but do n
deform the contour for the canceling contribution, then t
cancellation can be spoiled. We can avoid spoiling the c
cellation if we make the contours match at the singular
That is,D( lW2) should vanish at the points where theGC have
collinear and soft singularities.

We also need to determine how fastD( lW2) needs to ap-
proach zero aslW2 approaches a singularity. Since the integ
tion is in a multidimensional complex space, we need
analysis that makes use of the multidimensional contour
formation theorem. This analysis is given in the Append
Here, I present a simpler one dimensional analysis that
serve to clarify the issue.

Consider the following toy integral:

I 5E
0

xmaxdx

x H f V~x!

x211 i e
1 f R~x!J . ~53!

Here the endpoint singularity atx50 plays the role of the
collinear or soft singularities. The functionf V /(x211 i e)
plays the role of the integrand for the contribution with
virtual subgraph. In this contribution, there is a singularity
x51 that comes with ani e prescription. The functionf R
plays the role of the integrand for the contribution with n
virtual subgraph. We assume thatf V(z) and f R(z) are ana-
lytic functions. We also assume thatf V(0)5 f R(0), so that
the apparent singularity atx50 cancels.

Now thei e prescription on the singularity atx51 tells us
that we can deform the integration contour into the up
half plane, replacing x by z5x1 iy(x) where y(0)
5y(xmax)50. Thus
9-8
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I 5E
0

xmax
dx

11 iy8~x!

x1 iy~x! H f V„x1 iy~x!…

x211 iy~x!
1 f R„x1 iy~x!…J .

~54!

Suppose, however, that we want to keep the contour fof R

on the real axis. Then we might hope thatI 5 Ĩ , where

Ĩ 5 lim
xmin→0

E
xmin

xmax
dxH 11 iy8~x!

x1 iy~x!

f V„x1 iy~x!…

x211 iy~x!
1

f R~x!

x J .

~55!

The difference is

Ĩ 2I 5 lim
xmin→0

E
xmin

xmax
dxH f R~x!

x
2@11 iy8~x!#

f R„x1 iy~x!…

x1 iy~x! J .

~56!

If we note that@ f R(z)2 f R(0)#/z is an analytic function even
at z50 and that the integral of an analytic function around
closed contour vanishes, we have

05 lim
xmin→0

E
xmin

xmax
dxH f R~x!2 f R~0!

x

2@11 iy8~x!#
f R„x1 iy~x!…2 f R~0!

x1 iy~x! J . ~57!

Subtracting these and performing the integral, we have

Ĩ 2I 5 f R~0! lim
xmin→0

E
xmin

xmax
dxH 1

x
2

11 iy8~x!

x1 iy~x! J
5 f R~0! lim

xmin→0
logS 11 i

y~xmin!

xmin
D . ~58!

We can draw two conclusions. First, as long asy(x)→0
at least as fast asx1 asx→0, we will realize the cancellation
of the x→0 singularity and obtain a finite value forĨ . Sec-
ond, if we choosey(x)}x as x→0, Ĩ will be finite, but it
will not be equal to the correct resultI. In order to get a
result Ĩ that is not only finite but also correct, we nee
y(x)/x→0 asx→0. A convenient choice isy(x)}x2 as x
→0.

We conclude from the multidimensional extension of th
analysis, given in the Appendix, that aslW2 approaches a sin
gularity, D( lW2) should approach zero quadratically with th
distance to the singularity.

We now use the qualitative criteria just developed to g
a specific choice of deformation. We have chosen

lW2,c5 lW22 iD ~ lW2!wW , ~59!

wherewW , Eq.~50!, specifies the direction of deformation. W
now specify a deformation functionD( lW2) that satisfies our
criteria. We writeD in the form

D5CG. ~60!
01400
e

The factorC is designed to insure that the deformation va
ishes quadratically near the collinear and soft singularit
The factorG is designed to turn the deformation off for larg
lW2. These factors are explained below and are defined
cisely in Eqs.~64! and ~67! below.

First, we discuss the factorC. We want the deformation to
vanish at the linelW252x lW4 with 0<x<1, where the ampli-
tude has a collinear singularity.~Since lW45 lW12 lW2, this line
is also lW152l lW2 with 0,l,`.! Define

d125
zu lW2u lW11u lW1u lW2z

u lW12 lW2u
5

zu lW2u lW11u lW1u lW2z

u lW4u
. ~61!

This function is zero on the linelW252x lW4 with 0<x<1,
and furthermore, it vanishes linearly aslW2 approaches this
line. Similarly, we want the deformation to vanish on the li
lW25x lW5 with 0<x<1, where the amplitude has its othe
collinear singularity. The functiond23, where

d235
zu lW3u lW21u lW2u lW3z

u lW22 lW3u
5

zu lW3u lW21u lW2u lW3z

u lW5u
, ~62!

vanishes linearly aslW2 approaches this line.~To see this, use
lW55 lW22 lW3.! Let

d5min~d12,d23!. ~63!

Then d vanishes linearly with the distance to either of t
collinear singularities. It also vanishes linearly with the d
tance to the soft singularity atlW250.

Now, we have seen that the deformation should van
quadratically with the distance to any of the singularities. W
can achieve this by letting

C~d2!5
ad2

114bd2/~ u lW4u1u lW5u1uqW u!2
, ~64!

where a and b are adjustable dimensionless paramete
Note that, for larged, C(d2) approaches a constant.

Next, we discuss the factorG. We want to ensure that th
contour deformation vanishes for largelW2. Let us define

a5u lW1u1u lW3u2uqW u ~65!

and

A5u lW4u1u lW5u2uqW u. ~66!

Then the singularity that we are avoiding by means of c
tour deformation is ata5A. We can turn the deformation of
for a@A by setting

G~a!5
1

A1ga
, ~67!

whereg is an adjustable dimensionless parameter.
9-9
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DAVISON E. SOPER PHYSICAL REVIEW D 62 014009
There is a subsidiary reason for this choice. At the sin
larity, G51/@(11g)A#. The factor 1/A serves to enhanc
the deformation in the case thatlW4 and lW5 are nearly collin-
ear, in which cased is small on the ellipsea5A and the
deformation would otherwise be too small.

The reader will note that, while there is a certain uniqu
ness in defining the direction of the deformation in Eq.~59!

to be given by the vectorwW , Eq. ~50!, the normalizationD
5CG with C andG given in Eqs.~64! and~67! is ratherad
hoc. Within the requirements that the deformation shou
vanish quadratically at the collinear and soft singularities a
should vanish for largelW2, many other choices would b
possible. The choice given here is used in the current ver
of the code@3#. Surely there is some other choice that
better.

VI. THE MONTE CARLO INTEGRATION

After the contour deformations, we have an integral of
form

I5E dl(
C

J~C; l !g„C; l 1 ik~C; l !…, ~68!

where we usel for the loop momenta collectively,l
5$ lW2 , lW4%. The indexC labels the cut,a, b, c, or d in Fig. 3.
There is a contour deformation that depends on the cut
specified byk(C; l ), and there is a corresponding Jacobi
J(C; l ), Eq. ~47!. Define

f ~ l !5RH(
C

J~C; l !g„C; l 1 ik~C; l !…J . ~69!

We know thatI is real, so

I5E dl f ~ l !. ~70!

To perform the integration, we use the Monte Ca
method. We choose pointsl with a densityr( l ), with

E dlr~ l !51. ~71!

After choosingN points l 1 , . . . ,l N , we have an estimate fo
the integral:

I'IN5
1

N (
i

f ~ l i !

r~ l i !
. ~72!

This is an approximation for the integral in the sense tha
we repeat the procedure a lot of times the expectation v
for IN is

^IN&5I. ~73!

The expected rms error isE, where

E 25^~IN2I!2&5
1

NE dl
f ~ l !2

r~ l !
2

I 2

N
. ~74!
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One can rewrite this as

E 25
1

NE dlr~ l !S u f ~ l !u
r~ l !

2ĨD 2

1
Ĩ 22I 2

N
, ~75!

where

Ĩ5E dlu f ~ l !u. ~76!

We see, first of all, that the expected error decreases pro
tionally to 1/AN. Second, we see that the ideal choice ofr( l )
would ber( l )5u f ( l )u/Ĩ.

Of course, it is not possible to chooser in this way. But
we know thatu f u has singularities at places where propaga
momenta vanish and we know the structure of these sin
larities. We are not really able to chooser so thatu f ( l )u/r( l )
is a constant, but at least we can choose it so thatu f ( l )u/r( l )
is not singular at the singularities ofu f ( l )u.

Note that it is easy to combine methods for choos
Monte Carlo points. Suppose that we have a recipe
choosing points with a densityr1 that is singular when one
propagator momentum vanishes, a recipe for choosing po
with a densityr2 that is singular when another propagat
momentum vanishes, and in general recipes for choos
points with densitiesr i with several goals in mind. Then w
can devote a fractionl i of the points to the choice with
densityr i and obtain a net density

r~ l !5(
i

l ir i~ l !. ~77!

A. The density near where a propagator momentum vanishes

Let lWJ be the momentum of one of the propagators in o
graph. We have seen that when particleJ appears in the fina
state, there is a factor 1/u lWJu in the integrand. When propaga
tor J is part of a virtual loop, the contribution correspondin
to this propagator being put on shell also contains a fac
1/u lWJu. Thus there is a singularity 1/u lWJu for every propagator
in the graph.

The analysis given in the introduction to this section
dicates that for each propagatorJ one of the termsr i in the
density function should have a singularity that is at least
strong as

r i~ l !}1/u lWJu ~78!

as lWJ→0. It is, of course, easy to choose points with a de
sity proportional to 1/u lWJuA as lWJ→0 as long asA,3. @The
limitation on A arises because forA>3 we would have
*d lWJr( l )5`.# Thus it is easy to arrange that the density
points has the requisite singularities. Specifically, we c
chooselWJ with the density

r̃~ lWJ!5
1

2pK0
3

1

@11~ u lWJu/K0!2#2

K0

u lWJu
, ~79!
9-10
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where K0 is a momentum scale determined by the oth
previously chosen, loop momenta.

The singularity whenlWJ→0 can be more severe tha
1/u lWJu, depending on the structure of the graph. Consider
the casesJ51,3,4,5. Here, the singularities for particul
cuts, as given in Eq.~15!, are 1/u lWJu2. However, there is a
cancellation after one sums over cuts~as for the singularity
for lW2→0), leaving a singularity 1/u lWJu.

For J52 there is a severe singularity of the form 1/u lWJu3

for particular contributions to Eq.~15!. A 1/u lW2u3 singularity
would not be integrable, but, as we have seen in detail, th
is a cancellation among the contributions so that only
1/u lW2u2 singularity is left. However, it will not do to simply
choser i( l )}1/u lW2u2 because there is also a singularity in t
space of the angles oflW2. It is to this subject that we now
turn.

B. The soft parton singularity

When two partons can scatter by exchanging a pa
before they enter the final state, there is a severe singul
as the momentum of the exchanged parton goes to zero
our graph, this happens forlW2→0. In this subsection, we
consider the behavior of the integrand for smalllW2 as a func-
tion of its magnitudelW2 and of its directionuW 25 lW2 /u lW2u.

The singularity for individual cuts, as given in Eq.~15!, is
of the form 1/u lW2u3 when we letu lW2u→0 with uW 2 held fixed.
This singularity is not integrable. However, as we have se
the leading term cancels when we sum over cuts, leavin
1/u lW2u2 singularity for u lW2u→0 with uW 2 fixed.

Let us now recall from Eq.~37! that, before we deform
the integration contour, the contribution for smalllW2 from the
cut a of Fig. 3 has, in addition to a factor 1/u lW2u3, a factor
1/@uW 2•(uW 52uW 4)1 i e#. That is, there is a singularity on a su
face in the space oflW2 whose tangent plane is the plan
perpendicular touW 52uW 4. We have avoided this singularity b
deforming the integration contour. However, the deformat
vanishes aslW2→0. Thus we must face the question of wh
happens to the cancellation near the soft parton singula
when the contour deformation is taken into account.

First, let us recall from Eq.~59! that for cuta in Fig. 3 the
deformation has the form

lW2,c5 lW22 iD ~ lW2!wW , ~80!

wherewW 5uW 11uW 3. For lW2→0,

wW ;uW 42uW 5 , ~81!

while D has the form

D~ lW2!; lW2
2D̃~uW 2!. ~82!

HereD̃ vanishes foruW 252uW 4 and foruW 25uW 5 and is positive
elsewhere. Thus
01400
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lW2,c5u lW2u„uW 21 i u lW2uD̃~uW 2!~uW 52uW 4!1O~ lW2
2!…. ~83!

Substituting l 2,c as given above forlW2 in Eq. ~37!, we
obtain an expression for the contribution from cuta to the
integrand on the deformed contour near the soft singular

Ga;
2S2

32u lW4u2u lW5u2
1

u lW2u3

1

11uW 2•uW 4

1

12uW 2•uW 5

3
22uW 2•~uW 52uW 4!

uW 2•~uW 52uW 4!1 i u lW2uD̃~uW 2!~uW 52uW 4!2
. ~84!

There are two cases to consider. First, whenu lW2u→0 with uW 2
fixed, we can drop the second term in the last denomina
ThenGa;h(uW 2)/u lW2u3, where the functionh(uW 2) is the same
as on the undeformed contour. As we have seen, the lea
1/u lW2u3 terms cancel when one sums over cuts. Thus, as n
earlier, the net integrand behaves like

G;htot~uW 2!/u lW2u2 ~85!

when u lW2u→0 with uW 2 fixed.
The second case is more interesting. Consideru lW2u→0

and uW 2•(uW 52uW 4)→0 with uW 2•(uW 52uW 4)/u lW2u fixed. ThenGa

is more singular,Ga}1/u lW2u4. To see what happens in thi
region, we analyze the contribution from cutb in Fig. 3 in
the same fashion. The contour deformation for cutb is dif-
ferent from that for cuta, but the deformations match a
leading order asu lW2u→0. ~This is an important feature of th
choice of contour deformations.! Thus we can use Eq.~83! in
Eq. ~38! to obtain

Gb;
S2

32u lW4u2u lW5u2
1

u lW2u3

1

12uW 2•uW 4

1

11uW 2•uW 5

3
21uW 2•~uW 52uW 4!

uW 2•~uW 52uW 4!1 i u lW2uD̃~uW 2!~uW 52uW 4!2
. ~86!

We see thatGb is also proportional to 1/u lW2u4 in the problem-
atic region. However, sinceu2•u4;u2•u5 in this region, the
leading 1/u lW2u4 behavior cancels when we addGb to Ga . We
are left with the next term, proportional to 1/u lW2u3.

For the two remaining cuts there is no contour deform
tion. The contributions from these cuts are each proportio
to 1/u lW2u3. Calculation shows that there is no further canc
lation. Thus the net behavior of the integrand is

G}1/u lW2u3 ~87!

when u lW2u→0 and uW 2•(uW 52uW 4)→0 with uW 2•(uW 52uW 4)/u lW2u
fixed.
9-11
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C. Density near a soft parton singularity

According to the analysis at the beginning of this secti
we should choose a density of integration points that ha
singularity that is at least as strong as that ofuGu near the soft
singularity atlW2→0. Thus we should choose one of ther i so
that

r i~ l !}
1

u lW2up
, u lW2u→0, uW 2 fixed,

r i~ l !}
1

u lW2up11
, u lW2u→0,

uW 2•~uW 52uW 4!

u lW2u
fixed,

~88!

with p>2.
Specifically, having chosenlW4 we can choose the remain

ing loop momentumlW2 with the density

r̃~ lW2!5
1

2pK0
3

1

@11~ u lW2u/K0!(32p)# (52p)/(32p) S K0

u lW2u
D p

3
1

GAcos2~u!1 lW2
2/K0

2
. ~89!

Here K0 is a momentum scale determined bylW4 , u is the
angle betweenlW2 and (uW 52uW 4), and

sinh~G!5K0 /u lW2u. ~90!

It is easy to choose points with this density by first choos
u lW2u, then choosing cos(u), and finally choosing the corre
sponding azimuthal anglef with a uniform density. Ac-
counting for the fact thatG} log(ulW2u) for lW2→0, we see that
r̃ will have a singularity stronger than that ofG provided that
p.2. We will see how this works in a numerical example
the next section.

VII. NUMERICAL EXAMPLE

In this section, I illustrate the principles developed abo
by means of a particular example. We consider the inte
in Eq. ~13!. We hold lW4 fixed and consider the integrand as
function of lW2. In order to simplify the labelling, I define

lW2[ lW. ~91!

There is a contribution for each cutC, with C
5a, b, c, or d. For each contribution from a cutC in
which there is a virtual loop, we want to deform the integ
tion contour as discussed in Sec. V. ThuslW gets replaced by
a complex vectorlWc5 lW1 ikW C and we need to supply a Jac
bian JC( lW), Eq. ~47!. Then the integration overlW has the
form
01400
,
a

g

e
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E d lW(
C

JC~ lW !GC~ lW !. ~92!

The functionsGC are the analytic continuations to the d
formed contours of the functions given in Eq.~15!. As dis-
cussed in Sec. VI, the quantity that is relevant for the c
vergence of the Monte Carlo integration is the integra
divided by the density of points chosen for the integration.
this section, I consider only the integration overlW, so I dis-
cuss a choice for the density of integration pointsr( lW) at a
fixed lW4 and display plots of the functions

FC~ lW ![
1

r~ lW !
JC~ lW !GC~ lW ! ~93!

andF( lW)5(CFC( lW), as well as plots of the deformation an
the density.

For the numerical examples, I choose

qW 5~3,20.5,0! ~94!

and then takelW4 at the point

lW45~2,21,0!. ~95!

Since lW55qW 2 lW4 we have

lW55~1,0.5,0!. ~96!

The singularities of the functionsGC( lW) lie in the plane oflW4

and lW5, that is thel z50 plane. In the plots, I choosel z50, so
that we see the effect of the singularities. I plotukW au, ukW bu, r,
Fa , Fb , Fc1Fd andF as functions ofl x and l y in the do-
main 22.5, l x,1.0 and21.0, l y,2.0.

Consider first the contour deformation for cuta, lW→ lWc

5 lW1 ikW a . I takekW a52DwW as given in Eqs.~59!–~67! with
a5b5g51. In Fig. 7, I show a graph ofukW au versusl x and
l y . We see that the deformation is not small. I also display
the figure the lineslW52x lW4 with 0,x,1 and lW5x lW5 with
0,x,1, where the collinear singularities for cuta are lo-
cated. We see that, as desired, the deformation vanishes
dratically aslW approaches these lines.

There is a different contour deformation for cutb. The
same formulas apply as for cuta with the replacements
lW4↔ lW1 , lW5↔2 lW3 , lW↔2 lW and with the sign ofkW reversed. I
show a graph ofukW bu versusl x and l y in Fig. 8. ~This figure
does not look like Fig. 7 becauselW varies withlW4 held fixed,
not with lW1 held fixed as would be needed if we applied t
replacementlW4↔ lW1 to Fig. 7.! I also display in the figure the
lines lW5l lW4 with 0,l and lW52l lW5 with 0,l, where the
collinear singularities for cutb are located. The deformatio
vanishes quadratically aslW approaches these lines.

The Jacobian functionsJa( lW) andJb( lW) associated with
the contour deformations are quite unremarkable, so I o
showing them.
9-12
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Consider next the density of integration points. I choo

r~ lW !50.2r1~ lW1!10.6r2~ lW !10.2r3~ lW3!, ~97!

as shown in Fig. 9. The functionr1 has a mild singularity as
lW1→0 and is given by Eq.~79! with lW15 lW42 lW and withK0

set equal to 2. The functionr3 has a mild singularity aslW3

→0; I use the same functional form withlW35 lW2 lW5. For r2,
I use the function given in Eq.~89! with K052 and with the
power p taken as p52.2. Then r2 has a strong
1/@ u lWu2.2log(ulWu)# singularity as we approach thelW50. Fur-
thermore, the density of points is largest near the planel y

50, the plane that is tangent atlW50 to the ellipsoidal sur-
face that~if we turn off the deformation! contains the scat
tering singularity. In order to display the dependence ofr on
angle nearlW50, I plot in Fig. 10 the angle dependent fact
in r2, namely the factor

FIG. 7. Contour deformation for cuta. The absolute value of the

imaginary partkW a of lWc for cut a is plotted againstl x and l y at l z

50. The deformationkW a vanishes at the two collinear singularitie
for this cut, which are indicated by lines superimposed on
graph.

FIG. 8. Contour deformation for cutb. The absolute value of the

imaginary partkW b of lWc for cut b is plotted againstl x and l y at l z

50. The deformationkW b vanishes at the two collinear singularitie
for this cut, which are indicated by lines superimposed on
graph.
01400
u lWu/K0

Acos2~u!1 lW2/K0
2

~98!

in Eq. ~89!, in a region nearlW50. Here cos(u)5ly /ulWu. We see
that the density of integration points is heavily concentra
very near the planel y50 whenu lWu is small.

We are now ready to look at the contributionFa
5JaGa/r to F from cut a. This function is displayed in Fig
11 with a small rectangle nearlW50 removed from the graph
We see the two collinear singularities, atlW52x lW4 and at lW

5x lW5 with 0,x,1. As lW approaches one of these singula
ties,Fa approaches2`.

In the standard method for calculatingI, we would per-
form the integration overlW analytically for the contribution
from cut a. Because of the singularities, the integration
divergent. However, we can get a finite answer if we regul
the integral by working in 322e spatial dimensions. Then
the result contains terms proportional to 1/e2 and 1/e as well
as a remainder that is finite ase→0.

What about the contribution toF from cutb, the other cut
for which there is a virtual subgraph? This function is d

e

e

FIG. 9. Density of integration points. The density has three s
gularities. Only valuesr,1 are shown.

FIG. 10. Angle dependent factor for the densityr2 of integra-

tion points associated with the soft singularity. For smallu lWu, points
are concentrated nearu50.
9-13
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DAVISON E. SOPER PHYSICAL REVIEW D 62 014009
played in Fig. 12 with the same small rectangle nearlW50
removed from the graph. We see the two collinear singul
ties, atlW5l lW4 and atlW52l lW5 with 0,l,`. As with Fa ,
as lW approaches one of these singularities,Fb approaches
2`.

There are two cuts,c andd, for which there are no virtua
subgraphs. In Fig. 13 I show the contributionFc1Fd from
these cuts. We see thatFc1Fd approaches1` at just the
singularities whereFa andFb approach2`.

In the standard method for QCD calculations, we wou
perform the integration overlW partially numerically for the
contribution from cutsc andd. Of course, we would have to
do something about the collinear and soft singularities, si
otherwise we would obtain an infinite result. For instance
we were to use the phase-space slicing method, we w
slice away a small part of the integration domain near
singularities and calculate its contribution analytically in
22e spatial dimensions in the limit that the region slic
away is small. Then we would be left with a numerical int
gration ofGc1Gd in the remaining region~in exactly 3 spa-

FIG. 11. Contribution toF from cut a. The domain21, l x

,1, 20.3, l y,0.3, which contains the soft singularity, has be
removed from the plot in order to make the collinear singularit
visible. The functionFa is singular along lines from (22,1) to
(0,0) and from (0,0) to (1,0.5). Only valuesFa.2100 are shown.

FIG. 12. Contribution toF from cut b. The same rectangula
domain as in Fig. 11 has been removed from the plot. The func
Fb is singular along lines that extend from (0,0) to infinity in th
directions (22,21) and (2,21). Only values Fb.2100 are
shown.
01400
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tial dimensions!. Evidently, the density of points used in th
present method would not do for this purpose; we wo
need to expend more points on the region near the collin
singularities.

We see that the standard method for performing the in
grations, in which some parts of the integrations are p
formed analytically and some are performed numerically,
of necessity, rather complicated. In the numerical meth
we simply combineGa , Gb , Gc , and Gd and integrate nu-
merically. The argument in the preceding sections show
that the contributions from the various cuts cancel as
approaches the collinear singularities. This is illustrated
Fig. 14, where I plotFa1Fb1Fc1Fd versusl x and l y . We
see, first of all, that the singular behaviors at the collin
singularities cancel, just as the calculation of Sec.
showed. There is also a cancellation at the soft singularit
lW50. There is still a singularity in the integrand atlW50, but
it is integrable and is removed fromF by choosing a suitable
density of pointsr. ThusF remains less than about 20 e
erywhere.

We can see the remnants of the scattering singula
which is located on an ellipsoidal surface that intersects
plane l z50. If it were not for the contour deformation,F

s

n

FIG. 13. Contribution toF from cutsc andd. The same rectan-
gular domain as in Fig. 11 has been removed from the plot.
function Fc1Fd is singular along lines that extend from (1,0.5)
infinity in the direction (22,21) and from (22,1) to infinity in the
direction (2,21). Only valuesFc1Fd,100 are shown.

FIG. 14. The net functionF with the contributions from cutsa,
b, c and d combined. There are no collinear singularities. Wh
remains after cancellation from the soft singularity is removed
the density of points in the denominator ofF. The remnants of the
scattering singularity are visible, but there is no actual singula
because of the contour deformation.
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would be singular on this surface, approaching1` as one
approached the surface from one side and approaching2`
as one approached the surface from the other side. Sinc
deformed contour avoids the singularity, the singular beh
ior is removed and we are left with a ridge and valley ne
the ellipsoid. This structure is illustrated in Fig. 15, in whic
we see a slice through the ridge and valley atl x520.3.
Since the amount of deformation vanishes as one approa
lW50, the width of the ridge and valley structure becom
more and more narrow asu lWu→0. Recall that the densityr of
integration points is designed to match this increasing n
rowness asu lWu→0, so that the integration points are conce
trated where the structure is.

VIII. OTHER ISSUES

In the preceding sections, we have seen the most im
tant features of the method of numerical integration for o
loop QCD calculations. There are other important issues
are outside of the scope of this paper. I mention these bri
here.

First, full QCD has a much more complicated structu
thanf3 theory, which was the example for this paper. Ho
ever, the complications of full QCD are in the numerators
the expressions representing Feynman diagrams, while
cancellations and the analytic structure related to the con
deformation have to do with the denominator structure. T
one can simply generate the numerator structure with c
puter algebra and carry it along.

Second, the denominator structure in the example use
this paper is not the only denominator structure that o
needs to treat. In the QCD calculation for three-jet-like qu
tities in electron-positron annihilation at orderas

2 , there are
five possibilities for how a virtual subgraph can occur ins
an amplitude. The possibilities are indicated in Fig. 16. F
each possibility there is an entering line representing the
tual photon orZ boson, which we take to have zero thr
momentum, and there are three on-shell lines entering
final state. There are graphs of two types,~a! and ~b!, con-
taining two point virtual subgraphs. There are graphs of t
types,~c! and ~d!, containing three point virtual subgraph
There is one type,~e!, of graph with a four point virtual
subgraph. In structure~c!, a line with non-zero three momen
tum enters the three point virtual subgraph and two on-s
lines leave. This is the case that we analyzed in the exam
of this paper. The structure of the graph led to the singula
structure depicted in Fig. 6. Amplitudes of types~d! and ~e!
have different singularity structures from that studied he

FIG. 15. Structure ofF along a slice through Fig. 14 atl x

520.3. Note that the ridge and valley structure is very narrow
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Case~d! is simpler than the case we have studied, while c
~e! is somewhat more complicated. However, the essen
features are those that we have already studied.

This leaves virtual self-energy subgraphs. In case~a!,
there is a self-energy subgraph on a propagator that en
the final state. This case requires a treatment different fr
that discussed in the previous sections. This is evident
cause there is a nominal 1/k2 where k250. The treatment
required is to represent the virtual self-energy via a disp
sion relation@1#. In this representation, the subgraph is e
pressed as an integral over the three-momentum in the vir
loop with an integrand that is closely related to the integra
for the corresponding cut self-energy graph. The point-
point cancellation between real and virtual graphs is th
manifest. It is convenient also to use the dispersive repre
tation for the much easier case~b!.

Third, we have to do something about ultraviolet dive
gences in virtual subgraphs. These are easily removed@1# by
subtracting an integrand that, in the region of large loop m
menta, matches the integrand of the divergent subdiagr
The integrand of the subtraction term should depend o
mass parameterm that serves to make the subtraction te
well behaved in the infrared. Then, with the aid of a sm
analytical calculation for each of the one loop divergent s
diagrams that occur in QCD, one can arrange the defini
so that thisad hocsubtraction has exactly the same effect
MS subtraction with scale parameterm.

Fourth, I use Feynman gauge for the gluon field, but th
self-energy corrections on a gluon propagator require spe
attention @1#. The one loop gluon self-energy subgrap
pmn(k), contains a term proportional tokmkn that contributes
quadratic infrared divergences@5#, while the cancellation
mechanism that we have studied in this paper takes car
logarithmic divergences. This problem can be solved by
placing pmn by Pa

mpabPb
n , wherePa

m5ga
m2kmk̃a / k̃2, with

k̃5(0,kW ). The terms added topmn are proportional to either
km or kn and thus vanish when one sums over different wa
of inserting the dressed gluon propagator into the remain

FIG. 16. Ways to insert virtual subdiagrams in Feynman d
grams fore1e2→3 partons.
9-15
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subgraph. SincePa
mka50, the problematickmkn term is

eliminated. Effectively, this is a change of gauge for dres
gluon propagators from Feynman gauge to Coulomb gau

Most of these issues are discussed briefly in@1#. A quite
detailed, but not very pedagogical, treatment can be foun
@6#. Further analysis of these issues is left for a future pa

I have also not given a complete presentation of al
rithms for choosing integration points. As discussed in S
VI C, the crucial issue is to have the right singularities in t
density of points near a soft parton singularity of the Fe
man diagram. This is not the only issue that needs to
addressed in a complete algorithm. Of course, the dem
stration program@3# has a complete algorithm. However, th
algorithm is quite a hodge-podge of methods and it see
that a detailed exposition should be reserved for a better
more systematic method, which remains to be developed

IX. RESULTS AND CONCLUSIONS

In the preceding sections, we have seen some of the t
niques needed for the numerical integration method for Q
calculations. Of course, since not all of the techniques h
been explained, the explanation does not constitute a
convincing argument that such a calculation is feasible
truly exhaustive explanation would help, but an actual co
puter program that demonstrates the techniques is better
sults from such a program were presented in@1#. Since then,
I have found and corrected one bug that resulted in erro
little bit bigger than 1% and have made some other impro
ments in the code. The resulting code and documentation
available at@3#.

The program is a parton-level event generator. The use
to supply a subroutine that calculates how an event w
three or four partons in the final state contributes to the
servable to be calculated. The program supplies events,
consisting of a set of parton momenta$kW1 ,kW2 ,kW3% or

$kW1 ,kW2 ,kW3 ,kW4%, together with weightsw for the events. Then
the user routine calculatesI according to

I'
1

N (
i 51

N

wiS~ki !. ~99!

The weights used are the real parts of complex weights;
imaginary parts can be dropped since we always know
advance thatI is real. Thus the weights are both positive a
negative. It would, of course, be more convenient to ha
only positive weights, but one can hardly have quantum
terference without having negative numbers along with po
tive numbers.

The first general purpose program for QCD calculation
three-jet-like quantities ine1e2→hadrons at orderas

2 was
that of Kunszt and Nason@7#. This program uses the
numerical-analytical method of Ellis, Ross, and Terrano.
Table I, I compare the results of the Kunszt-Nason progr
to those obtained with the numerical method for theas

2 con-
tributions to moments of the thrust distribution,
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In5
1

s0~as /p!2E
0

1

dt~12t !n
ds [2]

dt
. ~100!

In Table II, I compare the results of the two methods f
moments of theycut distribution for the three jet cross sec
tion. To define these quantities, letf 3(ycut) be the cross sec
tion to produce three jets according to the Durham algorit
@8# with resolution parameterycut. Let g3(ycut) be the nega-
tive of its derivative,

g3~ycut!52
f 3~ycut!

dycut
. ~101!

Then we calculate moments of theas
2 contribution to this

quantity,

In5
1

s0~as /p!2E
0

1

dycut ~ycut!
ng3

[2] . ~102!

In each table, the results for the numerical method are sh
with their statistical and systematic errors.~The systematic
error is estimated by changing the cutoffs that remove sm
regions near the singularities where roundoff errors star
become a problem.! The corresponding results for th

TABLE I. Comparison of results for moments of the thrust d
tribution, Eq.~100!. The ‘‘numerical’’ results are from the program
@3#. The first error is statistical, the second systematic. T
‘‘numerical-analytical’’ results are from the program of Kunszt a
Nason@7# and are given with their reported statistical errors.

n Numerical Numerical-analytical

1.5 4.12760.00860.025 4.13260.003
2.0 1.56560.00260.007 1.56560.001
2.5 (6.43960.01060.022)31021 (6.44060.003)31021

3.0 (2.82260.00560.009)31021 (2.82260.001)31021

3.5 (1.29660.00260.004)31021 (1.29660.0005)31021

4.0 (6.15960.01160.016)31022 (6.16160.002)31022

4.5 (3.00960.00660.007)31022 (3.01060.0006)31022

5.0 (1.50160.00360.003)31022 (1.50260.0002)31022

TABLE II. Comparison of results for moments of theycut dis-
tribution, Eq.~102!. The ‘‘numerical’’ results are from the program
@3#. The first error is statistical, the second systematic. T
‘‘numerical-analytical’’ results are from the program of Kunszt a
Nason@7# and are given with their reported statistical errors.

n Numerical Numerical-analytical

1.5 (8.44260.03460.059)31021 (8.39760.002)31021

2.0 (3.10660.01260.015)31021 (3.09060.0004)31021

2.5 (1.20560.00560.005)31021 (1.20060.0002)31021

3.0 (4.94560.02560.019)31022 (4.92760.001)31022

3.5 (2.12260.01260.008)31022 (2.11660.0007)31022

4.0 (9.43060.06460.032)31023 (9.41260.004)31023

4.5 (4.30460.03460.014)31023 (4.30160.002)31023

5.0 (2.00860.01860.006)31023 (2.00860.001)31023
9-16
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numerical-analytical method are shown with the statisti
errors as reported by the program. Inspection of the ta
shows that there is good agreement between the two m
ods.

We have explored some of the most important techniq
necessary for a QCD calculation for three-jet-like quantit
in electron-positron annihilation at orderas

2 using numerical
integration throughout the calculation. For the techniqu
covered, this explanation expands on the brief presentatio
@1#. We have also seen that the method works. The older
very successful numerical-analytical method for QCD cal
lations has its complications. The numerical method has
own complications, but they are different complication
Thus one may expect that the classes of problems for w
each of the methods is well adapted may be different. Th
may be some classes of problems for which the natural fl
ibility of the numerical method makes it the more use
method. It remains for the future to explore the possibiliti
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APPENDIX: CONTOUR DEFORMATION IN MANY
DIMENSIONS

The calculational method described in this paper ma
use of Cauchy’s theorem in a multi-dimensional comp
space. Since this theorem is not proved in most textbook
complex analysis, I provide a proof here, including the s
cial case, needed for our application, in which there is
singularity on the integration contour.

Let f (z) be a function ofN complex variableszm5xm

1 iym, with m51, . . . ,N, wherexm andym are real variables
Consider a family of integration contoursC(t) labeled by a
parametert with 0<t<1 and specified by

zm~x1, . . . ,xN;t !5xm1 iym~x1, . . . ,xN;t !, m51, . . . ,N.
~A1!

Let I(t) be the integral off over the contourC(t),

I~ t !5E
C(t)

dz f~z!5E dxdetS ]z~x;t !

]x D f ~z~x;t !!. ~A2!

Suppose thatf (z) is analytic in a region that contains th
contours. Then we haveCauchy’s theorem:

I~1!5I~0!. ~A3!

To prove this theorem, we simply prove thatdI(t)/dt
50. Define
01400
l
es
th-

s
s

s
in

nd
-
ts
.
h

re
x-
l
.

e
e
I

s
x
on
-
a

An
m5

]zm

]xn5dn
m1 i

]ym

]xn . ~A4!

Let Bn
m be the inverse matrix toAn

m . Then

Bn
mdetA5

1

~N21!!
emm2•••mNenn2•••nN

]zn2

]xm2
•••

]znN

]xmN
,

~A5!

whereem1•••mN is the completely antisymmetric tensor wit
N indices, normalized toe12•••N51, and em1•••mN

is the
same tensor. This has the immediate consequence that

]

]xm~Bn
mdetA!50. ~A6!

Also,

detA5
1

N!
em1•••mNen1•••nN

]zn1

]xm1
•••

]znN

]xmN
, ~A7!

so

]

]t
detA5

]Am
n

]t
Bn

mdetA5 i
]yn

]xm]t
Bn

mdetA. ~A8!

We need one more result:

] f

]xm5
]zn

]xm

] f

]zn , ~A9!

so

] f

]zn5Bn
m ] f

]xm . ~A10!

Then, using the results~A6!, ~A8!, and ~A10! and an inte-
gration by parts, we find

d

dt
I~ t !5E dx

d

dt
@detA f#

5E dxdetAH i
]yn

]xm]t
Bn

m f 1
] f

]zni
]yn

]t J
5E dxdetAH i

]yn

]xm]t
Bn

m f 1 iBn
m ] f

]xm

]yn

]t J
5 i E dxBn

mdetA
]

]xmH ]yn

]t
f J

52 i E dx
]yn

]t
f

]

]xm$Bn
mdetA%

50. ~A11!

This proves the theorem.
Consider now a more complicated problem. Suppose

we have an integral of the form
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I5E dx@ f ~x!1g~x!# ~A12!

wheref andg are both singular on a surfaceP in the space of
the real variablesx. Suppose that the strength of the sing
larities are such that the integral of either function would
logarithmically divergent. Suppose further that there is a c
cellation in the sum such that the integral off 1g is conver-
gent. Letd(x) be the distance from any pointx to the surface
P. Let us cut out a region of radiusR aroundP and write

I5 lim
R→0

F E
d.R

dx f~x!1E
d.R

dxg~x!G . ~A13!

Now we wish to explore the consequences of deforming
integration contour for the integral off. Thus we investigate
~with the same notation as above!

I~ t !5 lim
R→0

F E
d.R

dxdetS ]z~x;t !

]x D f „z~x;t !…1E
d.R

dxg~x!G .
~A14!

Following the previous proof we find that there is a surfa
term in the integration by parts
u/

01400
-
e
-

e

e

d

dt
I~ t !5 lim

R→0
F i E

d,R
dx

]

]xmH Bn
mdetA

]yn

]t
f J G

5 lim
R→0

F i E dSmH Bn
mdetA

]yn

]t
f J G , ~A15!

where the integration is over the surfaced5R anddSm is the
surface area differential normal to the surface.

We want to arrange the deformation specified byym(x;t)
so thatdI(t)/dt50. For this to happen, it is clear thaty will
have to approach 0 asx approaches the surfaceP. ThenBn

m

→dn
m and detA→1 asx approachesP. Let the dimensional-

ity of the singular surfaceP be N2a. If the function f was
such that the original integral was logarithmically diverge
then f }R2a for R→0. The integration over the surface give
a factordSm}Ra21 for R→0. Suppose that the deformatio
vanishes proportionally toRb. Then

d

dt
I~ t !} lim

R→0
@Ra21R2aRb#. ~A16!

ThendI(t)/dt50 if b.1. The choice made in the main tex
of the paper isb52.
.
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