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Nonperturbative study of inverse symmetry breaking at high temperatures
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The optimized linea expansion is applied to multifiel®(N;) X O(N,) scalar theories at high tempera-
tures. Using the imaginary time formalism the thermal masses are evaluated perturbatively up t6%order
which considers consistently all two-loop contributions. A variational procedure associated with the method
generates nonperturbative results which are used to search for parameter values for inverse symmetry breaking
(or symmetry nonrestoratigrat high temperatures. Our results are compared with the ones obtained by the
one-loop perturbative approximation, the gap equation solutions and the renormalization group approach,
showing good agreement with the latter method. Apart from strongly supporting inverse symmetry breaking
(or symmetry nonrestoratignour results reveal the possibility of other high-temperature symmetry breaking
patterns for which the last term in the breaking sequen€@(d;—1)<O(N,—1).

PACS numbgs): 11.10.Wx, 11.15.Tk, 98.80.Cq

[. INTRODUCTION strain conditions on the coupling constants, which may be
important for the observation of ISB or SNR, usually re-
The possibility that symmetries may be brokenremain  quires large values for the couplings, in which case higher
broken at high temperatures is not ndudi]. This phenom- order loop corrections may become important as well and
enon is usually called inverse symmetry breaki{f§B) [or = change appreciably the parameter space for ISB or SNR.
symmetry nonrestoratio(6NR)]. The idea of ISBlor SNR In order to account for the above problems of the one-
iS per sea very interesting one due to its possible implemendoop approximation, different methods have been used to
tation in realistic particle physics models and its conse-analyze the question of ISB in quantum field theory at high
guences in the context of high-temperature phase transitioriemperatures. The results, however, have shown to be highly
in the early Universe, with applications ranging from prob- controversial, either by finding no evidence for ISB or SNR
lems involving CP violation and baryogenesis, topological or favoring the phenomenon. Examples of the former were
defect formation, inflation, etdfor a short list of the differ- obtained in the context of methods such as the I&gex-
ent applications where SNR and ISB have been used sepansion 7], Gaussian effective potentig8], chiral Lagrang-
e.g., Refs[2-6]). ian techniqug 9], and Monte Carlo simulations on the lattice
ISB or SNR is a direct consequence that in two or multi-[10]. Some applications which find evidence for ISB or SNR
field theories some of the coupling constants between fieldare Refs[11,12], whose authors worked with self-consistent
can be negative while the model is still bounded from belowgap equations; Refl13], also in the context of the large-
This can be the case in any extension of the standard modekpansion, but reaching a different conclusion; REf4,15
with a large scalar sector. Under these conditions, there can the context of the renormalization group equations and
be an enhanced symmetry breaking effect at high temperaef.[16], also in the context of Monte Carlo simulations but
tures, when thermal effects are taken into account in thehis time supporting ISB or SNR.
model. This effect is clear when one considers a one-loop It is then obvious that it would be interesting to have a
analysis of the effective potential in a simple model of twomethod to clarify this question without involving the pos-
interacting scalar fields or, as in Refl], a O(N) X< O(N) sible difficulties related to the previous metho@sich as
model. However, this simple analysis is too naive for twonumerical precision in the Monte Carlo simulations, self-
main reasons. First, at high temperatures the perturbative exeonsistency in the gap equations, or resummed perturbative
pansion in quantum field theory becomes, in most cases umethods, etg.used to study this problem. In this paper we
reliable. This happens because there can be parameter ngse a nonperturbative technique known as the linkax-
gimes where powers of the coupling constants becomeansion (also known as optimized perturbation theory
surmounted by powers of the temperature, or due to the ad7,1§ (for earlier references see, e.g., Rdf9]) and apply
pearance of infrared divergences close to critical temperathe method to th®©(N;) X O(N,) scalar model to obtain the
tures (as in field theories displaying a second order phaseéhermal masses to second order in the perturbative parameter
transition or a weakly first order transitiprBecond, the con- 5. We then investigate their high-temperature behavior to
conclude about the possibility of ISB or SNR. This model
has already been considered before by Bimonte and Lozano
*Email address: fsclmep@fsc.ufsc.br in Ref.[11] where SNR was studied by means of the solu-
"Email address: rudnei@dft.if.uerj.br tions of the gap equations of the model. By studying this
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theory we can also extend our results to the simple model 2 1 1 1 1
consisting of two-interacting scalar fields, which has been ECFZI Aii(ﬁmbi)z—zBid’iz—mCi o} —ZCd)fd;%
extensively studied before. In this case the symmetry group = ' 2.2
corresponds t@,X Z,. This step will allow us to compare '

our results with the ones furnished by alternative methods. IRgpresents the counterterms needed to render the model fi-
a previous papeji20], we have employed the optimized lin- pite. Note thatc,, requires an extra piece if one attempts to
ear§ expansion to study the resummation of higher and leadevaluate the thermal effective potentiall], which is not the

ing order thermal corrections showing that the use of aase here. The boundness condition for the model described
proper optimization scheme is equivalent to self-consistentlysy Eq. (2.1) requires that the coupling constants satisfy the
solving the gap equation for the thermal mass, where leadingiequalities

and higher order infrared regularizing contributions are non-

perturbatively taken into account. An advantage of the linear A1>0, Ap>0 and A Ap,>9N% 2.3

S expansion is that the same simple propagator is used in the ) ) ) »
evaluation of any diagram, avoiding the potential bookkeep- AS noticed by Weinbergl] this boundness condition al-
ing problems associated to other resummation method%oWS for negative values of the cross couplingvhich may
Apart from being a powerful nonperturbative method, the ead to thehnonrest%r_?tm_n (:]f syrr]nmgtrles h"?lthh'gh tempera-
optimized perturbation theory was originally formulated as glures. Another possibility is that theories which are symmet-

. . : . ric at T=0 may be broken at largé due to this negative
general theory applicable to arbitrary systems InCIUdInQ/alue of\. The thermal masses for this model have been first

strong interacting models, which makes it particularly imer'calculated using the one-loop approximation which, at high
esting to use in connection with ISB or SNR where the issuel. gives '

of large coupling constants is an important one.
This work is organized as follows. In Sec. Il we introduce T2

the model and the lowest order one-loop result. In the same MZ=m2+ ——

section, the linead-expansion technique is briefly described. 24

It is then used, in Sec. lll, to evaluate the thermal masses up-

to orders? in the 3+1d model of interacting scalar fields

with global O(N;) X O(N,) symmetry. These calculations T2

explicitly include two-loop momentum independent as well M3=m3+ o

as momentum dependent diagrams with equal and different

internal propagators. In Sec. IV we present our optimization ) ) ) 5

results for the thermal masses and investigate, numericaII)L-,ezt us consider the interesting case where0, m;>0 and

the possibility of ISB in the model. We specialize to the case™2>0 so that the theory is symmetric&&=0. Inverse sym-

N;=90 andN,=24, where the model can be thought asmetry breaking takes place if one chooses, for example,

representing the Kibble-Higgs sector of a (SJgrand uni-

fied theory and also to the callg=N,=1, where it reduces In| ﬂ

to the Z,XZ, model, which has been the object of many N,

studies in connection with ISB. Our predictions for the criti-

cal temperatures and size of the ISB parameter region amhich makes ther? coefficient of M2 negative while the

compared with the ones found in the literature. In Sec. V ousame coefficient foM% is kept positive, due to the bound-

concluding remarks are given. Two appendices are includedess condition. In this case, high temperatures will induce

to present some technical details and for a brief discussion aghe breakingO(N;) X O(N,)—O(N;—1)XO(N,) at the

N, +2
3

A

+AN4 (2.4

N,+2
N —3 +AN¢|. (2.5

(2.6

N, +2
3 L

renormalization in the model. critical temperature
T2 N, +2|]7t
IIl. THE LINEAR & EXPANSION APPLIED FZZ INNz=Ng| —5— ]| (2.7)
1

TO THE EVALUATION OF THE THERMAL MASSES

IN THE O(N)XO(N2) MODEL The one loop approximation results will be investigated nu-

A. The model and one-loop results merically and compared to our results in Sec. IV.
In this work we consider the scala®(N;)XO(N,)
model described by B. The interpolated model
2 The optimized linears expansion is an alternative non-
L= 2 E(a b)2— }mz(;,)z_ ﬁd)-ﬂ' _ £¢2¢2+£ perturbative approximation which has been successfully used
=l AN R RGNV TR BV RELC in a plethora of different problems in particle the¢fg,20—

(2.1 24], quantum mechanic§25,2€|, statistical physicq27],
nuclear mattef28], and lattice field theor{y29]. One advan-
tage of this method is that the selection and evaluation

where cluding renormalizationof Feynman diagrams are done ex-
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actly as in ordinary perturbation theory using a very simple s(k):i(kZ—Qinrie)‘l
modified propagator which depends on an arbitrary mass pa-

rameter. Nonperturbative results are then obtained by fixing i i -t

this parameter. The standard application of the lin@ax- TK—mitie 1_k2—m2+i (_i77i2) ,

pansion to a theory described by a Lagrangian denSity : i Tie

starts with an interpolation defined by (2.13
LO=(1=8)Lo(n)+ L= Lo(n)+ L= Lo(7)], indicating that the term proportional tgf ¢ contained inC,

is entering the theory in a nonperturbative way. On the other
. _ _ hand, the piece proportional #®7?¢? is only being treated
Whgreﬁo(n) is the Lag_ranglan density of a solvable theory perturbatively as a quadratic vertéxf weighti 57;?). Since
which can contain arbitrary mass paramete§.(The La-  only an infinite order calculation would be able to compen-
grangian density:  interpolates between the solvalllg(7)  sate for the infinite number of<{i %) insertions contained

(when 6=0) and the originalC (when 6=1). For the , £4 (213 one always ends up with & dependence in
present model one may choose any quantity calculated to finite order & Then, at the end
) of the calculation one se#3=1 (the value at which the origi-
1 , 1 5,5, 1,5 nal theory is retrievedand fixesz; with the variational pro-
Lo( 77i>=i§1 2 (0uh) = 5Midi = S 7y |, (2.9 cedure known as the principle of minimal sensitiiBMS)
[30]

and following the general prescription one can write

aP(n7)
—F| =0, 2.1
: T |- 214
P) . s oo Nou 0 5, bl
£0=2 |5 (0up)?= 5080~ 071 ¢+ 5 ml e
= ' whereP represents a physical quantity calculajestturba-
tively in powers ofs.! This optimization procedure applied to

A
—d5 b5+ LY, (2.10  the thermal masses will be discussed in Sec. IV.

2
whereQ?=m?+ »?. The term£?,, which contains the coun- lll. THE THERMAL MASSES UP TO ORDER &

terterms needed to render the model finite, is given by We can now start our evaluation of the thermal masses,
defined by
2 1 1 1
Lo=2, [A?—(ﬁm)z— 5B(Q1,Q0) ¢~ 77 5C7 ¢! M2=02+33(p), (3.1)

1 s oA 1 o s.2.2 where3 ?(p) is the thermal self-energy. At lowest ordéirst
+§5Bi (71,72) b _25(: b143, 21D orderin 8) the relevant contributions, which are momentum
independent, are given by,(=1,2 andi #j)

whereA?, B?, C?, andC? are the counterterms coefficients.

One should note that thé-expansion interpolation intro- E-‘Sl(p)=—6 g+5ﬁ Ni+2 J d% :

duces only “new” quadratic terms not altering the renormal- hi K 2 3 T(21)8 k2_9i2+ ie
izability of the original theory. That is, the counterterms con-

tained inL 2, as well as in the original, have the same N 5)\ N j d i 3.2
polynomial structure. 2 i T(2m) kZ—szvLie' '

The general way the method works becomes clear by
looking at the Feynman rules generated BY. First, the
original ¢i4 vertex has its original Feynman rutei\; modi-
fied to —i d\; (the same applies to the mixed vertéf3).
This minor modification is just a reminder that one is really q do1
expanding in orders of the artificial paramet&rMost im- Po—iw f d’k —i E f—d K (3.3
portantly, let us look at the modifications implied by the 0 n T(27)¢ n (27)d-1 '
addition of the arbitrary quadratic part. The original bare

The temperature dependence can be readily obtained by us-
ing the standard imaginary time formalism prescription

propagator Then, the self-energy becomes
S(k)=i(k®—m?+ie) %, (2.12
IFor a discussion of convergence as well as renormalization in the
becomes method, see Ref20], and references therein.
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N;+2

ct,i

dd-1k 1 1 1 N
— 32 =B (0, \i —QZ+AN Q7.
2 f(Z’iT)d L o, +E2 (©1,802)= 272 3

2 (p)__577|+5T2(

(3.9
d? 1k 1 _
+ 6T—N E f 1 2, g2 (3.9 By looking at Eq.(3.6) one can see that the terms propor-
(2m)° " o+ Ej tional to 5\; and &\ represent exactly those that appear at
5 o o first order in the coupling constants in ordlnary perturbation
whereE“=k“+“. Summing over Matsubara’s frequencies theory except that we now ha\iéz instead ofm S\ in-
one gets stead of\; and S\ instead OfX. Therefore, it is not surpris—

ing that to this order the renormalization procedure implied

Eél(p): — 5P+ 5ﬁ Ni+2 by the interpolated theory is identical to the procedure im-
' o213 plied by the original theory at first order in the coupling
d-1 constants.
XJ d™ 7k i_ 1 Let us now analyze the temperature-dependent integral
(27r)9-1| 2E; E[l1—expE/T)] which is expressed, in the high-temperature limig; (
=0,;/T<1), as[32]
+5>\ \ f dd-1k { 1 1 ]
2N a8 Efi-exwE, M) 111 Yi 1
270 (2mt( 2B Ejl1-exuE/T)] hY) =2~ 87V To- zy.[ ( - ye— 5[ o).
(3.5 (3.10
Then, using dimensional regularizatifl] (d=4—2¢) one  |n principle, since; is arbitrary, one could be reluctant in
obtains the thermal mass taking the limitQ; /T<1. However, as discussed in our pre-
vious work[20], the use of both forms for the integra{y;)
02— 524 8 Ni [Nj+2 does not lead to any significant numerical changes in the
=i—oni+ 32,2\ 3 optimization procedure. This is also true in the present work.
Then, by takingh(y;) in the high-temperature limit, one ob-
1 2 tains theO( ) thermal mass
Q2 —=+In +ye—1
€ 4 ) N;+2
=QO2— 577+ O\, —3 | XM+ AN, (T +0(8%),
Q, N
+32772T2h(?' ]+532 N, (3.1
g where we have defined the quantity(T)
1 0?
g sz_zﬂn( ]2)+7E_11 X(T)= = T QzLT 3.1
+3272T?h ?‘ , (3.6  Wwith L(T) given by
2
where u is a mass scale introduced by dimensional regular- L(T)= '”( 2 ) ~YE- 313
ization and K
For notational convenience when expressing the remaining
h(y.) 1 J'wd x? contributions to the self-energies, we also define the addi-
Yi ax2)o [x2+yi2]1’2[exlix2+yi2)1’2— 1] tional quantitiesY;(T), Z;(0), W;(0),andR;(T) given by
@7 o, 0f
_ . Yi(T)=~ L(T), (3.14
Note that the temperature independent term diverges and 167 32 2
must be renormalized. In this paper we chose the minimal
subtraction(MS) scheme where the counterterms eliminate QIZ 2 2
the poles only. At this order the only divergence in E2}6) Zi(0)=3|In tye| To (3.19
Q0?7 2 1 72
S N;+2 (0)= = ! _ 4
EdIVI [, )\|I—Q|2+)\NJQZ , (38) W|(O) 2 ( 2) +ye—1| + 2+ 12°
32m%e 3 ! K (3.16

which is easily eliminated by the @] mass counterterm and
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AL WL 3.1 s gy N2 0y
(D= 167Q; 3272 (M. 319 e 13 '| (3272)2¢2
3
At O(5%) the self-energy receives contributions from mo- _327T26[Xj(T)+Yj(T)]_ 38470,
mentum independent as well as momentum-dependent dia-
grams. Let us first consider the momentum-independent dia- T2 L(T)
grams, which to this order have one and two loops. The 8Xi(T)— —1
. NS 2 2| O 2
order-$?, one loop, momentum-independent contribution is 1287 (16m)
given (in the high-temperature linity 2
+ (32 2)2[2 i(0)+W, (0)]} (3.22
$P_ 52 N;+2 1 Yi(T) (318
= ot = 2r% O ' and
) 2
and 57 _ 2y 2 : — _ _
377= 6\ NiNj{(327Tz)262 SZWZE[XI(T)+RI(T)]
1 YT T° T 0 LM
U N VH R 3.1 - + ot
ORI som2e 02 319 384m(Y; 12872 Q) (16m)°

TO? 0?
x| 8X:(T) = 5 Q%( 22 2O WO)]

As discussed in Appendix B, the above contributions can be
rendered finite using the mass type counterterms contained in
L2 which are tailored to account for divergences arising (3.23

from the extra quadratic vertices introduced during the inter-

polation process. The momentum-independent two loop conFo render these diagrams finite one needs mass and vertex
tribution is given by the four “double scoop” diagrams counterterm$31]. Considering the@(é) mass counterterms

used to eliminate the dlvergencesé‘uj“,I [see Eq(3.9)], one
is able to build two one loo@(8?) diagrams whose contri-

2.52:52)\.2 N;+2)2 Q.Z butions are given by
T8 ) | (32m)2e?
- 2_ ONi(Ni+2) AiQ?(Ni+2>+mzN}
~ 5 XM= 5o " 3(32n?)? 3 H
I
2
T2 LM TO, X[—%—FSZ—ZYi(T)E—Zi(O)] (3.24
+ 128772+(:|_6—77)2 8X|(T)—E € Qi €
2 and
s 2[Z(0)+W(O)]] (3.20
( > 0N, [N QAN +2)
i,97 i
©(32m2)? 3
N;+2 02
s s, 2 j , 1 3202 1
' 3 (32’772)262 X —E'FFY](T);—ZJ(O) . (3.29
T |
3972 2 (D FR(M)]= 3847Q); Additionally, from the vertex counterterms appearing in Eq.
(2.12), with C; andC [at order®(5%)] given by
+ L Qj+ ()[SX() Jz} 2
20, 2 A . ) N;+8
128 & (16m) 2mil Ci= re )+3>\2NJ} (3.26
327 3
2
Zi(0)+W;(0 3.2
(32 2)2[ i(0) +W;( )]] (3.21 and
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B 25%\? . 8\
1672 96m2e

[N1(Np+2)+ (N +2)],
(3.2

one can build the one-loof(5?) diagrams

8 (Nj+2) 123N
1672 3

2
2 ié,lO: - i 6 2

ANi+8) 3Nj}

(3.28

X o —}x-(T)+ of W,(0)
32722 € 3272

and
2

52 5NJ 2 A

2

PHYSICAL REVIEW D61 125016

The next contribution to the self-energy @(5%) comes
from the two-loop ‘“setting sun” diagrams. These
momentum-dependent contributions are given by the setting
sun diagram with equal mass internal propagators

NN +2)

El(szlz(p): - 52 18 (GIII 0+G||| 1+G||| 2)

(3.30

and by the one with internal propagators with different
masses

2 .

5 oM
21dP)=— 8" (Gyjj ot Gijj 11+ Gyjj o). (3.3

In the above expression§,, is the zero-temperature part of
the diagrams an, andG, are the finite-temperature ones
(with one and two Bose factors, respectivelyhe details of

& 1 X(T)+ QJ W(O) (3.29 the evalua_tion of _Eqs(_3.30) and(3.31) are given in Appen-
32m?€? € 327 dix A. Their contributions are
2 2 2 2 2 2 2
’ 3(32 2)2 € 6e € 6(4m)* A
+2 17)| j +1.9785 + &2 NN+2) o 2+
——In .
[ A’ 3(4m)? A e
T2 T, Of o & 1] MN+2)T? | 0?7 & 066 2
287 Br 1em| M awT) T 2| T gy | 2] TO000Y B2
and
RES4p)]= 22N O l(1+n2 + 3-2ye- 210 U P (n?)
= - - n - ——In(n
P 4t 2 TN anu?) | 402 e
VLS ) I K LSO YL | RPN Sy
- a2\ T +t2hl = 2 (am) t)| 7+ 5 67t 2ve—2(3-2v¢)
2 2 2 2 2
; ; NN; Q8 1 n 1
XIn| ——=|+21In? ! R [ R )In(nz) =n?In?(n?)
A 4arp? 2 (4m)* 8
+(1_n2)2(L' (1-n?) 772) AN 3-2ye-2lI @ +In( 2))
——— | Li(1-n%)— —| |- 6"—— —2yg—21In n(n
2 2 6 (47T)4 YE 477/1,2 4
+ N i h(Qi) | '2 — 2+ g |+2h Q) | o 2+
J (4)? T 477/J,2 e T A p? e
+&°N T [2| (Qi+mj +5066% (3.33
i n . , .
'8(41)2 3T
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wheren=;/(;. TABLE I. Results for the critical temperature as obtained in the
From Egs.(3.6), (3.18—(3.25, (3.28, (3.29, (3.32, and  one-loop approximation, the renormalization group approach in
(3.33 one easily sees that all the temperature-dependent dief.[14] and in thes expansion, respectively.
vergences cancel exactly. The remaining divergences are w o .
handled in the usual way, being canceled by the counter- M A2 A TOMmy TUM T8 my
terms appegr?ng i!ﬁiqt, Eq.(2.2) (see Appen.dix .B The sum 0.06 18 —o1 245 33.6 333
of the remaining finite terms of each contribution to the self- 00167 06 —0.025 537 679 6.9
energy makes the total contribution to the thermal mass up to™" ) ) ) ) )
order 82, M?=Q7—= §79?+3 1+ - - +3; 13.

We work in units of the arbitrary scale introduced by
IV. NUMERICAL RESULTS dimensional regularization, by extremizing the dimension-
less quantityM ?/ u2. To search for inverse symmetry break-

theﬁﬁe?ﬁa?%ﬁéggssgggr? gg?r;ltr?;tdfe?/ﬁ/)%zixg (l:jo'\flfetr?]inigng at high temperatures one must ensure that the symmetries
' re restored af =0. This is achieved by settin@i2>0 and

the optimization procedure should be clarified. First, we re- : . .
call that our interpolation procedure has been carried out in Qy qbservmg the t_)oundness condition while sefting:
very general way by assigning a different interpolation pa-_)‘ in all our equations.

rameter to each field. Although general, this procedure

brings in two arbitrary parameters which have to be fixed A. The Z,XZ, case

with the PMS. Of course this complicates the numerical op-
timization procedure, which is needed at higher orders, sinCﬁ1
one has to look for extrema in the, , 7, space. Sometimes
these extrema show up as saddle points which are hard

Let us start by studying thdl;=N,=1 case where the
eory reduces to th&,XxZ, model which has been exten-
sively studied in the literature. In Ref14] (see also Ref.
HS]) it is claimed that the critical temperature is not reliably

detect rgun;]errl]cally. In pnnmp#e;_, lla(tjaarmg n m'lgdbthi’% and q estimated by the loop expansion which does not include tem-
¢, are both the same type of fields, one could be tempted e o1 re effects in the coupling constants. On the other hand,

use the freedom allowed by the interp_olating Process 10 sqhe nonperturbative renormalization group approéRBA)
71 = 77,= 7). In order to assess the validity of such choice we ,qo in Ref[14] does include those effects and as a first
have done the optimization in both ways finding that the cas@peck of the validity of our results we estimate the critical
717 772 gives better results. The second point regards thgqmneratyre for the,x Z, model comparing our results at

actual quantiFy to be extremized. By looking at our equation%(éz) with the ones furnished by the two methods men-
one can easily see that, except for the case whgreN, tioned above. This is done in the first two rows of Table |

m;;: m; and\; =\, the PMS applied separately 7 and 0 ais0 in Fig. 1. In all casew?/ u?=m2/u?=1.0. Just
M3, at the same temperature, can generate different valuggyove the critical temperatures presented in the first two
for the samez; . One way to avoid this would be to evaluate rows the thermal masl? is negative wheread3 is posi-
and optimize a more comprehensive quantity such as thgve. Our numerical optimization strategy is the following:

effective potential. In fact this procedure has been advocatefbr a temperature below the value predicted by the one-loop
in other applications of the optimized expansion[28].

However, in the present work we have not attempted to 300.0
evaluate the effective potential since, @(52), this would |
imply in the evaluation of three-loop zero point functions 2500 | |
which become rather cumbersome at finite temperafures. ',
Although this may be regarded as a controversial point 2000 | '
within the method it will not be discussed any further in the ' \
present application. Here we follow the original prescription Te/m
given in Ref.[30] where it is suggested that the PMS should 1500 ¢
be applied to each different physical quantity so thatan
be adjusted to the relevant energy scale. The validity of suct 1000 |
procedure will be judged by comparing our results with well
known predictions in th&N;=N,=1 limit. Finally, as dis- 500 |
cussed in Refl20], one can easily see that applying the PMS
to Mi2 at first order iné produces coupling independent val- 00 . ‘ ‘ . ‘ . . . ‘
— 16.0 180 200 22.0 240 260 280 300 320 340 360
ues for»; which do not furnish truly nonperturbative results.

Therefore we will only investigate the results generated at 10° ||
order &2.

FIG. 1. The critical temperatur@./m; as a function ofA
(<0) for Ny=1 andN,=1 with the following parameter values:
mizl,u2=l.0, A1=0.018, andh,=0.6. The dashed line is the one-
2see Ref[33] for a discussion concerning theexpansion evalu- loop prediction, the continuous line is our result and the dots rep-
ation of the effective potential. resent the values obtained with the RGA.

125016-7



MARCUS B. PINTO AND RUDNEI O. RAMOS PHYSICAL REVIEW D61 125016

approximation (1LA) we identify the extremum in the TABLE Il. Results for the critical temperature in th@(90)
71,7, Space. Both masses in the extremum positions arg O(24) scalar model.
found to be consistently positive and the extremum positions

are found to be uniqugand consistent with the high- A A2 A T %my nglml
temperature approximation, in the sense tﬁg§<T). The 0.06 1.8 —01 6.5 15.3
extremum is then followed as the temperature is increased. g 9167 0.6 —0.025 16.5 65.4
When one of the masses becomes negative the vallig ief 0.9 1.0 —0.141 292 5.0
obtained and the values of;,7, are registered. For ex- 0.8 0.7 —0.091 34 10.0

ample, around the critical temperature the values obtained hy
extremizing M2 are 7,~0, 7,~0.25T and 7;~0, 7, _ _ ,
~0.15T for the parameters in the first and second rows, re€an be thought of as representing the Kibble-Higgs sector of

spectively, in Table I. From this table one can see the re& SU5) grand unified model. Let us start by estimating some

markable agreement between our results and the ones IorBr_itical temperatures and comparing our results with the low-

vided by the RGA. In Fig. 1 we compare the numerical St Order one-loop results given by E¢g4) and(2.5). The
values of the critical temperature with the ones predicted byVe first rows of Table Il display our results for the set of
the 1LA and RGA for several values of the cross coupling Parameters considered in the previous subsection. Our pre-
Once again our results agree with the ones given by the rcAicted values for the critical temperatures are proportionally

[14,15. We have also investigated the behavior of the criti-Much higher than for thil; =N,=1 case. The two last rows
cal temperature as a function &f for fixed mizl,uzzl-o of Table Il display the results for more typical parameter

— — ; lues for this model, which are usually taken around
\,=0.009, and\ =—0.025. As can be seen directly from V&
Ea- (2.4), the one-loop predicts thak, /m,~49.0 for any =0.8 and\,= 1.0 (see Ref[4]). These results suggest that

value of\,, while the RGA predicts that it increases with the the ;l)lararr?eterhregion for (IjSB %ridic;edl by thexp;nsiloCAis
latter. Once again our results, not shown, agree with the on aller than the one predicted by the lowest order pre-

: L ; - iction. To illustrate that we offer Figs. 2 and 3. Figure 2
given by the RGA. These findings give us confidence abou . .
the correctness of the optimization procedure adopted. ~ SNOWS our0(&°) result(dot-dashed linecompared with the
The critical temperatures predicted by thexpansion, as results produced by the 1LA at lowest ord#tin continuous

well as by the RGA, are higher than those predicted by thdine) for fixed A, =0.8 andT=>5.0 u. The upper parabola
1LA. This could be roughly understood by recalling that for represents the limiting region for boundness. The dashed line
is.the Bimonte and Lozano’s next to leading order one-loop

the phase transitions considered the PMS applied to the ma LA) result for an arbitrarily largd. Figure 3 is similar to
which signals the phase transitiokl ¢ for the parameters of Fig. 2 except thak , varies whileh, is kept fixed at the unity

Table ) generates a, which is an incrgasing funct?or? df  value. Note that the next to leading order correction consid-
whereas it givesy;~0. Therefore, at higfT, the optimized  ered in Ref.[11] for the one-loop approximation reduces
mass(), which “dresses” thed-expansion propagator asso- Significantly the region of ISB given at lowest order. How-
ciated with ¢, is greater than its counterpeﬁtﬁ. In M2, the €ven the next to leading order calculation of the BLA ap-

quantityﬂg is always associated with the couplingwhich

drives ISB. It seems that the increasing®} with the tem-

perature suppresses the effecthofin enhancing ISB. An-

other interesting point to be discussed regards the inclusion
of temperature-dependent coupling constants. While this 02|
possible dependence is overlooked in the 1LA it is taken into |y
account in the RGA. These effects are more subtle to be
observed directly in our case. However, by looking at the RS

nature of the diagrams considered by us at offeone may ol T |

have an idea of how these effects enter our calculations. ' /,»*’/,/.//‘/ ]

Basically, one can think of double scoops and setting suns et

diagrams as being tadpole diagrams with vertex corrections. /_,/.;://

Expanding the vertex to ordet gives the simple one loop B

diagrams considered in E¢3.11), while expanding the ver- 0.0, o5 1o

tex to order&? gives the double scoops and setting suns g

which indirectly contain one-loop temperature-dependent

corrections to the vertex. FIG. 2. Region of ISB at fixech;=0.8 for N;=90 andN,

=24. The thick parabola limits the region for which the potential is

B. The O(N;)XO(N,) case bounded. The continuous and dashed lines are the zeroth (@tder

T/n=5.0) and first ordefat an arbitrarily largél) results given in
Let us now consider the more realist@(N;) XO(N;)  Ref.[11]. The dot-dashed line is our resultBtx=5.0. The region
case. We follow Bimonte and Lozano, in the first citation in of ISB is the one in between the boundness curve and the other
Ref.[11], by choosingN;=90 andN, =24 so that the model curves for each case.
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FIG. 5. The behavior oM? (dashed ling and M3 (upper full
line) as a function of the temperature fag=0.06, A,=1.8, and

. L A=-—0.1 (N;=90 andN,=24).
proach considers up to the second term, which is mass de- (N, 2=24)

pendent, in the expansion of the temperature dependent

integral given by Eq(3.7). This means that their procedure 1€2ding order as well as to the RGA, there are only two
does not take into account logarithmic terms in the expansioR©SSiPle phases at hight either the theory is completely
of h(y,) since they would give corrections of ordlef I\, symmetric or one of the two symmetries is broken. However,

which also arise from two-loop diagrams. Our calculations,”?CIUOIIng two-lo_op Contrlbytlons and going b_eyond_ the
mple perturbative expansion could alter this picture intro-

on the other hand, avoid these book-keeping problems ang ! third ibility where the t i b
all contributions are consistently and explicitly considered in ucing a third possibility where the two Symmetries are bro-
en at highT. To analyze this possibility one must increase

a given order. Moreover, support for ISB or SNR also arise - i
in the work of Amelino-Camelia Ref12] who, similar to us, he tempe_ratur_e beyond the critical values sh_own in Tables |
considers two-loop diagrams in the sim@gx Z, model. and I_I_wh|ch display only th_(—:"l'C connected with the phase
To illustrate how the temperature affects the ISB regiontrans.Itlon from the symmetric phase to one of the nonsym-
we offer Fig. 4 where we have fixed, = 0.8 while\ , varies. metric phases. Surprlsmgly we f!nd, that for some parameter
2 values, the mass associated with the symmetry which sur-

It is clear that the ISB parameter region fo-=5.0u is vives the first transition has a tendency to decrease as the
smaller than folT=10.0 . That is, increasing temperatures : >ncy 1o
temperature increases beyond the first critical value. As an

favor ISB. The parameter regions predicted by the 1LA haveexam le of this. we show in Fia. 5 the results for the case
the same temperature dependence although the difference i P ! 9.

i : 2 2 2
size is less significant than the one displayed in Fig. 3 for thgnalyz_Qd n .the first row of Ta_blle Il for botd; andM3. M3
5 expansion. is positive right above the critical temperature shofmow

Finally, let us investigate the possible patterns for 1SB./aP€l€dTc1) which is associated with the breaking in te

According to the one-loop approacto lowest and next to direction. We see that, very quicklM% becomes monotoni-
cally decreasing with the temperature and becomes negative,

through a second order phase transition;Tgt/m,=18.9.
The same behavior is observed for the parameters shown in
the second row of Table IlI, where we observe symmetry
breaking in¢, direction atT;,/m,=139. However, analyz-
ing the other two cases shown in the third and fourth rows of
Table I, we find that the would be mass associated with the
[Al second symmetry breaking increases monotonically with the
temperature, signalling that this symmetry possibly remains
unbroken at high temperatures. A similar behavior happens
for the two cases analyzed in Table I, fidg=N,=1. Al-
though M3 initially shows a decrease in value as the tem-
perature is raised, it soon becomes monotonically increasing
with T. Note that just by interchanging the values\gf and
N\, one trivially observes yet another pattern this time with
To<T.1. Which pattern will be actually followed depends
on our initial choice for the values of the couplings.
Therefore, our results suggest that a possible symmetry
FIG. 4. The region of ISB for two different temperatures, (  breaking along the second field direction takes place, for
=0.8) T/u=5.0 (dashed lingand T/« =10.0 (thin full line). large values ofN, in a narrow region of parameters. It is

FIG. 3. Same as in Fig. 2, but now at fixad=1.0.

02 B
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possible that this alternative symmetry breaking pattern willphase transition taking place for some values of the cou-
show up only in nonperturbative calculations which considemplings and large values dfl. According to our results two

up to two loop terms. It would be interesting to investigateother possible high temperature inverse symmetry breaking
this possibility using other nonperturbative approaches.  patterns are

Tcl

V. CONCLUSIONS O(Ny) X O(N,)— O(N; — 1) X O(N,)

We have used the optimized linedrexpansion to inves-
tigate inverse symmetry breaking at high temperatures using
multifield theories. Our orde#? calculations take full con-
sideration of two-loop contributions, including the
momentum-dependent “setting sun” type of diagrams. ToyhereT ,<T,, or
our knowledge, a complete calculation associated with the

Te2

phenomenon of ISB or SNR which includes these contribu- Tea

tions in theO(N;) X O(N,) model has not been fully con- O(N;) XO(Ny)—O(N;)XO(N,—1)
sidered before. In order to assure the reliability of the method

we have started with the scal@, X Z, model which has T

been extensively investigated in connection with inverse — O(N;—1)XO(N,— 1),

symmetry breaking problem. We have shown that our opti-

mized results agree well with those obtained with the renOryhereT.,> To.
malization group approach, especially as far as the critical

temperatures are concerned. This has allowed us to establish

the § expansion as a reliable nonperturbative technique to

investigate ISB. We have then investigated the more realistic R.O.R. was partially supported by CNPq.
scalarO(N;) X O(N,) model which may be related to the

ACKNOWLEDGMENTS

Kibble-Higgs sector of a S(3) grand unified model. All our APPENDIX A
results strongly support the possibility of inverse symmetry
breaking(or symmetry nonrestoratigrat high temperatures. Consider a general setting sun diagram given 8y 4

Surprisingly, we have also found evidence for a second-2¢)

(= e [ K [ L9 : (A1)
PR 2mi) (2 [k2—Q2+iel[g?— Q2 +iel[(p—k—q)2— QP +ie]
|
At finite temperature we express the momentum integrals as 21
in Eq. (3.3). The discrete sums in the Matsubara frequency  pi(K,7)= 2E.(K) {oln—Ei(k)]—dl n+Ei(k)]}.
can easily be done if we reexpress E41) in terms of the ' (A%)
Fourier transformed, in Euclidean time, expressions for the A
field propagators Using Eq.(A3) in Eq. (A2), the identitiese'#“n=1, n(7)
=e A 1+n(7)], n(n)=—[1+n(—»)] and performing
G (P = it j di7 %k, d9k, d9 ik, the 7 integration, we get
ijj (P wn) = pu™e . - .
v " (27T)d 1(27T)d 1(27T)d ! dd—lk dd—lk dd—lk
Giji (P iwn>=u4ff : : :
B i d-1 d-1 d-1
xf dre'“n"Gi(ky,7)G(kp, G (Kz,7) (2m)™ " (2m)™ " (2m)
0
o [T A2 g
Xé\o’(p_kl_kz_k3)1 (AZ) _w 27 27 27
where G;(k,7) is the propagator, which can be written in X pi(K1,m1)pj(K2,72)pj (K3, 173)
terms of a spectral functiop(k, ), as
X[1+n(7)[1+n(72)][1+n(73)]
redy S 1 1
Gitk,)= [ S—[1+n(n)]lpi(k,me "7, (A3) _
—w 27T Nk -
vt mt+metns vy —=m— 72— 73
wheren is the Bose distribution and X 83 (p—ky—ky—Kj). (A5)
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Performing the analytic continuation in the above expressiome can separat&;;; in real and imaginary contributions,
i w,— po+ie and using Gjj; =ReG;j; +iImGyj; . The imaginary contribution gives
the field decay rate and it is not important in the present
c work. The real part contributes to the thermal mass and it is
lim ——=md(x), (A6)  given by[after performing thek; momentum integral with
e—0 X2+ € the help of the Dirac delta-function in EGA5)]

ReG( )_f ddflkl ddflk2 /'L4E
PRI | it (2m) e BEKDE (K Ej (P Ky ko)

XJj:d”ldﬂadﬂs{ﬁfm—Ei<k1>]—5[m+Ei<kl>]}{6[nz—E,-<k2)]

— 3 2+ Ej(ko) IH ol 73— Ej(p—ky—k>)]

1
Potmit et m3 Po—n1— 12— 73

— 8 73t Ei(p—kyi—kp) I}

X 83(p—ky—ky—k3). (A7)

After performing thes integrals with the help of the Dirac where we purposefully left the momentum dependence in the
delta-functions and after some algebra, E&/) can be writ-  relevant divergent term to make explicit the need for a wave-
ten in terms of three terms: a temperature-independent ongjnction renormalization counterterm.
which is just the zero-temperature contributiGg; o, and The zero-temperature contribution to the mixed setting
two other terms with one and two Bose factors, which givessun diagram is also given in RdB5], for the on shell case
the Gyj; ; andGy;; , terms appearing in Eq3.31). ?pzzﬂiz) it can be written as

The zero-temperature contributions in both cases have al-
ready been evaluated in the literature. The contribution
Giii o(p) has been evaluated in details in R¢81,35 where
the quoted result for the on mass shqeiF(:Qiz) case is
2e

G )= O TXl+e) |[4mu?
Q2 T%l+e) [4mp?\* Pt (- e (1-26) 0?2
Giii o(P) = (an?) (1—e(1-20) | g2
2 2
3 1 19 2+n° n4|l )
- - - +—|=+In(n
X 252+46 g (A8) [ e? 7 TIn(n%)
which gives
11 n? 1
+ 1+§n2—(1+?)In(n2)—§nzln2(n2)
— 307 1+3—27E 2I 02
il oL 2(4m)*| € € € \4mu
1_n22 2
L P 307 L 0f +%(Li2(1—n2)—%)], (A10)
4(4m)%e (4m)* 4arp? n

2
i

4

17
+ 27E_€ In >

result

+ 1.978% (A9) wheren=(};/(}; and Li(z2)==",2'/I%. We then obtain the
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0 1 n? n? i p? n?
Gijj o(p)=— —(1+— +—(1+— 3—2y—2In - — —In(n?
|]],0(p) (471_)4 &2 2 P 2 Ye— 477# 491-26 € (n9)
2 2 2 2 2
B T PP 74 = =6yt 2y2—2(3— 2ye)n| —— | +2In?| —
(4m)* 2 6 4aru? A1
0? 1 ( n? 1 (1—n?2)2 ( 2)
j 2 2 22 2
+ 1+ —n°—| 1+—=/In(n n In“(n°)+ Lio(1—n%)— —
(4 8 (n%)— (n%) 2 2( )
’ 2 1
+ 3-2 21In —+In(n? ) . All)
(47r) | YeE— 47T,U~ 4 (n%) ] (

The finite temperature termS;;; ; and G;j; , can be worked out as follows. Taking=0 in these terms, allows us to
reexpress them bgusingk; - k,=k;k, cosé)

d?"t,  d9 Mk, 1 1
(2m)d4-1 (271-)‘1_1 8Ei(k1)Ej(ky) kiks

ReGj;; ,1(0,po)=u4€f

x| N[E;(ky) Js—=In{p5—[Ei(kq) + Ej(ky) + Ej(Ky+ k) 12Hpg— [ — Ei(k1) + Ej(Ka) + Ej(ky+K2) 12}

d cosd

+2n[Ej (ko) J=——In({p3— [Ei(k1) + Ej(kz) + Ej(ky+k2) 12

dcosé

X{p3—[Ei(ky) —Ej(ky) +Ej(ky+k2)1%}) (A12)
and

ddflkl ddflk2
(27T)d_1 (27T)d_1

ReGij; ,2(0.po)=M4ff

« 1 1
8Ei(k1)Ej(ko) kiky

X{2n[E;(kq) In[E;(kz2) ]+ n[Ej(kq) In[Ej(ky+ko) T}

X IN({p§—[Ei(Ky) +Ej(K2) + E;(ky+ ko) 12} X {p§—[ — Ei(Kq) + Ej(Ko) + Ej(ky+k2) 1%}

dcosé

X{po—[Ei(ky) —Ej(ko) + Ej(ky + ko) 1*HP5— [Ei(k) + Ej(ka) — Ej(ky+ ko) ]2} (A13)

Fori=] (equal mass propagatoisgs.(A12) and(A13) give  and
the same expressions obtained by Parwani in R34]. In
special, we note that, in EqA12), the terms given by

dldcosflIn{---}—2k;/k, ask,—~. We can subtract and A2T2 Q, 2
add this term in the appropriate places in E412), obtain- Fijj 1= — 52Nj h<?) —In +2— 7y
ing the analogous expressions given by Parwani (4) 477,“«

NN, Q ]

_T]ReGijj,1(0ap0):|:ijj,0+Fijj,1+Fijj,2(p0), +2h ?) —In P +2— v (A16)
,u
(A14)

where

where in the above equations(y;) is given by Eq.(3.10.
Q, The remaining termsfj;; , and Gj;; » can be evaluated on-
_” (A15) shell and a similar contribution has already been computed
T earlier in the literature, see RéB7], from where we obtain

+2h

o NT2 10 (0,
Fijo=—20 NJ(47T)2E hi+
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N25°N; APPENDIX B
Fiii o(Q;) ———=—ReG;;;i 1(0,4; . - S
DESEY 2 15 20,2 To obtain the total finite ordes? contribution one can
e add all divergences appearing in E¢3.18—(3.25, (3.28),
SN2 AT 0| 0;+2Q; 5066 (3.29, (3.32, and(3.33. As it can be easily seem all the
- i 8(4)2 n 3T ' ' temperature-dependent divergences cancel exactly and one is

left with temperature-independent poles.
(A17) By looking at all terms which contribute to this order one
can identify two classes. The first is composed by diagrams
The finite temperature contributior@;;; ; and G;;; , are  such as the ones described by E(20-(3.25, (3.28,
given, as in Ref[36] and, from the previous equations, Egs. (3.29, (3.32, and(3.33. All of them are analogous to the

(A14)—(A17), they can be written as diagrams which appear at second order in the couplings in
the original theory and can be rendered finite by similar mass
ZA?(Ni +2) and wave-function counterterms. This procedure has already

— 0"~ REGii 1(0.Q2)]=Fiii o+ Fiii 1+ Fiii 2, been illustrated at orde¥. One can generalize this procedure

(A18) by stating that diagrams belon |ng to a general offeand
containing any combinatioR™\*\}, such thatm+k+I=n

wheré will be renormalized exactly as when ordinary perturbation
theory is applied to the original model. Then, one just has to
N2(N+2)T21 (0, replace the ori_ginal masses with the relevant _interpolating
Fii o= — e = —h(—'), (A19) Mmassed)y,. It is easy to check that for those diagrams the
’ 3(4m? €\ T most divergent terms will display™ " poles.

The second kind of diagram is excluswe of the interpo-
N2(N+2)T2 [ Q, lated theory and carries at least obg? (or 577 ) vertex. At
_ (—) O(6%) these diagrams are described by E(1$18) and
T (3.19, WhICh display the dlvergem;, andn pieces. Look-
ing at £ one identifies a77I ,771 dependent coefficient

Fi.. ,=— 82
iii ,1 3(477)2

2

x| —In +2—yel, (A20) whose Feynman rule isoB; °(71,7,). Since the actual pole
4’ is of orders? one |dent|f|es this coefficient as having the
same structure as the mass countertﬁﬁ(ﬂl, Q,), dis-
and played in Eq.(3.6), except that we now have, instead of
Qz Therefore,O(8") diagrams belonglng to the second
N2(N;+2)
Fii Q) — ———RgG,(0,Q))] class will make use of the counterter&B (7;1,172) This
' 18 coefficient is similar toB® (Ql, ») which has been
N2(N+2)T? 2 evaluated in a previous order. One can also easily check that
2l | ' | +5.066 for these diagrams the most divergent terms will haVe!
72(41)? poles. Moreover, power counting reveals that thég@ (or

d7;) insertions make the loops more convergent. For ex-
ample all one loop diagrams of orde?(5"), with n=3 are
Putting all these contributions together, we obtain the resultgm:[rehe renormalization prescription adopted here is analo-
given in Egs.(3.32 and(3.33. gous to the one shown in ReR0] for the one-field case,
where we have shown that the order by order renormaliza-
tion holds at any higher orders ifi In Ref.[20] the renor-
3Note that there is a misprint in Eq2.32 of Ref. [20], where ~ malization procedure is treated in more detail for the simple

(A21)

there is an extra 1/2 multiplying that equation. )\d)4 case.
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