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Quadratic effective action for QED in DÄ2,3 dimensions
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We calculate the effective action for quantum electrodynamics~QED! in D52,3 dimensions at the quadratic
approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson
propagators nonperturbatively ink/m. In two dimensions for any nonzero fermion mass, we end up with one
massless pole for the gauge boson. We also calculate inD52 the effective potential between two static
charges separated by a distanceL and find it to be a linearly increasing function ofL in agreement with the
bosonized theory~massive sine-Gordon model!. In three dimensions we find nonperturbatively ink/m one
massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a
simple expression for the functional dependence of the boson mass upon the dimensionless parametere2/m.

PACS number~s!: 11.15.Bt
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I. INTRODUCTION

The mapping of fermionic theories into bosonic ones i
very powerful technique used to understand nonperturba
aspects of quantum field theories. This so called bosoniza
is exact in two dimensional theories, and it has been wid
employed in this dimension@1–3#. In the last few years
many papers have been devoted to the study of what
been called bosonization in three dimensions@4–8#, and even
in four dimensions@9#. This kind of path-integral bosoniza
tion consists of obtaining the effective action by integrati
out the fermion degrees of freedom and then studying
physical properties of the resulting effective theory. In m
of the works along this line one makes use of the deriva
expansion@10,11# and derives weak bosonization rules f
the system@4,6,12# as well as the particle content and the
masses@4#. On the other hand in@5# an exact, ink/m, action
at the one-loop level is used to show that the bosonizatio
@13# and@14#, is recovered in the large and small momentu
limits respectively. In addition, the authors of@12# have stud-
ied the asymptotic properties of the bosonic effective act
associated with QED in three dimensions, showing
screening property of the effective potential between t
static charges.

In this work we apply the effective action approach
bosonization on QED in two and three dimensions. The u
fulness of the two dimensional case lies on the fact t
QED2 can be bosonized via the massive sine-Gordon mo
which exhibits confinement@1–3#. Thus both approaches o
bosonization can be compared. Here we verify that, ind
the confining behavior also appears in the bosonizationvia
effective action. It is remarkable that, in two dimensions
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the quadratic approximation in the gauge fields but with
any expansion ink/m, the massive pole of the Schwinge
model disappears, being replaced by a massless pole, w
is in agreement with what has been observed in@15#, but it
differs from the result obtained through perturbative (m/e)
calculation of@16#. In three dimensions it is shown that the
is a massive excitation which depends on the dimension
parameter 16pm/e2. We have found a simple approximate
expression for this function. This in fact generalizes the c
culations of@4#, which were obtained at leading order of th
derivative expansion, and that of@17# carried out at a higher
order ink/m, which in its turn is related to consistent high
derivative actions@18,19#.

In both cases we consider the one-loop effective action
to second-order in the coupling constante. We may write it
as

Se f f
(2)52

1

2E dDk

~2p!D
Ãm~2k!@gmnk22kmkn2Pmn~k!#Ãn~k!,

~1!

whereÃm(k) is the Fourier transformation ofAm(x) and

Pmn~k!5 ie2E dDp

~2p!D

3tr F 1

p”2m1 i e
gm

1

~p”1k” !2m1 i e
gnG ~2!

is the polarization tensor obtained after integrating out
fermion fields. The space-time dimension is represented
D (D52,3). It is useful to expand the polarization tensor
powers ofk/m which corresponds to the derivative expa
sion of the effective action@20#. Truncating the expansion a
some power ofk/m not only yields a local effective action
but also allows one to analyze the roˆle of some specific term
as it is the case of the leading odd-parity term in QED3 @21#.
©2000 The American Physical Society18-1
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It is also important to study the phenomenological aspect
a low-energy effective action@22#. The order at which the
series is truncated depends on the range of energy on
interested in.

Recent studies of the contributions of higher-order deri
tive terms in a low-energy effective gauge theory revea
the possibility of the appearence of non-physical excitatio
Here we overcome this difficulty by analyzing directly th
poles of the full propagator at one-loop level up to seco
order in the coupling constant.

II. EFFECTIVE POTENTIAL IN QED 2

In QED2 the polarization tensor will be given by

Pmn~k!5P~k2!S gmn2
kmkn

k2 D , ~3!

where using, e. g., dimensional regularisation we get

P~k2!5
e2

p F11
1

2

4m2/k2

~124m2/k2!1/2
ln

~124m2/k2!1/211

~124m2/k2!1/221
G .

~4!

We are interested in the interacting potential between
static chargesQ and 2Q located atx5L/2 andx52L/2.
Solving1 the equation of motion derived from the effectiv
action we obtain the potential produced by the posit
chargeQ:

Am~x!5E d2k

~2p!2E d2x8Dmn~k!eik(x2x8)Jn~x8!, ~5!

where

Jn~x8!5QdS x182
L

2D dn0 ~6!

is the conserved current andDmn(k) is the ‘‘photon’’ propa-
gator whose longitudinal term is given by

D i
mn~k!5

1

k22P~k2!
gmn . ~7!

Due to the specific form of the external current the on
contribution to the potential will be its time-component. T
corresponding integral can be easily performed on the c
plex plane for arbitrary masses. The resulting static poten
at x152L/2 grows linearly with the distance between t
charges, namely

1We have not taken into account the general solution of the
mogeneous differential equation~without sources! which amounts
to neglect theu vacuum (u50).
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L

2D5
Q

2F11
2

3p S e

2mD 2G L. ~8!

Then we conclude that, at the quadratic approximat
used here, QED2 results in aconfiningpotential. Because o
the quadratic approximation in the gauge fields we may
that the result obtained here,i.e., a linearly growing inter-
fermion effective potential is due to a zero mass pole for
gauge potential. One also reaches a similar result in the u
bosonization approach when the quadratic approximatio
the boson field of the massive Sine-Gordon model is u
@15#. In other words we can say that, at the quadratic
proximation, turning on a mass for the fermion field w
prevent the mass generation for the gauge boson and
classical result, that is a massless pole, prevails. It is wo
mentioning that , since we are only interested in the r
contribution to the effective action, we have dropped in~4!
the imaginary part of the polarization tensor which appe
beyond the pair creation thresholdk2.4m2. More specifi-
cally, expression~4! is correct fork2,0 which is the rel-
evant region for the calculation of the effective potential
static charges due to the factord(k0) which comes from the
time integral in~5!. However, for the analysis of the particl
content of~1! we have also calculated the polarization tens
in the region 0,k2,4m2 where we found no poles excep
in the limit k2→01 where we found an agreement with th
limit k2→02 of ~4!. Finally, it is important to notice tha
although we can recover the Schwinger model effective
tion from them→0 limit of ~4! its static potential does no
correspond to the massless limit of~8! since the integral and
the limit do not commute with each other. In the Schwing
model ~massless QED2) a mass for the gauge boson is ge
erated by the gauge anomaly and as a consequence on
tains a screening potential between two static charge
@23,24#.

III. MASSIVE POLE IN QED 3

Here we are not concerned with the explicit express
for the interaction potential but with the behavior of the ma
generated dynamically as a function of the coupling cons
and the fermion mass.

In this case the polarization tensor is given by

Pmn~k!5P1~k2!i emnrkr1P2~k2!~k2gmn2kmkn!, ~9!

where

P1~k2!52
e2

8p

1

Ak2/4m2
ln

11Ak2/4m2

12Ak2/4m2
, ~10!

and

-
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P2~k2!5
e2

16pm

1

k2/4m2

3F12
1

2 S 11k2/4m2

Ak2/4m2 D ln
11Ak2/4m2

12Ak2/4m2G .

~11!

Equations~10! and ~11! were obtained by using dimen
sional regularization method. Equation~10! is regularization
dependent and our result corresponds to an equal numb
Pauli-Villars regulators with positive and negative mass
Like the two dimensional case, since we are only interes
in the real contribution to the effective action, we ha
dropped the imaginary part of the polarization tensor wh
appears beyond the pair creation threshold (k2.4m2). More
precisely we have only given the polarization tensor~see
~10! and ~11!! in the region 0,k2,4m2 where we found a
pole in the photon propagator. Fork2,0 the correct result
correspond to replace 1/Aulog„(11Au)/(12Au)… by
22/A2u arctan 1/A2u in ~10! and ~11! whereu5k2/4m2.
The situation is similar to QED4, see, e.g.,@26#. We have
explicitly verified that no tachyonic poles appear without a
approximation onk2/4m2. Back to the region 0,k2,4m2

one can check that the ‘‘photon’’ propagator

D i
mn~k!52

1

P̃2F k22S P1

P̃2
D 2G gmn , ~12!

where

P̃2~k!512P2~k!,

develops a massive polek25M2. The gauge boson massM
depends on the coupling constant and fermion mass.
have carried out a numerical analysis for the behavior of
mass generated dynamically and found a very simple fu
tion, namely

M5
2m

c11c2a1c3a2
, ~13!

FIG. 1. Dependence of the rate of the massive bosonic pole
fermion mass with respect to the inverse couplinga516p(m/e2).
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where

a516p
m

e2
. ~14!

From the numerical results for the massive pole at smaa
we getc151.953331381. On the other hand, from the larga
region we havec351. Finally the constantc2 was adjusted
by choosing the best fitting for a curve with about elev
thousand numerically calculated points, and it was found
be c252.253. The maximum error of the fitted function
less than 3.8%, with the statistical controlling parameterx2

55.531026. In the Fig. 1 we present the curve of the ma
sive pole as a function of the dimensionless parametea.
Note that it is impossible to distinguish the exact from t
adjusted curve in Fig. 1. For this reason we present in
Fig. 2 the dependence of the percentual deviation of the fi
curve from the numerically obtained masses.

In reference@12# the derivative expansion up to secon
order ink/m is used to compute the effective potential whi
was also found to be of thescreeningtype. We have taken
into account the whole expression for the polarization ten
and found only one massive pole in the whole range of
parametera. Since the pole can never be found at the orig
we conclude that, nonperturbatively ink/m, the screening
effect prevails in agreement with the numerical analysis c
ried out in reference@25# for the static potential. The trunca
tion based on the derivative expansion only amounts t
displacement of the massive pole from its nonperturba
~in k/m) value. Conversely, one can view our results forD
53 QED as a generalization, up to one-loop, of the pheno
enon of dynamical mass generation@27,28# to all orders of
the derivative expansion.
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FIG. 2. Percentual difference between the fitting and the
merical data.
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