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Calculations of observables in quantum chromodynamics are typically performed using a method that
combines numerical integrations over the momenta of final state particles with analytical integrations over the
momenta of virtual particles. | describe the most important steps of a method for performing all of the
integrations numerically.

PACS numbeg(s): 12.38.Bx, 13.65ti

I. INTRODUCTION These techniques are presented in Secs. II-VI. They are
This paper concerns a method, which was introduced iillustrated in Sec. VII with a numerical example. Although a
[1], for performing perturbative calculations in quantum full understanding of the example requires the preceding sec-
chromodynamicgQCD) and other quantum field theories. tions, the reader may want to look briefly at Sec. VII before
The method is intended for calculations of quantities instarting on Secs. 1I-VI. A brief summary of techniques not
which one measures something about the hadronic final staRFesented in detail in this paper is given in Sec. VIII.
produced in a collision and in which the observable is infra- N [1], I presented results from a concrete implementation
red safe—that is, insensitive to long-distance effects. ExOf the numerical method in computer code. Since then, one
amples include jet cross sections in hadron-hadron an[pgmal error in the code has been d|scovered and fixed and
lepton-hadron scattering and érf e~ — hadrons. There have the performance of the program has been improved. Results

been many calculations of this kind carried out at neXt'to'froTethuesILnepri%V\?v(ijthczdérse]c?srg Etraetseirw];i? g; tsh?ac. rlg(Blem We
leading order in perturbation theory. These calculations are 9 P : P i

. . consider an observable such as a particular moment of the
based on a method introduced by Ellis, Ross, and Tefffzho L .
) g ; . thrust distribution. The observable can be expanded in pow-
in the context ofe”e” —hadrons. Stated in the simplest

terms, the Ellis-Ross-Terrano method is to do some integra(?rS of as/

tions over moment& analytically, others numerically. In the

method discussed here, one does all of these integrations U:E o ol (/7" (1)

numerically. Evidently, if one performs all of the integra- n

tions numerically, one gains flexibility to quite easily modify

the integrand. There may be other advantages, as well dhe ordera§ contribution has the form

some disadvantages, to the numerical integration method

compared to the numerical-analytical method. 1 dol&

In this paper, | address only the procese ™ — hadrons. 0'[2]=—|f dk; dky——=S,(Ky ,Kp)

| discuss three-jet-like infrared safe observables at next-to- 2! dk;dk,

leading order, that is ordea&_f_ Examples of such observ- 1 dol?!

ables include the thrust distribution and the fraction of events +—f dk,dkd @%Ss(ﬁl,ﬁz,ﬁs)
3! d

that have three jets. 1dkodks
The main techniques of the numerical integration method 1 dol2l
+a— ; ; S s s s > o > >
for e"e” —hadrons were presented briefly[i]. The prin- +ZJ dk; dkodkedky————————S4(Ky Ko, Ka, Ky).
ciple purpose of this paper is to explain in detail some of the : dkidk,dksdk,

most important of these techniques. In the numerical-
analytical method, one has to work hard to implement the
cancellation of “collinear” and “soft” divergences that oc- 2] 5 o
cur in the integrations. In the numerical method, as we willéré thedo™ are the ordews contributions to the parton
see, this cancellation happens automatically. On the othdgvel cross section, calculated with zero quark masses. 'Each
hand, in the completely numerical method one has the conf:0Ntains momentum and energy conserving delta functions.
plication of having to deform some of the integration con- Thedo?] include ultraviolet renormalization in the modified
tours into the complex plane. We will see how to do thisminimal subtraction S) scheme. The functionS describe
deformation. In both the numerical-analytical method andthe measurable quantity to be calculated. We wish to calcu-
the completely numerical method, one must arrange that thiette a “three-jet-like” quantity. That isS,=0. The normal-
density of integration points is singular near a soft gluonization is such thas,=1 for n=2,3,4 would give the order
singularity of the integrandeven after cancellationsHow- o2 perturbative contribution the total cross section. There
ever, the precise behavior of the densities needed in the tware, of course, infrared divergences associated with(Eg.
cases is different. We will see what is needed in the numeriFor now, we may simply suppose that an infrared cutoff has
cal method. been supplied.
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FIG. 1. Two cuts of one of the Feynman diagrams that contrib-
ute toe* e~ —hadrons.

The measurement, as specified by the functi§psis to

be infrared safe, as described in Ref]: the S, are smooth FIG. 2. Diagram for a simple calculation. All two and three
functions of the parton momenta and parton cuts of this diagram i theory are used, with a measure-
ment function that gives the average transverse energy in the final

Sni1(Ky, oo Ky (1-MK)=8n(Ky, ... k) (3)  state.

for 0=<A<1. Thatis, collinear splittings and soft particles do . L
not affect the measurement. I=f di,di,diz>, > g(G,Cilq,05,05). 7)
It is convenient to calculate a quantity that is dimension- ¢ ¢
less. Let the functions,, be dimensionless and eliminate the
remaining d|menS|onaI|ty in the problem by dividing by, ~ Here there is a sum over grapBs(of which one is shown in
the totale*e™ cross section at the Born level. Let us alsoFig- 1) and there is a sum over the possible cuts of a given

remove the factor of /7). Thus, we calculate graph.
The problem of calculating is now set up in a conve-
ol nient form for calculation. If we were using the Ellis-Ross-
I=—. (4)  Terrano method, we would calculate some of the integrals in
ool as/m) Eg. (7) numerically and some analytically. In the method

Our problem is thus to calcula Let us now see how to described here, we first perform certain contour deforma-
set u tFr)ﬂs roblem in a convenient form. We note fhi a tions, then calculate all of the integrals by Monte Carlo nu-
P P . merical integration. In the following sections, we will learn

function of the c.m. energy/s and theMS r'enormalizf';\tion the main techniques for performing the integrations in Eq.
scale u. We will choosep to be proportional tp\/§: K (7). We will do this by studying a simple model problem that
=Auyvy/s. ThenZ depends orA. But, because it is dimen- |l enable us to see the essential features of the numerical

sionless, it is independent afs. This allows us to write method with as few extraneous difficulties as possible.
1= fo dVsh(Vs)Z(Ayy ), 5 IIl. A SIMPLIFIED MODEL
) ) ) In the following sections, we consider a simplified model
whereh is any function with in which all complications that are not needed for a first
. understanding of the numerical method are stripped away.
J dysh(y/s)=1. (6)  The model is represented by the graph shown in Fig. 2.
0 There are contributions from all of the two and three parton

cuts of this diagram, as shown in Fig. 3. Since QCD numera-

The quantityZ can be expressed in terms of cut Feynmanor functions do not play a major role, we consider this graph

diagrams, as in Fig. 1. The dots where the parton lines crosg 3 theory. Thus, also, we can avoid the complications of

the cut represent the functmﬁ(kl, ce n) Each diagram ultraviolet renormalization. We consider the incoming mo-

is a three loop diagram, so we have |ntegrat|ons over 100phentumq to be fixed and nonzero. We calculate the integral
momentaly', 15 andl4. We first perform the energy inte- of the graph over the incoming energ§. This is analogous

grations. For the graphs in which four parton lines cross theg the technical trick of integrating ovefs in the full three
cut, there are four mass-shell delta functmi(:kJ) These

delta functions eliminate the three energy integrals d)‘f/er

19, and|$ as well as the integrdb) over \/s. For the graphs / \ (b) \
in which three parton lines cross the cut, we can eliminate ‘

the integration over/s and two of thelJ integrals. One in- J/ ;*/
tegral over the energ¥ in the virtual loop remains. We '
perform this integration by closing the integration contour in

the lower halfE plane. This gives a sum of terms obtained (C) \ (d)/ f\

from the original integrand by some algebraic substitutions, T
as we will see in the following sections. Having performed \\ /
the energy integrations, we are left with an integral of the

form FIG. 3. The two and three parton cuts of the simpfediagram.
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FIG. 4. The eight contributions to the sample diagram after per- . o1
forming the energy integrations. The line through a propagator ina — Wy=385(14,15,—13)=(27)A(l,)(2m)A(—13)
loop indicates that this propagator is put on shell, with positive 17
energy flowing in the direction of the arrow. The direction for posi- 1
tive energy flow around the loop depends on whether the contour X(2m)A(l4). (1D
over loop energy is closed in the upper or the lower half plane. 15

loop QCD calculatior{see Sec.)land serves to provide three Here we have used the notation
energy integrations to perform against three mass-shell delta
functions for the three-parton cuts.

We need a nontrivial measurement functinAs an ex-
ample, we choose to measure the transverse energy in the
final state normalized to the total energy: IIl. THE INTEGRATION OVER ENERGIES

We begin by performing the integrals over the energies in
Eqg. (9). In the case of three partons in the final state, the
three delta functions eliminate the three integrations. In the
case of two partons in the final state, the two delta functions
eliminate two of the energy integrations. This leaves one

S3(Ky,Ka,Kg) = (Kt 1|+ Ky o + K o)/ ([Ky| + | ko] +Ka]), integration over the energy that circulates around the virtual
8 loop. There are three poles in the upper half plane and three
in the lower half plane. Closing the contour in one half plane
or the other gives three contributions. Each of these contri-
where IZT,j is the part of the momenturﬁj of the jth final  butions corresponds to putting one of the particles in the loop
state particle that is orthogonal ¢p on ;hell. 'Ifhus' altogether there are eight contributiori s

There are two loops in our diagram. We choose the indelndicated in Fig. 4. _ _
pendent loop momenta to g andl%. The other momenta N Fig. 4, the small arrows on the lines cutting the propa-
are understood to be expressed in termgsofl %, andq”. gators indicate the direction Pf positive energy flow. Thus in

Thus the example integral that we seek to calculate is diagram(a2) we havel 9= +|I,| while in diagram(b2) we

havel 9= —|I,|. The direction of positive energy flow around
a virtual loop is determined by whether we close the contour
Cgtdd® dly [ odYly for the energy integration in the upper or the lower half
I= ?f o 2m*) (2m)* " ©) plane. For an individual diagram in Fig. ut not for the
sum of diagramys the direction of positive energy flow mat-
ters. For instance, the integrand for contributiad) is sin-
Here g is the coupling, 1/2 is the statistical factor for this gular whenl; and — I, lie in the same direction, while the

graph, and the integrani consists of four parts, one for ineqgrand for contributiorfad is not singular wher s and
each of the cuts in Fig. 3:

A(K)=86(k?) 6(K°). (12

Sa(Ky ,Kz) = (|Kral + K 2)/(|Ka| + | Kq|)

- rz lie in the same direction.

After integrating over energies, we wrifeas
W= Wa+ Wb+ WC+ Wd! (10)

g* -
where I= 2(2W)6fd|4jdl2gi (13)

. PR where the integrand has eight parts:
Wa=18,(14,15) 9 gntp

1 1 1 G=Ga1t Gart Gazt Gps+ Goot Gpat Gt Gg.  (14)
(2m)A(1)(2m)A(ls),

e Z4ie 1241 -
1T lelyTlelzTle The contributions t@; are
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Gar=So(14,15) ! ! ! t 1
a1~ o2lla,15) 7= = = = = = = — = -,
2||1| (||1|_||4|)2_|§+|€(||1|_||4|_||5|)2—|3+'€2||4| 2||5|

1 1 1 1 1
([T +|Ta)2=Ta+i€ 2|T,| (|T5]—|T5)) 2= 3+ie 2|T4] 2|Ts|

Ga2=Sa( F4, rs)

| ) ) S S S S .
(|Tal+]Tal+|Tsh2=TT+ie (T3] + |15 2= T5+i€ 2|T3] 2|I,| 2|T5|
gb5:52(r1'_r3) 1» = »1 = ]; = = l» = 1» )
2|T4] (|Ta|+|Ts])2—T5—ie€ 2|T3| (|I4|+]|Ts]+|Ts])2—T5—ie€ 2|T5|
O Y . S—
2|14 2|15 2[T5| (|Tof+|T)2=T5—ie (|T5|=[T)2~T5~ie
gb4282(r1’_r3) = = »1 S { { = = l» =L
2|T4] (|Ta|=Tah2=T5—ie€ 2|T5| 2|Ty| (|To|+|Ta|=|T4)2—TE—ie
(]c=83(r1,—r2,r5) j; :I; > :-I: >, > :-I: >, ]; ]
2|14 2|15l ([Tl +[Ts))?= 15 (|Ty|+[T2))2 =17 2|Ts|
N - 1 1 1 1
Ga=83(l4,15,— (15

[3)— e e —
(ITo|+TaD2= 13 2Ty 2|T3| 2|T4| (T +|Ta)2— 12

So far, the operations that we have performed have beenp. Then the pointi;=0 is at the head of this vector, as

purely algebraic. They are evidently of a sort that can bq‘ndicated. Finally, the vectaﬁ is indicated as an arrow with

easily implemented in a computer program in an automatic i atl.- =0
fashion. We are left with an integral over the loop momentd'ts @il atl;=0. y .
Where are the singularities of the integrand for our graph?

I, andl,. We seek to perform this integration numerically. There is, first of all, a singularity when the momentum of

However, the integrang has singularities, so itis not com- ;. ronagator vanishes since there is always a contribution

pletely self-evident how to proceed. It is to this question thatin which that propagator is put on-shell, with a singularity
we now turn. '

1/(2|1]). Since an integratiofid 1/(2|1]) is convergent in the
infrared by two powers, these singularities do not cause
much difficulty. We simply have to choose a density of
_ _ _ . . _ points with a matching 17| singularity, as described later in
In this section, we discuss the cancellation of singularitiesec. VI. We do not discuss these singularities further in this
in a numerical calculation of the integral in E4.3). section.
Let us concentrate to begin with on the cut shown in Fig. The singularities of concern to us here are
3(a). T_hen there is a virtual loop consisting of the propaga- (1) A collinear singularity aﬂ»z= —xT4 with 0<x<1.
tors with momentum labell, |, andl;. Recall that we are
king T’ I, as the i | . Put th J__ — A
taking I ,, andl, as the independent loop momenta. Put the 61— 0 g 632 0

integration overl, inside the integration ovelr,. Then we

IV. CANCELLATION OF SINGULARITIES

can considelr4 as fixed whilerz varies. Figure 5 illustrates

tpe space of the loop momentumfor a particular Cﬁhoice of Zt és

g and at a particular point in the integfation over The F_ O

origin of coordinates is at the point labeleg=0. The vector 2=

4 is indicated as an arrow with its headlat=0. Then the FIG. 5. Space of loop momentufi for the virtual loop in the
point ;=0 is at the tail of this vector, as indicated. The graph of Fig. 8a) for a representative choice (i[, r4, and rszd
vectoris=q—1, is indicated as an arrow with its tail &  —1,.
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iR ARR Y ARy In order to examine the behavior ¢6f; and G. near the
416 = 1£,+1£4 singularity, let

____________________ r2=—Xr4+ r—,—, (20)
[ b= xt; wherel;-,=0. The singularity is att—0.
4,=0 In G,; the denominatorE$)2— 12 vanishes at1—0:
FIG. 6. Locations of singularities @, . E
(ES@Y)2—2=— 1_X(1+(9(|$)). (22)
(2) A collinear singularity a1f2=xla5 with 0<x<1.
(3) A soft singularity atl,=0. Thus there is a 1# singularity which would give a logarith-
(4) A scattering singularity altl |+ |15|=]|14]+|15|. mically divergent result for the integral ¢f,; alone. Alto-

The locations of these singularities are indicated in Fig. 6gether, the denominator factors @, are

A. The collinear singularities 1 1 1 11

= - = I——.,.,—(1+0(|2)).
. . . : . . 2 _ 2 2 72
In this subsection, we examine the collinear singularity at 2[I5+14] (E(za )2 ] 2 2|14 4l 15

I,=—xI, with 0<x<1. The principles that we discover for 22
this case will hold for the other collinear singularities as | et ys now look at the denominator factors f@r. The

well. i _g©ny2_72
The termsG,, and G, in the integrandg, Eq. (14), are denominator £~ E57)"~ 15 takes the form
singular along the lind,= —xI,, 0<x<1. In order to ex- i 2 i
amine this singularity, let us writg,; andg, as given in Eq. (E;—E®)2— Ii)z:x(l—x) 1+o(%), (23
(15) in the form
1 1 1 so that the denominator factors together take the form
Gai=—=—= = =
T, T (B2 -T2 2[T,| 1 1 1 :ii(uodz))
@) E. T ST G 2T, 14| 2|75 (E,—E)2-13 4l; 13 w
XR(E, B Es,15,14)8:(14,0—14), (16) (24)
1 1 1 Again, we have a 1% singularity.
gc:2| r2+ r4| 2| r2| (E;— E(zc))z_ rﬁ Note, however, that the denominator factors in HG®)

and(24) are equal except for their sign, up to corrections that
XR(E;,EQ Es,T5,0)Ss(l1,~15,—1,). (170  are not singular a$5—0. Thus if the remaining factor®
and S were exactly the same f@f,; andg. there would be
Here the first factors exhibit the denominators for the thred0 singularity in their sum.
propagators that carry collinear momenta at the singularity, We thus need to explore the matching®fand S. The
R denotes the rest of the Feynman graph, andSHanc-  two versions of R are the same functions with the same
tions are the measurement functions for the final state pagrguments except for the fact tha§” # ES*"). However,

ticles. The functionsk depend on the loop momenf@ and

. (c) — p(al) P2
I, and on three loop energies, which we take toEje=1?, By =By +0(7). (25
E,=13 andEs=12. The energies are determined by the on-Thys
shell delta functions for the two contributions. F&; and
Es, the values are the same for the two contributions: R(E1,EQ Es,l5,0)=R(E,,ERV Es, 15,1, +0O(12).
. (26)
Ei=[l2+14, . .
For the functionsS used in our example, we have
Es=la—14], (18) Sa(1=x) T4+ T1 XTy=T7,0=T)=Sa(T4,— )+ O(1H).
2
For E,, the values are different: @)
Using these matching equations we find that
ESD= [T+ Ty =T,
Ga1t Gc=0(1) (28)

E(20)= =1y (19 as I*THO. There is no collinear singularity i@.
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How general is this result? First of all note that, in the partwhere we adopt the notation
of the argument not involving the measurement functiSns ..
we used only the explicit structure of the denominators for uz=13/|1;|.
three propagators that meet at a vertex. In the limit in which
the momenta carried on these propagators become collinea-lrrhen
there is a cancellation of the collinear singularity arising
from these denominators. The three propagators can be part
of a much larger graph, and there can be non-trivial numera- d
tor factors, as in QCD. All of the other factors can be Iumpedan
into a functionR and treated as above. Thus this cancellation
works in QCD as well asp® theory and it works for cut
graphs with at most one virtual loop at any order of pertur-rp, s
bation theory.

As for the measurement functions, in general we need to
consider the difference between the measurement functions G,;~ S,
with n andn+1 particles in the final state,

(33

15=— 5] [1—(Up-Ug) ]+ - - - (34)

13=2|I'5||T5|Up- (Us—Ug) + - - - (35)

1 -1
2|1y 15[ 1 (Uy- 1g)?]

1 1 1
X e ———
2|1g|[15up- (Uus—uyg) +ie 2|14 2|15

Kn

F(IT)=8ns1(ky, - - [, (1= x)kn+17)

~Sq(Ky, ...

1, xk
,En,l,lzn).

Assuming thaf is an analytic function oFT, it will have an
expansion aroundT 0 of the form

(29
S, 1 1 1

16174)2[Ts|2 [T5]® 1= (Up-Ug)? Up- (Us—Ug) +i€
(36)

F(Ip=a+b;- 15 +clHh+ - (30)

We proceed in this fashion to evaluate the contribution cor-
responding to Fig. @2. Then we evaluate the contribution

i i of Fig 4(a3), but we find that this contribution is not singular
on a surface that intersects the polrt=0. Measurement [0, Adding the th tributi btain th ¢
functionsS with this property would define an infrared safe asto— ing the three contributions, we obtain the ne
measurement, but | do not know of any example in commorﬂ”tegra”d for the cut graph of Fig(& in the soft limit I,
use. More typicallyF is non-zero in a neighborhood der -
=0 while vanishing af t=0. Then botha and theb; must

Infrared safety requires that=0. If b;#0 thenF vanishes

vanish and the;; should be a positive definit@r negative
definite matrix. Thus, for typical measurement functions,

F(ID=0(1%) (3D)

-s, 1 1
32/T,4/2|Ts|? [T5® 1+ Uy Uy

Ga~

1 2—Uy (Us—Uy)

1-uy-Us Uy (Us—

37

Uy +ie

asit—0. Then the integrand does not have collinear singu-

larities.
For an atypical measurement function with+#0, one
would be left with an integrable singularity of the form

b- IT/I I2. The current version of the computer cd@¢ has a

mechanism to deal with this contingency, but | do not dis-

cuss it here since | know of no case in which it is needed.

B. The soft singularities

In this subsection, we examine the soft singularityl at
=0.

Some comments are in order here. First, we have included
the leading term, with a [il/,|® singularity, and dropped less
singular terms. If we decompose the integration d\éennto
JdQ,f|T,|2d|T,|, then a 21,|® singularity produces a loga-
rithmic divergence in the integration ovHr2|. The less sin-
gular terms will lead to a finite integration ovér,|, al-

though the integratiof dQ) over the angleﬁz can still be
divergent. There are, in fact, singularities in the angular in-

tegration. The factor l1—u,-Us] is singular whenf, is
collinear with I's, while the factor 11+ u,-u,] is singular

Let us concentrate to begin with on the cut graph shown - . - . .

in Fig. 3@. When we perform the integration over the en- when — |, is collinear withl,. These smgularmes produce
ergy circulating in the virtual loop, there is a contribution logarithmically divergent integrations oves. However, the
from the term in which the propagator carrying momentumanalysis of the previous subsection shows that the collinear

[ is put on shell, as in Fig.(42). This contribution is7,; in
Eq. (15). Let us examine this contribution in the limit,
—0. Expanding in powers d?z, we have

19=Ta| =T+ o) = T4l +|Tolug-Ug+ - - -, (32

singularities cancel among the cuts of our graph. There is
also a singularity on the plang,- (Us—Uu,)=0. This is the
scattering singularity on the ellipsg |+ |T3|=|14+|I5|.
This ellipse passes through the pof@t=0 and the plane
tangent to the ellipse at this point is the plame (Us— Uj)

014009-6
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=0. | will have more to say about this singularity later. Here The graph shown in Fig.(8) gives
we note simply that it comes with &dr prescription, which

has been preserved in E@7). S3 1 1 1
We now consider the cut graph shown in Figh)3 Again, Ga~ ST T 1T (1=t ] 1=ty i] (41
there are three contributions to consider, corresponding to ab 1isl itz 2 4 2775
the diagramgbb), (b2) and (b4) in Fig. 4. Adding the three Adding these together, we find
contributions, we obtain the net integrand for the cut graph '
of Fig. 3(b) in the soft limit [,—0: S 1 1+ (Uy- ) (Uy- Ug)
g +gd~ = > = - > - > .
S 1 1 1 ST 2612l [Tl [1- (U Ug)*I[ L~ (- Us)?]
Gy (42

32/14]%|Ts|% [15]® 1—uz-uy 1+ Uy Us
We note that when we add the contributions of the cuts

% 2+ Uy (Us—Uy) (39  Which leave virtual subgraphs to the contributions of the cuts
Uy (65—64)+ie' which have no virtual subgraphs, the leading soft singularity
cancels:
As in Eg. (37), there are a scattering singularity and two
collinear singularities. However, the signs that indicate the Gat Gp+ G+ Gy~0. (43
location of the collinear singularities are reversed compared
to Eq.(39). If we addG, and G, we obtain That is, after cancellation, the overall singularity is at worst
proportional to 1lfi,|2. It is thus an integrable singularity
Gt G =S, i provided that all of the singularities of the angular integra-
ST THETERTE tion overu, cause no problems.
N, The cancellation of the leading soft singularity is built
1+ (Uz-Ug)(uz-Us) into the structure of Feynman diagrams, so that we do not

(39 have to do anything special to make it happen. However,

1—(Up-Ug)2I[1—(Up-Us)?]
(1= (Uz-ug) I L= (Uz-Us)") there is a certain subtlety in arranging for the singularities in
Thus, the overall 1f2|3 singularity remains and the collinear _the angular integrations to be convergent in a Monte Carlo

singularities remain, but the scattering singularities cancel ifitégration. Thus, we will return to the cancellation of the

the soft limit, [ ,— 0, between the two cuts that leave virtual .SOft smgular!ty after we have discussed contour deformations
in the following section.

subgraphs.
There are two more cut graphs to consider. The graph
shown in Fig. %) gives V. THE SCATTERING SINGULARITY AND CONTOUR
DEFORMATION
G~ :93 _ *1 } _ } — . (40) Consider the contribution from Fig(d1), as given in Eq.
3214|215/ [T5]2 [1+uy-us] [1+Uy-Us] (15). There is a factor
1 1

= = = = = = — = = —, (44)
(Tl = [Tal = [Tsh2=T5+ie ([T + [T+ [Ts| =T ([Tal+ 15| = [Te] = |T3| +i€)

which has a singularity wheh ;| +|i3|=|T4/+|s|. In an  Thus the singularity appears when the momenta are right for

analysis using time-ordered perturbation theory, the singulaparticles 1 and 3 to be on-shell and scatter to produce the
factor emerges from the energy denominator associated witfinal state particles 4 and 5.

the intermediate state consisting of partons 1 and 3, The contribution from Fig. é4) has a scattering singu-
larity at the same place as that from the cut diagf@i).

However, these singularities do not cancel in general because

Er—E(l,) +ie, (45)  the functionsS,(I'4,1s) and S,(I;,I3) do not match. We
thus have a problem if we would like to perform the integra-
R R tion numerically.
whereEg=|14+|15| and We notice, however, that the singularity is protected by an
i € prescription. Thee in the denominator tells us what to do
in an analytic calculation and it also tells us what to do in a
E(I,)=|T1|+|l3|=|l4+T,]+|—Ts+T,].  (46) numerical calculation: we need to deform the integration
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contour. ) finite contour deformation for largd3, we will simply
We are integrating over a loop momentum Let us re-  -pgose to hav®(l,)—0 as Iegaoo.
placel , by a complex momentury, .= I,+i«, wherex is a There is another condition tha])(rz) should obey: it

function, which remains to be determined,l@f Then as we should vanish at points whegghas collinear and soft Singu_
integrate over the real vect@, we are integrating over a larities. To see why takes some discussion.

contour in the space of the complex VeCerc- When we Consider the contributions from three parton cuts, for
deform the original contouf, .=, to the new contoui,,  Which there is no virtual loop. For these contributions, we do
’ ) ot want to deform the contours. This is because if any of the
oop momenta were complex then at least one of the mo-
menta of the final state particles would be complex. In prin-
ciple, one could have complex momenta for final state par-

) ally ticles as long as the measurement functiohéky, . . . K,)
J(1;)=de P - (47)  are analytic. However, | have in mind applications in which
the numerical integration program acts as a subroutine that

There are some subtleties associated with this; the reIevaR{Oducei events . with final state particle momenta
theorem is proved in the Appendix. {K1, ... k,} and weights computed by the subroutine. Then

the events could be the input to, for example, a Monte Carlo

program that generates parton showers and hadronization.
Surely complex momenta for the final state particles are not

desirable.

Now recall that there is a cancellation among the contri-
butionsGc from different cutsC at points where thg. have
collinear and soft singularities. Evidently, if we deform the

ontour for a contribution with a virtual graph but do not
eform the contour for the canceling contribution, then the
cancellation can be spoiled. We can avoid spoiling the can-
cellation if we make the contours match at the singularity.

=I,+ix, the integral does not change provided that we d
not cross any points where the integrand is singular and pr
vided that we include a Jacobian

i
2

We need to choose as a function ofl ,. Consider first

the direction ofx. On the deformed contour, the energy de-
nominator(45) has the form

Er—E(l,+ix)+ie. (48)

In order to fix the direction of deformation, it is useful to
consider what happens when we deform the contour just

little way from the realrz space. For smalk, we have

E(lo+ix)=[la|+[lg[+ir-w, 49 That is,D(I,) should vanish at the points where g have
where collinear and soft singularities. i
We also need to determine how fd3{l,) needs to ap-
.0 ra proach zero a§2 approaches a singularity. Since the integra-
W= ——+ —. (50)  tion is in a multidimensional complex space, we need an

[Ta] |14l analysis that makes use of the multidimensional contour de-
- - formation theorem. This analysis is given in the Appendix.
Thus the energy denominator ks —E(l;) —ix-w+ie for  Here, | present a simpler one dimensional analysis that can
small x. In order to keep on the proper side of the singular-serve to clarify the issue.
ity, we wantx - w to be negative. The simplest way to insure ~ Consider the following toy integral:

this is to choosex in the direction of—w. Thus we choose

- L. . madX [ fy(X)
k=—D(I)W, D(i,)=0. (51) :fx ax] _Tvx)
2 2 I . X x—1+ie+fR(X) . (53
Then the singular factor is approximately
1 Here the endpoint singularity at=0 plays the role of the

(52 collinear or soft singularities. The functioly,/(X—1+i€)
plays the role of the integrand for the contribution with a

for a small deformation. For a larger deformation, it is not sovirtual subgraph. In this contribution, there is a singularity at
' =1 that comes with ane prescription. The functiorfg

simple to see that we stay on the correct side of the singlfS . A .
larity, but it is easy to check numerically. plays the role of the integrand for the contribution with no

. > virtual subgraph. We assume thigf(z) and fg(z) are ana-
The next question is how should we chods¢l;)? We | 4ic functions. We also assume thig(0)=1fx(0), sothat
want D not to be small wher, is near the surfac&(l,) the apparent singularity at=0 cancels.
=Eg in order that the integrand not be large there. We want Now theje prescription on the singularity at=1 tells us
D(rz) not to grow aslzeoo in order to satisfy the conditions that we can deform the integration contour into the upper
for the theorem that deforming the contour does not changbalf plane, replacingx by z=x+iy(x) where y(0)
value of the integral. Since there is no reason to keep any y(Xnya) =0. Thus

Er—E(I,)+iD(,)w?

014009-8
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_ The factorC is designed to insure that the deformation van-
+frX+iy (X)) ishes quadratically near the collinear and soft singularities.
(54) The factorG is designed to turn the deformation off for large

rz. These factors are explained below and are defined pre-
Suppose, however, that we want to keep the contouf for cisely in Egs.(64) and(67) below.

_[Xmax 1+iy'(x) [ fy(x+iy(x))
I_fo Xx+iy(x) {x—1+iy(x)

on the real axis. Then we might hope thatT, where First, we discuﬁss the Eactm. We want the deformation to
_ . vanish at the lind ,= —x1, with 0=<x=<1, where the ampli-
T= lim fxmaxdx 1+I_y (%) fV(X+'_y(X)) fR(X)] tude has a collinear singularitySince r4= Fl— rz, this line
Xemin— 07 Xmin x+iy(x) x=1+iy(x) X is alsol ;= — AT, with 0<A<c.) Define

(59
:|||2||1+||1||2|:|||2||1+||1||2|

=] ITd

The difference is

~ . Xmax fr(X) . f (X+i X))
[—1= lim L dx( R)(( —[1+|y’(x)]%].

12 (61

This function is zero on the liné,= —xI, with 0<x<1,

(56) and furthermore, it vanishes linearly £§ approaches this

_ _ _ line. Similarly, we want the deformation to vanish on the line
If we note thaf fr(z) — fr(0)]/z is an analytic function even [ —x[_ with 0<x=<1, where the amplitude has its other
atz=0 and that the integral of an analytic function around acg|jinear singularity. The functiod,s, where

closed contour vanishes, we have

Xmin— 0 Xmin

' Xmax [ Fr(X)—fR(0) q :|||3||2+||2||3|:|||3||2+||2||3| 62
0= lim f e a— Ty sl
Xmin— 0+ Xmin X
_ fr(x+iy(x))—fr(0) vanishes linearly ak, approaches this lingTo see this, use
_[1+Iy (X)] X+|y(X) (57) |5=|2—|3) Let
Subtracting these and performing the integral, we have d=min(dy,dz3). (63)
~ _ xmax (1 14iy’(X) Thend vanishes linearly with the distance to either of the
I =1=fr(0) lim J’ X v collinear singularities. It also vanishes linearly with the dis-
Xmin— 0 Xmin y(X) . . e
tance to the soft singularity a,=0.
, .Y (Xmin) Now, we have seen that the deformation should vanish
=fr(0) lim log| 1+i——/. (58)  quadratically with the distance to any of the singularities. We
Xmin—0 min

can achieve this by letting

We can draw two conclusions. First, as longy#ég) —0 2
at least as fast as' asx—0, we will realize the cancellation C(d?)= Cfd _ S—
of the x—0 singularity and obtain a finite value for Sec- 1+4Bd%(|T4]+[Ts|+[al)?
ond, if we choose/(x)xx asx—0, T will be finite, but it
will not be equal to the correct result In order to get a
result T that is not only finite but also correct, we need
y(x)/x—0 asx—0. A convenient choice ig(x)=x? asx
—0.

We conclude from the multidimensional extension of this
analysis, given in the Appendix, that E§approaches a sin-
gularity, D(rz) should approach zero quadratically with the and
distance to the singularity.

We now use the qualitative criteria just developed to give A=|T,+|Ts|—1ql. (66)
a specific choice of deformation. We have chosen

(64)

where « and B are adjustable dimensionless parameters.
Note that, for larged, C(d?) approaches a constant.
Next, we discuss the fact@. We want to ensure that the

contour deformation vanishes for Iarﬁg Let us define

a=|T|+T5/~d] (65)

R . o Then the singularity that we are avoiding by means of con-
loc=1,—iD(Ix)w, (59 tour deformation is ah=A. We can turn the deformation off
A for a>A by setting
wherew, Eq.(50), specifies the direction of deformation. We

now specify a deformation functioﬁ(rz) that satisfies our G(a)=
criteria. We writeD in the form

A+~vya’ (67)

D=CG. (600  wherey is an adjustable dimensionless parameter.
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There is a subsidiary reason for this choice. At the singuOne can rewrite this as
larity, G=1[(1+ y)A]. The factor 1A serves to enhance _
the deformation in the case thiaf andI's are nearly collin- gzzij dl (I)(M—i)er 7272 -
ear, in which case is small on the ellipsa=A and the N P p() N
deformation would otherwise be too small.

The reader will note that, while there is a certain unique-where
ness in defining the direction of the deformation in E%P)
to be given by the vectow, Eq. (50), the normalizatiorD ”I':f dl|f(1)]. (76)
=CG with C andG given in Eqs.(64) and(67) is ratherad

hoc Within the requirements that the deformation should

i i . . - e see, first of all, that the expected error decreases propor-

vanish quadratically at the collinear and soft singularities and. . .
: _ , ionally to 1A/N. Second, we see that the ideal choice @

should vanish for largd,, many other choices would be

possible. The choice given here is used in the current versioffould bep(l)=|f(1)|/Z.

of the code[3]. Surely there is some other choice that is Of course, it is not. possiplg to choopan this way. But
better we know that f| has singularities at places where propagator

momenta vanish and we know the structure of these singu-
larities. We are not really able to chogseo that|f(1)|/p(l)
is a constant, but at least we can choose it so|fi{&f|/p(l)
After the contour deformations, we have an integral of theis not singular at the singularities ¢ff(1)|.
form Note that it is easy to combine methods for choosing
Monte Carlo points. Suppose that we have a recipe for
- ) o ) choosing points with a density, that is singular when one
I_f dl; JCHYC:I+in(C), (68) propagator momentum vanishes, a recipe for choosing points
with a densityp, that is singular when another propagator
where we usel for the loop momenta collectively| momentum vanishes, and in general recipes for choosing
:{FZ,D}_ The indexC labels the cuta, b, ¢, ordin Fig. 3.  points with densitieg; with several goals in mind. Then we
There is a contour deformation that depends on the cut, &&an devote a fraction; of the points to the choice with
specified byx(C;l), and there is a corresponding Jacobiandensityp; and obtain a net density
J(C;1), Eq. (47). Define

VI. THE MONTE CARLO INTEGRATION

p(N=2 Nipi(1). (77)
f(|)=9‘i[2 J(C;I)Q(C:I+iK(C;I))}- (69) '
[¢]
We know thatZ is real. so A. The density near where a propagator momentum vanishes
Let FJ be the momentum of one of the propagators in our
I=J dif(l). (70)  9raph. We have seen that when partiteppears in the final
state, there is a factor|1j| in the integrand. When propaga-
To perform the integration, we use the Monte carlotor J is part of a virtual loop, the contribution corresponding
method. We choose pointswith'a densityp(1), with to this propagator being put on shell also contains a factor
1//T5|. Thus there is a singularity |14| for every propagator

B in the graph.
f dlp(h)=1. (71) The analysis given in the introduction to this section in-
) ) ] dicates that for each propagatbone of the termgp;, in the
After choosingN pointsly, ... Iy, we have an estimate for density function should have a singularity that is at least as
the integral: strong as
1o fh) P
I~Ty== > —. 72 pi(D=1/1,] (78)
VN2 () (72

. o . . .as FJ_>o. It is, of course, easy to choose points with a den-
This is an approximation for the integral in the sense that if ity proportional to ]M» B asi,—0 as long ash<3. [The
we repeat the procedure a lot of times the expectation valu Y prop S 1d d 9 :
imitation on A arises because foA=3 we would have

for Zy is -
N Jdl;p(l)=<.] Thus it is easy to arrange that the density of
(Iy)=1. (73 points has the requisite singularities. Specifically, we can

_ choosel’; with the density
The expected rms error & where

f(|)2 1-2 ~ > 1 1 KO

1 — _9
52:<(IN_I)2>: Nj dlm— N (74) p(ly) 27TK8 [1+(|I]|/K0)2]2 |rJ| ' (79)
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where Ko is a momentum scale determined by the other, F20=|f2|(62+i|r2|5(l]2)(65—ﬁ4)+(9( rg))_ (83)
previously chosen, loop momenta. ‘
The singularity WhenIQJHO can be more severe than
1 FJ|, depending on the structure of the graph. Consider firsgb
the cases)=1,3,4,5. Here, the singularities for particular
cuts, as given in Eq(15), are 1JI;|2. However, there is a
cancellation after one sums over cés for the singularity
for I,—0), leaving a singularity 1,|. G — = — — —

For J=2 there is a severe singularity of the formi3° 3214)?[Ts|? [T2]° 1+ Uz Uy 1—Up-Us
for particular contributions to Eq15). A 1/|1,|® singularity
would not be integrable, but, as we have seen in detail, there X ———— -
is a cancellation among the contributions so that only a Up- (Us—Ug) +i[T5|D(Up) (Us—uy)?
1/|T,|? singularity is left. However, it will not do to simply

chosep; (1) 1/|I,|2 because there is also a singularity in the There are two cases to consider. First, whef— 0 with u,
space of the angles df. It is to this subject that we now fixed, we can drop the second term in the last denominator.

turn. ThenG,~h(u,)/|I,|3, where the functiom(u,) is the same
as on the undeformed contour. As we have seen, the leading

B. The soft parton singularity 1/|T,|® terms cancel when one sums over cuts. Thus, as noted

When two partons can scatter by exchanging a partoﬁar“er’ the net integrand behaves like

before they enter the final state, there is a severe singularity

as the momentum of the exchanged parton goes to zero. For G~ hii(Uz)/ |52 (85)

our graph, this happens fd?2—>0. In this subsection, we

consider the behavior of the integrand for smialbs a func-  when|i’,|—0 with U, fixed.

tion of its magnitude’, and of its directioni,= I, /|1, The second case is more interesting. Considigr— 0
The singulafity for individual cuts, as givep iNEA9),is  andd,- (Us—U,)—0 with Uy- (Us—U,)/|T,| fixed. Theng,

of the form 1/T,|* when we let|l,|—0 with u, held fixed.  is more singularG,1/i,|*. To see what happens in this

This singularity is not integrable. However, as we have seefyggion, we analyze the contribution from dutin Fig. 3 in

the leading term cancels when we sum over cuts, leaving fhe same fashion. The contour deformation for letis dif-

1/|T,|? singularity for|l,|—0 with u, fixed. ferent from that for cuta, but the deformations match at
Let us now recall from Eq(37) that, before we deform |eading order a$i,|—0. (This is an important feature of the

the integration contour, the contribution for smiglifrom the  choice of contour deformationsThus we can use E¢83) in

cut a of Fig. 3 has, in addition to a factor|14|%, a factor  EQ.(38) to obtain

1[u,- (Us—Uy) +ie]. That is, there is a singularity on a sur-

face in the space ofz whose tangent plane is the plane S, 1 1 1

perpendicular tais— u,. We have avoided this singularity by Yo~ 3274|2752 [T]® 1= Usp- Uy 1+0,-Us

deforming the integration contour. However, the deformation

Substitutingl, . as given above fonrz in Eqg. (37), we
tain an expression for the contribution from euto the
integrand on the deformed contour near the soft singularity:

-S, 1 1 1

2= Uz (Us—Uy)

(84)

vanishes a§2—>0. Thus we must face the question of what % 2+ l]2'(55—54) (86)
happens to the cancellatlon near the spft parton singularity Uy (Us—Ug) +i|To|D(Uy) (Us—Uy)2
when the contour deformation is taken into account.
First, let us recall from Eq59) that for cuta in Fig. 3 the .
deformation has the form We see thag,, is also proportional to 1¥,|* in the problem-
atic region. However, since, - u,~ Us,- Us in this region, the
l2c=12=iD(I2)w, (80)  leading 1Ji,|* behavior cancels when we adg to G,. We
.. . are left with the next term, proportional to] fij]3.
wherew=u; +us. Forl,—0, For the two remaining cuts there is no contour deforma-
oL tion. The contributions from these cuts are each proportional
W~Uy—Us, (81) {0 1/1,/3. Calculation shows that there is no further cancel-
) lation. Thus the net behavior of the integrand is
while D has the form
S e - 3
D(15)~13D(Uy). (82 g1/l 87

HereD vanishes fou,= — U, and foru,=Uus and is positive ~ when |I,|]—0 andu,-(Us—U,)—0 with U,- (Us—Uy)/|I,|
elsewhere. Thus fixed.
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C. Density near a soft parton singularity

J 4SS TNl @

According to the analysis at the beginning of this section,
we should choose a density of integration points that has a ' . _ .
singularity that is at least as strong as that@fnear the soft The functionsGc are the analytic continuations to the de-

singularity atl ,— 0. Thus we should choose one of feso ~ formed contours of the functions given in Ed5). As dis-
that cussed in Sec. VI, the quantity that is relevant for the con-
vergence of the Monte Carlo integration is the integrand

1 . . divided by the density of points chosen for the integration. In
_|F i’ 15| =0, uy fixed, this section, | consider only the integration overso | dis-
2 cuss a choice for the density of integration poip(:*:) ata

1 R Jz‘ (J5—G4) . fixed I, and display plots of the functions
Pi(')“m, |I,]—0, T fixed, .
i T ey Fe(l)= - e1Gell) (©3)

pi(l)e

with p=2. _ . _andF(I==¢Fc(I), as well as plots of the deformation and
Specifically, having choseh, we can choose the remain- ¢ density.

ing loop momentund’, with the density For the numerical examples, | choose
. 1 1 Ko\ P q=(3,-0.5,0 (94)
2= 3 K G PG PGP | [T, ;
Ko [1+([12[/Ke) B P] 15| and then takd, at the point
1 Qi —(2—
» _ (89 [,=(2,-1,0. (95)
/ 272 > S >
T'Veos'(0) +15/Kq Sincels=q—1,4 we have
Here K, is a momentum scale determined by, 6 is the s=(1,0.5,0. (96)

angle between, and @Us—u,), and . A
The singularities of the functiong:(l) lie in the plane ofl 4
sinhT)=Ko/|I5|. (90)  andl, that is the ,=0 plane. In the plots, | choo$e=0, so
that we see the effect of the singularities. | gleg], |«p|, p.
I'Eis easy to choose points with this density by first choosingr, | F, | F.+F4 andF as functions of , andl, in the do-
[I], then choosing cog], and finally choosing the corre- main —2.5<1,<1.0 and—1.0<l,<2.0.
sponding azimuthal angle with a uniform density. Ac- Consider first the contour deformation for cat I —1,
counting for the fact thal «<log(|l7]) for I,—0, we see that =[+ix,. | take x,= —Dw as given in Eqs(59)—(67) with
p Will have a singularity stronger than that@forovided that 4= pg=y=1. In Fig. 7, | show a graph qf,za| versusl, and
p>2. We will see how this works in a numerical example in|,_. We see that the deformation is not small. | also display in
the next section. the figure the lined = —xI, with 0<x<1 andl =xI5 with
0<x<1, where the collinear singularities for catare lo-
VIl. NUMERICAL EXAMPLE cated. We see that, as desired, the deformation vanishes qua-

In this section, | illustrate the principles developed abovedratically asl approaches these lines.

by means of a particular example. We consider the integral The;e is "I" differelnt conftour S{efq;?a:gon forl clit Thet
in Eq. (13). We holdT, fixed and consider the integrand as a >0 ¢ 'ordias apply as for cé with fhe replacements

function of I,. In order to simplify the labelling, | define L4 ly, 15 =1, =1 and with the sign ok re\_/erised. !
show a graph ofk,,| versusl, andl, in Fig. 8. (This figure

*2 i (92) does not look like Fig. 7 becausevaries with I] held fixed,
not with rl held fixed as would be needed if we applied the
There is a contribution for each cuC, with C replacement ;< [; to Fig. 7) | also display in the figure the

=a, b, ¢, or d. For each contribution from a cu in  jines=\T, with 0<\ andi=—\Ts with 0<\, where the
which there is a virtual loop, we want to deform the integra-collinear singularities for cub are located. The deformation

tion contour as discussed in Sec. V. THugets replaced by vanishes quadratically dsapproaches these lines.

a complex vectof ;= ['+ixc and we need to supply a Jaco-  The Jacobian functiong,(I) and J,(I) associated with
bian 7:(1), Eq. (47). Then the integration over has the the contour deformations are quite unremarkable, so | omit
form showing them.
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FIG. 9. Density of integration points. The density has three sin-
FIG. 7. Contour deformation for cat The absolute value of the gularities. Only valuep<1 are shown.
imaginary partc, of I, for cuta is plotted against, andl, atl,

=0. The deformation?a vanishes at the two collinear singularities ||*|/K0
for this cut, which are indicated by lines superimposed on the (99
graph. Vcog(0)+12/K3

Consider next the density of integration points. | choosein Eq.(89), in a region neaf=0. Here Cog@:|y/|r|_ We see
that the density of integration points is heavily concentrated
p(1=0.2p1(1'1)+0.6p5(1)+0.2p5(1'3), (97)  very near the plang,=0 when|l] is small.
We are now ready to look at the contributiof,
= /p to F from cuta. This function is displayed in Fig.
as shown in Fig. 9. The function, has a mild singularity as ja.ga P e - g
> L s o o . 11 with a small rectangle nedr=0 removed from the graph.
I,—0 and is given by Eq(79) with 1,=1,—1 and withK, . . Lo > >
. S . - We see the two collinear singularities, lat —xI, and atl
set equal to 2. The functiop; has a mild singularity ass N N . .
) e = =Xl5 with 0<x<1. As| approaches one of these singulari-
—0; I use the same functional form with=1—15. Forp;,  4ias E approaches- =
. . . - _ - »ba .
| use the function given in Eq89) with Ko=2 and with the In the standard method for calculatiflg we would per-
power p taken as p=2.2. Then p, has a strong . . > . oo
122 |r| | singularity as we approach tHe-0. Fur- form the integration ovet ana_lytlcally _for the c_ontrlbut_lon _
LL[1]*4og(l)] singularity as we app ' from cut a. Because of the singularities, the integration is
thermore, the denS|_ty of points is largest near the P3N jivergent. However, we can get a finite answer if we regulate
=0, the plane that is tangent b0 to the ellipsoidal sur-  the integral by working in 3-2e¢ spatial dimensions. Then
face that(if we turn off the deformationcontains the scat- the result contains terms proportional te2and 1£ as well
tering singularity. In order to display the dependence oh 55 a remainder that is finite as-0.
angle neal =0, | plot in Fig. 10 the angle dependent factor =~ What about the contribution 6 from cutb, the other cut
in p,, namely the factor for which there is a virtual subgraph? This function is dis-

FIG. 8. Contour deformation for clit The absolute value of the
imaginary partk, of I for cutb is plotted against, andl, atl,
=0. The deformationc, vanishes at the two collinear singularites ~ FIG. 10. Angle dependent factor for the densty of integra-
for this cut, which are indicated by lines superimposed on thetion points associated with the soft singularity. For srhidll points
graph. are concentrated ne@r=0.
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FIG. 13. Contribution td= from cutsc andd. The same rectan-

FIG. 11. Contribution toF from cuta. The domain—1<I,  gular domain as in Fig. 11 has been removed from the plot. The
<1, —0.3<1,<0.3, which contains the soft singularity, has been function F .+ F is singular along lines that extend from (1,0.5) to
removed from the plot in order to make the collinear singularitiesinfinity in the direction (-2,—1) and from (- 2,1) to infinity in the
visible. The functionF, is singular along lines from<2,1) to  direction (2;-1). Only valuesF.+F4<100 are shown.
(0,0) and from (0,0) to (1,0.5). Only valués > —100 are shown.
tial dimensiong Evidently, the density of points used in the
present method would not do for this purpose; we would

played in Fig. 12 with the same small rectangle neai0 . ) X
need to expend more points on the region near the collinear

removed from the graph. We see the two collinear singulari-'. =
singularities.

t'eS; atl=Al, and atl =—=\ls W'th O<)‘_<_°°' As with F,, We see that the standard method for performing the inte-
as | approaches one of these singularitieg, approaches  grations, in which some parts of the integrations are per-
- . formed analytically and some are performed numerically, is,
There are two cuts; andd, for which there are no virtual  of necessity, rather complicated. In the numerical method,
subgraphs. In Fig. 13 | show the contributibp+F4 from e simply combineG,, G,, G., andGy and integrate nu-
these cuts. We see thRt+Fy approachest« at just the  merically. The argument in the preceding sections showed
singularities wherd=, andFy, approach—co. that the contributions from the various cuts cancel as one
In the standard method for QCD calculations, we wouldapproaches the collinear singularities. This is illustrated in
perform the integration ovelr partially numerically for the Fig. 14, where | ploF .+ F,+F.+F4 versusl, andl,. We
contribution from cuts andd. Of course, we would have to see, first of all, that the singular behaviors at the collinear
do something about the collinear and soft singularities, sincsingularities cancel, just as the calculation of Sec. IV
otherwise we would obtain an infinite result. For instance, ifshowed. There is also a cancellation at the soft singularity at
we were to use the phase-space slicing method, we woulf=(. There is still a singularity in the integrandiat 0, but
slice away a small part of the integration domain near thet js integrable and is removed frofby choosing a suitable
Singularities and calculate its contribution analytica”y in 3 density of p0|ntsp ThusF remains less than about 20 ev-
—2e spatial dimensions in the limit that the region sliced erywhere.
away is small. Then we would be left with a numerical inte- We can see the remnants of the Scattering Singu|arity,
gration ofG.+ g in the remaining regiotin exactly 3 spa-  which is located on an ellipsoidal surface that intersects the
planel,=0. If it were not for the contour deformatioff,
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FIG. 14. The net functiofr with the contributions from cuts,
FIG. 12. Contribution toF from cutb. The same rectangular b, ¢ and d combined. There are no collinear singularities. What
domain as in Fig. 11 has been removed from the plot. The functiomemains after cancellation from the soft singularity is removed by
Fy is singular along lines that extend from (0,0) to infinity in the the density of points in the denominator [6f The remnants of the
directions 2,—1) and (2;-1). Only valuesF,>—100 are scattering singularity are visible, but there is no actual singularity
shown. because of the contour deformation.
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FIG. 15. Structure ofF along a slice through Fig. 14 4df
= —0.3. Note that the ridge and valley structure is very narrow.

=

c d
would be singular on this surface, approachifge as one ( ) ( )
approached the surface from one side and approaching
as one approached the surface from the other side. Since the
deformed contour avoids the singularity, the singular behav-
ior is removed and we are left with a ridge and valley near
the ellipsoid. This structure is illustrated in Fig. 15, in which (6)
we see a slice through the ridge and valleyl gt —0.3.

Since the amount of deformation vanishes as one approachesFIG. 16. Ways to insert virtual subdiagrams in Feynman dia-

=0, the width of the ridge and valley structure becomegdrams fore’e”—3 partons.
more and more narrow 45— 0. Recall that the density of Case(d) is simpler than the case we have studied, while case

integration Boints is designed to match this increasing Narte) is somewhat more complicated. However, the essential
rowness as$l|— 0, so that the integration points are concen-features are those that we have already studied.

trated where the structure is. This leaves virtual self-energy subgraphs. In céae
there is a self-energy subgraph on a propagator that enters
VIll. OTHER ISSUES the final state. This case requires a treatment different from

In the preceding sections. we have seen the most im o;t_hat discussed in the previous sections. This is evident be-
tant featu?es of thg method ’of numerical integration for cf)neCause there is a nominalké/ wherek®=0. The treatment
g required is to represent the virtual self-energy via a disper-

;)rzpo(ggiaecilfctﬂgt's%gs'eTgfe trﬁisarzog:elr mqepn?{;insﬁzzge;igfgion relation[1]. In this representation, the subgraph is ex-
P paper. ?Sressed as an integral over the three-momentum in the virtual

here. loop with an integrand that is closely related to the integrand

thaf]”sg’ t;ﬂggcv?hitﬁswzsﬂﬁgheg%eIgc;(r)?ﬁlr!?ste; Ztrruljgﬂl\rffor the corresponding cut self-energy graph. The point-by-
o erd)the con%l'cat'ons of full OCD gre in the npm%ra{tors Ofpoint cancellation between real and virtual graphs is then
Ve, mplicat u Q nt u ) manifest. It is convenient also to use the dispersive represen-
the expressions representing Feynman diagrams, while tqgtion for the much easier cage)

cancellations and the analytic structure related to the contour Third, we have to do something about ultraviolet diver-

deformation have to do with the denominator structure. Thu ences in virtual subgraphs. These are easily remiioly

OEteef:? :anglgn%egzrrft?t '[:ke)nnumerator structure with co subtracting an integrand that, in the region of large loop mo-

P Seco?]d the denom>rl1ator stfq.ct re in the example used menta, matches the integrand of the divergent subdiagram.
' : ucture | xampie u he integrand of the subtraction term should depend on a

noeds to st In he QCD caleulaon for thres ot ke quan 2SS parametss hat serves to make the subiraction term
L ) ; o J 448MNyell behaved in the infrared. Then, with the aid of a small
tities in electron-positron annihilation at ordef, there are

. L . ~~_analytical calculation for each of the one loop divergent sub-
five poss_|b|I|t|es for how_a_\_/l_rtual su_bgr_aph can occur InS'dediagrams that occur in QCD, one can arrange the definition
an amphtu.d(_e.. The po$5|b|llt|es are |rjd|cated n F'.g' 16. F(.)rso that thisad hocsubtraction has exactly the same effect as
each possibility there is an entering line representing the virs =

. MS subtraction with scale parameter
tual photon orZ boson, which we take to have Zero 'three Fourth, | use Feynman gauge for the gluon field, but then
momentum, and there are three on-shell lines entering the

final state. There are graphs of two typés, and (b), con- self-energy corrections on a gluon propagator require special

taining two point virtual subgraphs. There are graphs of tvvo""ttentlon [1]. The one loop gluon self-energy subgraph,

S L »¥(Kk), contains a term proportional t¢‘k” that contributes
types, (c) and (d), containing three point virtual subgraphs. ( L . ; )
'Iyr?ere(is) one(t;pe(e) of g?aph WitFr)1 a four point \?irtupal quadratic infrared divergencd$], while the cancellation

subgraph. In structur@), a line with non-zero three momen- mechanism that we have studied in this paper takes care of

tum enters the three point virtual subgraph and two on-shenga_mthCV d|ver%ena(;esy. This problem ;;an f..e sglved. by re-
lines leave. This is the case that we analyzed in the exampldacing @*” by PLm*"P, wherePg=g; —k*k,/k*, with

of this paper. The structure of the graph led to the singularit)T(Z (O,IZ). The terms added ta*” are proportional to either
structure depicted in Fig. 6. Amplitudes of typ@b and (e) k# or k” and thus vanish when one sums over different ways

have different singularity structures from that studied hereof inserting the dressed gluon propagator into the remaining
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subgraph. SincaDZk“:O, the problematick“k” term is TABLE I. Comparison of results for moments of the thrust dis-

eliminated. Effectively, this is a change of gauge for dressedibution, Eq.(100. The “numerical” results are from the program

gluon propagators from Feynman gauge to Coulomb gaugé.3]- The first error is statistical, the second systematic. The
Most of these issues are discussed brieflylih A quite “numerical-analyticgl” resglts are from the program of Kunszt and

detailed, but not very pedagogical, treatment can be found iNason[7] and are given with their reported statistical errors.

[6]. Further analysis of these issues is left for a future paper:

| have also not given a complete presentation of algo- " Numerical Numerical-analytical
rithms for choosing integration points. As discussed in Sec.1 5 4.127-0.008* 0.025 4.132-0.003
VI C, the crucial issue is to have the right singularities in the - g 1.565- 0.002+ 0.007 1.565% 0.001

density of points near a soft parton singularity of the Feyn- , 5 (6.439-0.010:0.022)x 10! (6.440+0.003)x 10"
man diagram. This is not the only issue that needs to be3 g (2.822-0.005:0.000)< 1071  (2.822+0.001)x 10" 1
addressed in a complete algorithm. Of course, the demon- ¢ (1.296-0.002+0.004)x 10° 1 (1.296+0.0005)x 10~ *
stration prograni3] has a complete algorithm. However, this 40 (6.15%-0.011+0.016)<10°2  (6.161+0.002)<10 2

algorithm is quite a hodge-podge of methods and it seems,’ (3.009-0.006+0.007)x10°2  (3.01Q* 0.0006)x 10" 2
that a detailed exp05|t|on shquld be re_served for a better anq‘.‘.0 (1.5010.003:0.003)x 1072 (1.502+0.0002)x 102
more systematic method, which remains to be developed.

o12]
dt -

1
IX. RESULTS AND CONCLUSIONS 7 _;f dt(1—t)"
0

" 0'0(6!5/77)2

(100

In the preceding sections, we have seen some of the tech-
niques needed for the numerical integration method for QCOn Table I, | compare the results of the two methods for
calculations. Of course, since not all of the techniques havehoments of they, distribution for the three jet cross sec-
been explained, the explanation does not constitute a veryon. To define these quantities, Bf(y.,) be the cross sec-
convincing argument that such a calculation is feasible. Aion to produce three jets according to the Durham algorithm

truly exhaustive explanation would help, bl_Jt an a_lctual com{g] with resolution parametey.,.. Let gs(Y..) be the nega-
puter program that demonstrates the techniques is better. Rgye of its derivative,

sults from such a program were presentefilih Since then,

I have found and corrected one bug that resulted in errors a f3(Yeuw

little bit bigger than 1% and have made some other improve- 93(You) = — Vo (101
ments in the code. The resulting code and documentation are out

available af3]. Then we calculate moments of the contribution to this

The program is a parton-level event generator. The user igyantity,
to supply a subroutine that calculates how an event with

three or four partons in the final state contributes to the ob- 1 1 o (2]
servable to be calculated. The program supplies events, each In:mjo dYeut (Yeu 95" - (102

consisting of a set of parton momentd;,k,,ks} or
{Ky,Kkp,K3,Ks}, together with weightsv for the events. Then In each table, the results for the numerical method are shown
the user routine calculat&saccording to with their statistical and systematic erro(he systematic
error is estimated by changing the cutoffs that remove small
N regions near the singularities where roundoff errors start to
1 become a problem. The corresponding results for the
T~ 2 WiS(ki). (99)
=1 TABLE IIl. Comparison of results for moments of tlyg,, dis-
tribution, Eqg.(102). The “numerical” results are from the program

The weights used are the real parts of complex weights: th@' The first error is statistical, the second systematic. The
' . "numerical-analytical” results are from the program of Kunszt and

imaginary parts can be dropped since we always know i . . i O
advance thal is real. Thus the weights are both positive and?\lason[?] and are given with their reported statistical errors.

negative. It would, of course, be more convenient to have
only positive weights, but one can hardly have quantum in-
terference without having negative numbers along with posi-1.5  (8.442-0.034+0.059)x10° 1  (8.397+0.002)x 10!
tive numbers. 2.0 (3.106-0.012:0.015)x10° '  (3.090+0.0004)< 10!

The first general purpose program for QCD calculation of 2.5 (1.205-0.005+0.005) 10"  (1.200+0.0002)x 10~ 1
three-jet-like quantities ire*e~ — hadrons at orderx§ was 3.0 (4.945-0.025-0.019)<10°2  (4.927+0.001)x 10 2
that of Kunszt and Nasori7]. This program uses the 35 (2.122-0.012:0.008)x10°2  (2.116+0.0007)x 102
numerical-analytical method of Ellis, Ross, and Terrano. In 4.0  (9.430-0.064+0.032)x10 3  (9.412+0.004)x 103
Table I, I compare the results of the Kunszt-Nason programa .5 (4.304-0.034-0.014)<10° 3 (4.301=0.002)x 10 3

to those obtained with the numerical method for ﬂiecon- 5.0 (2.008-0.018-0.006)x10°3  (2.008+0.001)x 10 3
tributions to moments of the thrust distribution,

Numerical Numerical-analytical
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numerical-analytical method are shown with the statistical az* Iy
errors as reported by the program. Inspection of the tables Aff:aXV:&VLH I (A4)
shows that there is good agreement between the two meth-
ods. _ . Let B¥ be the inverse matrix t&% . Then
We have explored some of the most important techniques
necessary for a QCD calculation for three-jet-like quantities 1 9z"2 92'N
in electron-positron annihilation at ordeé using numerical BYdetA= N_1 et Ne,, s ;
integration throughout the calculation. For the techniques ( )t 2 (A5)

covered, this explanation expands on the brief presentation in
[1]. We have also seen that the method works. The older angy ora 21 41 is the completely antisymmetric tensor with
very successful numerical-analytical method for QCD calcu-,\I indices. normalized toe*? ‘N=1 and e is the
lations has its complications. The numerical method has its ' . . - e AN

own complications, but they are different complications,S@Me tensor. This has the immediate consequence that
Thus one may expect that the classes of problems for which
each of the methods is well adapted may be different. There
may be some classes of problems for which the natural flex- ax*
ibility of the numerical method makes it the more usefulAISO

method. It remains for the future to explore the possibilities. '

i(B‘,fde'ﬁﬁx) =0. (AB)

0z"1 Jz"N
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APPENDIX: CONTOUR DEFORMATION IN MANY Ixkaxt 9z"’ (
DIMENSIONS
SO

The calculational method described in this paper makes
use of Cauchy’s theorem in a multi-dimensional complex of " of
space. Since this theorem is not proved in most textbooks on 97" B, axk” (A10)

complex analysis, | provide a proof here, including the spe-
cial case, needed for our application, in which there is @rhen, using the resultéA6), (A8), and (A10) and an inte-
singularity on the integration contour. gration by parts, we find

Let f(z) be a function ofN complex variablesz*=x*
+iy#, with u=1,... N, wherex* andy* are real variables.
Consider a family of integration contouégt) labeled by a
parametet with 0<t<1 and specified by

d =|d d d
az—(t)—f Xa[ etAf]

ay” Jf ay”
=fdxdelA[i y B“f+ iy]

#(xY, LN =xEiyA3, L xNt), w=1,.. N, axtat v 97" ot
(A1)
B A
Let Z(t) be the integral of over the contout(t), _J dxdet, | axﬂatBVH'BVax_ﬂ ot
Jz(x;t) J d [W” ]
= = . =i | dxBldetA— —f
(t) L(t)dzf(z) f dxde< o )f(z(x,t)). (A2) v axk| ot
. . , , . ay” 9
Suppose thaf(z) is analytic in a region that contains the = —|J dxyfﬂ{B‘;deiA}
contours. Then we hav@auchy’'s theorem X
=0. (Al1)
Z(1)=1(0). (A3)
This proves the theorem.
To prove this theorem, we simply prove thdf(t)/dt Consider now a more complicated problem. Suppose that
=0. Define we have an integral of the form

014009-17



DAVISON E. SOPER PHYSICAL REVIEW D 62 014009

d d ay”
— + _ — i i A M —
7 f dX[ f(x)+g(x)] (A12) dtI(t) Iilino[l fd<RdX<9X“ BfdetA pr f”
wheref andg are both singular on a surfagein the space of ay”
the real variablex. Suppose that the strength of the singu- = lim if dsﬂ[ B’V‘detAE ] , (A15)
larities are such that the integral of either function would be R—0

logarithmically divergent. Suppose further that there is a can-

Z=lim
R—0

. (A13)

cellation in the sum such that the integralfof g is conver- wh?re the intedg;fationt?slover th?tsu[;ate RfanddSM is the
gent. Letd(x) be the distance from any poirto the surface surtace area difierential normal to the surface. )
P. Let us cut out a region of radiu® aroundP and write We want to arrange the deformation specifiedyyx;t)
so thatdZ(t)/dt=0. For this to happen, it is clear thatill
have to approach O asapproaches the surfagg ThenB%
fd>Rde(X)+ fd>RdX9(X) — & and deA— 1 asx approache. Let the dimensional-
ity of the singular surfac&® be N—a. If the functionf was
Now we wish to explore the consequences of deforming théuch that the original integral was logarithmically divergent,
integration contour for the integral &f Thus we investigate thenf<R™®for R—0. The integration over the surface gives
(with the same notation as above a factord S*«R?~* for R—0. Suppose that the deformation
vanishes proportionally t&°. Then

Z(t)= lim f dxde(az(x't))f(z(x;t))+f dxg(x) |. d
R0l Jd>R IX d>R g (D= lim [R¥IR 3R], (A16)
(A14) R—0
Following the previous proof we find that there is a surfaceThendZ(t)/dt=0 if b>1. The choice made in the main text
term in the integration by parts of the paper i9=2.
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