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Field-to-particle transition based on the zero-brane approach to quantization
of multiscalar field theories and its application for Jackiw-Teitelboim gravity
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The field-to-particle transition formalism based on the effective zero-brane action approach is generalized
for arbitrary multiscalar fields. As a fruitful example, by virtue of this method we derive the nonminimal
particle action for the Jackiw-TeitelboidT) gravity at a fixed gauge in the vicinity of the black hole solution
as an instanton-dilaton doublet. When quantizing it as the theory with higher derivatives, it is shown that the
appearing quantum equation has an(8Wynamical symmetry group realizing the exact spin-coordinate
correspondence. Finally, we calculate the quantum corrections to the mass of the JT black hole.

PACS numbs(s): 11.27:+d, 04.60.Kz, 04.70.Dy, 11.10.Lm

[. INTRODUCTION out that this paper is devoted to the former point of view.
The first and foremost aim of this paper is to develop the Then, by way of an example, we will apply the field-
classical and quantum field-to-particle transition formalismparticle approach to the particular 2D theory of gravity ad-
for multiscalar field theory in two-dimensiondkD) flat  mitting at certain parametrization the correspondence to
spacetime. Below we will call this formalism “zero-brane” some scalar field theory acting on flat spacetime. The
in the sense of a “nonminimal point particle” rather than in Jackiw-Teitelboim(JT) dilaton gravity discovered in 1984
the sense of supersymmetric string or brane theories. TH&] can be obtained also as a dimensional reduction of the 3D
study of the field-to-particle transition formalism as suchBarados-Teitelboim-Zanelli black hol&,4] and spherically
also lies within the well-known dream program of construct-symmetric solution of 4D dilaton Einstein-Maxwell gravity
ing a theory which would not contain matter as an externalsed as a model of the evaporation process of a near-
postulated entity but would consider fields as sources of maextremal black hol¢5]. In spite of the fact that the JT solu-
ter and particles as special field configurations. Such a praion is locally diffeomorphic to the DeSitter space, it has all
gram was inspired probably first by Lorentz and Poincareghe global attributes of a black hole. Besides, it is simple
and since that time much effort was made to bring it toenough to obtain the main results in a nonperturbative way
reality; one may recall the Einstein, Klein, and Heisenberghat seems to be important for highly nonlinear general rela-
attempts, but the discovery of fermionic fields and the suctivity.
cess of the standard model decreased interest in such theo- The wide literature devoted to classical and quantum as-
ries. Nevertheless, the problem of the origin of matter stillpects of the theorysee Refs[6—8|, and references thergjn
remains open and important, especially in what concerns this concerned mainly with standard methods of study,
theoretical explanation of the fundamental properties of obwhereas it is clear that black holes are extended objects and
servable particles. Nowadays, it seems possible to realize thikus should be correctly considered within the framework of
program for boson fieldébelow we will show that it is easily brane theory where there is no rigid fixation of spatial sym-
possible for multiscalar field in two dimensiortaut it is yet  metry. The quantum aspects were studied mainly in connec-
unclear how to obtain fermionic matter. There is some hopéion with group features of JT dilaton gravity in general,
that it can be done through supersymmetry but the generaliwhereas we will quantize the theory in the vicinity of a cer-
zation of the proposed approach on higher-dimensional thedain nontrivial vacuum induced by a static solution empha-
ries encounters severe mathematical troubles. sizing the corrections to mass spectrum. Thus, our purpose is
But thinking about the physical relevance of the presentedo study the 2D dilaton gravity in the neighborhood of the
approach one should not exclude the second possibilityclassical and quantum Jackiw-Teitelboim black hole within
Namely, as we will demonstrate below the special field sothe frameworks of the brane approach, which consists of
lutions indeed can be correctly regarded as particles whichonstructing the effective action where the nonminimal terms
are sufficientlypoint-like ones(despite the presence in action (first of all, depending on the world-volume curvatuere
of nonminimal terms depending on curvature, et@n the induced by field fluctuations. Then the effective action evi-
other hand, there exist extended models of particles whickently arises after nonlinear reparametrization of an initial
suggest that pointness is no more than scale approximatidheory when excluding zero-field oscillations.
[1]. Thus, one can question thH@ustified choice between The paper is arranged as follows. In Sec. Il we study the
“nonminimal point-particle” and “extended particle” para- JT solution as a soliton-dilatofmore correctly, instanton-
digmes. We cannot answer this question yet, we just pointlilaton) doublet and its properties at the classical level. In
Sec. Il we generalize the approaf®| for arbitrary multi-
scalar fields and apply it for JT dilaton gravity in the fixed-
*Email address: zlosh@email.com gauge (flat-spacetimg formulation. Minimizing the action
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with respect to field fluctuations, we remove zero modes and m vly
obtain the point-particle action with nonminimal terms cor- dT=v VZG M dt— dp
Y

responding to this theory. Section IV is devoted to quantiza- cosech(mp) —v?
tion of the action as a constrained theory with higher deriva-
tives. In result we obtain the Schiinger wave equation 1 /2GM

describing wave function and mass spectrum of a point par- R=~ e sectimp),
ticle with curvature and apply them to the JT black hole. Y

Then we calculate the zeroth and first excited levels to ge&\/here M is an arbitrary Constant’ can be rewritten in the

the mass of the quantum JT black hole with quantum correcexpiicit form representing the JT black hole solution
tions. Conclusions are made in Sec. V.

2GyM 2GyM

-1
e i e

)dT2+<m2R2— ,
(2.10

II. JACKIW-TEITELBOIM GRAVITY

Consider the action of the Jackiw-Teitelboim dilaton ) _
gravity having the following energy and event horizon:

1 _ B 2GyM
sJT[r,g]=Ef dxy=gr(R+2m?), (2.1 Een=7M, Ren=\— 5 (219

Our purpose now will be to take into account the field fluc-

tuations in the neighborhood of this solution and to construct
She effective action of the JT black hole as a zero brane.
Before we go further, one should develop a general ap-
proach.

where G is the gravitational coupling constant, dimension-
less in the 2D case. Extremizing this action with respect t
metric and dilaton field variations we obtain the following
equations of motion:

2_
R+2m"=0, (2.2 IIl. EFFECTIVE ACTION
(Vﬂvv—ngw)T: 0. 2.3 I_n this sectiqn we will _construct the nor_wlinear _effgctive
action of an arbitrary multiscalar 2D theory in the vicinity of
a solitary-wave solution, and then apply it for JT dilaton
gravity. In fact, here we will describe the procedure of the
) ) 5 correct transition from field to particle degrees of freedom.
ds?=—sinf(u/2)dt*+ cos’(u/2)dx, (24 Indeed, despite that the solitary-wave solution resembles a
particle both at the classical and quantum levels, it yet re-
and puts the metric ansatz into E8.1)—(2.3), they can be mains to be dield solutionwith an infinite number of field
rewritten[6], respectively, as degrees of freedom whereas a true particle has a finite num-
ber of degrees of freedom. Therefore, we are obliged to cor-

Further, if one performs the parametrization of a metric

1 5 ) rectly handle this circumstand@nd several othersother-
Syl nu]= 5= | dXr(Au—m“sinu), (2.9  wise deep contradictions may appear.
2G
Au—m?sinu=0, 2.6 . A. Gener.al formalis.,m. .
Let us consider the action describihgscalar fields
(A—m?cosu) =0, (2.7 2

S[q»]:f L(¢)d?X, (3.9

whereA is the flat Euclidean Laplacia®?+ d2.
If we wish to choose from the solutions of E&.6) only 1N "
the one-instanton ones, we have the following instanton- L(@)Zzgl (Imea) (0"pa) —U(@). (3.2
dilaton pair: N
The corresponding equations of motion are
u®(x,t)=4 arctan expmp), (2.9

I"Im@at Ua(@)=0, (3.3

79(x,t)=—Cy seclimp) + C;[sinh(mp) + mp seclimp)],  \where we defined
(2.9 )
_dU(e) _9°U(e)

where C; are arbitrary constantsp=y(x—uvt), 1y Ua(p) = PP Uan(e) = Sondon’
=1+v2 Then the metric(2.4) after the transformation
{x,t}—{R, T}, such that Suppose we have a solution in the class of solitary waves
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o (p)=¢P [y(x—vD)], y=11-v% (3.9
having the localized energy density
dL(¢)
= ———doeva—L(0), 3.
e(9)= 2 5 5 dova=L(9) (3.5

and finite mass integral

o0 +o0
/FJ 8(¢(S))dp:—J L(¢®)dp<eo, (3.6

—0o0

coinciding with the total energy up to the Lorentz factar

Let us change the set of the collective coordindtes
=s, g1=p} such that

X"=x"(s)+ef}y(S)p,  @a(XD)=ea(0), (3.7

where x™(s) turn out to be the coordinates of @+1)-
dimensional point particle anel?“l)(s) is the unit spacelike
vector orthogonal to the world line. Hence, the acti8r)
can be rewritten in new coordinates as

Sel= J L(¢) A d?0,

PHYSICAL REVIEW D 61 125017

1 9s0¢a)?
|_(q,(s))+E 2 ((—(’D)

S del= J dza{ A A2

—(%5%)2—%: Uab(¢‘s))5¢a5<pb>

NS ol 5.+ 0( 5go3)] +{surf. term,
a

(3.11
1 '
Lie®)=-5 3 ¢l - U(e),

where prime means the derivative with respegh t&xtrem-
izing this action with respect té¢,, one can obtain the
system of equations in partial derivatives for field fluctua-
tions:

(0D L05—3,00,) Sga+ A% Uan( @) Sgp+ o 'ky/x?
=0(8¢?), (3.12

which has to be the constraint removing the redundant de-
grees of freedom. Supposingip,(s,p) =Kk(s)fa(p), in the

~ (3.8 linear approximationspk<<1 (which naturally guarantees
e 1 2 (9s¢a)? =~ 2l _ucz also the smoothness of a world line @t-0) andO(5¢?)
(¢)= 2 < A2 —(dp9a)"| ~U(e), =0, we obtain the system of three ordinary derivative equa-
tions
where
1 d 1 dk
— — ——+c¢ck=0 (3.13
m - > ds [2ds '
A=det| | = V321 pk), Viz 48 iz
Jdo
andk is the curvature of a particle world line _f§+% [Uan(¢®) —couplfpt ol =0, (3.19
_ Smni(m;(n wherec is the constant of separation. Searching for a solu-
k= ; ' B9 t{ion of the last subsystem in the form
(V)2
1 '
wheree,,, is the unit antisymmetric tensor. This new action fa=0at E<P(S) : (3.19
contains theN-redundant degrees of freedom which eventu-
ally lead to appearance of the so-called “zero modes.” TOe obtain the homogeneous system
eliminate them we must constrain the model by means of the
condition of vanishing of the functional derivative with re-
spect to field fluctuations about a chosen static solution. In —gg+2 (Uap(@'®)—C8,p)9,=0. (3.19
b

result we will obtain the required effective action.

So, the fluctuations of the fields,(o) in the neighbor-
hood of the static squtiOEpgS) (p) are given by the expres-
sion

Strictly speaking, the explicit form af,(p) is not significant
for us, because we always can suppose integration constants
to be zero, thus restricting ourselves by the special solution.
Nevertheless, the homogeneous system should be considered
as the eigenvalue problem for(see below.

Substituting the found function8e,=kf, back into the
action (3.11), we can rewrite it in the explicit zero-brane
form

0a(0)= 0P (p)+ Spa(0). (3.10

Substituting them into Eq(3.8) and considering the static
equations of motiori3.3) for ¢{¥(p) we have
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Serr= S Sl f ds\x®(u+ak?), (3.17)

describing a point particle with curvature, wheiewas de-
fined in Eq.(3.6), and

l o , 1 + o
a3 3 [t ap5 S [ itatnap
o a —
(3.18

Further, contracting Eq3.3) with ¢ ", we obtain the ex-
pression

2 [0 = Ua(e@)1eP =0, (3.19
a
which can be rewritten as
2 ol 2=20(e" (p)). (3.20

Considering Egs(3.5), (3.6), (3.19, (3.19, and(3.20, the
expression forw can be written in the simple foriffor sim-
plicity here we suppose the same eigenvalegs;c, other-
wise the first integral in Eq(3.18 cannot be reduced to the
integral (3.6) and should be evaluated separately

a=
2c

- A me . (S)
+Efo (¢ (p))dp, (3.2

PHYSICAL REVIEW D61 125017

Stourm-Liouville problem for the systei(8.16) under some
chosen boundary conditions. If one supposes, for instance,
the finiteness of at infinity then thec spectrum turns out to

be discrete. Moreover, it often happens thagas only one or
two admissible values.

Be that as it may, the exact value ofs necessary hence
the system(3.16) should be resolved as exactly as possible.
Let us consider it more closely. The main problem there is
that the functiong, are mixed between equations. To sepa-
rate them, let us recall that there exXi¢t- 1 orbit equations,
whose varying resolves the separation problem. We consider
this for the cas&N=2, i.e., for a biscalar theory, all the more
so it will be helpful when applying for JT gravity.

Considering Eq(3.15, the varying of a single orbit equa-
tion yields
opy ¢ g,

- F=—, 3.2
S¢1 o9 91 (329

hence the systelt8.16, N=2, can be separated into the two
independent equations

(S) "

a

¥

g5+

(3.29

—c) 0.=0,

"m__

if one usespy = =,U (@) @4, - In this form it is much easier

to resolve the eigenvalue problem. Therefore, the two inde-

pendent parameters for the acti®22, x andc, can be

determined immediately by virtue of Eqg®.6) and(3.25.
Finally, it should be pointed out that the developed

method can be generalized both in the qualitative direction

where the second term can be integrated as a full derivativqconsidering it for the sigma-model, Yang-Mills and spinor
Therefore, even if it is non-zefowe always can remove it Lagrangiang17]) and toward the increasing of spatial di-
by means of including into the surface terms the actiormensions.

(3.11) or adding an appropriate counterterm to the action

(3.9):

~ ~ 1 [+
SOGI =S5l | Poakiu ()
C —o0

B. Application for JT black hole

For further studies it is convenient to perform the Wick
rotation and to work in terms of solitons and Lorentzian time
rather than in terms of instantons and Euclidean time, all the
more so the main results of the previous subsection are in-

Thus, we obtain the final form of the effective zero-branedependent of). Omitting topological surface terms, we will

action of the theory

Sef= _:“f dS\/).(—Z

1 1k2 3.2

consider instead the actid@.5) and its Lorentzian analog

1
SJT[T,U]:ﬁf d’X(dymd™u—m?7sinu). (3.2

It is straightforward to derive the corresponding equation off he soliton-dilaton doublef2.8), (2.9) has the localized en-

motion in the Frenet basis

1 d 1 dk

\/)'(—zds\/s(_zds

hence, one can see that £g§.13 was nothing but this equa-

tion in the linear approximatiok<<1, as was expected.
Thus, the only problem which yet demands resolving i

the determination of eigenvalue It turns out to be the

1
+(C_Ek2> k=0, (3.23

Yt identically vanishes whehp(¥(p)|<O(1) at infinity.

S

ergy density(3.5)

2m? Cytanh(mp)+ C,[ 1—mp tanh(mp)]

e(x,t)= G

costt (mp)

2For instance, in the work®] (one-scalarp* theory) or [10] (¢
and Liouville model, where the special cases of this formalism
were usedg has the formgm? where 3 is a single positive half-
integer or integer; the cases with<0 does not have, as a rule,
independent physical sense, because at quantization they either can
be interpreted in terms of antiparticles or appear to be unphysical at
all.
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and can be interpreted as the relativistic point particle withEq. (3.7) should be understood in the sense that we substi-

the energy tuted the initial curved spacetime for a flat one with the ef-
fective potential, but the meaning of the collective coordi-

E :f““s(x t) dx= :2C23’m (3.27) nates p and s remains unchanged because it describes

class™ | =% YH G ' internal structure and hence is independent of whether we are

working in curved or flat space.

Therefore, the main task now is to specify the parameters
of the action(3.22 for our case. We havg already deter-
mined by Eq.3.26), and the eigenvalue remains to be the
only unknown parameter for Eq3.22). For Egs.(3.25 we
will require the traditional boundary conditions

Ga(+°)—ga(—*)=0(1), (3.30
whereas, provided Eq&2.8), (2.9), (3.27), the systen(3.25

i.e., the integral3.6) is finite and coincides with the energy

(2.11

uw=M, (3.28

if one redefineC,.
The action(3.26 always can be linearly rearranged in the
form (3.2), (3.2, if we introduce fieldsp, such that

20u=@1—ipy, TI0=p1+igy, (329 has the form
whered is an arbitrary real constant whickimilarly to C;) — 9"+ (K,—¢)ga=0, (3.3)
will not affect on final results. We will suppose the final é
zero-brane actiori3.22). The flat spacetime coordinata$ where
|
‘o m? Ay costf(mp) —2]+C, costi(mp) +A,[6— cost(mp)]
Y costt(mp) cosif(mp)[46%+C,+C,cosiimp)]—A, '
Ka=Kile,—-c;
A;= coslimp)(46°+3C,), A,= sinh(mp)(C;+C,mp),
hence it is clear that
Ka(0)=—m?  Ky(—2)=Kgy(+%)=m? (3.32

This eigenvalue equation is evidently hard to solve exactly, i
hence we use the method of the approximing potential which é DdPZZJ VKa—c dp
would have the main properties &f, especially those pre- o
sented by Eq(3.32. Besides, we will consider the equation gppears to be the following one:
for K, only because both potentials have approximately the
same behavior.

Thus, omitting the index we will assume the following
eigenvalue equation:

Ka(*x®)—c=0,

which yields Eq.(3.34) again.
Therefore, the effective zero-brane action of the dilaton
gravity about the Jackiw-Teitelboim black hole with fluctua-

gt em?| 1- g—cg=0, (3.33 tional corrections is
costt (mp) 5
: k 2C,m
seﬁ:—ﬂfds\/ﬁ 1+ ——|, u=M= .
instead of Eq(3.31). Its potential has the main features of 2m G
K, but appears to be exactly solvable: according to the (3.39

proven theorenisee the Appendjxthe only admissible non-
zeroc is

c=m?. (3.39

This result is confirmed also by the quasiclassical approxi-

In the next section we will quantize it to obtain the quantum
corrections to the mass of the fixed-gauge JT black hole.

IV. QUANTIZATION

In the previous section we obtained a classical effective

mation. Indeed, the necessary condition of convergence afction for the model in question. Thus, to quantize it we must

the phase integral

consecutively construct the Hamiltonian structure of dynam-
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ics of the point particle with curvatufgd1-13. ®,=pll,,
A. General formalism c ) )
1 22
From the brane actiof8.22 and definition of the world- ®,=p| — JpZcostw + 2#(Hv pIL) | (49
line curvature one can see that we have the theory with
higher derivatived12,13. Hence, below we will treat the G=p—1.

coordinates and momenta as the canonically independent co- _ _ _
ordinates of the phase space. Besides, the Hessian mattijence, finally, we obtain the constraint
constructed from the derivatives with respect to accelera-

. c
tions, d,=— \/Ezcosru)JrM—EHﬁ%O, (4.10

0L ot o . .

Map=|——= which in the quantum theoryi[,= —id/dv) yields

Ix39xP
appears to be singular that signalizes the presence of the
constraints for phase coordinates of the theory. As was shown in Ref.9] (see also Ref.12]), the constraint

As was mentioned, the phase space consists of the twd, on the quantum level admits several coordinate represen-

pairs of canonical variables: tations that, generally speaking, lead to different nonequiva-

lent theories, therefore, the choice between the different

« Ol T 4.2) forms ofd, should be based on the physical relevance. Then
mr Pm= agm m» : the physically admissible equation determining quantum dy-
namics of the quantum kink and bell particles has the form
: aL "
dm=Xm, Hyn= aq:f, (4.2 [H—e]¥({)=0, (4.1
. d> B? 1
hence we have H=- d_gz +TSInf'?§— B| S+ > cosh, (4.12
1 e,
p'=— e?o)/w[ 1-|+= %k, (43 Where
{=vl2, p?=M,
1 e /
__==1 M
"= ¢ I K, (4.9 B8 P«C ! 413
where the components of the Frenet basis are 8,u2( M)
8: - - 1
. : c
- x™ - 1 ey K
O e VT e K andS=0 in our case.
X X As was establishefil 4,15, SU(2) has to be the dynami-
) ) ) ) ) cal symmetry group for this Hamiltonian which can be re-
There exist two primary constraints of the first kind written in the form of the spin Hamiltonian
c .
® = p™ + G+ ﬂquz}mo, 4.6 where the spin operators,

B . ) d
in addition, we should add the proper time gauge condition, Sc=Scoshi— Esmhzg—smhgd—g,

G \/az 1~0, (4.7 S,=i} —Ssinh{+ Esinhg cosh+ coshgd—g},
to remove the nonphysical gauge degree of freedom. Then, (4.15
when introducing the new variables,
B .
p=V0q° v=arctanlip,/p)), (4.8 SZ:ES'nth_Z'
the constraints can be rewritten in the form satisfy the commutation relations
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[S,S]=1i€S- has the single minimum
In addition, Vmin=—B/2 at {i,=0.
Si+S+SI=S(S+1). Then, following thef-expansion technique, we shift the

. o origin of coordinates in the point of minimuiito satisfye
In this connection it should be noted that though the refor-:sozo in the absence of quantum oscillatiprsnd expand
mulation of some interactions concerning the coordinate dey in the Taylor series to second order near the origin thus

grees of freedom in terms of spin variables is widely usededucing the model to the oscillator of the unit mass, energy
(e.g., in the theories with the Heisenberg Hamiltonian, seg/2, and oscillation frequency

Ref.[16]), it has to be just the physical approximation as a

rule, whereas in our case the spin-coordinate correspondence 1

is exact. w=7VB(B—1).
Further, atS=0 there exists an irreducible & 1)-

dimensional subspace of the representation space of (8 su Therefore, the quantization rules yield the discrete spectrum
Lie algebra, which is invariant with respect to these opera-

tors. Determining eigenvalues and eigenvectors of the spin = .- [B(B—1)(n+1/2+0(%%), n=0,1,2...,

Hamiltonian in the matrix representation which is realized in (4.20
this subspace, one can prove that the solution of £41) is
the function and the first quantum correction to particle masses will be

S determined by the lower energy of oscillations:

B c
xlf(g)zex;a( - —coshg) > 1
2 o==5 \(S— o) (S+0)! e=5VB(B—~1)+0(4?), (4.2

o

xXexp(ald), (4.16
which gives the algebraic equation faf as a function ofm
where the coefficients, are the solutions of the system of and .
linear equations We can easily resolve it in the approximation

B S 2H
(e+0%)C,+ S [V(S=a)(Sto+1) cpuy B>1ec/u—0, (4.22

which is admissible for the major physical cases, and obtain

+V(S+0)(S—o+1) ¢c,_1]=0,
B
CS+1:C—S—l:OI oc=-S, —S+1,...8S €= §+O(h2C//-L2)! (423)

However, it should be noted that these expressions give only.., idering Eagd. 1 418 viel
the finite number of exact solutions which is equal to the ich, after considering Eq¢4.13 and (4.18), yields

dimensionality of the invariant subspadthis is the so- cM
called, quasiexactly solvable systerfiherefore, for the spin (M- ,u,)2=4— +O(h2%cl u?). (4.249
S=0 we can find only the ground-state wave function and M

eigenvalue Then one can seek for the mass in the fotrt=u+ 6 (6

B <u), and finally we obtain the mass of a particle with cur-
\Ifo(g)zclex% - —coshg’), £0=0. (4.17  vature(3.22 with first-order quantum corrections

2
Hen_ce, we obtain that thg grpund—state mass qf the quantum M:MiEJro(ﬁzC/Mz)_ (4.29
particle with curvature coincides with the classical one, 2
Mo=pu, (4.18 The nature of the justified choice of the root sign before the
second term is not so clear as it seems for a first look, be-
as was expected. cause there exist two historically interfering arguments. The

Further, in the absence of exact wave functions for mordirst (physica) one is: if we apply this formalism for the
excited levels one can find the firgtmal) quantum correc- one-scalarg* model[9] and compare the result with that
tion to the mass in the approximation of the quantum harobtained in other way$18], we should suppose the sign

monic_oscillator. It is easy to see thatBe1 the (effective “ +.” However, the second, mathematical, counterargument
potential is as follows: the known exact spectra of the operators with
B2 B the QES potentials like Eq4.11 are split, as a rule by
_[ 2] & b virtue of radicals, hence the signs+* can approximately
Vo) (2) sinke{ 2coshg’ 4.19 represent such a bifurcation and thus should be unharmed. If
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it is really so, quantum fluctuations should divide the classi-hole which could not be calculated by means of the pertur-
cally unified particle with curvature into several subtypesbation theory.
with respect to mass.
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therefore, the approximatioi.22 has to be justified in this APPENDIX: EIGENVALUE THEOREM

case. The problem of obtaining further corrections turns out Th The bound-stat inaular St Liowvil
to be reduced to the mathematically standard Stourm- bleorem € bound-state singular stourm-Liouviiie
Liouville problem for the Razavi potential, all the more so probiem

the latter is well-like on the whole axis and hence admits _qn _ _ _
only the bound states with a discrete spectrum. () +(1-2 sechu)f(u)—cf(u) =0, AD
Finally, it should be noted that we quantized the reduced f(+o0)=f(—00)=0(1) (A2)

theory(3.26) rather than complete dilaton gravity because in

the general case the latter has two first-class constrainfg, g only the two sets of eigenfunctions and eigenvalues
which were removed by a fixed metric gauge. In addition,

unlike the previous works we quantized the theory about the fo=Kosechu, cy=0,
static solution rather than in the neigborhood of the trivial
vacuum, and were interested first of all in obtaining the mass f,=Kjtanhu, cy=1,

spectrum. The question of the construction of corresponding
formalism for dilaton gravity in the general case remainsyhereK; are arbitrary integration constants.

open because it requires consistent generalization of the Proof Performing the Change: COSHU, we rewrite the
field-to-particle transition procedure for fields in curved conditions of the theorem in the form

spacetime.

c 1
22(2—1)fzz+(22—1)fz—<——E)f=0, (A3)

V. CONCLUSION 2

Let us enumerate the main items studied. It was shown f(1)=0, f(+%)=0(1) (A4)
that the Jackiw-Teitelboim dilaton gravity can be reduced to ' '
biscalar theory admitting the doublet consisting of instantothereE: 1-c. The general integral of EA3) can be

a.nd dilaton compo_nents, which can _be i_nterpreted as a.magkpressed in terms of the hypergeometric functions
sive quantum particle. Further, considering field fluctuations

in the neighborhood of the JT black hole, the action for the c 1 \/: 1 \/: 1
JT field doublet as a nonminimal point particle with curva- :_1|:( —il-ve —ltve 1 z)
ture was ruled out thereby we generalized the procedure of Jz 2 2 2

fact that the(1+1)-dimensional dilaton gravity yields the

effective action for the JT black hole as a spatially zero- +C22F( 1- STy 10 ?

dimensional branégnonminimal point particlg we can con-

clude that the ordinary 4D black holim the case of arbitrary  Using the asymptotics of the hypergeometric functions in the
symmetry and field fluctuations in a neighborhpoduld be  neighborhoodz=1, it is straightforward to derive that the

consecutively described within the framework of a five-first of the conditiongA4) will be satisfied if we suppose
dimensional field theory.

obtaining brane actions for the multiscalar case. From the
Ve 1+\C 5 )

When quantizing this action as the constrained theory 1 ( \/g \/g 3 )
with higher derivatives, it was shown that the resulting —fle=—F| —1——, -1+ —,— =z
Schralinger equation is the special case of that with the Cy Vz 2 2 2
Razavi potential having the $B) dynamical symmetry
group in the ground state. Finally, we found the first quan- _C(,eg)zF( 3- \/E 3+ \/i Z z) (A5)
tum correction to the mass of the Jackiw-Teitelboim black 2 2 207y
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where ©=(2n)?=0,4,16..., andc=1,

clreg)— \/E(E—l)tar( %/g> which demand individual consideration. From E43) we
have

Further, to specify the parameters at which this function sat-

isfies the second conditioi®4), we should consider the as- o _ 1 . B 1 .
ymptotical behavior of ®9 near infinity. We have fe-0=Ci\ 1= 7+Cli—\1 Earcsmﬁ ’
1 25 c
—f(re9) z— o0) :_7( —1)t* ‘G’Ztar( i) C, 1 arcsinz
C 32 2 2o1=—+C, 1—-—i——-,
Vz z Vz

X sin %@ 2214 0(12)],  (A6)

1
fE:4:C1 1_2(22+1)+C22,
where

y=T(OLiVEE- 1T (- 1/2- Ver)r(Verz)
—8T(1— )T (32— \ei2)].

From this expression it can easily be seen 45 diverges  and so on. By induction it is clear that @=4 there are no
at infinity everywhere except perhaps the points C; at whichf would satisfy the requirements2).

1
fei1e=Ci\/1— E(24z2— 8z—1)+C,z(1—62/5),
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