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Quadratic effective action for QED in D=2,3 dimensions
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We calculate the effective action for quantum electrodyna@dsD) in D = 2,3 dimensions at the quadratic
approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson
propagators nonperturbatively kim. In two dimensions for any nonzero fermion mass, we end up with one
massless pole for the gauge boson. We also calculai@=i2 the effective potential between two static
charges separated by a distaicand find it to be a linearly increasing function bfin agreement with the
bosonized theorymassive sine-Gordon modeln three dimensions we find nonperturbativelykifm one
massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a
simple expression for the functional dependence of the boson mass upon the dimensionless peflameter

PACS numbd(s): 11.15.Bt

[. INTRODUCTION the quadratic approximation in the gauge fields but without
any expansion irk/m, the massive pole of the Schwinger
The mapping of fermionic theories into bosonic ones is anodel disappears, being replaced by a massless pole, which
very powerful technique used to understand nonperturbativs in agreement with what has been observefllsl, but it
aspects of quantum field theories. This so called bosonizatiogiffers from the result obtained through perturbative/¢)
is exact in two dimensional theories, and it has been widelgalculation of 16]. In three dimensions it is shown that there
employed in this dimensiofil—3]. In the last few years, is a massive excitation which depends on the dimensionless
many papers have been devoted to the study of what hggarameter 16m/e?. We have found a simple approximated
been called bosonization in three dimensiphs8], and even  expression for this function. This in fact generalizes the cal-
in four dimensiong9]. This kind of path-integral bosoniza- culations of{4], which were obtained at leading order of the
tion consists of obtaining the effective action by integratingderivative expansion, and that [df7] carried out at a higher
out the fermion degrees of freedom and then studying therder ink/m, which in its turn is related to consistent higher
physical properties of the resulting effective theory. In mostderivative action§18,19.
of the works along this line one makes use of the derivative In both cases we consider the one-loop effective action up
expansion[10,11] and derives weak bosonization rules for to second-order in the coupling constantWe may write it
the systeni4,6,1 as well as the particle content and their as
masses$4]. On the other hand if6] an exact, irk/m, action

at the one-loop level is used to show that the bosonization of(z) 1 d°k . P,
[13] and[14], is recovered in the large and small momentumSefi= — 2 (ZW)DAM(_k)[g ko= kek" =TT (k) A, (K),
limits respectively. In addition, the authors[df2] have stud- 1)

ied the asymptotic properties of the bosonic effective action
associated with QED in three dimensions, showing thQ/vhereﬂ

k) is the Fourier transformation & ,(x) and
screening property of the effective potential between two w(k) u(X)

static charges. d®p
In this work we apply the effective action approach of HMV(k)zieZJ’
bosonization on QED in two and three dimensions. The use- (2m)P
fulness of the two dimensional case lies on the fact that 1 1

QED, can be bosonized via the massive sine-Gordon model
which exhibits confinemerjtl—3]. Thus both approaches of
bosonization can be compared. Here we verify that, indeed
the confining behavior also appears in the bosonizatian is the polarization tensor obtained after integrating out the
effective action. It is remarkable that, in two dimensions atfermion fields. The space-time dimension is represented by
D (D=2,3). Itis useful to expand the polarization tensor in
powers ofk/m which corresponds to the derivative expan-
*On leave from UNESP-GuaratingUeBaazil. Email address: sion of the effective actiofi20]. Truncating the expansion at
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It is also important to study the phenomenological aspects of L Q

a low-energy effective actiof22]. The order at which the Ayl x=— E) = > L. (8)
series is truncated depends on the range of energy one is 2l 1+ — i)

interested in. 3m\2m

Recent studies of the contributions of higher-order deriva-
tive terms in a low-energy effective gauge theory revealed . o
the possibility of the appearence of non-physical excitations. 1hen we conclude that, at the quadratic approximation
Here we overcome this difficulty by analyzing directly the Us€d here, QEDresults in aconfiningpotential. Because of

poles of the full propagator at one-loop level up to secondh® quadratic approximation in the gauge fields we may say
order in the coupling constant. that the result obtained heree. a linearly growing inter-

fermion effective potential is due to a zero mass pole for the
gauge potential. One also reaches a similar result in the usual

Il. EFFECTIVE POTENTIAL IN QED bosonization approach when the quadratic approximation in

In QED, the polarization tensor will be given by the boson field of the massive Sine-Gordon model is used
[15]. In other words we can say that, at the quadratic ap-
KAk proximation, turning on a mass for the fermion field will
Hﬂp(k)zl—[(kz)(gw_ ) 3) prevent the mass generation for the gauge boson and the
k2 classical result, that is a massless pole, prevails. It is worth

mentioning that , since we are only interested in the real
where using, e. g., dimensional regularisation we get contribution to the effective action, we have dropped4n
the imaginary part of the polarization tensor which appears
beyond the pair creation threshakd>4m?. More specifi-
cally, expression(4) is correct fork?<0 which is the rel-
evant region for the calculation of the effective potential of
(4) static charges due to the factéfk,) which comes from the
time integral in(5). However, for the analysis of the particle
We are interested in the interacting potential between tw@ontent of(1) we have also calculated the polarization tensor
static charge®Q and —Q located atx=L/2 andx=—L/2.  in the region 6<k?<4m? where we found no poles except
Solving! the equation of motion derived from the effective in the limit k2— 0" where we found an agreement with the
action we obtain the potential produced by the positivelimit k>0~ of (4). Finally, it is important to notice that
chargeQ: although we can recover the Schwinger model effective ac-
tion from them—0 limit of (4) its static potential does not
d%k ) , correspond to the massless limit@) since the integral and
A#(X)IJ 2j d?x'D,,,(k)e* )3 (x"),  (5)  the limit do not commute with each other. In the Schwinger
(2m) model (massless QEf) a mass for the gauge boson is gen-
erated by the gauge anomaly and as a consequence one ob-
tains a screening potential between two static charges
[23,24.

1 4m?/K? (1—4m?/k?)Y2+1
= n
2 (1-4m?/k3)Y2 " (1—-4m?/k?) -1

e2

H(k2)=; 1+

where

L
J”(X')=Q5( X1 = 5) 8" (6)
ll. MASSIVE POLE IN QED 4

is the conserved current ai, (k) is the “photon” propa-

I Y Here we are not concerned with the explicit expression
gator whose longitudinal term is given by

for the interaction potential but with the behavior of the mass
generated dynamically as a function of the coupling constant
and the fermion mass.

DI, (k)= mguv- () In this case the polarization tensor is given by

Due to the specific form of the external current the only 4 (K) =11,(K?)i €HrPK ,+ I1,(k?)(k2g“* —k*Kk"), (9)
contribution to the potential will be its time-component. The
corresponding integral can be easily performed on the com-
plex plane for arbitrary masses. The resulting static potentialvhere
at x,=—L/2 grows linearly with the distance between the
charges, namely

e? 1 | 1+ k?/4m?
_ n ,
87 \K%/4m? 1— k¥ 4m?

Iy (k?)=— (10

we have not taken into account the general solution of the ho-
mogeneous differential equatidwithout sourceswhich amounts
to neglect theg vacuum @=0). and
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FIG. 1. Dependence of the rate of the massive bosonic pole and a

fermion mass with respect to the inverse coupling16m(m/e?). FIG. 2. Percentual difference between the fitting and the nu-

merical data.
e? 1
(k%)= 167M K2/4m? where
1 ( 1+k4m?\ 1+ JkZam?
- = n .
2 _ m
Jk2/4m? 1—k?/4m? a=16qr—2. (14)

(11 e

Equations(10) and (11) were obtained by using dimen- From the numerical results for the massive pole at small
sional regularization method. Equati¢t0) is regularization we getc;=1.953331381. On the other hand, from the laage
dependent and our result corresponds to an equal number mdgion we havec;=1. Finally the constant, was adjusted
Pauli-Villars regulators with positive and negative massespy choosing the best fitting for a curve with about eleven
Like the two dimensional case, since we are only interesteghousand numerically calculated points, and it was found to
in the real contribution to the effective action, we havebec —=2.253. The maximum error of the fitted function is
dropped the imaginary part of the polarization tensor whlchess than 3.8%, with the statistical controlling parameter
appears beyond the pair creation threshaft(4m?). More  _5 55 106, |n the Fig. 1 we present the curve of the mas-
precisely we have only given the polarization en$s_e  gjye nole as a function of the dimensionless paramater
(10 a_md(ll)) in the region B<k“<4m* where we found a Note that it is impossible to distinguish the exact from the
pole in the photon propagator. Faf<0 the correct result adjusted curve in Fig. 1. For this reason we present in the
correspond o repla_ce Jilog((1+w)/(1-u)) by Fig. 2 the dependence of the percentual deviation of the fitted
—2/J—uarctan 1§~ u in (10) and (1) whereu=k’/4m”. .o from the numerically obtained masses.
The's'ltuatlon_ls similar to QED SEE, e.g.[26]. Wg have In reference 12] the derivative expansion up to second-
explicitly verified that no tachyonic poles appear without aYorder ink/m is used to compute the effective potential which
approximation or’k2/4m2:‘ Back t,c,) the region @k*<4m? was also found to be of thecreeningtype. We have taken
one can check that the “photon” propagator into account the whole expression for the polarization tensor

and found only one massive pole in the whole range of the

I (k)= — parameter. Since the pole can never be found at the origin
D p.v( ) 2 g,u,vv (12) . .
TR I, we conclude that, nonperturbatively kim, the screening
R 1 effect prevails in agreement with the numerical analysis car-
2

ried out in referenc@25] for the static potential. The trunca-
tion based on the derivative expansion only amounts to a
displacement of the massive pole from its nonperturbative
(in k/m) value. Conversely, one can view our results for
=3 QED as a generalization, up to one-loop, of the phenom-

. enon of dynamical mass generati2v,2g to all orders of
— M2 '
develops a massive pol¢=M?2. The gauge boson maié the derivative expansion.

depends on the coupling constant and fermion mass. We
have carried out a numerical analysis for the behavior of this
mass generated dynamically and found a very simple func-

where

T,(k)=1-T5(K),
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