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Nonleptonic hyperon weak decays in the Skyrme model reexamined
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Nonleptonic hyperon weak decays are investigated in the3)S8kyrme model. We use a collective coor-
dinate scheme, following the approach in which the symmetry breaking terms in the strong effective action are
diagonalized exactly. To describe the weak interactions we use an octet dominated weak effective Lagrangian
that leads to a good description of the knows 2nd 37 kaon decays. We show that the obser&dave
decays are reasonably well reproduced in the model. On the other hand, our calPulegd amplitudes do
not agree with the empirical ones even though both pole and contact contributions to these amplitudes are
properly taken into account. Finally, an estimate of the nonoctet contributions to the decay amplitudes is
presented.

PACS numbds): 12.39.Dc, 12.39.Fe, 13.30.Eg

[. INTRODUCTION agonalized exactly leads to very good results for the hyperon
spectra, as well as reasonable predictions for different baryon
Although during the last few decades much progress haBroperties(for a review see Ref.7]). Moreover, it has been

been made in the theoretical study of hadron structure, thEecently showr{8] that within such a scheme, and using a

nonleptonic weak decays of hyperons still remain far fromSimple Cabibbo current-current form for the weak interac-

being well understood. This class of decays involves no lon, one can obtain the correGkwave absolute values.

. : hus, we are now in position to verify whether chiral soliton
only weak Interactions but aI;o .IOW momentum strong P9 models can provide a unified and consistent description of
cesses, which have made their first principles calculation u

Mhe hyperon nonleptonic decays. In this work we will de-

feasible so far. In this situation, different hadron models havescribe the weak interactions by means of an effective weak
been used to get the corresponding theoretical predictiongyirg| | agrangian—which is more general than the Cabibbo
The available experimental information allows us to deter-rent-current coupling often used in previous Skyrme

mine bothS and P-wave decay amplitudes separately for mode| calculationd6,8—10—where the low energy cou-
various processes. In the caseSafvave decays, the predic- pling constants will be fixed to reproduce the knowsn and
tions given by quark models with QCD enhancement factorg; K-meson decays. We will concentrate mostly in the
turn out to be quite successf(dee Ref[1] and references dominant octetlike piece of thisS=1 Lagrangian, consid-
thereir). These models, however, have serious difficulties il”ering terms up to ordep4_ In addition, possib|e nonoctet
reproducing at the same time the empirical results in the casgontributions will be considered for the particular case of the
of the P-wave amplitudes. Indeed, this seems to be a prob (3 ) amplitude which, as is well known, vanishes in the
lem (so called ‘S/P wave puzzle’) which is common to  pure octet approximation. The nonleptonic hyperon decay
other approaches such as, e.g., heavy baryon chiral perturbamplitudes will be obtained by evaluating the corresponding
tion theory[2], QCD sum ruleg3], etc. matrix elements using the topological soliton model wave
A possible solution to th&/P wave puzzle has been sug- functions.
gested some years ago within the context of chiral topologi- The article is organized as follows: in Sec. Il we give a
cal soliton modelg1,4]. It was shown that in these models brief overview of the S(B) soliton model and introduce the
the P-wave amplitudes receive, in addition to the standardPctetlike weak effective chiral Lagrangian to be used in the
pole diagrams, extra contributions from contact terms. Thenfollowing two sections. In Secs. lll and IV we describe the

it was speculated that these extra terms could provide a clfedlculation of theSwave andP-wave amplitudes, respec-

to this issue. Unfortunately, at the time this suggestion wadlVely, and present the corresponding results. The impact of

made such models were hampered by several serious prog‘-e nonoctetlike components of the weak effective Lagrang-

lems, such as very poor predictions for the hyperon spectru n IS dlscqssed n Sec. V and_m Sec._ Vi we state our con-
[5], far too small results for th&wave nonleptonic decay cIu3|_ons. Finally, in th_e Appendix we give some details con-
amplitudeq4,6], etc. Therefore, it was hard to draw definite cerning the evaluatlor! of the ”?a"'x element_s of the
conclusions about the real relevance of the contact termé:OIIECtIVe operators which appear in the calculation of the
With the introduction of more refined methods to treat thedecay amplitudes.
chiral symmetry breaking terms in the effective action the

situation has significantly improved. Indeed, a scheme in

which one introduces S@3) collective coordinates and the In chiral topological soliton models baryons are described
Hamiltonian—including a symmetry breaking piece—is di- as topological excitations of a chiral effective action which

Il. MODEL
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depends only on meson fields. We use the form of states from higher S(@3) representations into the octet
(J=13) and decouplet J=2) states. This procedure has
[=TsktT'wztTsg, @ proved to be quite successful in describing the hyperon spec-

trum and static propertids].

In order to describe the nonleptonic hyperon decays we
have to introduce an effective wedS=1 Lagrangian. The
latter is constrained by weak interactions to transform either

§2 as8 or 27 under the chiral group SU(3) Here, we will take
I‘SK:f d“x[fTr[aMU(ﬁ“U)T] into account only the dominant octetlike couplings, which
lead to pureAl=1/2 transitions. The remaining7 piece
1 includes bothAl=1/2 andAl=23/2 operators and turns out
+@Tf[[UTﬂMU,UT5VU]Z] : (2)  to be suppressed in view of the yet not completely under-
stood “Al=1/2 rule.” Further considerations about these
where the chiral field) is a nonlinear realization of the pseu- honoctetlike terms will be given in Sec. V. We consider the
doscalar octetf .=93 MeV is the pion decay constant, and effective Lagrangian given bj14]
e is the dimensionless Skyrme parameter. The Wess-Zumino
action reads

wherel' gk andI’"\y,; stand for the Skyrme and Wess-Zumino
actions, respectively, andsg is an SU3) symmetry break-
ing piece. The Skyrme action has the usual form

LE=gTr\ed,Ua*UT+g’ TN, Ud#UT9,Ua"UT]

Two=— _222;2[ dsXéMVPUTTr[LMLVLpL(TLT]! 3 +9" Tr{Agd, U a,UTo*uUs"UT]. (6)
whereL,=U"9,U andN.=3 is the number of colors. Fi- It should be noticed that this is not the most general octetlike
nally the symmetry breaking piedésg is given by AS=1 interaction one can write down up t9(p%) in the

» o s 5 momentum power expansion. The latter, containing many
r :J d“x[ fome+2fiemi TU+UT-2] other terms, has been presented in RE2]. For the decays
SB 12 we are interested ifno external fields it turns out that the
(20222 5 o most g4enera|_ Lagrangian includes 15_ i_ndependent terms of
+3 M7~ Tk Mk T Ag(U+UN]+ K™ la or_derp Ieadlng to pureAl=1/2 transitions. I_—|0wever, to
6 12 this order, it has been shoyh3] that the couplings consid-
ered in Eq.(6) are sufficient to fit the known data o
XTr{(1=3rg)[U(9,U)"o"U —am andK— marar. In the absence of further information
from the meson sector, we will just stick to this simple form.
+UT(9’“U((9MU)T]}]’ (4)  Inorder to give an idea of the uncertainties in our calcula-
tions, we will consider two sets of values for the constants

g, g’, andg” which provide fits to the kaon data of similar
quality. Set A corresponds to the parameters used in Refs.

14,

wherefy is the kaon decay constant ang, andmy are the

pion and kaon masses, respectively. In our numerical calc

lations below we will set these parameters to their empirical

values and take=4.1 which is suitable for a good descrip-

tion of many baryon properties in this model. g=3.60x 10—8m37, g'/g=1.50<10"1 fm?,
In the soliton picture we are using, the strong interaction

properties of the low-lying * and3* baryons are computed

following the standard S(3) collective coordinate approach g"/g=—6.74x10"? fm?, (7
to the Skyrme model. We introduce for the chiral field the
ansatz
while set B corresponds to the values obtained in R,
Uo(r,t) A(t)( cltirts O)AT(t) (5)
rl = 1
° 0 1 g=2.98<10"®m2, g'/g=1.69x10"* fm?,

where we have used the abbreviatiors cosF(r) and s

=sinF(r), F(r) being the chiral angle that parametrizes the g"/g=1.87x10 2 fm?. (8)
soliton. The collective rotation matri&(t) is SU3) valued.

Substituting the configuration, E5), into I' yields (upon

canonical quantization oh) the collective Hamiltonian. Its ~ To calculate the hyperon decays in the context of the
eigenfunctions are identified as the baryon wave function§kyrme model with SB) collective coordinates, we include
¥y. As a result of the symmetry breaking pieEeg, the the soft-meson fluctuations on top of the soliton background.
Hamiltonian is obviously not S(3) symmetric. However, as This is achieved using

shown by Yabu and Andfl1], it can be diagonalized ex-

actly. The diagonalization essentially amounts to admixtures U=UpnUy(r,t)Uy, 9)
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whereUy,=1+i I 7;/(2]:77) + ... . Inserting this expression TABLE I. CalculatedS-wave nonleptonic hyperon decay ampli-

into ﬁ\(,\?) and taking the appropriate matrix elements one caﬁUdeS as compared with the empirical values. For comparison we

obtain the desiredswave andP-wave decay amplitudes. list also the results of the qu_ar_k mod&M) calculatlohs of Ref.
This is worked out in the following two sections [1]. All values should be multiplied by 10. The numerical values

9 ) of the coefficientsy, g’, andg” (which appear in the weak effec-
tive Lagrangiah corresponding to sets A and B are given in the
Ill. SWAVE AMPLITUDES text.

As mentioned in the Introduction, it has been recently

shown[8] that if the Cabibbo current-current form is used to This calculation QM Emp

describe the weak interactions, the present soliton model Set A Set B

leads to a reasonably good description of 8agave hyperon

decay amplitudes. In this section we study these amplitudedo -1.63 -1.28 -1.5 -2.37

using the effective weak chiral Lagrangian given by Egs2o -2.48 -1.94 -3.8 -3.27

(6)—(8). M 0 0 0 0.13
As usual, we assume that isospin symmetry is preserved® 2.37 1.86 3.0 3.43

In such limit, the following relations between the nonlep-

tonic decay amplitudes can be derived:

et " model (QM) [1]. Following the usual convention, the overall

2o=37 ‘/520 ' (109 phase has been fixed to obtait{A°) real and positive. It

can be seen from the table that the predictions obtained with

set A are about 15% higher than those arising from set B. In

— 0 both cases, our results are somewhat below the experimental
B -=—V2Eo, (100 yalues. However, since the deviation is in the same direction

where the lower indices indicate the charge of the outgoiné/Or all processesnotice Fhat_ th|.s. IS not _the case fpr the QM

alues, the agreement is significantly improved if one con-

pion. In this way, only four of the seven measurable ampli-_. ; . :
tudes need to be considered as independent. For simplicit ,|ders the ratios between the different amplitudes. In ge_neral,
t' could be said that our results and those corresponding to

we choose these amplitudes to hg, 34, 25 and> . the QM are of similar quality

For a procesﬁﬁB’w, we can define the amplltud.eé; It is also interesting to compare the present results with
andB, _correspondlng & andP-wave decays, respectively, those of previous soliton calculations. As already mentioned,
according to in some of them 6,8—1Q the Cabibbo current-current has
been used. Within such scheme the best agreement with em-
pirical data has been obtained in R&8] where, as done
here, the baryon wave functions arise from an exact diago-

In the soft-pion I|m|t,_the octet nature (ﬁW. ! together W't.h nalization of the S(B) collective Hamiltonian. Generally
current algebra relations, leads to an additional constraint for . .

. - speaking the results reported in Table | are somewhat smaller
the Swave % decay amplitudes, namely, A(2_)=

+ . n (in absolute valuethan those of Ref.8]. However, it should
—V2A(2g). Thus from Eq.(108 one obtainsA(31)=0.  pe stressed that the present calculation is free from the un-

The remainingA amplitudes can be calculated by replacing certainties related to the question of whetk@nd to which
Egs.(9) and(5) in £ and taking the corresponding matrix exteny QCD enhancement factors have to be included in
elements. We find soliton calculations. Here, such factors are already accounted
for in the value of the low-energy constants that appear in the
A(B—B'7°)= a(B'|R;gB), (12) weak Lagrangian. On the othegryhand, if our resul?g are com-
pared with previous calculations based on effective weak
chiral Lagrangian$4], we see that the use of empirical input
)2 parameters in the strong effective action, together with the

A% =—2A0, (10b)

i(B' 7| £®)|BY=ug/ (A+ Bys)ug. (12)

where

A i
a= fdrr2

V3f,

_grr( F/4_4

SifF
r2

exact diagonalization of the $B) collective Hamiltonian,
leads to a significant improvement in the predictions.
A final comment concerns Ref15] and its Addendum
(13) [16]. In Ref.[15], the author studies weak decays of hyper-
ons in a chiral topological soliton model, starting with a
AS=1 Lagrangian including siO(p*) terms. As shown in
In Eq. (12), R,g stands for an S(B) rotation matrix,R,, the Addendum, the Cayley-Hamilton theorem can be used to
=1/2 T{ A\ ,AN,AT]. As explained in the Appendix, its ma- reduce these six terms to only four independent ones. More-
trix elements between the collective wave functions describever, following the same steps as in our calculation, one
ing the different baryon states can be calculated as linearrives at further relations between the corresponding hy-
combinations of S(B) Clebsch-Gordan coefficients. peron decay amplitudes. In the end one is effectively left
Our results for thed amplitudes are summarized in Table with only two terms, which—as done in the present work—
I, where we also quote the values corresponding to the quarkan be chosen to be those proportionagtoandg” in Eq.

g

r2

, .SIPF )
F'e+2 —g'| F'°+2

F'ZsinZF)

2

r
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(6). Following Ref.[15], one might try to see whether it is . K T e
possible to find a set of coefficients for those terms capable kO
to reproduce the empirical values for both kaon and hyperorz B_'FO? 7 © B B B B
decays. For this purpose, and in order to relate the coeffi- B

cients with the hyperon amplitudes, the author of R&§] (a) (b) © )

makes use of the relatiqd2) and takes the S(3) symmetric

limit. In this way all decay amplitudes can be expressed in FIG. 1. Diagrams contributing to tHe-wave decays(a) contact
terms of one of them and tHeéd ratio. The use of empirical ~contribution,(b), (c) baryon pole contributionggd) kaon pole con-
values for the latter leads to an incompatible system of equétibution.

tions, so that the author argues that this precludes a success-

ful application of the chiral Lagrangian model. We believe — f s =

that the results found in the present work provide some BUB'?’SUBZ_ﬁX (A)o-qx(N), (14)
ground to disagree with such strong conclusion. In fact, the

relations in Ref[15] are expected to be modified by &) — , .

breaking effects and by next-to-leading order corrections ifVnereM is the average of thB andB’ empirical masses. As
N, which in general introduce modifications to EG.2). stateq in the Introduc.tlon, in t_he present modfefecel\(es
From the results displayed in Table | it is seen that if theContributions of two dlg?rent kindg4]. One of them arises
chiral soliton approach is used together with an effectivefom contact terms irC,,” [see Fig. 1a)], whereas the other
weak chiral Lagrangian consistent withmeson decays, one ©One€ is given by the pole diagrams shown in Figd)21(d).
can obtain a reasonably good description of agave hy- Our evaluation of the contact contribution in the caserdf

peron decays, already at leading ordeiNin. emission leads to
2M .
IV. P-WAVE AMPLITUDES Bcontac&B*’B,Wo):_sT B’ jd3r73C B), (15
We turn now to the evaluation of tHfewave amplitudes.
In the nonrelativistic limit, they can be calculated using wheré
|
P.=9j (1+c) F’+25)R 2 (1 )(F’ 2S)R(+> +g' F'2+282 (1+0)| F'+2° | Reat 2 F'(3—c)
= c - -—(1-c —2- — 1§ - c - — -C
<=9 r | Res 3 rNs g 2 ;| Res 73
122@c- 1) RS+ (14 0)F F'2+2SF'+282 Rest —| F3(3—c)+2°F"(1 Fros
C(3c—1) Ry 9" (1+c) ; r263\/§(0)r(0) ;
3 2
S 8 s S S
+4— (H)y_ — = 12 E' 24— ()
4r3c RS G CR+F ¢ Ry 1, (16)
|
with constants in terms of the axial charges. Notice that(&E§).
. includes a sum over a set of intermediate st&ésin our
R$™=RegR33* RegRag- (17)  calculations, we have included td&=1" collective eigen-

functions that arise from the exact diagonalization of the
Similar expressions can be found in the case of charged oustrong Hamiltonian. It turns out that only a few excited states
going pions. On the other hand, from the pole diagrams weyre needed to find convergence and their contribution repre-
obtain sents, at most, 15% of the total valuesiZyfc.
For the sake of consistency, in order to estimate the size
5 g A(B—B"7°) of the Byoe amplitudes we will take into account both the
9a Mg—M g axial charges and thed amplitudes obtained within our

model. Therefore, we consider the axial charge opermtor
arising from the actiorfl), which reads

Bpole(B_’ B’ 770) == 2\/5“72
B"

+gBE A(B"—B' 79

, 18
gA MBf_MBH ( )

where we have neglected the sniélpole term contribution  *Equation(16) shows some differences with respect to Ex) of
in Fig. 1(d), and we have made use of the generalizedhe erratum of Ref[4] which, we believe, contains errors and/or
Goldberger-Treiman relations to write the strong couplingmisprints.
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TABLE II. CalculatedP-wave nonleptonic hyperon decay am- amount at most 1/10 of the empiric&l amplitudes. Thus,
plitudes as compared with_the empirigal _values. For comparison Weyen if the effect goes in the right direction, the contact
list also the results of atyplcgl chiral fig(fit) taken frc_;m Ref[17]. contributions appear to be too small to represent a potential
All value§ §h0u|d b/e muIt||3NI|ed t?y 10. The .numerlcal values .of solution for theS/P problem.
e e B e S To check the dependence of our resuls on e Skyme

" parametefe we have considered departures from the central
value e=4.1. We find that the absolute values of the ampli-
tudes tend to increase asincreases. The amplitudes which
Set A Set B turn out to be the most sensitive to the variationeofre
those corresponding to th& —n® process. Fore=4.5,
which already implies an increase of more that 25% for the
AY -515 -0.38 -553 -404 -146 -550 -16.0 -15.8 AN splitting, we find, for set A,A(A8)~—2>< 10" 7 which
S& 273 223 496 214 227 441 100 26.6 is quite close to the empirical valugl(Ag)emp=—2.37
S* -065 452 387 -051 357 306 43 422 X10 ' However, even in this case, the predicted\ ) is
23 198 -027 171 155 -0003 155 33 -12.3 still more than a factor of 2 below the corresponding empiri-
cal value. Thus, we can conclude that the statements above
are quite robust under variations of the only adjustable pa-
rameter in our calculation.

This calculation x fit Emp

Pole Contact Total Pole Contact Total

2's
+__
e?r

S
F/+2CF

da 1f
—==—5| & {2
23 |”

2 2 g2
X ( cS—2 +§F'+CF'2) ] Rast+ i f”f d3r(1—c) As stated in Sec. Il, the nonleptonic decay amplitudes are
r< r 9 dominated by the octetlike components of the weak effective
Lagrangian; hence only these components have been consid-
(1— Rgg)Rg3 ered in the previous two sections. On the other hand, we
have also mentioned that this approximation leads to a van-
N ishing>~ Swave amplitude. In fact, the experimental value
+ —Cf d3r(1—c) of A(2 1), although significantly smaller than the other mea-
36m°0k suredSwave amplitudes, is found to be different from zero.
s In this section we will investigate whether within the present
__ZF’)dgkk,ngJk,, (19  model the standard nonoctetlike contributions to the weak
r effective Lagrangian are able to account for this difference. It
is clear that such contributions will also modify the results
where®  is the kaonic moment of inertia. It is worth men- obtained in the previous sections for the otlsawvave and
tioning that this operator leads to a low value for the neutrorP-wave decay amplitudes. However, the modifications are,
beta decay form factog,=0.75, compared with the experi- in the worst case, of the same order of magnitude than the
mental result of about 1.25. uncertainties involved in the parametgrsy’, andg” in the
Numerical results for both the contact and pole contribu-weak effective Lagrangian. Therefore, in what follows we
tions to thel3 amplitudes are given in Table II. It can be seenwill concentrate only on th&waves | decay amplitude.
that the absolute values for the total amplitudes are far too The lowest order 27-plet contribution to the weak effec-
small in comparison with the experimental results. In thetive Lagrangian occurs gi?. It can be written a$12]
case of the pole contributions, this could be explained in part
by an underestimation of the axial form factors, as suggested
by the low value in the case of the neutron beta decay. In
particular, forB(Ag), the contribution obtained from Eq.
(18 using th.e empirical values of thé am.plitudes and a_xial where @;)ij = 5¢j6ai, and
charges is in very good agreement with the experimental
result(see the value corresponding to the chiral fit in Table
II). In our calculation, instead, the suppression arising from 31 .13 .12 .21
the somewhat low predictions for tH®@wave amplitudes, LI= == 5 =5,
together with the underestimation of the axial form factors,
conspires to end up with a reduction factor of about 1/3. In
the case of the remainin@-wave amplitudes, it is well th=tr=th=t3=1, (22)
known that the usage of phenomenological values in(Eg).
does not allow one to get a good fit of the experimental
values. In this sense, the contact contributions have beewith t26=0 otherwise. As in the case of the octetlike piece,
suggested as a possible novel ingredient to solve the discrepre will take into account also the effect of next-to-leading
ancy. Our results show, however, that the values3gh.c:  order couplings. We consider tt@(p?) interaction

V. CONTRIBUTIONS OF NONOCTETLIKE COMPONENTS

2s
X T(1+2c)+F’

+

2s ,
T_F R83R38

S
X —
r

L£E0=cat28 Tr(QSUT,U) Tr(QiUTa*U),  (20)
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ab c by py 2 In this work we have revisited the problem of the calcu-
* Oted TH(QaL ) TH(Qq{LA L) lation of the nonleptonic hyperon decay amplitudes in the
+g3t§3Tr(Qg[LM,LV])Tr(Qg[LM,LV]). (22)  topological soliton models. We have used the approach to
the SU3) Skyrme model in which both the isospin and the
Once again the most general Lagrangian allowed by chiradtrange degrees of freedom are treated as collective rotations
symmetry includes many possible terfi2], and the cou-  around the usual S@) hedgehog ansatz and the symmetry
pling constants cannot be fully determined from the availableyreaking terms in the strong action are diagonalized exactly.
information on the kaon sector. The structure chosen in Edro describe the weak interactions we have used a chiral ef-
(22) is, however, sufficient to get a good fit of2and 3m K fective action, in which low-energy constants are adjusted to
decays. From_fouch a fit one _%gtalfﬂﬁ] 9=1.0x 102 » describe the known 2 and 37 weak kaon decays. For the
92= _0-45910 5 93=0.1xX10""" together withcs/f7= " gyave decay amplitudes we have found that, compared with
—0.8<10°". This set of values is used in the numerical yreyious calculations based on effective weak chiral
calculation below. . _ , Lagrangiang4], the use of empirical input parameters in the
‘The desiredSwaveX. ;. amplitude can be now easily ob- strong effective action, together with the exact diagonaliza-
tained by inserting the explicit form of the chiral field in tion of the SU3) collective Hamiltonian, leads to a signifi-
the effective coupling&20) and(22). By doing this we arrive cant improvement in the predictions. A similar result has
at been recently obtained using a Cabibbo current-current type
J15 weak interaction[8]. Although our predictions are about
ACDS* Snmt)y=——(l,+1,)(n|D%,, = 7). 30% below the empirical values, we consider them as satis-
82 ’ factory in view of the simplicity of the model and the fact
(23)  that higher ordemN, corrections of that size are to be ex-

) ] ) pected. On the other hand, our results badly fail to reproduce
Here, the left lower index of the §8) Wigner functionD  he empirical P-wave amplitudes. In soliton models, such

stands for ¥, 1,13) =(1,3/2,-3/2) while the right lower in-  5mpjitudes receive two types of contributiofd, namely,
dex corresponds to (0,0,0). The radial integtalandl, are  those arising from the usual pole diagrams and those coming

given by from contact terms. The presence of the latter provided some
) hope that the long standin§ P wave puzzle could find a
L 16_7TC f drr? F’2+25m2 F) solution within these models. Our results show that, unfortu-
20 3f, 3 2 nately, such contact contributions are far too small to close
the gap between the predictions coming from the pole terms
16 Si? F alone and the empirical values. Although one cannot exclude
l,=— = | drr? glF’Z( Er2_4 ) some corrections to these results due to higher order effects
3f, r? neglected in this worksuch as, e.g., the kaon-induced com-
_ ’ ponents which are known to play a significant role in the
+2g F’2+28m2 F) determination of the parity violatinge/N coupling constant
2 r2 [18)), it is difficult to believe that they could lead to a solu-

tion of this problem. Finally, we have estimated the contri-

bution to the decay amplitudes coming from nonoctet terms
(24)  in the weak effective action. Since these contributions are
generally very small, we have concentrated only on the
Swave s decay amplitude which, as is well known, van-
ishes if only octet terms are considered. Our result, although
nonzero, turns out to be roughly one order of magnitude
smaller than the empirical value. This clearly indicates that,
Rhithin the Skyrme model, more refined wave functions
and/or effective weak interactions are needed to understand
the subtle effects related with the small violations of the
Al1=1/2 rule observed in the nonleptonic hyperSiwave
decays.

8sit F s si? F
+0s 2F'“+ .

2 2

r r

Even if the integrand of, is suppressed by the coeffi-
cientsg; (which are one to two orders of magnitude lower
that c3/f,27), it can be seen that the suppression is compen
sated by the values of the radial integrals, in such a way th
at the endl, dominates ovet,. Evaluating the matrix ele-
ment in Eq.(23), we finally obtain

A(21)=0.01x10"", (25)

to be compared with the empirical valuéemp(21)=0.13
X107 given in Table |. We observe that our estimation for
A(2T), although nonvanishing, is roughly one order of
magnitude smaller than the empirical result. As in the case of D.G.D. acknowledges FundacioAntorchas, Argentina
the octetlike contributions this statement remains valid forfor financial support. This work was supported in part by
reasonable variations of the Skyrme parameter around itgrant PICT 03-00000-00133 from ANPCYT, Argentina.
central valuee=4.1. N.N.S. thanks CONICET, Argentina, for financial support.
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APPENDIX: CALCULATION OF THE COLLECTIVE while the combinatiorRS™) in Eq. (17) can be written as
MATRIX ELEMENTS

As explained in the main text the calculation of the decay /6
amplitudes involves the matrix elements of some collective Rgﬂ:
operators@ between baryon wave functions. To evaluate
these matrix elements we proceed as follows. 1

In general, the wave function corresponding to a bafgon +E[D(217'1’2'* 1/2),(0,1,0" D(Zz 1,1/2,1/2),(0,1,0)
can be expanded in terms of &) Wigner functionsDEB,

8 8
10 [D(112-12), (00,05 D(~1,112,112),(0,1,0)

R [T R —i[D(2173/2—1/2)(010)+D(2313/21/2)(01o}-
‘I’B=ER CEdim (R)DRy, (A1) J5- - (L32m12. 0, 312,112),(0.1,

Ad
wherea=(Y,l,13) and 8=(1,J,J3) carry the baryon quan- a4

tum numbers, an® is the corresponding representation. The
coefficientsCS are obtained from the diagonalization proce-  Thus, the matrix eIemen(tB’|(5|B) can finally be ex-
dure described in Sec. Il. In addition, the collective operatorgressed in terms of the standard (3JUClebsch-Gordan co-

O can always be expressed as efficients[19]. Namely,
M R _pR.
O_&%é a,BDa,B’ (A2) s & R, AR s im(R)
" (B'10|By= > Yol > CR(C:) ——
R . - - a.B.R RR dim(R’)
wherey; pare numerical coefficients. These coefficients re- A A
sult from expressing the “Cartesian” $8) indexes a X( R R R’) R R Ru (45)
=1,...,8 interms of the “spherical” SW3) indexes o a o\p B B :

(Y,1,13) and performing suitable Clebsch-Gordan series ex-
pansions when needed. For example, for the operigr

appearing in Eq(12) we have where the brackets indicate the Clebsch-Gordan coefficients.

The sum ovej refers to the situations in which the Clebsch-
Gordan expansion of the product of tMags includes more

[
Rsg=—=[D% 1o —D¢. , (A3
® \/5[ (212,000 P(-112.02),000) (A3) than one representation with the same dimension.
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