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Field-to-particle transition based on the zero-brane approach to quantization
of multiscalar field theories and its application for Jackiw-Teitelboim gravity

Konstantin G. Zloshchastiev*
Department of Physics, National University of Singapore, Singapore 119260

~Received 7 January 2000; published 26 May 2000!

The field-to-particle transition formalism based on the effective zero-brane action approach is generalized
for arbitrary multiscalar fields. As a fruitful example, by virtue of this method we derive the nonminimal
particle action for the Jackiw-Teitelboim~JT! gravity at a fixed gauge in the vicinity of the black hole solution
as an instanton-dilaton doublet. When quantizing it as the theory with higher derivatives, it is shown that the
appearing quantum equation has an SU~2! dynamical symmetry group realizing the exact spin-coordinate
correspondence. Finally, we calculate the quantum corrections to the mass of the JT black hole.

PACS number~s!: 11.27.1d, 04.60.Kz, 04.70.Dy, 11.10.Lm
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I. INTRODUCTION
The first and foremost aim of this paper is to develop

classical and quantum field-to-particle transition formali
for multiscalar field theory in two-dimensional~2D! flat
spacetime. Below we will call this formalism ‘‘zero-brane
in the sense of a ‘‘nonminimal point particle’’ rather than
the sense of supersymmetric string or brane theories.
study of the field-to-particle transition formalism as su
also lies within the well-known dream program of constru
ing a theory which would not contain matter as an exter
postulated entity but would consider fields as sources of m
ter and particles as special field configurations. Such a
gram was inspired probably first by Lorentz and Poinc´
and since that time much effort was made to bring it
reality; one may recall the Einstein, Klein, and Heisenb
attempts, but the discovery of fermionic fields and the s
cess of the standard model decreased interest in such
ries. Nevertheless, the problem of the origin of matter s
remains open and important, especially in what concerns
theoretical explanation of the fundamental properties of
servable particles. Nowadays, it seems possible to realize
program for boson fields~below we will show that it is easily
possible for multiscalar field in two dimensions! but it is yet
unclear how to obtain fermionic matter. There is some ho
that it can be done through supersymmetry but the gene
zation of the proposed approach on higher-dimensional th
ries encounters severe mathematical troubles.

But thinking about the physical relevance of the presen
approach one should not exclude the second possib
Namely, as we will demonstrate below the special field
lutions indeed can be correctly regarded as particles wh
are sufficientlypoint-likeones~despite the presence in actio
of nonminimal terms depending on curvature, etc.!. On the
other hand, there exist extended models of particles wh
suggest that pointness is no more than scale approxima
@1#. Thus, one can question the~justified! choice between
‘‘nonminimal point-particle’’ and ‘‘extended particle’’ para
digmes. We cannot answer this question yet, we just p
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out that this paper is devoted to the former point of view
Then, by way of an example, we will apply the field

particle approach to the particular 2D theory of gravity a
mitting at certain parametrization the correspondence
some scalar field theory acting on flat spacetime. T
Jackiw-Teitelboim~JT! dilaton gravity discovered in 1984
@2# can be obtained also as a dimensional reduction of the
Bañados-Teitelboim-Zanelli black hole@3,4# and spherically
symmetric solution of 4D dilaton Einstein-Maxwell gravit
used as a model of the evaporation process of a n
extremal black hole@5#. In spite of the fact that the JT solu
tion is locally diffeomorphic to the DeSitter space, it has
the global attributes of a black hole. Besides, it is sim
enough to obtain the main results in a nonperturbative w
that seems to be important for highly nonlinear general re
tivity.

The wide literature devoted to classical and quantum
pects of the theory~see Refs.@6–8#, and references therein!,
is concerned mainly with standard methods of stu
whereas it is clear that black holes are extended objects
thus should be correctly considered within the framework
brane theory where there is no rigid fixation of spatial sy
metry. The quantum aspects were studied mainly in conn
tion with group features of JT dilaton gravity in genera
whereas we will quantize the theory in the vicinity of a ce
tain nontrivial vacuum induced by a static solution emph
sizing the corrections to mass spectrum. Thus, our purpos
to study the 2D dilaton gravity in the neighborhood of t
classical and quantum Jackiw-Teitelboim black hole with
the frameworks of the brane approach, which consists
constructing the effective action where the nonminimal ter
~first of all, depending on the world-volume curvature! are
induced by field fluctuations. Then the effective action e
dently arises after nonlinear reparametrization of an ini
theory when excluding zero-field oscillations.

The paper is arranged as follows. In Sec. II we study
JT solution as a soliton-dilaton~more correctly, instanton-
dilaton! doublet and its properties at the classical level.
Sec. III we generalize the approach@9# for arbitrary multi-
scalar fields and apply it for JT dilaton gravity in the fixe
gauge ~flat-spacetime! formulation. Minimizing the action
©2000 The American Physical Society17-1
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KONSTANTIN G. ZLOSHCHASTIEV PHYSICAL REVIEW D61 125017
with respect to field fluctuations, we remove zero modes
obtain the point-particle action with nonminimal terms co
responding to this theory. Section IV is devoted to quanti
tion of the action as a constrained theory with higher deri
tives. In result we obtain the Schro¨dinger wave equation
describing wave function and mass spectrum of a point p
ticle with curvature and apply them to the JT black ho
Then we calculate the zeroth and first excited levels to
the mass of the quantum JT black hole with quantum cor
tions. Conclusions are made in Sec. V.

II. JACKIW-TEITELBOIM GRAVITY

Consider the action of the Jackiw-Teitelboim dilato
gravity

SJT@t,g#5
1

2GE d2xA2gt~R12m2!, ~2.1!

whereG is the gravitational coupling constant, dimensio
less in the 2D case. Extremizing this action with respec
metric and dilaton field variations we obtain the followin
equations of motion:

R12m250, ~2.2!

~¹m¹n2m2gmn!t50. ~2.3!

Further, if one performs the parametrization of a metric

ds252sin2~u/2!dt21cos2~u/2!dx2, ~2.4!

and puts the metric ansatz into Eqs.~2.1!–~2.3!, they can be
rewritten @6#, respectively, as

SJT@t,u#5
1

2GE d2xt~Du2m2sinu!, ~2.5!

Du2m2sinu50, ~2.6!

~D2m2cosu!t50, ~2.7!

whereD is the flat Euclidean Laplacian,] t
21]x

2 .
If we wish to choose from the solutions of Eq.~2.6! only

the one-instanton ones, we have the following instant
dilaton pair:

u(s)~x,t !54 arctan exp~mr!, ~2.8!

t (s)~x,t !52C1 sech~mr!1C2@sinh~mr!1mr sech~mr!#,

~2.9!

where Ci are arbitrary constants,r5g(x2vt), 1/g
5A11v2. Then the metric~2.4! after the transformation
$x,t%→$R,T%, such that
12501
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dT5vA m

2GgMFdt2
v/g

cosech2~mr!2v2
drG ,

R5
1

vA2GM

gm3
sech~mr!,

where M is an arbitrary constant, can be rewritten in t
explicit form representing the JT black hole solution

ds252S m2R22
2GgM

m DdT21S m2R22
2GgM

m D 21

dR2,

~2.10!

having the following energy and event horizon:

EBH5gM , RBH5A2GgM

m3
. ~2.11!

Our purpose now will be to take into account the field flu
tuations in the neighborhood of this solution and to constr
the effective action of the JT black hole as a zero bra
Before we go further, one should develop a general
proach.

III. EFFECTIVE ACTION

In this section we will construct the nonlinear effectiv
action of an arbitrary multiscalar 2D theory in the vicinity o
a solitary-wave solution, and then apply it for JT dilato
gravity. In fact, here we will describe the procedure of t
correct transition from field to particle degrees of freedo
Indeed, despite that the solitary-wave solution resemble
particle both at the classical and quantum levels, it yet
mains to be afield solutionwith an infinite number of field
degrees of freedom whereas a true particle has a finite n
ber of degrees of freedom. Therefore, we are obliged to c
rectly handle this circumstance~and several others!, other-
wise deep contradictions may appear.

A. General formalism

Let us consider the action describingN scalar fields

S@w#5E L~w!d2x, ~3.1!

L~w!5
1

2 (
a51

N

~]mwa!~]mwa!2U~w!. ~3.2!

The corresponding equations of motion are

]m]mwa1Ua~w!50, ~3.3!

where we defined

Ua~w!5
]U~w!

]wa
, Uab~w!5

]2U~w!

]wa]wb
.

Suppose we have a solution in the class of solitary wave
7-2
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wa
(s) ~r!5wa

(s) @g~x2vt !#, g51/A12v2, ~3.4!

having the localized energy density

«~w!5(
a

]L~w!

]~]0wa!
]0wa2L~w!, ~3.5!

and finite mass integral

m5E
2`

1`

«~w (s) !dr52E
2`

1`

L~w (s) !dr,`, ~3.6!

coinciding with the total energy up to the Lorentz factorg.
Let us change the set of the collective coordinates$s0

5s, s15r% such that

xm5xm~s!1e(1)
m ~s!r, wa~x,t !5w̃a~s!, ~3.7!

where xm(s) turn out to be the coordinates of a~111!-
dimensional point particle ande(1)

m (s) is the unit spacelike
vector orthogonal to the world line. Hence, the action~3.1!
can be rewritten in new coordinates as

S@w̃#5E L~ w̃ ! D d2s,

~3.8!

L~ w̃ !5
1

2 (
a

F ~]sw̃a!2

D2
2~]rw̃a!2G2U~ w̃ !,

where

D5detI ]xm

]sk I5Aẋ2~12rk!,

andk is the curvature of a particle world line

k5
«mnẋ

mẍn

~Aẋ2!3
, ~3.9!

where«mn is the unit antisymmetric tensor. This new actio
contains theN-redundant degrees of freedom which even
ally lead to appearance of the so-called ‘‘zero modes.’’
eliminate them we must constrain the model by means of
condition of vanishing of the functional derivative with re
spect to field fluctuations about a chosen static solution
result we will obtain the required effective action.

So, the fluctuations of the fieldsw̃a(s) in the neighbor-
hood of the static solutionwa

(s) (r) are given by the expres
sion

w̃a~s!5wa
(s)~r!1dwa~s!. ~3.10!

Substituting them into Eq.~3.8! and considering the stati
equations of motion~3.3! for wa

(s)(r) we have
12501
-
o
e

In

S@dw#5E d2sH DFL(w (s))1
1

2 (
a

S ~]sdwa!2

D2

2~]rdwa!22(
b

Uab~w (s)!dwadwbD G
2kAẋ2(

a
wa

(s) 8dwa1O~dw3!J 1$surf. terms%,

~3.11!

L~w (s) !52
1

2 (
a

wa
(s) 822U~w (s) !,

where prime means the derivative with respect tor. Extrem-
izing this action with respect todwa , one can obtain the
system of equations in partial derivatives for field fluctu
tions:

~]sD
21]s2]rD]r!dwa1D(

b
Uab~w (s) !dwb1wa

(s) 8kAẋ2

5O~dw2!, ~3.12!

which has to be the constraint removing the redundant
grees of freedom. Supposingdwa(s,r)5k(s) f a(r), in the
linear approximationsrk!1 ~which naturally guarantee
also the smoothness of a world line atr→0) andO(dw2)
50, we obtain the system of three ordinary derivative eq
tions

1

Aẋ2

d

ds

1

Aẋ2

dk

ds
1ck50, ~3.13!

2 f a91(
b

@Uab~w (s) !2cdab# f b1wa
(s) 850, ~3.14!

wherec is the constant of separation. Searching for a so
tion of the last subsystem in the form

f a5ga1
1

c
w (s) 8, ~3.15!

we obtain the homogeneous system

2ga91(
b

~Uab~w (s) !2cdab!gb50. ~3.16!

Strictly speaking, the explicit form ofga(r) is not significant
for us, because we always can suppose integration cons
to be zero, thus restricting ourselves by the special solut
Nevertheless, the homogeneous system should be consid
as the eigenvalue problem forc ~see below!.

Substituting the found functionsdwa5k fa back into the
action ~3.11!, we can rewrite it in the explicit zero-bran
form
7-3
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KONSTANTIN G. ZLOSHCHASTIEV PHYSICAL REVIEW D61 125017
Seff5Seff
(class)1Seff

(fluct)52E dsAẋ2~m1ak2!, ~3.17!

describing a point particle with curvature, wherem was de-
fined in Eq.~3.6!, and

a5
1

2 (
a
E

2`

`

f awa
(s) 8dr1

1

2 (
a
E

2`

1`

~ f af a8!8dr.

~3.18!

Further, contracting Eq.~3.3! with wa
(s) 8 , we obtain the ex-

pression

(
a

@wa
(s) 92Ua~w (s) !#wa

(s) 850, ~3.19!

which can be rewritten as

(
a

wa
(s) 8252U„w (s) ~r!…. ~3.20!

Considering Eqs.~3.5!, ~3.6!, ~3.15!, ~3.19!, and ~3.20!, the
expression fora can be written in the simple form@for sim-
plicity here we suppose the same eigenvalues,ca[c, other-
wise the first integral in Eq.~3.18! cannot be reduced to th
integral ~3.6! and should be evaluated separately#

a5
m

2c
1

1

2c2E2`

1`

U9„w (s) ~r!…dr, ~3.21!

where the second term can be integrated as a full deriva
Therefore, even if it is non-zero,1 we always can remove i
by means of including into the surface terms the act
~3.11! or adding an appropriate counterterm to the act
~3.8!:

S(reg)@w̃#5S@w̃#2
1

2c2E2`

1`

d2sDk2U9~r!.

Thus, we obtain the final form of the effective zero-bra
action of the theory

Seff52mE dsAẋ2S 11
1

2c
k2D . ~3.22!

It is straightforward to derive the corresponding equation
motion in the Frenet basis

1

Aẋ2

d

ds

1

Aẋ2

dk

ds
1S c2

1

2
k2D k50, ~3.23!

hence, one can see that Eq.~3.13! was nothing but this equa
tion in the linear approximationk!1, as was expected.

Thus, the only problem which yet demands resolving
the determination of eigenvaluec. It turns out to be the

1It identically vanishes whenuwa
(s)(r)u<O(1) at infinity.
12501
e.

n
n

f

s

Stourm-Liouville problem for the system~3.16! under some
chosen boundary conditions. If one supposes, for insta
the finiteness ofg at infinity then thec spectrum turns out to
be discrete. Moreover, it often happens thatc has only one or
two admissible values.2

Be that as it may, the exact value ofc is necessary henc
the system~3.16! should be resolved as exactly as possib
Let us consider it more closely. The main problem there
that the functionsga are mixed between equations. To sep
rate them, let us recall that there existN21 orbit equations,
whose varying resolves the separation problem. We cons
this for the caseN52, i.e., for a biscalar theory, all the mor
so it will be helpful when applying for JT gravity.

Considering Eq.~3.15!, the varying of a single orbit equa
tion yields

dw2

dw1
5

w2
(s) 8

w1
(s) 8

5
g2

g1
, ~3.24!

hence the system~3.16!, N52, can be separated into the tw
independent equations

2ga91S wa
(s) -

wa
(s) 8

2cD ga50, ~3.25!

if one useswa-5(bUab(w)wb8 . In this form it is much easier
to resolve the eigenvalue problem. Therefore, the two in
pendent parameters for the action~3.22!, m and c, can be
determined immediately by virtue of Eqs.~3.6! and ~3.25!.

Finally, it should be pointed out that the develop
method can be generalized both in the qualitative direct
~considering it for the sigma-model, Yang-Mills and spin
Lagrangians@17#! and toward the increasing of spatial d
mensions.

B. Application for JT black hole

For further studies it is convenient to perform the Wi
rotation and to work in terms of solitons and Lorentzian tim
rather than in terms of instantons and Euclidean time, all
more so the main results of the previous subsection are
dependent ofv. Omitting topological surface terms, we wi
consider instead the action~2.5! and its Lorentzian analog

SJT@t,u#5
1

2GE d2x~]mt]mu2m2t sinu!. ~3.26!

The soliton-dilaton doublet~2.8!, ~2.9! has the localized en
ergy density~3.5!

«~x,t !5
2m2

G

C1tanh~mr!1C2@12mr tanh~mr!#

cosh2 ~mr!
,

2For instance, in the works@9# ~one-scalarw4 theory! or @10# (w3

and Liouville model!, where the special cases of this formalis
were used,c has the formbm2 whereb is a single positive half-
integer or integer; the cases withc,0 does not have, as a rule
independent physical sense, because at quantization they eithe
be interpreted in terms of antiparticles or appear to be unphysic
all.
7-4
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and can be interpreted as the relativistic point particle w
the energy

Eclass5E
2`

1`

«~x,t ! dx[gm5
2C2gm

G
, ~3.27!

i.e., the integral~3.6! is finite and coincides with the energ
~2.11!

m5M , ~3.28!

if one redefinesC2.
The action~3.26! always can be linearly rearranged in th

form ~3.1!, ~3.2!, if we introduce fieldswa such that

2uu5w12 iw2 , t/u5w11 iw2 , ~3.29!

whereu is an arbitrary real constant which~similarly to C1)
will not affect on final results. We will suppose the fin
zero-brane action~3.22!. The flat spacetime coordinatesxm
tly
ic

-
n
th

g

of
th
-

x
e

12501
hEq. ~3.7! should be understood in the sense that we sub
tuted the initial curved spacetime for a flat one with the
fective potential, but the meaning of the collective coor
nates r and s remains unchanged because it describ
internal structure and hence is independent of whether we
working in curved or flat space.

Therefore, the main task now is to specify the parame
of the action~3.22! for our case. We havem already deter-
mined by Eq.~3.26!, and the eigenvaluec remains to be the
only unknown parameter for Eq.~3.22!. For Eqs.~3.25! we
will require the traditional boundary conditions

ga~1`!2ga~2`!5O~1!, ~3.30!

whereas, provided Eqs.~2.8!, ~2.9!, ~3.27!, the system~3.25!
has the form

2ga91~Ka2c!ga50, ~3.31!

where
K15
m2

cosh2~mr!

A1@ cosh2~mr!22#1C2 cosh5~mr!1A2@62 cosh2~mr!#

cosh2~mr!@4u21C21C2 cosh~mr!#2A2

,

K25K1uCi→2Ci
,

A15 cosh~mr!~4u213C2!, A25 sinh~mr!~C11C2mr!,

hence it is clear that

Ka~0!52m2, Ka~2`!5Ka~1`!5m2. ~3.32!
on
a-

m
.

ive
ust
m-
This eigenvalue equation is evidently hard to solve exac
hence we use the method of the approximing potential wh
would have the main properties ofKa especially those pre
sented by Eq.~3.32!. Besides, we will consider the equatio
for K1 only because both potentials have approximately
same behavior.

Thus, omitting the index we will assume the followin
eigenvalue equation:

2g91m2S 12
2

cosh2 ~mr!
D g2cg50, ~3.33!

instead of Eq.~3.31!. Its potential has the main features
Ka but appears to be exactly solvable: according to
proven theorem~see the Appendix!, the only admissible non
zeroc is

c5m2. ~3.34!

This result is confirmed also by the quasiclassical appro
mation. Indeed, the necessary condition of convergenc
the phase integral
,
h

e

e

i-
of

R pdr52E
2`

1`
AKa2c dr

appears to be the following one:

Ka~6`!2c50,

which yields Eq.~3.34! again.
Therefore, the effective zero-brane action of the dilat

gravity about the Jackiw-Teitelboim black hole with fluctu
tional corrections is

Seff52mE dsAẋ2S 11
k2

2m2D , m5M5
2C2m

G
.

~3.35!

In the next section we will quantize it to obtain the quantu
corrections to the mass of the fixed-gauge JT black hole

IV. QUANTIZATION

In the previous section we obtained a classical effect
action for the model in question. Thus, to quantize it we m
consecutively construct the Hamiltonian structure of dyna
7-5
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KONSTANTIN G. ZLOSHCHASTIEV PHYSICAL REVIEW D61 125017
ics of the point particle with curvature@11–13#.

A. General formalism

From the brane action~3.22! and definition of the world-
line curvature one can see that we have the theory w
higher derivatives@12,13#. Hence, below we will treat the
coordinates and momenta as the canonically independen
ordinates of the phase space. Besides, the Hessian m
constructed from the derivatives with respect to accele
tions,

Mab5I ]2Leff

] ẍa] ẍb I ,

appears to be singular that signalizes the presence of
constraints for phase coordinates of the theory.

As was mentioned, the phase space consists of the
pairs of canonical variables:

xm , pm5
]Leff

]qm
2Ṗm , ~4.1!

qm5 ẋm , Pm5
]Leff

]q̇m
, ~4.2!

hence we have

pn52e(0)
n mF12

1

2cG1
m

c

e(1)
n

Aq2
k̇, ~4.3!

Pn52
m

c

e(1)
n

Aq2
k, ~4.4!

where the components of the Frenet basis are

e(0)
m 5

ẋm

Aẋ2
, e(1)

m 52
1

Aẋ2

ė(0)
m

k
.

There exist two primary constraints of the first kind

F15Pmqm'0, ~4.5!

F25pmqm1Aq2Fm1
c

2m
q2P2G'0, ~4.6!

in addition, we should add the proper time gauge conditi

G5Aq221'0, ~4.7!

to remove the nonphysical gauge degree of freedom. T
when introducing the new variables,

r5Aq2, v5arctanh~p(1) /p(0)!, ~4.8!

the constraints can be rewritten in the form
12501
th

o-
trix
-

he

o

,

n,

F15rPr ,

F25rF2Ap2coshv1m2
c

2m
~Pv

22r2Pr
2!G , ~4.9!

G5r21.

Hence, finally, we obtain the constraint

F252Ap2coshv1m2
c

2m
Pv

2'0, ~4.10!

which in the quantum theory (Pv52 i ]/]v) yields

F̂2uC&50.

As was shown in Ref.@9# ~see also Ref.@12#!, the constraint
F2 on the quantum level admits several coordinate repres
tations that, generally speaking, lead to different nonequ
lent theories, therefore, the choice between the differ
forms ofF̂2 should be based on the physical relevance. Th
the physically admissible equation determining quantum
namics of the quantum kink and bell particles has the fo

@Ĥ2«#C~z!50, ~4.11!

Ĥ52
d2

dz2
1

B2

4
sinh2z2BS S1

1

2D coshz, ~4.12!

where

z5v/2, Ap25M,

B58AmM
c

, ~4.13!

«5
8m2

c S 12
M
m D ,

andS50 in our case.
As was established@14,15#, SU~2! has to be the dynami

cal symmetry group for this Hamiltonian which can be r
written in the form of the spin Hamiltonian

Ĥ52Sz
22BSx , ~4.14!

where the spin operators,

Sx5Scoshz2
B

2
sinh2z2sinhz

d

dz
,

Sy5 i H 2Ssinhz1
B

2
sinhz coshz1coshz

d

dzJ ,

~4.15!

Sz5
B

2
sinhz1

d

dz
,

satisfy the commutation relations
7-6
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@Si ,Sj #5 i e i jkSk .

In addition,

Sx
21Sy

21Sz
2[S~S11!.

In this connection it should be noted that though the ref
mulation of some interactions concerning the coordinate
grees of freedom in terms of spin variables is widely us
~e.g., in the theories with the Heisenberg Hamiltonian,
Ref. @16#!, it has to be just the physical approximation as
rule, whereas in our case the spin-coordinate correspond
is exact.

Further, at S>0 there exists an irreducible (2S11)-
dimensional subspace of the representation space of the~2!
Lie algebra, which is invariant with respect to these ope
tors. Determining eigenvalues and eigenvectors of the s
Hamiltonian in the matrix representation which is realized
this subspace, one can prove that the solution of Eq.~4.11! is
the function

C~z!5expS 2
B

2
coshz D (

s52S

S cs

A~S2s!! ~S1s!!

3exp~sz!, ~4.16!

where the coefficientscs are the solutions of the system o
linear equations

~«1s2!cs1
B

2
@A~S2s!~S1s11! cs11

1A~S1s!~S2s11! cs21#50,

cS115c2S2150, s52S, 2S11, . . . ,S.

However, it should be noted that these expressions give
the finite number of exact solutions which is equal to t
dimensionality of the invariant subspace~this is the so-
called, quasiexactly solvable system!. Therefore, for the spin
S50 we can find only the ground-state wave function a
eigenvalue

C0~z!5C1expS 2
B

2
coshz D , «050. ~4.17!

Hence, we obtain that the ground-state mass of the quan
particle with curvature coincides with the classical one,

M05m, ~4.18!

as was expected.
Further, in the absence of exact wave functions for m

excited levels one can find the first~small! quantum correc-
tion to the mass in the approximation of the quantum h
monic oscillator. It is easy to see that atB>1 the~effective!
potential

V~z!5S B

2 D 2

sinh2z2
B

2
coshz ~4.19!
12501
-
e-
d
e

ce

-
in

ly

d

m

e

r-

has the single minimum

Vmin52B/2 at zmin50.

Then, following the\-expansion technique, we shift th
origin of coordinates in the point of minimum~to satisfy«
5«050 in the absence of quantum oscillations!, and expand
V in the Taylor series to second order near the origin th
reducing the model to the oscillator of the unit mass, ene
«/2, and oscillation frequency

v5
1

2
AB~B21!.

Therefore, the quantization rules yield the discrete spect

«5AB~B21!~n11/2!1O~\2!, n50,1,2, . . . ,
~4.20!

and the first quantum correction to particle masses will
determined by the lower energy of oscillations:

«5
1

2
AB~B21!1O~\2!, ~4.21!

which gives the algebraic equation forM as a function ofm
andm.

We can easily resolve it in the approximation

B@1⇔c/m2→0, ~4.22!

which is admissible for the major physical cases, and ob

«5
B

2
1O~\2c/m2!, ~4.23!

which, after considering Eqs.~4.13! and ~4.18!, yields

~M2m!25
cM
4m

1O~\2c/m2!. ~4.24!

Then one can seek for the mass in the formM5m1d (d
!m), and finally we obtain the mass of a particle with cu
vature~3.22! with first-order quantum corrections

M5m6
Ac

2
1O~\2c/m2!. ~4.25!

The nature of the justified choice of the root sign before
second term is not so clear as it seems for a first look,
cause there exist two historically interfering arguments. T
first ~physical! one is: if we apply this formalism for the
one-scalarw4 model @9# and compare the result with tha
obtained in other ways@18#, we should suppose the sig
‘‘ 1.’’ However, the second, mathematical, counterargum
is as follows: the known exact spectra of the operators w
the QES potentials like Eq.~4.11! are split, as a rule by
virtue of radicals, hence the signs ‘‘6 ’’ can approximately
represent such a bifurcation and thus should be unharme
7-7
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it is really so, quantum fluctuations should divide the clas
cally unified particle with curvature into several subtyp
with respect to mass.

Finally, comparing the first term~4.25! and the estimate
~4.22!, one can see that the obtained spectrum is nonpe
bative and cannot be derived by virtue of the Taylor ser
with respect to 1/m.

B. Mass of quantum JT black hole

Thus, considering Eqs.~3.35! and ~4.25!, the mass of the
quantum JT black hole as a soliton-dilaton boson in the fi
approximation is

M5M6m/21O~m2/M2!, ~4.26!

therefore, the approximation~4.22! has to be justified in this
case. The problem of obtaining further corrections turns
to be reduced to the mathematically standard Stou
Liouville problem for the Razavi potential, all the more s
the latter is well-like on the whole axis and hence adm
only the bound states with a discrete spectrum.

Finally, it should be noted that we quantized the reduc
theory~3.26! rather than complete dilaton gravity because
the general case the latter has two first-class constra
which were removed by a fixed metric gauge. In additio
unlike the previous works we quantized the theory about
static solution rather than in the neigborhood of the triv
vacuum, and were interested first of all in obtaining the m
spectrum. The question of the construction of correspond
formalism for dilaton gravity in the general case rema
open because it requires consistent generalization of
field-to-particle transition procedure for fields in curve
spacetime.

V. CONCLUSION

Let us enumerate the main items studied. It was sho
that the Jackiw-Teitelboim dilaton gravity can be reduced
biscalar theory admitting the doublet consisting of instan
and dilaton components, which can be interpreted as a m
sive quantum particle. Further, considering field fluctuatio
in the neighborhood of the JT black hole, the action for
JT field doublet as a nonminimal point particle with curv
ture was ruled out thereby we generalized the procedur
obtaining brane actions for the multiscalar case. From
fact that the~111!-dimensional dilaton gravity yields th
effective action for the JT black hole as a spatially ze
dimensional brane~nonminimal point particle!, we can con-
clude that the ordinary 4D black hole~in the case of arbitrary
symmetry and field fluctuations in a neighborhood! could be
consecutively described within the framework of a fiv
dimensional field theory.

When quantizing this action as the constrained the
with higher derivatives, it was shown that the resulti
Schrödinger equation is the special case of that with
Razavi potential having the SU~2! dynamical symmetry
group in the ground state. Finally, we found the first qua
tum correction to the mass of the Jackiw-Teitelboim bla
12501
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hole which could not be calculated by means of the per
bation theory.
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APPENDIX: EIGENVALUE THEOREM

Theorem. The bound-state singular Stourm-Liouvill
problem

2 f 9~u!1~122 sech2u! f ~u!2c f~u!50, ~A1!

f ~1`!5 f ~2`!5O~1!, ~A2!

has only the two sets of eigenfunctions and eigenvalues

f 05K0sechu, c050,

f 15K1tanhu, c151,

whereKi are arbitrary integration constants.
Proof. Performing the changez5cosh2u, we rewrite the

conditions of the theorem in the form

2z~z21! f zz1~2z21! f z2S c̃

2
2

1

z
D f 50, ~A3!

f ~1!50, f ~1`!5O~1!, ~A4!

where c̃512c. The general integral of Eq.~A3! can be
expressed in terms of the hypergeometric functions

f 5
C1

Az
FS 212Ac̃

2
,

211Ac̃

2
, 2

1

2
; zD

1C2zFS 12
Ac̃

2
,
11Ac̃

2
,
5

2
; zD .

Using the asymptotics of the hypergeometric functions in
neighborhoodz51, it is straightforward to derive that th
first of the conditions~A4! will be satisfied if we suppose

1

C1
f (reg)5

1

Az
FS 212

Ac̃

2
, 211

Ac̃

2
, 2

3

2
; zD

2C(reg)zFS 32Ac̃

2
,
31Ac̃

2
,
7

2
; zD , ~A5!
7-8
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where

C(reg)5Ac̃~ c̃21!tanS pAc̃

2
D .

Further, to specify the parameters at which this function s
isfies the second condition~A4!, we should consider the as
ymptotical behavior off (reg) near infinity. We have

1

C1
f (reg)~z→`!5

2ğ

p3/2
~21!11Ac̃/2tanS pAc̃

2
D

3sinS pAc̃

2
D zAc̃/2@11O~1/z!#, ~A6!

where

ğ5G~Ac̃!@ iAc̃~ c̃21!G~21/22Ac̃/2!G~Ac̃/2!

28 G~12Ac̃/2!G~3/22Ac̃/2!#.

From this expression it can easily be seen thatf (reg) diverges
at infinity everywhere except perhaps the points
us
tur
ic

h
ie

ys

v

12501
t-

c̃5~2n!250,4,16, . . . , and c̃51,

which demand individual consideration. From Eq.~A3! we
have

f c̃505C1A12
1

z
1C2F i 2A12

1

z
arcsinAzG ,

f c̃515
C1

Az
1C2FA12

1

z
2 i

arcsinAz

Az
G ,

f̃ c̃545C1A12
1

z
~2z11!1C2z,

f c̃5165C1A12
1

z
~24z228z21!1C2z~126z/5!,

and so on. By induction it is clear that atc̃>4 there are no
Ci at which f would satisfy the requirements~A2!.
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