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Nonleptonic hyperon weak decays in the Skyrme model reexamined
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Nonleptonic hyperon weak decays are investigated in the SU~3! Skyrme model. We use a collective coor-
dinate scheme, following the approach in which the symmetry breaking terms in the strong effective action are
diagonalized exactly. To describe the weak interactions we use an octet dominated weak effective Lagrangian
that leads to a good description of the known 2p and 3p kaon decays. We show that the observedS-wave
decays are reasonably well reproduced in the model. On the other hand, our calculatedP-wave amplitudes do
not agree with the empirical ones even though both pole and contact contributions to these amplitudes are
properly taken into account. Finally, an estimate of the nonoctet contributions to the decay amplitudes is
presented.

PACS number~s!: 12.39.Dc, 12.39.Fe, 13.30.Eg
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I. INTRODUCTION

Although during the last few decades much progress
been made in the theoretical study of hadron structure,
nonleptonic weak decays of hyperons still remain far fro
being well understood. This class of decays involves
only weak interactions but also low momentum strong p
cesses, which have made their first principles calculation
feasible so far. In this situation, different hadron models h
been used to get the corresponding theoretical predicti
The available experimental information allows us to det
mine bothS- and P-wave decay amplitudes separately f
various processes. In the case ofS-wave decays, the predic
tions given by quark models with QCD enhancement fact
turn out to be quite successful~see Ref.@1# and references
therein!. These models, however, have serious difficulties
reproducing at the same time the empirical results in the c
of the P-wave amplitudes. Indeed, this seems to be a pr
lem ~so called ‘‘S/P wave puzzle’’! which is common to
other approaches such as, e.g., heavy baryon chiral pertu
tion theory@2#, QCD sum rules@3#, etc.

A possible solution to theS/P wave puzzle has been sug
gested some years ago within the context of chiral topolo
cal soliton models@1,4#. It was shown that in these mode
the P-wave amplitudes receive, in addition to the stand
pole diagrams, extra contributions from contact terms. Th
it was speculated that these extra terms could provide a
to this issue. Unfortunately, at the time this suggestion w
made such models were hampered by several serious p
lems, such as very poor predictions for the hyperon spect
@5#, far too small results for theS-wave nonleptonic decay
amplitudes@4,6#, etc. Therefore, it was hard to draw defini
conclusions about the real relevance of the contact ter
With the introduction of more refined methods to treat t
chiral symmetry breaking terms in the effective action t
situation has significantly improved. Indeed, a scheme
which one introduces SU~3! collective coordinates and th
Hamiltonian—including a symmetry breaking piece—is d
0556-2821/2000/62~1!/014001~7!/$15.00 62 0140
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agonalized exactly leads to very good results for the hype
spectra, as well as reasonable predictions for different bar
properties~for a review see Ref.@7#!. Moreover, it has been
recently shown@8# that within such a scheme, and using
simple Cabibbo current-current form for the weak intera
tion, one can obtain the correctS-wave absolute values
Thus, we are now in position to verify whether chiral solito
models can provide a unified and consistent description
the hyperon nonleptonic decays. In this work we will d
scribe the weak interactions by means of an effective w
chiral Lagrangian—which is more general than the Cabib
current-current coupling often used in previous Skyrm
model calculations@6,8–10#—where the low energy cou
pling constants will be fixed to reproduce the known 2p and
3p K-meson decays. We will concentrate mostly in t
dominant octetlike piece of thisDS51 Lagrangian, consid-
ering terms up to orderp4. In addition, possible nonocte
contributions will be considered for the particular case of
A(S1

1) amplitude which, as is well known, vanishes in th
pure octet approximation. The nonleptonic hyperon de
amplitudes will be obtained by evaluating the correspond
matrix elements using the topological soliton model wa
functions.

The article is organized as follows: in Sec. II we give
brief overview of the SU~3! soliton model and introduce th
octetlike weak effective chiral Lagrangian to be used in
following two sections. In Secs. III and IV we describe th
calculation of theS-wave andP-wave amplitudes, respec
tively, and present the corresponding results. The impac
the nonoctetlike components of the weak effective Lagra
ian is discussed in Sec. V and in Sec. VI we state our c
clusions. Finally, in the Appendix we give some details co
cerning the evaluation of the matrix elements of t
collective operators which appear in the calculation of
decay amplitudes.

II. MODEL

In chiral topological soliton models baryons are describ
as topological excitations of a chiral effective action whi
©2000 The American Physical Society01-1
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depends only on meson fields. We use the form

G5GSK1GWZ1GSB, ~1!

whereGSK andGWZ stand for the Skyrme and Wess-Zumin
actions, respectively, andGSB is an SU~3! symmetry break-
ing piece. The Skyrme action has the usual form

GSK5E d4xH f p
2

4
Tr@]mU~]mU !†#

1
1

32e2 Tr†@U†]mU,U†]nU#2
‡J , ~2!

where the chiral fieldU is a nonlinear realization of the pseu
doscalar octet,f p593 MeV is the pion decay constant, an
e is the dimensionless Skyrme parameter. The Wess-Zum
action reads

GWZ52
iNc

240p2E d5xemnrst Tr@LmLnLrLsLt#, ~3!

whereLm5U†]mU and Nc53 is the number of colors. Fi
nally the symmetry breaking pieceGSB is given by

GSB5E d4xH f p
2 mp

2 12 f K
2 mK

2

12
Tr@U1U†22#

1A3
f p

2 mp
2 2 f K

2 mK
2

6
Tr@l8~U1U†!#1

f K
2 2 f p

2

12

3Tr$~12A3l8!@U~]mU !†]mU

1U†]mU~]mU !†#%J , ~4!

where f K is the kaon decay constant andmp andmK are the
pion and kaon masses, respectively. In our numerical ca
lations below we will set these parameters to their empir
values and takee54.1 which is suitable for a good descrip
tion of many baryon properties in this model.

In the soliton picture we are using, the strong interact
properties of the low-lying1

2
1 and 3

2
1 baryons are compute

following the standard SU~3! collective coordinate approac
to the Skyrme model. We introduce for the chiral field t
ansatz

U0~r ,t !5A~ t !S c11 i t• r̂s 0

0 1
D A†~ t !, ~5!

where we have used the abbreviationsc5cosF(r) and s
5sinF(r), F(r ) being the chiral angle that parametrizes t
soliton. The collective rotation matrixA(t) is SU~3! valued.
Substituting the configuration, Eq.~5!, into G yields ~upon
canonical quantization ofA) the collective Hamiltonian. Its
eigenfunctions are identified as the baryon wave functi
CB . As a result of the symmetry breaking pieceGSB, the
Hamiltonian is obviously not SU~3! symmetric. However, as
shown by Yabu and Ando@11#, it can be diagonalized ex
actly. The diagonalization essentially amounts to admixtu
01400
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of states from higher SU~3! representations into the octe
(J5 1

2 ) and decouplet (J5 3
2 ) states. This procedure ha

proved to be quite successful in describing the hyperon sp
trum and static properties@7#.

In order to describe the nonleptonic hyperon decays
have to introduce an effective weakDS51 Lagrangian. The
latter is constrained by weak interactions to transform eit
as8 or 27 under the chiral group SU(3)L . Here, we will take
into account only the dominant octetlike couplings, whi
lead to pureDI 51/2 transitions. The remaining27 piece
includes bothDI 51/2 andDI 53/2 operators and turns ou
to be suppressed in view of the yet not completely und
stood ‘‘DI 51/2 rule.’’ Further considerations about the
nonoctetlike terms will be given in Sec. V. We consider t
effective Lagrangian given by@14#

L w
(8)5g Tr@l6]mU]mU†#1g8 Tr@l6]mU]mU†]nU]nU†#

1g9 Tr@l6]mU]nU†]mU]nU†#. ~6!

It should be noticed that this is not the most general octet
DS51 interaction one can write down up toO(p4) in the
momentum power expansion. The latter, containing ma
other terms, has been presented in Ref.@12#. For the decays
we are interested in~no external fields!, it turns out that the
most general Lagrangian includes 15 independent term
order p4 leading to pureDI 51/2 transitions. However, to
this order, it has been shown@13# that the couplings consid
ered in Eq.~6! are sufficient to fit the known data onK
→pp andK→ppp. In the absence of further informatio
from the meson sector, we will just stick to this simple form
In order to give an idea of the uncertainties in our calcu
tions, we will consider two sets of values for the consta
g, g8, andg9 which provide fits to the kaon data of simila
quality. Set A corresponds to the parameters used in R
@4,14#,

g53.6031028mp
2 , g8/g51.5031021 fm2,

g9/g526.7431022 fm2, ~7!

while set B corresponds to the values obtained in Ref.@13#,

g52.9831028mp
2 , g8/g51.6931021 fm2,

g9/g51.8731022 fm2. ~8!

To calculate the hyperon decays in the context of
Skyrme model with SU~3! collective coordinates, we includ
the soft-meson fluctuations on top of the soliton backgrou
This is achieved using

U5UMU0~r ,t !UM , ~9!
1-2
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whereUM511 i tW•pW /(2 f p)1••• . Inserting this expression
into L w

(8) and taking the appropriate matrix elements one
obtain the desiredS-wave andP-wave decay amplitudes
This is worked out in the following two sections.

III. S-WAVE AMPLITUDES

As mentioned in the Introduction, it has been recen
shown@8# that if the Cabibbo current-current form is used
describe the weak interactions, the present soliton mo
leads to a reasonably good description of theS-wave hyperon
decay amplitudes. In this section we study these amplitu
using the effective weak chiral Lagrangian given by E
~6!–~8!.

As usual, we assume that isospin symmetry is preser
In such limit, the following relations between the nonle
tonic decay amplitudes can be derived:

S2
25S1

12A2S0
1 , ~10a!

L2
0 52A2L0

0 , ~10b!

J2
252A2J0

0 , ~10c!

where the lower indices indicate the charge of the outgo
pion. In this way, only four of the seven measurable am
tudes need to be considered as independent. For simpl
we choose these amplitudes to beL0

0, S0
1 , J0

0 andS1
1 .

For a processB→B8p, we can define the amplitudesA
andB, corresponding toS- andP-wave decays, respectively
according to

i ^B8puL w
(8)uB&5ūB8~A1Bg5!uB . ~11!

In the soft-pion limit, the octet nature ofL w
(8) , together with

current algebra relations, leads to an additional constrain
the S-wave S decay amplitudes, namely,A(S2

2)5

2A2A(S0
1). Thus from Eq.~10a! one obtainsA(S1

1)50.
The remainingA amplitudes can be calculated by replaci
Eqs.~9! and~5! in L w

(8) and taking the corresponding matr
elements. We find

A~B→B8p0!5a^B8uR78uB&, ~12!

where

a5
4p i

A3 f p

E drr 2FgS F8212
sin2 F

r 2 D 2g8S F8212
sin2 F

r 2 D 2

2g9S F8424
F82 sin2 F

r 2 D G . ~13!

In Eq. ~12!, R78 stands for an SU~3! rotation matrix,Rab
51/2 Tr@laAlbA†#. As explained in the Appendix, its ma
trix elements between the collective wave functions desc
ing the different baryon states can be calculated as lin
combinations of SU~3! Clebsch-Gordan coefficients.

Our results for theA amplitudes are summarized in Tab
I, where we also quote the values corresponding to the qu
01400
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model~QM! @1#. Following the usual convention, the overa
phase has been fixed to obtainA(L2

0 ) real and positive. It
can be seen from the table that the predictions obtained
set A are about 15% higher than those arising from set B
both cases, our results are somewhat below the experime
values. However, since the deviation is in the same direc
for all processes~notice that this is not the case for the Q
values!, the agreement is significantly improved if one co
siders the ratios between the different amplitudes. In gene
it could be said that our results and those correspondin
the QM are of similar quality.

It is also interesting to compare the present results w
those of previous soliton calculations. As already mention
in some of them@6,8–10# the Cabibbo current-current ha
been used. Within such scheme the best agreement with
pirical data has been obtained in Ref.@8# where, as done
here, the baryon wave functions arise from an exact dia
nalization of the SU~3! collective Hamiltonian. Generally
speaking the results reported in Table I are somewhat sm
~in absolute value! than those of Ref.@8#. However, it should
be stressed that the present calculation is free from the
certainties related to the question of whether~and to which
extent! QCD enhancement factors have to be included
soliton calculations. Here, such factors are already accou
for in the value of the low-energy constants that appear in
weak Lagrangian. On the other hand, if our results are co
pared with previous calculations based on effective we
chiral Lagrangians@4#, we see that the use of empirical inp
parameters in the strong effective action, together with
exact diagonalization of the SU~3! collective Hamiltonian,
leads to a significant improvement in the predictions.

A final comment concerns Ref.@15# and its Addendum
@16#. In Ref. @15#, the author studies weak decays of hype
ons in a chiral topological soliton model, starting with
DS51 Lagrangian including sixO(p4) terms. As shown in
the Addendum, the Cayley-Hamilton theorem can be use
reduce these six terms to only four independent ones. M
over, following the same steps as in our calculation, o
arrives at further relations between the corresponding
peron decay amplitudes. In the end one is effectively
with only two terms, which—as done in the present work
can be chosen to be those proportional tog8 andg9 in Eq.

TABLE I. CalculatedS-wave nonleptonic hyperon decay amp
tudes as compared with the empirical values. For comparison
list also the results of the quark model~QM! calculations of Ref.
@1#. All values should be multiplied by 1027. The numerical values
of the coefficientsg, g8, andg9 ~which appear in the weak effec
tive Lagrangian! corresponding to sets A and B are given in t
text.

This calculation QM Emp

Set A Set B

L0
0 -1.63 -1.28 -1.5 -2.37

S0
1 -2.48 -1.94 -3.8 -3.27

S1
1 0 0 0 0.13

J0
0 2.37 1.86 3.0 3.43
1-3



s
b
ro
ef

i
l
u

ce
ve
m
th

i

he
iv
e

r
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~6!. Following Ref.@15#, one might try to see whether it i
possible to find a set of coefficients for those terms capa
to reproduce the empirical values for both kaon and hype
decays. For this purpose, and in order to relate the co
cients with the hyperon amplitudes, the author of Ref.@15#
makes use of the relation~12! and takes the SU~3! symmetric
limit. In this way all decay amplitudes can be expressed
terms of one of them and thef /d ratio. The use of empirica
values for the latter leads to an incompatible system of eq
tions, so that the author argues that this precludes a suc
ful application of the chiral Lagrangian model. We belie
that the results found in the present work provide so
ground to disagree with such strong conclusion. In fact,
relations in Ref.@15# are expected to be modified by SU~3!
breaking effects and by next-to-leading order corrections
Nc , which in general introduce modifications to Eq.~12!.
From the results displayed in Table I it is seen that if t
chiral soliton approach is used together with an effect
weak chiral Lagrangian consistent withK-meson decays, on
can obtain a reasonably good description of theS-wave hy-
peron decays, already at leading order inNc .

IV. P-WAVE AMPLITUDES

We turn now to the evaluation of theP-wave amplitudes.
In the nonrelativistic limit, they can be calculated using
ou
w

e
ing

01400
le
n

fi-

n

a-
ss-

e
e

n

e

BūB8g5uB.2
B

2M̄
x†~l8!sW •qW x~l!, ~14!

whereM̄ is the average of theB andB8 empirical masses. As
stated in the Introduction, in the present modelB receives
contributions of two different kinds@4#. One of them arises
from contact terms inL w

(8) @see Fig. 1~a!#, whereas the othe
one is given by the pole diagrams shown in Figs. 1~b!–1~d!.
Our evaluation of the contact contribution in the case ofp0

emission leads to

Bcontact~B→B8p0!52
2M̄

3 f p
K B8U E d3r P̂cUBL , ~15!

where1

FIG. 1. Diagrams contributing to theP-wave decays:~a! contact
contribution,~b!, ~c! baryon pole contributions,~d! kaon pole con-
tribution.
P̂c5gH ~11c!S F812
s

r DR632
2

A3
~12c!S F822

s

r DR3
(1)J 1g8S F8212

s2

r 2D H 2~11c!S F812
s

r DR631
2

A3
FF8~32c!

12
s

r
~3c21!GR3

(1)J 1g9H ~11c!F8S 2F8212
s

r
F812

s2

r 2D R631
2

A3
FF83~32c!12

s

r
F8~12c!S F82

s

r D
14

s3

r 3
cGR3

(1)2
8

A3

s

r FcF821F8
s

r
1c

s2

r 2GR3
(2)J , ~16!
he
tes
pre-

ize
e
r

or
with

R3
(6)5R68R336R63R38. ~17!

Similar expressions can be found in the case of charged
going pions. On the other hand, from the pole diagrams
obtain

Bpole~B→B8p0!522A2M̄(
B9

FgA
B8B9

A~B→B9p0!

MB2MB9

1gA
BB8

A~B9→B8p0!

MB82MB9
G , ~18!

where we have neglected the smallK pole term contribution
in Fig. 1~d!, and we have made use of the generaliz
Goldberger-Treiman relations to write the strong coupl
t-
e

d

constants in terms of the axial charges. Notice that Eq.~18!
includes a sum over a set of intermediate statesB9. In our
calculations, we have included theJp5 1

2
1 collective eigen-

functions that arise from the exact diagonalization of t
strong Hamiltonian. It turns out that only a few excited sta
are needed to find convergence and their contribution re
sents, at most, 15% of the total values ofBpole .

For the sake of consistency, in order to estimate the s
of the Bpole amplitudes we will take into account both th
axial charges and theA amplitudes obtained within ou
model. Therefore, we consider the axial charge operatorĝA
arising from the action~1!, which reads

1Equation~16! shows some differences with respect to Eq.~24! of
the erratum of Ref.@4# which, we believe, contains errors and/
misprints.
1-4
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ĝA

A2
52

1

3E d3r H f p
2 S F812c

s

r D1
2

e2

s

r

3S c
s2

r 2
1

s

r
F81cF82D J R331

f K
2 2 f p

2

9 E d3r ~12c!

3H F2s

r
~112c!1F8G~12R88!R33

1F2s

r
2F8GR83R38J 1

Nc

36p2QK
E d3r ~12c!

3
s

r S s

r
22F8Dd3kk8R3kJk8 , ~19!

whereQK is the kaonic moment of inertia. It is worth men
tioning that this operator leads to a low value for the neut
beta decay form factor,gA.0.75, compared with the exper
mental result of about 1.25.

Numerical results for both the contact and pole contrib
tions to theB amplitudes are given in Table II. It can be se
that the absolute values for the total amplitudes are far
small in comparison with the experimental results. In t
case of the pole contributions, this could be explained in p
by an underestimation of the axial form factors, as sugge
by the low value in the case of the neutron beta decay
particular, for B(L0

0), the contribution obtained from Eq
~18! using the empirical values of theA amplitudes and axia
charges is in very good agreement with the experime
result ~see the value corresponding to the chiral fit in Ta
II !. In our calculation, instead, the suppression arising fr
the somewhat low predictions for theS-wave amplitudes,
together with the underestimation of the axial form facto
conspires to end up with a reduction factor of about 1/3.
the case of the remainingP-wave amplitudes, it is well
known that the usage of phenomenological values in Eq.~18!
does not allow one to get a good fit of the experimen
values. In this sense, the contact contributions have b
suggested as a possible novel ingredient to solve the disc
ancy. Our results show, however, that the values forBcontact

TABLE II. CalculatedP-wave nonleptonic hyperon decay am
plitudes as compared with the empirical values. For comparison
list also the results of a typical chiral fit (x fit! taken from Ref.@17#.
All values should be multiplied by 1027. The numerical values o
the coefficientsg, g8, andg9 ~which appear in the weak effectiv
Lagrangian! corresponding to sets A and B are given in the tex

This calculation x fit Emp

Set A Set B

Pole Contact Total Pole Contact Total

L0
0 -5.15 -0.38 -5.53 -4.04 -1.46 -5.50 -16.0 -15

S0
1 2.73 2.23 4.96 2.14 2.27 4.41 10.0 26.

S1
1 -0.65 4.52 3.87 -0.51 3.57 3.06 4.3 42.

J0
0 1.98 -0.27 1.71 1.55 -0.003 1.55 3.3 -12
01400
n
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,
n
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en
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amount at most 1/10 of the empiricalB amplitudes. Thus,
even if the effect goes in the right direction, the conta
contributions appear to be too small to represent a poten
solution for theS/P problem.

To check the dependence of our results on the Sky
parametere we have considered departures from the cen
valuee54.1. We find that the absolute values of the amp
tudes tend to increase ase increases. The amplitudes whic
turn out to be the most sensitive to the variation ofe are
those corresponding to theL→np0 process. Fore54.5,
which already implies an increase of more that 25% for
DN splitting, we find, for set A,A(L0

0)'2231027 which
is quite close to the empirical valueA(L0

0)emp522.37
31027. However, even in this case, the predictedB(L0

0) is
still more than a factor of 2 below the corresponding emp
cal value. Thus, we can conclude that the statements ab
are quite robust under variations of the only adjustable
rameter in our calculation.

V. CONTRIBUTIONS OF NONOCTETLIKE COMPONENTS

As stated in Sec. II, the nonleptonic decay amplitudes
dominated by the octetlike components of the weak effec
Lagrangian; hence only these components have been co
ered in the previous two sections. On the other hand,
have also mentioned that this approximation leads to a v
ishingS1

1 S-wave amplitude. In fact, the experimental valu
of A(S1

1), although significantly smaller than the other me
suredS-wave amplitudes, is found to be different from zer
In this section we will investigate whether within the prese
model the standard nonoctetlike contributions to the we
effective Lagrangian are able to account for this difference
is clear that such contributions will also modify the resu
obtained in the previous sections for the otherS-wave and
P-wave decay amplitudes. However, the modifications a
in the worst case, of the same order of magnitude than
uncertainties involved in the parametersg, g8, andg9 in the
weak effective Lagrangian. Therefore, in what follows w
will concentrate only on theS-waveS1

1 decay amplitude.
The lowest order 27-plet contribution to the weak effe

tive Lagrangian occurs atp2. It can be written as@12#

L 2
(27)5c3tcd

ab Tr~Qa
cU†]mU ! Tr~Qd

bU†]mU !, ~20!

where (Qa
c) i j 5dc jdai , and

t21
315t12

135t13
125t31

215
3

2
,

t12
315t21

135t13
215t31

1251, ~21!

with tcd
ab50 otherwise. As in the case of the octetlike piec

we will take into account also the effect of next-to-leadi
order couplings. We consider theO(p4) interaction

e

1-5
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L 4
(27)5g1tcd

ab Tr~Qa
cLm!Tr~Qd

bLnLmLn!

1g2tcd
ab Tr~Qa

cLm!Tr~Qd
b$Lm,L2%!

1g3tcd
ab Tr~Qa

c@Lm ,Ln#!Tr~Qd
b@Lm,Ln#!. ~22!

Once again the most general Lagrangian allowed by ch
symmetry includes many possible terms@12#, and the cou-
pling constants cannot be fully determined from the availa
information on the kaon sector. The structure chosen in
~22! is, however, sufficient to get a good fit of 2p and 3p K
decays. From such a fit one obtains@13# g1.1.0310210,
g2.20.4310210, g3.0.1310210 together with c3 / f p

2 .
20.831029. This set of values is used in the numeric
calculation below.

The desiredS-waveS1
1 amplitude can be now easily ob

tained by inserting the explicit form of the chiral fieldU in
the effective couplings~20! and~22!. By doing this we arrive
at

A (27)~S1→np1!5
A15

8A2
~ I 21I 4!^nuD23/2,0

27 uS1&.

~23!

Here, the left lower index of the SU~3! Wigner functionD
stands for (Y,I ,I 3)5(1,3/2,23/2) while the right lower in-
dex corresponds to (0,0,0). The radial integralsI 2 andI 4 are
given by

I 252
16p

3 f p
c3E drr 2S F8212

sin2 F

r 2 D ,

I 452
16p

3 f p
E drr 2Fg1F82S F8224

sin2 F

r 2 D
12g2S F8212

sin2 F

r 2 D 2

1g3

8 sin2 F

r 2 S 2F821
sin2 F

r 2 D G . ~24!

Even if the integrand ofI 4 is suppressed by the coeffi
cientsgi ~which are one to two orders of magnitude low
that c3 / f p

2 ), it can be seen that the suppression is comp
sated by the values of the radial integrals, in such a way
at the endI 4 dominates overI 2. Evaluating the matrix ele-
ment in Eq.~23!, we finally obtain

A~S1
1!.0.0131027, ~25!

to be compared with the empirical valueAemp(S1
1)50.13

31027 given in Table I. We observe that our estimation f
A(S1

1), although nonvanishing, is roughly one order
magnitude smaller than the empirical result. As in the cas
the octetlike contributions this statement remains valid
reasonable variations of the Skyrme parameter around
central valuee54.1.
01400
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e
q.
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VI. CONCLUSIONS

In this work we have revisited the problem of the calc
lation of the nonleptonic hyperon decay amplitudes in
topological soliton models. We have used the approach
the SU~3! Skyrme model in which both the isospin and th
strange degrees of freedom are treated as collective rota
around the usual SU~2! hedgehog ansatz and the symme
breaking terms in the strong action are diagonalized exac
To describe the weak interactions we have used a chira
fective action, in which low-energy constants are adjusted
describe the known 2p and 3p weak kaon decays. For th
S-wave decay amplitudes we have found that, compared w
previous calculations based on effective weak ch
Lagrangians@4#, the use of empirical input parameters in th
strong effective action, together with the exact diagonali
tion of the SU~3! collective Hamiltonian, leads to a signifi
cant improvement in the predictions. A similar result h
been recently obtained using a Cabibbo current-current t
weak interaction@8#. Although our predictions are abou
30% below the empirical values, we consider them as sa
factory in view of the simplicity of the model and the fa
that higher orderNc corrections of that size are to be e
pected. On the other hand, our results badly fail to reprod
the empiricalP-wave amplitudes. In soliton models, suc
amplitudes receive two types of contributions@4#, namely,
those arising from the usual pole diagrams and those com
from contact terms. The presence of the latter provided so
hope that the long standingS/P wave puzzle could find a
solution within these models. Our results show that, unfor
nately, such contact contributions are far too small to clo
the gap between the predictions coming from the pole te
alone and the empirical values. Although one cannot excl
some corrections to these results due to higher order eff
neglected in this work~such as, e.g., the kaon-induced com
ponents which are known to play a significant role in t
determination of the parity violatingpN coupling constant
@18#!, it is difficult to believe that they could lead to a solu
tion of this problem. Finally, we have estimated the con
bution to the decay amplitudes coming from nonoctet ter
in the weak effective action. Since these contributions
generally very small, we have concentrated only on
S-waveS1

1 decay amplitude which, as is well known, va
ishes if only octet terms are considered. Our result, altho
nonzero, turns out to be roughly one order of magnitu
smaller than the empirical value. This clearly indicates th
within the Skyrme model, more refined wave functio
and/or effective weak interactions are needed to unders
the subtle effects related with the small violations of t
DI 51/2 rule observed in the nonleptonic hyperonS-wave
decays.
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APPENDIX: CALCULATION OF THE COLLECTIVE
MATRIX ELEMENTS

As explained in the main text the calculation of the dec
amplitudes involves the matrix elements of some collect
operatorsÔ between baryon wave functions. To evalua
these matrix elements we proceed as follows.

In general, the wave function corresponding to a baryoB
can be expanded in terms of SU~3! Wigner functionsDab

R ,

CB5(
R

CB
RAdim ~R!Dab

R , ~A1!

wherea5(Y,I ,I 3) andb5(1,J,J3) carry the baryon quan
tum numbers, andR is the corresponding representation. T
coefficientsCB

R are obtained from the diagonalization proc
dure described in Sec. II. In addition, the collective operat
Ô can always be expressed as

Ô5 (
â,b̂,R̂

gâ,b̂
R̂

D â,b̂
R̂ , ~A2!

wheregâ,b̂
R̂ are numerical coefficients. These coefficients

sult from expressing the ‘‘Cartesian’’ SU~3! indexes a
51, . . . ,8 in terms of the ‘‘spherical’’ SU~3! indexes
(Y,I ,I 3) and performing suitable Clebsch-Gordan series
pansions when needed. For example, for the operatorR78
appearing in Eq.~12! we have

R785
i

A2
@D (1,1/2,21/2),(0,0,0)

8 2D (21,1/2,1/2),(0,0,0)
8 #, ~A3!
ep

,

r,

D

01400
y
e

s

-

-

while the combinationR3
(1) in Eq. ~17! can be written as

R3
(1)5

A6

10
@D (1,1/2,21/2),(0,1,0)

8 1D (21,1/2,1/2),(0,1,0)
8 #

1
1

10
@D (1,1/2,21/2),(0,1,0)

27 1D (21,1/2,1/2),(0,1,0)
27 #

2
1

A5
@D (1,3/2,21/2),(0,1,0)

27 1D (21,3/2,1/2),(0,1,0)
27 #.

~A4!

Thus, the matrix element̂B8uÔuB& can finally be ex-
pressed in terms of the standard SU~3! Clebsch-Gordan co-
efficients@19#. Namely,

^B8uÔuB&5 (
â,b̂,R̂

gâ,b̂
R̂ (

R,R8,m

CB
R~CB8

R8!*A dim~R!

dim~R8!

3S R̂ R R8

â a a8
D S R̂ R R8m

b̂ b b8
D , ~A5!

where the brackets indicate the Clebsch-Gordan coefficie
The sum overm refers to the situations in which the Clebsc
Gordan expansion of the product of twoD ’s includes more
than one representation with the same dimension.
ev.
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