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We study the correlation betweeti/e and theAl =1/2 rule in the frame-work of the nonlinear model
including scalar mesons. Using this model we estimate the chiral corrections by resumming to all orders in
chiral perturbation theory, the contribution of a class of diagrams within the factorization approximation. With
these matrix elements and changing the scalar meson mass, we find that there is a correlatiorebehaedn
the Al =1/2 amplitude. However, it is difficult to explain bo#/ e and theAl = 1/2 amplitude simultaneously.

In order to be compatible witla’/ e, typically, about half of the\l =1/2 amplitude can be explained at most.
Our result suggests there may be a substantial nonfactorizable contributi®® twonservingK— mrar
amplitudes.

PACS numbsd(s): 12.39.Fe, 14.40.Cs

[. INTRODUCTION In this paper, we study the matrix elements of the QCD
and EW penguin operators with the nonlineamodel in-
According to recent measurements of dir€& violation  cluding scalar mesons. The model is built with chiral sym-
in K— m decays,e’/e is O(10 %) [1,2]. Theoretical pre- metry as a guide. It is more general than the lineanodel
diction ranges between 16 and 10°3. It strongly depends and less dependent on dynamical assumption. The cost is
on the hadronic matrix elements of QQB] and the elec- that it has more parameters. They can be determined with the
troweak (EW) penguin operatorg4—6]. experimental measured quantities, i.e., decay width, mass
An interesting possibility is suggested as an explanatiorspectrum, etc. Stilb meson mass is left as a free parameter
for large €’/e=0(103) in the standard mod¢l]. The au-  because the spectroscopy @inesonf ,(400—1200) allows
thors argue that the mechanism which enhances Ahe a wide range for the mas$See Refs[10-15 for scalar
=1/2 amplitude may also enhanet e and it naturally leads meson mass spectroscopyVe study how QCD and EW
to the measured values. The enhancement comes from tipgnguin matrix elements depend on the mass oftheeson.
Feynman diagram which includes the scalameson as an Here we write a few words on the difference between our
intermediate state. The mechanism was found in the frameapproach and the conventional treatment of the resonances in
work of the linearo model [8,9]. Though the qualitative chiral perturbation theorfCHPT). CHPT is a systematic
picture of the linear model may be correct, for a quantita- treatment, in the sense of the small momentum expansion,
tive analysis, some improvement can be made. In the lineand describes low-energy processes involving pions and ka-
o model employed in Refl9], the ¢ meson mass can be ons. However, higher order terms in CHPT are of great im-
written in terms of the physical quantiti€x , F ., My, and  portance if the threshold of the meson is near to kaon
M . and its mass is predicted to be about 900 MeV. (83U mass. Thus it is very interesting to explore the nonlinear
breaking ratiom,/m; is also determined by the same input model with scalar resonances in kaon decays. Correspon-
and numerically it is around 1/30. The enhancement factor oflence between the nonlinearmodel with resonances and
a QCD penguin operator is written &8 /(3F,—2F¢)  CHPT was well discussed in Refd.6,17] at order ofp* and
=(M,02—M2)/(M2-M2).(F2/F2)=2. These relations the results indicate that the resonance contributions dominate
and numbers are specific predictions of the lineanodel.  the low-energy coupling constants in the strong part of the
Because the dynamical property of the lineamodel is not ~ p* chiral Lagrangian. In our approach, we compute the full
the same as that of QCD, these relations and numbers mapntribution of theo meson to the factorizable part of QCD
be taken as semiquantitati{/é]. and EW penguin operators using the nonlineamodel with
scalar resonances, so that a certain class of higher order
terms ofp"(n>4) in momentum expansion is included. We
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tion [18-20. The four-Fermi operator is factorized into  TABLE I. The matrix elements, wheé=iv2f(M2—M?2). Yq
products of color singlet currentsr densities and they are andYg are defined in the text.
identified with those of ther model [21]. The densityX

density type operators are enhanced for small strange quark w00 |7 yX|77) |70 X | 7™
mass by a factor of (is)?. Therefore numerical values for
the strange quark mass are important. As for the stranggl X 0 XIv2
guark mass, we choose the range which is suggested by t 0 X Xiv2
QCD sum rule[22] and lattice simulation$23]. We also 3 0 0 0
study the correlation betweedi/e and theAl=1/2 ampli- 4 X X 0
tude. This is done by varying themass, strange quark mass Qs 0 0 0
mg, and factorization scalg. By studying the dependence Qs Yo Yo 0
of €'/e and theAl = 1/2 amplitude on the- meson mass, we Q7 3X/2 0 —3X/2v2
search for the range of the mass which may reproduce botQg 0 Y Yg/v2
€'/ e and theAl =1/2 amplitude. Qg —3X/2 0 3X/2vV2
The paper is organized as follows: In Sec. Il, we summaQ,, —X/2 X XIvV2
rize the outline of the computatior’/e and theAl=1/2 Q,; X 0 XIv2

amplitude. In Sec. lll, we derive the matrix elements of pen-
guin operators. In Sec. IV, numerical results &f e and
Al=1/2 are summarized. In Sec. V, we discuss the implicai.€., we factorize the four-Fermi operators into products of
tion of our results. Some useful formulas are collected in theolor singlet currentgdensitie$. The currentg¢densities are

appendixes. identified with those of the chiral Lagrangian. The factoriza-
tion scale is chosen at 0.8-1.2 GeV, i.e., below charm quark
Il. Al=1/2 RULE AND €'/e IN THE STANDARD MODEL massm,. In the factorization approximation, this choice is

mandatory because abowe., the real part of the Wilson
In this section, we summarize our notations and show agoefficient of QCD penguin operators is zero and it is born
outline of computation ok’/e and theAl=1/2 amplitude.  pelowm, due to the incomplete cancellation of the Glashow-
Some details of definitions of isospin amplitudes can bgliopoulos-Macroni (GIM) mechanism. Regarding Wilson
found in Appendix A. We start with the effective Hamil- coefficients, we use the NLL approximatiga8—20 and

tonian forAS=1 nonleptonic decaygl8], compute them at the factorization scale. Combining the ma-
G, 10 trix elements with the Wilson coefficients,’s are given as
Hei= Vi Z 7+ 7y}Qi+H.c., (1)
eff— \/f ud { y} i GF X Y6
Rea0=%)\ I_ 222"!‘ 324_ Zl+ 3267 y

where 7= — (VgVi)/(Vu4V}e). The isospin amplitudes of
K—mm are defined agl|HqgK%=ia expid, (I|HexK®) G X
=—ia" exp(4g). €' is expressed in terms @f, anda, Reazz_ [21+Zz]

1 Rea, Ima2 Imag il 5._s +7r
~ 5 Reag|Rea, Reag P!\ %27 %75
2 —V3Gg X —Yygt Y
2 Im ag= F.—(A)\Z)Z)\n Vit Y7— Yo y10+YG_6
o T . 2 X
In the factorization approximatiom,’s are written as
G > Vo oy
. =
Rea|=—ReVudV’JsZ (22| 1+ <||Q2| 1/K®) 2 °4®
V2 i=1 T3¥s )
+ 22110, K 3 %
Zyit <|Q2|| > () |ma—_ﬁGF§(A)\2)2)\ s +z ﬁ
. 2775 i 7 ~Y7TYoT Y107 3Ye |
Gr Yai ®)
|ma|:_5|mvtdvfz [(yzu N I <||Q2| 11K

where matrix elements are denoted XyYs, andYg. X is
o the matrix element of currericurrent type operatorsyg
(11QalK >— (4 corresponds to the matrix element of a densitgnsity

QCD penguin operator, an\NdB is the matrix element of the
where the matrix element$|Q;K°) are defined in the large EW penguin operator. Their derivation and precise definition
¢ limit. As we discuss in detail in the next section, we will be given in the next section and are summarized in
compute the hadronic matrix element in the labgelimit; Tables | and II.

+l Y2t

Yai- l)
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TABLE II. Contribution to isospin amplitudes. In the Lagrangian, the scalar mesons couple to pions through
two terms denoted by, andg,. One is a coupling in the
N
” Vs
2

()
N}

SU(3) limit and the other is a coupling with SB) breaking.
The mass splitting term for the scalar nonets and isospin
breaking effect are neglected. By shifting the scalar meson

2
= X
\/; fields from their vacuum expectation value,
2
Q2 —X \/jX (o]}
V3 s S—S+(S), (S=—FM, (10)
Q3 0 0 M
Qa4 V3X 0 .
Q 0 0 we obtain the mass formulas and decay consfdris They
5 . . . . .
Q V3Y 0 are given in Appendix B. The parameters in the chiral La-
¢ ;3 ® grangian can be written in terms of physical quantities
Q, ;x ,\EX Fk,F.,, Mg, M_, and quark masses,(=my) andms:
2
2. V3 \F 2 [(A+1MIFE AMEFR
Qe BT Ye 378 B= mi(i-n) 8n 201+
V3 3
2 2 _2: 7S 7T+ KWK (12)
3 M2 mi(1-A) 4A T 2(1+A))
V3 \ﬁ X
QlO ?X 2 2(]:2 |:2)
9192 _ K~ Fr (13)

M2 mg(1-A)"

Ill. NONLINEAR o MODEL INCLUDING SCALAR
MESONS AND THE MATRIX ELEMENTS OF QCD
AND EW PENGUIN OPERATORS

whereA=m,/mg. For computation of the weak matrix ele-
ments, we need strong interaction vertices. They can be
found in Appendix C.

The nonlinearo model with higher resonances is studied N our calculation using the Lagrangian E@), a certain
in [16,17. In K— 7 decays, in the larghl, limit, the sca- ~ class of the higher order terms in the CHPT are summed up
lar meson may contribute to the matrix elements ofdue to the effect of the scalar resonance exchange. These are

density<density type four-Fermi operatorsQg,Qg). For ~ Very importantin the proced§— m if the o meson mass is
current<current type four-Fermi interactions, the amplitude @S light as the kaon mass,~My . Though systematic

is proportional to the form factor of semileptonic decay, i.e.,ireatment of momentum expansion in the CHPT is lost, a
f+(Mﬁ—M2)+f_M2. Because the form factor. (q2) class of the higher order terms in the CHPT are automati-
near the soft-pion limit §*= Mf,) are important, vector me- cally summed up using Lagrangian of H8).

son contribution to the form factors is small and their effect  NOW We turn to the matrix e'e”.‘e”F Of.QC.D and EW
Jpenguin operators. The explicit derivation is given for two

mesons in the chiral Lagrangian: densityxdensity type operatoi®g andQg. Their definitions

are
L:f—zTrauauT+BTrM(u+u*)+ %Trauaufgsf
4 4 Qe=-8 2, (5.dm)(Grch). (14
+0, Tr M(ESE+£7SEN + TH(DSDS-M2S?),  (6) -
. . _ ~ 1
where M =diagm,,my,my), U=exp(2n/f)=¢, andSis a Qg=—12 >, (SLAR)€4(ArdL) =Qs— 5 Qs, (19
scalar nonet field, g=uds
+ ~ —
L c+8° v28° V2k Qg=—8(5,Up) (Urdy), (16)
s==| v28° o—-8° v2K° |. (7) B
2 Vik® VIO V2é where the subsjdiary operatQy is introduged. These opera-
tors can be written in terms of meson fields by identifying
DSis covariant derivative and is defined by the quark bilinear as the corresponding density,
D,S=d,S+i[a,S], 8) akaL=—BU;;~ gl £(S+(S))&lj; (17
N :§T3M§+ é:%g: (70,7l . (9) After some algebra, we expre in terms of the meson
I 2i 2if? fields,
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FIG. 1. Feynman diagrams fQigirectt Tradpole-

Oue g - g5(ms—m,) g3(ms+my)| KO
6 V3 M2 M2 Fr
_ i g%(ms_ mu) g%(ms+ mu) KO7T02
243 M M3 FkF2
ig, 2(ms+mu)) mk
— 22 2B+g—
2@{( S VLA

(18

There are four diagrams which may contribute iJ
— %70 amplitude Yq. (See Feynman diagrams in Figs.
1-3) They are classified as follows.

(1) The diagram in whichK® decays intoK%707°
through the strong vertex and subsequektfyvanishes into
vacuum through th&g(Tradpord -

(2) The diagram in whichK® directly decays into
2"'7'0(-|-direcr) .

(3) The diagram in whichk® is converted intoo and
subsequentlyr decays into 2r°(TU_po|e).

(4) The diagram in whichK decays intok, #° through
strong vertex and is converted into:rO(TK_pme).

The sum of the contribution is denoted Wy and it can be
simplified as

_ iv2 _gng E Mi +EMi_2M727
= VE e 1- 67
n gg 4_0 n (Ms— mu)Mﬁ 8§mu
MZ|1—62 | MM 2M2 1- &2

_ glggg( ms— mu)2

|

—opzud
2F M
4 2
g5(Ms—my) 19
4 1
MO'
T kL
/7 7
7’ 7
/ 4
// //
Koo —« K ¢
SN SN
AN \
\\ \\
Ay AN
T k)

FIG. 2. Feynman diagrams far,.o1et To-tag -
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FIG. 3. Feynman diagrams far,.poet Tx-tad -

where R=Fy /F . and (- =My»/M,. We also intro-
duce the auxiliary quantities

2 2
_ gs(mg+m,) — gsm
B=B+-—— > By=B+-—pr. (20
2M2 M?
They can be written in terms of physical quantities
— MEFQ — _MIFY o1
2my(1+A)’ "% 4mA”

The matrix element of the EW penguin operaiQg is
straightforward. Technically we spl@g from Qg so that we
do not have to repeat the calculation@{. The rest is called

Qg and given by

-+
— T K

. 92Bo(Bo+B) Kot o™
1g,Bg = —I

V2 FKFi

68:

(22)

In theK°— 7+ v~ amplitude, there are two contributions to
the hadron matrix element @8, i.e., (@) k-pole contribution
and(b) direct contribution. The sum is callé; and is given
by

3 By
=i

VIF(F2 M2—M2
Mg—M?

M2

8=

[glgzMﬁ— Zg%f (mg+3m)

—(Mg—m) +i6v2 Bo(B+By).

FcF2

(23

Keeping leading terms of I/, the matrix element¥g,Yg
reduce to the well-known resulté2, Y3 [24], which corre-
spond to those in the leading order of momentum expansion
and in the largeN, limit:

2

K
mg+m,

2

Y3=—4v2i(Fx—F,)

2 2

Y9=3v2iF , (24)

K
mg+m,
This approximation is valid only wheM <M, . In the next

section we will show how the values of the matrix elements

of the densitydensity operators are different froi,Y3
numerically.
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TABLE lll. Bag factor.

A=1/20 M, (GeV) 0.55 0.6 0.7 0.8 0.9 1.0
BE? 5.27 3.29 2.22 1.84 1.64 1.52
B3 0.70 0.73 0.77 0.79 0.81 0.82

A=1/25 M, (GeV) 0.55 0.6 0.7 0.8 0.9 1.0
BE? 4.81 3.06 2.12 1.78 1.61 1.50
B3 0.90 0.93 0.96 0.99 1.00 1.01

A=1/30 M, (GeV) 0.55 0.6 0.7 0.8 0.9 1.0
BE? 4.48 2.90 2.05 1.75 1.60 1.51
B3 1.13 1.15 1.17 1.19 1.20 1.21

The matrix elements of the other currmurrent opera- Because there are only four parameters in the lioeiodel
tors Q;(i#6,8) are also shown in Tables | and Il, and areLagrangian, after usinyl , « ,F .  there are no free param-

expressed by a single amplitudfe eters left, so that the model predicts=1/30 and M,
~0.9GeV.
X=iv2f(MZ—M?2). (25) From Table Il we find thaB3? from our model withA

=1/30 and that from the linear model are consistent. It can
be seen that the factorizable partg&}? for M ,=0.9 GeV is
IV. NUMERICAL RESULTS around 1.5, which is smaller than the lineamodel result.

!
In this section, we first estimate the hadronic parameters N€Xt We apply our result ta'/e and Reag,Rea,. For
B, 5 corresponding to the matrix eleme@t and Qg in the numerical computation of'/e, we use the experimental val-
factorization approximation. We compare our results withU€S for Rey. . _
those from the linear model. As an application, we also e have calculated the next to leading order Wilson

compute€’/e and Reag,Rea,. This is done in the isospin coefficients in the naive dimensional regularizatitéDR)
limit. e scheme. We could reproduce the numerical values tabulated

The conventional bag factoB2,B32, as they are often in Ref. [18] to a good extent. We chose the following
g By B y values for the computation: m;=165.00GeV, my

referred to are defined by the following equation in our no-=80.20 GeV, my=4.40GeV, m=130GeV, Llkgen

tation: , ) )
=129.0, sif(64)=0.230, A§5p=0.226 GeV, A ;{p=0.325
5 GeV, aMS(m,)(®=0.11799. We list the Wilson coefficients
81’2=E 32 2Yg—X (26 4 at scalesu=1.2,1.0,0.8GeV in Table IV. In this cal-
6 yo’ 8 J0_ culation, we used the anomalous dimensions at the NLO by
6 2Yg—X
Buraset al.
) ) ) As was explained in Sec. ll, in the leading order in the
_As explained in Sec. Ill, usiné,, My, F., Fx @ |argeN, expansion, Re,Ima are obtained by multiplying
inputs, our model can be described by three free parameteigiison coefficientsz; (w),y;() with the matrix elements of
in the LagrangiarM,, ms, A=m,/ms and another param- . (), ... Q,o() in our model, wherg is the factorization
eter u in the matching process which is the factorization gcgje which is assumed to be 0.8—1.2 GeV.

scale. _ _ Here we should make one point about the quark mass. In
WSZf'”d that our model predicts that the factorizable parghe |argeN, limit, we approximate the matrix elements with
of Bg“ ranges around 1.6—3.0 depending on theneson  the Q,(u) operator by the product of matrix elements with
massM . The quark mass dependence is not significant. O’calar quark operator at scale Using the PCAC(partial
the other handB3? ranges around 0.7-1.1 depending&n  conservation of axial vector curréntelation, we then
We variedA in the range of 1/26 1/30 and smalled gives  convert them toF¢MZ/my(u). Here, the scale of the
a larger value oB3”. M,, dependence is negligible f@3.  strange quark mass should be the same spal@here-
The numerical value is given in Table III. fore, when we substitute the mass parameterin our
Let us now compare our results with those from the lineaffinal result, we should run the quark mass to the
o model[9]. The factorizable bag factors are given by thefactorization scale ©=0.8,1.0,1.2GeV. For example,

following equations: m(2 GeV)=80-120MeV corresponds tomg(0.8 GeV)
=136-204 MeV.
1 F Figure 4 shows the dependencespfrom our model on
Bs :m~2, (27)  the scalar resonance mals,. Here, we takan"”>(2 GeV)

=80,120,180 MeV, which cover the recent QCD calcula-
F tions[22,23, and the scal@ is chosen to be 0.8 GeV. Upper
Bg/2Z_K~1_2_ (28)  and lower lines correspond to the maximum and minimum
Far values ofé€'/e, respectively. We find that wheM , is larger
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TABLE IV. List of Wilson coefficientsy; ,z; .
Wilson coeff. n==80.2GeV n=12GeV n=1.0GeV n=0.8GeV
Y1 0.0 0.0 0.0 0.0
Yo 0.0 0.0 0.0 0.0
Y3 0.0014715 0.03058 0.03335 0.03722
Va —0.0019375 —0.05871 —0.05884 —0.05844
Vs 0.0006458 0.00311 —0.00168 —0.01384
Ve —0.0019375 —0.09797 —0.11672 —0.16226
y7/agep 0.1262367 —0.03714 —0.03822 —0.04038
Ys/aqep 0.0 0.14352 0.17174 0.23136
Yo/ aqep —1.0606455 —1.46549 —1.54058 —1.69377
Y10/ @gep 0.9 0.57829 0.68795 0.89882
2 0.0526643 —0.45108 —0.52381 —0.64505
2 0.9812457 1.23913 1.28816 1.37464
Z3 0.0 0.00674 0.01353 0.03059
Z, 0.0 —0.01980 —0.03704 —0.07439
Z5 0.0 0.00569 0.00784 0.00844
Zg 0.0 —0.01950 —0.03698 —0.08023
27l agep 0.0 0.00940 0.01249 0.01989
Zglagep 0.0 0.00349 0.01551 0.04725
29l agep 0.0 0.01127 0.02019 0.03993
20/ @gep 0.0 —0.00219 —0.00893 —0.02287

than 0.8 GeV in order for to lie within 0.27-0.52, which is  \ye take three different values mgﬂ_s(z GeV), which are
favored by other measurements of Cabibbo-Kobayashigy 100, and 120 MeV. We take three values for the factor-

Masukawa(CKM) parametersmy>(2 Ge\) should take a

ization scaleu, which are 0.8, 1.0, and 1.2 GeV. We used the

rather small value 0.09-0.12 GeV. These values are COHSi%‘xperimental values of FB}} for the numerical analysis of

tent with recent lattice QCD calculationi23] but smaller
compared with QCD sum rule resulf2]. On the other
hand, asM , becomes smaller th@g amplitude is enhanced;
in order for » to lie within 0.27-0.52, the larger value of

mg"_s(z GeV) is preferred.

Finally, in Fig. 5, we show the correlation af,/ag* and

€'le. The CP violation parametew; is chosen to be 0.3 in the
figure. The shaded region is the experimental data from
KTeV and NA48 fore'/e at the 2¢ confidence level.

We find thate'/e can be easily explained in our model by

a suitable choice of the parameters. Typical valueMgf

and mg"_s(z GeV) are around 0.8 GeV and around 120 MeV,

€'/e by changing the scalar meson mass from 0.6 to 1 GeVrespectively, almost independent of the factorization sgale

0.8 [

T T

ms=1 80 MeV

/m,=120 MeV

FIG. 4. Allowed regions foM .- from €'/e data at 2¢ con-

He—=km,(2GeV)= 80 MeV
5 —m,(2GeV)=100 MeV -
08 —- m,(2GeV)=120 MeV L EHGeY
T P4
pn=1.0 Gev
| 0.6 - 1
g =
°<= u=1_2 GeV
<oal - 1
M,=0.6 GeV
q 0.2 1
1.0 00 0 1 2 9 10

FIG. 5. Correlation ofay and €'/e.

Y
/e [107]

The stars on the

fidence level. They are shown for three different values for thelines correspond tiM ,=0.6, 0.7, 0.8, 0.9, 1.0 GeVin,(2 GeV)
=80, 100, 120 MeV afactorization scalet=0.8,1.0, 1.2 GeV.

strange quark mass, i.ens(2 GeV)=80, 120, 180 MeV.
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On the other hand, Reg in our model are smaller than ex- the low-energy evolutionpion loops for CP-conserving
periment. We find that it is quite sensitive to the factorizationAl =3/2 (Al =1/2) amplitudef25-29. A plausible expla-
scaleu, and asu gets smaller, Re, becomes larger towards nation is that the nonfactorizable contributions are very
the experimental value. Fr=0.8 GeV, a,/aS is around  large. Including these effects may help for the entire under-

0.5—-0.6. standing of bothe’/e and theAl=1/2 rule.
The sensitivity of thea, amplitude onu can be under-
stood as follows. The Wilson coefficiers;(w) vanishes ACKNOWLEDGMENTS

when the GIM cancellation between the charm penguin and . .
the up penguin loop is exact. In our calculation, since we We would like to thank T. Yamanaka, C. S. Lim, and U.

take the modified minimal subtractuQMS) scheme, the can- Nierste for fruitful discussion and comments. Y.-Y.K. is
cellation is exact above the charm threshold. Therefore, grateful to M. Kobayashi for his encouragement. He would

takes nonzero value onlv wh m._ Since the fac- €like to thank C. D. Lu for his hospitality during his stay at
Zo(p) S zero valu Yy Wh@nsme . Si Hiroshima University. His work is supported by the Grant-in
torization scale is very close to the charm threshold, the re
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the GIM cancellation between the top penguin charm penV|olat|on) from the Ministry of Education, Science and Cul-
guin loop is exact. Since the top decouples already belovyure Japan.
My, this cancellation is completely violated ang(u)
takes nonzero value from the start and keeps growing all the

way down to the factorization scale. Since Ibig(/1.2 GeV) APPENDIX A: Al=1/2 RULE

and logM,/0.8 GeV) are almost identicaye(u) is not so Here we summarize isospin amplitudes
sensitive to the factorization scale. RegardingaReour re-
sult is about 1.5 times larger than the experimental value. I'[Ke— 797°1=Br(Ky— 7%7°%) X 1/7, (A1)

IKe—7 7 ]=Br(Kg—a 77 )X 1lrg, (A2)
V. SUMMARY AND DISCUSSION

+ + + +
In this paper, we study the correlation of tid = 1/2 FIK' = m®m ]=Br(K" —m’m )Xz, (A3)

amplitude ande€'/e in the framework of the nonlineas where
model including the scalar mesons. We have calculated the

matrix elements of the QCD and EW penguin operators us- 7s=(0.89270.000910 1° sec, (A4)
ing that model and within the factorization approximation.
We cannot find the scalar meson mass region which is 7. =(1.2386-0.002410 8 sec, (A5)

compatible with bothe’/e and theAl =1/2 amplitude simul-
taneously. The reason is as follows. We can read from Fig. 5

1
that the maximum allowed value foe{/€)/ » is about 0.01. —=5.3142<10 * MeV, (AB)
The bag factoB}? required fore'/e is at most 2—3, which T
corresponds tdM ,,i,=0.6—0.7 GeV. In the range of the 0 o
scalar meson mass, abdalf of the Al =1/2 amplitude may Br(Ks—mn?)=31.390.28%, (A7)
be explained. Therefore, if we impose tHée constraint, we 0
cannot explain the whole\l=1/2 amplitude. Moreover, Br(Ks—m"m)=68.61+0.28%, (A8)
€'l e is rather stable for the change of the factorization scale. Br(K* — m0m*)=21.16-0.14%, (A9)

This suggests that the prediction &fe may be more reli-

able. Though there is strong correlation between Me
=1/2 amplitude and'/e, we conclude that the understanding 1=0)= \ﬁ|wowo>+ \ﬁ|w+w> (A10)
of the Al=1/2 rule may not be complete. 3 ’

Finally, we argue what kind of effects may remedy the

problem. Because QCD penguin opera€g is born just 2 1

below m,, the coefficient is not stable about the change of [1=2]3=0)=— \[§|7TO7TO>+ \[§|7T+ ),

the factorization scale around 1 GeV. In the scheme, in (A1)
which GIM cancellation is incomplete aboye=m,, the

leading order results of the Wilson coefficient@§ become [1=2)3=1)=|7 "), (A12)

larger by a factor of 224]. This effect was not incorporated

in the Wilson coefficients of the NLL approximation em- where|#* 7 ) and|#°#") are the symmetrized states de-
ployed here. Therefore the same effect may further enhandied as

the Wilson coefficient 0fQg used in our analysis. We also

note that the real part of th&l = 3/2 amplitude is larger by a |7t m Y=oy X |77 )+ |7 )X| 7)) IV2, (AL3)
factor of 1.5 than the experimental value. This may tell us
that there is some suppressi@nhancemeitcoming from |7t 7%= (|7 "y X |7+ |70 X |7 ")) IV2Z.  (Al4)
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We can write the decay rates in terms of the isospin APPENDIX B: DECAY CONSTANTS, MASS FORMULAS

amplitudes: In this appendix, we collect the formulas for the decay

1 constants and masses which can be derived using6Eqg.
<w°77°|HW|KS>=i\Q{ \/;Reao expi &,

1 Zm?
5 |\/|§T=EZ[413mu+4—2—g|\2/I ul (B1)
_ \[§Rea2 expi 52}, (A15) " 7
1 ga(ms+m,)?
5 Mﬁ:F—Z[ZB(mSerU)Jr% . (B2
<7T+77|HW|KS)=i\f2[ \/;Rea0 expi &, K o
g:9-my
1 F_= 1+ , B3
+ \@Reaz expi 52}, (A16) JVZ., M2f2 } (B3)
f 0192(m,+my)
3 . 192(my s
<7T+7TO|HW|K+>:| \/;a21 (Al?) FK—\/Z—K|:1+ zMifz s (84)
whereia, exp(8)=(I[H,JK%, 1=0,2, and|Kg)=1n2(|Ko) 5 g 9192M Bs
—|Ko)). With the definition, we can write T Mifz ) (B5)
0.0 2 : e 9192(my+mg)
I'(Kg— 70 )=P§|Rea0exp| 50— V2 Rea, expi 5, > Zo=1+ Sl (B6)

(A18)

where Z . and Zx are wave function renormalization con-

2 1 ;
[(Ks—m 7 )=P 3 |vV2 Reag expi 8o+ Rea, expi 52|2§, stants,F; is 92.42 MeV.

(A19) APPENDIX C: LAGRANGIAN
. 0+ 3 5 Here we record the part of the Lagrangian which is rel-
(KT —7"m") =P 7 Reay, (A20)  evant for calculation.
where imaginary parts are neglect&is a phase space fac- _ wPIKOKP KoK %970
tor of two body decay and is defined as: Lan=— 1272 12F2
0 000 O 0
_ \/_—2—2 modm (KPgKY+KY9K®) [ 1 1
P= T6mM, 1-4M2/M{ (A21) + >3 F_§+ =
,
=3.34919<10°% (MeVY). (A22) . 7KK E2017 4 E202 3g5(ms—my)?
- 1F2F | 7 ™ KK 4AM? ’
Here we use My+=493.677MeV and M_=(M .o (C1)
+M +)/2=137.273 MeV. With these definitions, we obtain
Br(K*— ) 7o 3 Real , _g{a((aw°)2+ IKOIK® _(?awoaK°+H . }
—_— T 2 2 s
Br(Ks— m°7%) + Br(Ke—om 7 ) 7. 4 Rea2+Rea:’ T4 Fo Fk FaFk
(A23) (m)? KOK® [ m,+m;
. . Ol o\ Myt —=2
We can extract the following ratio and values &gyanda,: F Fk 2
0 kO
Reao _(_0’77 K (3mu+ms )
= K— —|——|+H.c. +5‘C7T7T+5‘C47T’
Rea, 2215 (A24) = s
(C2
Rea,=2.114x10 ° (MeV), (A25)
where 6L, and 6L,,, come from the covariant derivative
Reay,=4.686<10 % (MeV). (A26) term.[See Eq.8) and Eq.(9).] Their explicit forms are

014002-8
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g2(ms—my) 0 0
OLgrm= W[ﬂ (Kgw”)+H.cl], (C3
Y ga(ms—m,)* [KOGmO)(KPFn%)].  (Cd
47 T16M |=7|=z m 7

APPENDIX D: THE MATRIX ELEMENT OF Qg

We give the derivation of the matrix element Qf

Y6 = Ttadpole+ Tdirect+ Trr* pole+ T(r*tad"_ TK*poIe+ TK*tad-
(D1)
The explicit expression of the parts of E49) is given by

2

g _
T d |+Td‘ V2 —— (m_m)B _2+_2
ta pole |rect M F S u FK Fﬂ_
g5(mg—my)?  g3(mg—m,)?
- 22 228 a2nA2
MAFgFe FrFM2ZMg

g5(mg—m,)2M?2
FRFZMIME

|

PHYSICAL REVIEW D 62 014002

ivV2B 2_ 2
Topotet To—tad™ m{ 9192(2M7—My)
+8g5my},
iv2B
Tpolet Ti—tad™ FF2(MZ—M2)
w!1- g%(ms_mu)(ms—i_mu)
MZFEME
gg(ms_mu)z 1_M_Er
2FEMEM2 M2

x[ —019,Mg+4g5(ms+m,)

2

Mk
_z(ms mu)gzM Z(ms mu)92

(D2)
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