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Nonperturbative study of inverse symmetry breaking at high temperatures
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The optimized lineard expansion is applied to multifieldO(N1)3O(N2) scalar theories at high tempera-
tures. Using the imaginary time formalism the thermal masses are evaluated perturbatively up to orderd2

which considers consistently all two-loop contributions. A variational procedure associated with the method
generates nonperturbative results which are used to search for parameter values for inverse symmetry breaking
~or symmetry nonrestoration! at high temperatures. Our results are compared with the ones obtained by the
one-loop perturbative approximation, the gap equation solutions and the renormalization group approach,
showing good agreement with the latter method. Apart from strongly supporting inverse symmetry breaking
~or symmetry nonrestoration!, our results reveal the possibility of other high-temperature symmetry breaking
patterns for which the last term in the breaking sequence isO(N121)3O(N221).

PACS number~s!: 11.10.Wx, 11.15.Tk, 98.80.Cq
n
se
io
b
al

se

lti
eld
w
od
c
er
th

oo
o

o
e
u
r
m
a

er
as
-

be
e-
her
nd
.
e-
to

igh
ghly
R

ere

e
R
nt

nd
ut

a
s-

lf-
tive
e

y

eter
to

el
ano
lu-
his
I. INTRODUCTION

The possibility that symmetries may be broken~or remain
broken! at high temperatures is not new@1#. This phenom-
enon is usually called inverse symmetry breaking~ISB! @or
symmetry nonrestoration~SNR!#. The idea of ISB~or SNR!
is per sea very interesting one due to its possible impleme
tation in realistic particle physics models and its con
quences in the context of high-temperature phase transit
in the early Universe, with applications ranging from pro
lems involvingCP violation and baryogenesis, topologic
defect formation, inflation, etc.~for a short list of the differ-
ent applications where SNR and ISB have been used
e.g., Refs.@2–6#!.

ISB or SNR is a direct consequence that in two or mu
field theories some of the coupling constants between fi
can be negative while the model is still bounded from belo
This can be the case in any extension of the standard m
with a large scalar sector. Under these conditions, there
be an enhanced symmetry breaking effect at high temp
tures, when thermal effects are taken into account in
model. This effect is clear when one considers a one-l
analysis of the effective potential in a simple model of tw
interacting scalar fields or, as in Ref.@1#, a O(N)3O(N)
model. However, this simple analysis is too naive for tw
main reasons. First, at high temperatures the perturbative
pansion in quantum field theory becomes, in most cases
reliable. This happens because there can be paramete
gimes where powers of the coupling constants beco
surmounted by powers of the temperature, or due to the
pearance of infrared divergences close to critical temp
tures ~as in field theories displaying a second order ph
transition or a weakly first order transition!. Second, the con
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strain conditions on the coupling constants, which may
important for the observation of ISB or SNR, usually r
quires large values for the couplings, in which case hig
order loop corrections may become important as well a
change appreciably the parameter space for ISB or SNR

In order to account for the above problems of the on
loop approximation, different methods have been used
analyze the question of ISB in quantum field theory at h
temperatures. The results, however, have shown to be hi
controversial, either by finding no evidence for ISB or SN
or favoring the phenomenon. Examples of the former w
obtained in the context of methods such as the large-N ex-
pansion@7#, Gaussian effective potential@8#, chiral Lagrang-
ian technique@9#, and Monte Carlo simulations on the lattic
@10#. Some applications which find evidence for ISB or SN
are Refs.@11,12#, whose authors worked with self-consiste
gap equations; Ref.@13#, also in the context of the large-N
expansion, but reaching a different conclusion; Refs.@14,15#
in the context of the renormalization group equations a
Ref. @16#, also in the context of Monte Carlo simulations b
this time supporting ISB or SNR.

It is then obvious that it would be interesting to have
method to clarify this question without involving the po
sible difficulties related to the previous methods~such as
numerical precision in the Monte Carlo simulations, se
consistency in the gap equations, or resummed perturba
methods, etc.! used to study this problem. In this paper w
use a nonperturbative technique known as the lineard ex-
pansion ~also known as optimized perturbation theor!
@17,18# ~for earlier references see, e.g., Ref.@19#! and apply
the method to theO(N1)3O(N2) scalar model to obtain the
thermal masses to second order in the perturbative param
d. We then investigate their high-temperature behavior
conclude about the possibility of ISB or SNR. This mod
has already been considered before by Bimonte and Loz
in Ref. @11# where SNR was studied by means of the so
tions of the gap equations of the model. By studying t
©2000 The American Physical Society16-1
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theory we can also extend our results to the simple mo
consisting of two-interacting scalar fields, which has be
extensively studied before. In this case the symmetry gr
corresponds toZ23Z2. This step will allow us to compare
our results with the ones furnished by alternative methods
a previous paper@20#, we have employed the optimized lin
eard expansion to study the resummation of higher and le
ing order thermal corrections showing that the use o
proper optimization scheme is equivalent to self-consiste
solving the gap equation for the thermal mass, where lead
and higher order infrared regularizing contributions are n
perturbatively taken into account. An advantage of the lin
d expansion is that the same simple propagator is used in
evaluation of any diagram, avoiding the potential bookke
ing problems associated to other resummation meth
Apart from being a powerful nonperturbative method, t
optimized perturbation theory was originally formulated a
general theory applicable to arbitrary systems includ
strong interacting models, which makes it particularly int
esting to use in connection with ISB or SNR where the is
of large coupling constants is an important one.

This work is organized as follows. In Sec. II we introdu
the model and the lowest order one-loop result. In the sa
section, the lineard-expansion technique is briefly describe
It is then used, in Sec. III, to evaluate the thermal masse
to order-d2 in the 311d model of interacting scalar field
with global O(N1)3O(N2) symmetry. These calculation
explicitly include two-loop momentum independent as w
as momentum dependent diagrams with equal and diffe
internal propagators. In Sec. IV we present our optimizat
results for the thermal masses and investigate, numeric
the possibility of ISB in the model. We specialize to the ca
N1590 and N2524, where the model can be thought
representing the Kibble-Higgs sector of a SU~5! grand uni-
fied theory and also to the caseN15N251, where it reduces
to the Z23Z2 model, which has been the object of ma
studies in connection with ISB. Our predictions for the cri
cal temperatures and size of the ISB parameter region
compared with the ones found in the literature. In Sec. V
concluding remarks are given. Two appendices are inclu
to present some technical details and for a brief discussio
renormalization in the model.

II. THE LINEAR d EXPANSION APPLIED
TO THE EVALUATION OF THE THERMAL MASSES

IN THE O„N1…ÃO„N2… MODEL

A. The model and one-loop results

In this work we consider the scalarO(N1)3O(N2)
model described by

L5(
i 51

2 F1

2
~]mf i !

22
1

2
mi

2f i
22

l i

4!
f i

4G2
l

4
f1

2f2
21Lct ,

~2.1!

where
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Lct5(
i 51

2 FAi

1

2
~]mf i !

22
1

2
Bif i

22
1

4!
Cif i

4G2
1

4
Cf1

2f2
2

~2.2!

represents the counterterms needed to render the mod
nite. Note thatLct requires an extra piece if one attempts
evaluate the thermal effective potential@21#, which is not the
case here. The boundness condition for the model descr
by Eq. ~2.1! requires that the coupling constants satisfy t
inequalities

l1.0, l2.0 and l1l2.9l2. ~2.3!

As noticed by Weinberg@1# this boundness condition al
lows for negative values of the cross couplingl which may
lead to the nonrestoration of symmetries at high tempe
tures. Another possibility is that theories which are symm
ric at T50 may be broken at largeT due to this negative
value ofl. The thermal masses for this model have been fi
calculated using the one-loop approximation which, at h
T, gives

M1
2.m1

21
T2

24Fl1S N112

3 D1lN2G ~2.4!

and

M2
2.m2

21
T2

24Fl2S N212

3 D1lN1G . ~2.5!

Let us consider the interesting case wherel,0, m1
2.0 and

m2
2.0 so that the theory is symmetric atT50. Inverse sym-

metry breaking takes place if one chooses, for example,

ulu.
l1

N2
S N112

3 D , ~2.6!

which makes theT2 coefficient of M1
2 negative while the

same coefficient forM2
2 is kept positive, due to the bound

ness condition. In this case, high temperatures will indu
the breakingO(N1)3O(N2)→O(N121)3O(N2) at the
critical temperature

Tc
2

m1
2

524F uluN22l1S N112

3 D G21

. ~2.7!

The one loop approximation results will be investigated n
merically and compared to our results in Sec. IV.

B. The interpolated model

The optimized lineard expansion is an alternative non
perturbative approximation which has been successfully u
in a plethora of different problems in particle theory@18,20–
24#, quantum mechanics@25,26#, statistical physics@27#,
nuclear matter@28#, and lattice field theory@29#. One advan-
tage of this method is that the selection and evaluation~in-
cluding renormalization! of Feynman diagrams are done e
6-2



pl
p
in

y

ry

-

s.
-
al
n

b

lly

e
re

her

n-

o

es,

m

us-

the

NONPERTURBATIVE STUDY OF INVERSE SYMMETRY . . . PHYSICAL REVIEW D61 125016
actly as in ordinary perturbation theory using a very sim
modified propagator which depends on an arbitrary mass
rameter. Nonperturbative results are then obtained by fix
this parameter. The standard application of the lineard ex-
pansion to a theory described by a Lagrangian densitL
starts with an interpolation defined by

L d5~12d!L0~h!1dL5L0~h!1d@L2L0~h!#,
~2.8!

whereL0(h) is the Lagrangian density of a solvable theo
which can contain arbitrary mass parameters (h). The La-
grangian densityL d interpolates between the solvableL0(h)
~when d50) and the originalL ~when d51). For the
present model one may choose

L0~h i !5(
i 51

2 F1

2
~]mf i !

22
1

2
mi

2f i
22

1

2
h i

2f i
2G , ~2.9!

and following the general prescription one can write

L d5(
i 51

2 F1

2
~]mf i !

22
1

2
V i

2f i
22d

l i

4!
f i

41
d

2
h i

2f i
2G

2d
l

4
f1

2f2
21L ct

d , ~2.10!

whereV i
25mi

21h i
2 . The termLct

d , which contains the coun
terterms needed to render the model finite, is given by

Lct
d 5(

i 51

2 FAi
d 1

2
~]mf i !

22
1

2
Bi

d~V1 ,V2!f i
22

1

4!
dCi

df i
4

1
1

2
dBi

d~h1 ,h2!f i
2G2

1

4
dCdf1

2f2
2 , ~2.11!

whereAi
d , Bi

d , Ci
d , andCd are the counterterms coefficient

One should note that thed-expansion interpolation intro
duces only ‘‘new’’ quadratic terms not altering the renorm
izability of the original theory. That is, the counterterms co
tained inL ct

d , as well as in the originalLct , have the same
polynomial structure.

The general way the method works becomes clear
looking at the Feynman rules generated byL d. First, the
original f i

4 vertex has its original Feynman rule2 il i modi-
fied to 2 idl i ~the same applies to the mixed vertexf1

2f2
2).

This minor modification is just a reminder that one is rea
expanding in orders of the artificial parameterd. Most im-
portantly, let us look at the modifications implied by th
addition of the arbitrary quadratic part. The original ba
propagator

S~k!5 i ~k22mi
21 i e!21, ~2.12!

becomes
12501
e
a-
g

-
-

y

S~k!5 i ~k22V i
21 i e!21

5
i

k22mi
21 i e F12

i

k22mi
21 i e

~2 ih i
2!G21

,

~2.13!

indicating that the term proportional toh i
2f i

2 contained inL0

is entering the theory in a nonperturbative way. On the ot
hand, the piece proportional todh i

2f i
2 is only being treated

perturbatively as a quadratic vertex~of weight idh i
2). Since

only an infinite order calculation would be able to compe
sate for the infinite number of (2 ih i

2) insertions contained
in Eq. ~2.13!, one always ends up with ah i dependence in
any quantity calculated to finite order ind. Then, at the end
of the calculation one setsd51 ~the value at which the origi-
nal theory is retrieved! and fixesh i with the variational pro-
cedure known as the principle of minimal sensitivity~PMS!
@30#

]P~h i !

]$h i%
U
$h̄ i %

50, ~2.14!

whereP represents a physical quantity calculatedperturba-
tively in powers ofd.1 This optimization procedure applied t
the thermal masses will be discussed in Sec. IV.

III. THE THERMAL MASSES UP TO ORDER d2

We can now start our evaluation of the thermal mass
defined by

Mi
25V i

21S i
d~p!, ~3.1!

whereS i
d(p) is the thermal self-energy. At lowest order~first

order ind) the relevant contributions, which are momentu
independent, are given by (i , j 51,2 andiÞ j )

S i ,1
d1

~p!52dh i
21d

l i

2 S Ni12

3 D E
T

ddk

~2p!d

i

k22V i
21 i e

1d
l

2
NjE

T

ddk

~2p!d

i

k22V j
21 i e

. ~3.2!

The temperature dependence can be readily obtained by
ing the standard imaginary time formalism prescription

p0→ ivn , E
T

ddk

~2p!d
→ iT(

n
E dd21k

~2p!d21
. ~3.3!

Then, the self-energy becomes

1For a discussion of convergence as well as renormalization in
method, see Ref.@20#, and references therein.
6-3



es

la

a
m
te

r-
at

ion

ied
m-
g

gral

n
e-

the
rk.
-

ing
di-

MARCUS B. PINTO AND RUDNEI O. RAMOS PHYSICAL REVIEW D61 125016
S i
d1

~p!52dh i
21dT

l i

2 S Ni12

3 D(
n
E dd21k

~2p!d21

1

vn
21Ei

2

1dT
l

2
Nj(

n
E dd21k

~2p!d21

1

vn
21Ej

2
, ~3.4!

whereE25k21V2. Summing over Matsubara’s frequenci
one gets

S i
d1

~p!52dh i
21d

l i

2 S Ni12

3 D
3E dd21k

~2p!d21 H 1

2Ei
2

1

Ei@12exp~Ei /T!#J
1d

l

2
NjE dd21k

~2p!d21 H 1

2Ej
2

1

Ej@12exp~Ej /T!#J .

~3.5!

Then, using dimensional regularization@31# (d5422e) one
obtains the thermal mass

Mi
25V i

22dh i
21d

l i

32p2 S Ni12

3 D
3H V i

2F2
1

e
1 lnS V i

2

4pm2D 1gE21G
132p2T2hS V i

T D J 1d
l

32p2
Nj

3H V j
2F2

1

e
1 lnS V j

2

4pm2D 1gE21G
132p2T2hS V j

T D J , ~3.6!

wherem is a mass scale introduced by dimensional regu
ization and

h~yi !5
1

4p2E0

`

dx
x2

@x21yi
2#1/2@exp~x21yi

2!1/221#
.

~3.7!

Note that the temperature independent term diverges
must be renormalized. In this paper we chose the mini
subtraction~MS! scheme where the counterterms elimina
the poles only. At this order the only divergence in Eq.~3.6!
is

Sdiv,i
d1

52
d

32p2e
S l i

Ni12

3
V i

21lNjV j
2D , ~3.8!

which is easily eliminated by the O(d) mass counterterm
12501
r-

nd
al

Sct,i
d1

5Bi
d1

~V1 ,V2!5
d

32p2e
S l i

Ni12

3
V i

21lNjV j
2D .

~3.9!

By looking at Eq.~3.6! one can see that the terms propo
tional to dl i and dl represent exactly those that appear
first order in the coupling constants in ordinary perturbat
theory except that we now haveV i

2 instead ofmi
2 , dl i in-

stead ofl i anddl instead ofl. Therefore, it is not surpris-
ing that to this order the renormalization procedure impl
by the interpolated theory is identical to the procedure i
plied by the original theory at first order in the couplin
constants.

Let us now analyze the temperature-dependent inte
which is expressed, in the high-temperature limit (yi
5V i /T!1), as@32#

h~yi !5
1

24
2

1

8p
yi2

1

16p2
yi

2F lnS yi

4p D1gE2
1

2G1O~yi
3!.

~3.10!

In principle, sinceh i is arbitrary, one could be reluctant i
taking the limitV i /T!1. However, as discussed in our pr
vious work@20#, the use of both forms for the integralh(yi)
does not lead to any significant numerical changes in
optimization procedure. This is also true in the present wo
Then, by takingh(yi) in the high-temperature limit, one ob
tains theO(d) thermal mass

Mi
25V i

22dh i
21dl i S Ni12

3 DXi~T!1dlNjXj~T!1O~d2!,

~3.11!

where we have defined the quantityXi(T)

Xi~T!5
T2

24
2

TV i

8p
1

V i
2

32p2
L~T!, ~3.12!

with L(T) given by

L~T!5 lnS 4pT2

m2 D 2gE . ~3.13!

For notational convenience when expressing the remain
contributions to the self-energies, we also define the ad
tional quantitiesYi(T), Zi(0), Wi(0),andRi(T) given by

Yi~T!52
TV i

16p
1

V i
2

32p2
L~T!, ~3.14!

Zi~0!5
1

2 F lnS V i
2

4pm2D 1gEG 2

1
p2

12
, ~3.15!

Wi~0!5
1

2 F lnS V i
2

4pm2D 1gE21G 2

1
1

2
1

p2

12
,

~3.16!

and
6-4
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Ri~T!52
TV i

2

16pV j
1

V i
2

32p2
L~T!. ~3.17!

At O(d2) the self-energy receives contributions from m
mentum independent as well as momentum-dependent
grams. Let us first consider the momentum-independent
grams, which to this order have one and two loops. T
order-d2, one loop, momentum-independent contribution
given ~in the high-temperature limit! by

S i ,2
d2

5d2l ih i
2S Ni12

3 D F 1

32p2e
2

Yi~T!

V i
2 G ~3.18!

and

S i ,3
d2

5d2lh j
2NjF 1

32p2e
2

Yj~T!

V j
2 G . ~3.19!

As discussed in Appendix B, the above contributions can
rendered finite using the mass type counterterms containe
L ct

d which are tailored to account for divergences aris
from the extra quadratic vertices introduced during the in
polation process. The momentum-independent two loop c
tribution is given by the four ‘‘double scoop’’ diagrams

S i ,4
d2

5d2l i
2S Ni12

3 D 2H V i
2

~32p2!2e2

2
1

32p2e
@Xi~T!1Yi~T!#2

T3

384pV i

1
T2

128p2
1

L~T!

~16p!2 F8Xi~T!2
TV i

2p G
1

V i
2

~32p2!2
@Zi~0!1Wi~0!#J , ~3.20!

S i ,5
d2

5d2ll i

~Ni12!

3
Nj H V j

2

~32p2!2e2

2
1

32p2e
@Xj~T!1Rj~T!#2

T3

384pV i

1
T2

128p2

V j

V i
1

L~T!

~16p!2 F8Xj~T!2
TV j

2

2pV i
G

1
V j

2

~32p2!2
@Zi~0!1Wj~0!#J , ~3.21!
12501
ia-
a-
e

e
in

r-
n-

S i ,6
d2

5d2ll j

~Nj12!

3
NiH V j

2

~32p2!2e2

2
1

32p2e
@Xj~T!1Yj~T!#2

T3

384pV j

1
T2

128p2
1

L~T!

~16p!2 F8Xj~T!2
TV j

2p G
1

V j
2

~32p2!2
@Zj~0!1Wj~0!#J , ~3.22!

and

S i ,7
d2

5d2l2NiNj H V i
2

~32p2!2e2
2

1

32p2e
@Xi~T!1Ri~T!#

2
T3

384pV j
1

T2

128p2

V i

V j
1

L~T!

~16p!2

3F8Xi~T!2
TV i

2

2pV j
G1

V i
2

~32p2!2
@Zj~0!1Wi~0!#J .

~3.23!

To render these diagrams finite one needs mass and v
counterterms@31#. Considering theO(d) mass counterterms

used to eliminate the divergences inSdiv,i
d1

@see Eq.~3.9!#, one
is able to build two one loopO(d2) diagrams whose contri
butions are given by

S i ,8
d2

5
d2l i~Ni12!

3~32p2!2 Fl iV i
2~Ni12!

3
1lV j

2Nj G
3H 2

1

e2
1

32p2

V i
2

Yi~T!
1

e
2Zi~0!J ~3.24!

and

S i ,9
d2

5
d2lNj

~32p2!2 Fl jV j
2~Nj12!

3
1lV i

2Ni G
3H 2

1

e2
1

32p2

V j
2

Yj~T!
1

e
2Zj~0!J . ~3.25!

Additionally, from the vertex counterterms appearing in E
~2.11!, with Ci andC @at orderO(d2)# given by

Ci5
d2

32p2e
Fl i

2 ~Ni18!

3
13l2Nj G ~3.26!

and
6-5
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C5
2d2l2

16p2e
1

d2l

96p2e
@l1~N112!1l2~N212!#,

~3.27!

one can build the one-loopO(d2) diagrams

S i ,10
d2

52
d2

16p2

~Ni12!

3 Fl i
2~Ni18!

6
1l2

3Nj

2 G
3F V i

2

32p2e2
2

1

e
Xi~T!1

V i
2

32p2
Wi~0!G ~3.28!

and

S i ,11
d2

52
d2Nj

32p2 H 4l21
l

3
@l i~Ni12!1l j~Nj12!#J

3F V j
2

32p2e2
2

1

e
Xj~T!1

V j
2

32p2
Wj~0!G . ~3.29!
12501
The next contribution to the self-energy atO(d2) comes
from the two-loop ‘‘setting sun’’ diagrams. Thes
momentum-dependent contributions are given by the set
sun diagram with equal mass internal propagators

S i ,12
d2

~p!52d2
l i

2~Ni12!

18
~Giii ,01Giii ,11Giii ,2!,

~3.30!

and by the one with internal propagators with differe
masses

S i ,13
d2

~p!52d2
l2Nj

2
~Gi j j ,01Gi j j ,11Gi j j ,2!. ~3.31!

In the above expressions,G0 is the zero-temperature part o
the diagrams andG1 andG2 are the finite-temperature one
~with one and two Bose factors, respectively!. The details of
the evaluation of Eqs.~3.30! and~3.31! are given in Appen-
dix A. Their contributions are
Re@S i ,12
d2

~p!#5d2
l i

2~Ni12!

3~32p2!2 FV i
2

e2
1

V i
2

e
2

p2

6e
2

64p2Xi~T!

e G1d2
l i

2~Ni12!V i
2

6~4p!4 F ln2S V i
2

4pm2D
1S 2gE2

17

6 D lnS V i
2

4pm2D 11.9785G1d2
l i

2~Ni12!

3~4p!2 F lnS V i
2

4pm2D 221gEG
3H T2

24
2

TV i

8p
2

V i
2

16p2 F lnS V i

4pTD1gE2
1

2G J 1d2
l i

2~Ni12!T2

72~4p!2 F lnS V i
2

T2 D 15.0669G , ~3.32!

and

Re@S i ,13
d2

~p!#5d2
l2Nj

2

V j
2

~4p!4 H 1

e2 S 11
n2

2 D1
1

e S 11
n2

2 D F322gE22 lnS V j
2

4pm2D G2
p2

4V j
2e

2
n2

e
ln~n2!J

2d2Nj

l2T2

~4p!2

1

e FhS V i

T D12hS V j

T D G1d2
l2Nj

2

V j
2

~4p!4 S 11
n2

2 D F71
p2

6
26gE12gE

222~322gE!

3 lnS V j
2

4pm2D 12 ln2S V j
2

4pm2D G2d2
l2Nj

2

V j
2

~4p!4 F11
11

8
n22S 11

n2

2 D ln~n2!2
1

2
n2 ln2~n2!

1
~12n2!2

n2 S Li2~12n2!2
p2

6 D G2d2
l2Nj

2

V i
2

~4p!4 H F322gE22 lnS V j
2

4pm2D G S 1

4
1 ln~n2! D J

1d2Nj

l2T2

~4p!2 H hS V i

T D F lnS V j
2

4pm2D 221gEG12hS V j

T D F lnS V i
2

4pm2D 221gEG J
1d2Nj

l2T2

8~4p!2 F2 lnS V i12V j

3T D15.0669G , ~3.33!
6-6
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wheren5V i /V j .
From Eqs.~3.6!, ~3.18!–~3.25!, ~3.28!, ~3.29!, ~3.32!, and

~3.33! one easily sees that all the temperature-dependen
vergences cancel exactly. The remaining divergences
handled in the usual way, being canceled by the coun
terms appearing inLct , Eq. ~2.2! ~see Appendix B!. The sum
of the remaining finite terms of each contribution to the se
energy makes the total contribution to the thermal mass u
orderd2, Mi

25V i
22dh i

21S i ,11•••1S i ,13.

IV. NUMERICAL RESULTS

We are now in position to setd51 and apply the PMS to
the thermal masses. Before doing that few points concern
the optimization procedure should be clarified. First, we
call that our interpolation procedure has been carried out
very general way by assigning a different interpolation p
rameter to each field. Although general, this proced
brings in two arbitrary parameters which have to be fix
with the PMS. Of course this complicates the numerical
timization procedure, which is needed at higher orders, s
one has to look for extrema in theh1 ,h2 space. Sometime
these extrema show up as saddle points which are har
detect numerically. In principle, bearing in mind thatf1 and
f2 are both the same type of fields, one could be tempte
use the freedom allowed by the interpolating process to
h15h25h. In order to assess the validity of such choice
have done the optimization in both ways finding that the c
h1Þh2 gives better results. The second point regards
actual quantity to be extremized. By looking at our equatio
one can easily see that, except for the case whereN15N2 ,
m1

25m2
2 andl15l2, the PMS applied separately toM1

2 and
M2

2, at the same temperature, can generate different va

for the sameh̄ i . One way to avoid this would be to evalua
and optimize a more comprehensive quantity such as
effective potential. In fact this procedure has been advoca
in other applications of the optimizedd expansion@28#.
However, in the present work we have not attempted
evaluate the effective potential since, atO(d2), this would
imply in the evaluation of three-loop zero point functio
which become rather cumbersome at finite temperatur2

Although this may be regarded as a controversial po
within the method it will not be discussed any further in t
present application. Here we follow the original prescripti
given in Ref.@30# where it is suggested that the PMS shou
be applied to each different physical quantity so thath i can
be adjusted to the relevant energy scale. The validity of s
procedure will be judged by comparing our results with w
known predictions in theN15N251 limit. Finally, as dis-
cussed in Ref.@20#, one can easily see that applying the PM
to Mi

2 at first order ind produces coupling independent va

ues forh̄ i which do not furnish truly nonperturbative result
Therefore we will only investigate the results generated
orderd2.

2See Ref.@33# for a discussion concerning thed-expansion evalu-
ation of the effective potential.
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We work in units of the arbitrary scalem introduced by
dimensional regularization, by extremizing the dimensio
less quantityMi

2/m2. To search for inverse symmetry brea
ing at high temperatures one must ensure that the symme
are restored atT50. This is achieved by settingmi

2.0 and
by observing the boundness condition while settingl→
2l in all our equations.

A. The Z2ÃZ2 case

Let us start by studying theN15N251 case where the
theory reduces to theZ23Z2 model which has been exten
sively studied in the literature. In Ref.@14# ~see also Ref.
@15#! it is claimed that the critical temperature is not reliab
estimated by the loop expansion which does not include t
perature effects in the coupling constants. On the other h
the nonperturbative renormalization group approach~RGA!
used in Ref.@14# does include those effects and as a fi
check of the validity of our results we estimate the critic
temperature for theZ23Z2 model comparing our results a
O(d2) with the ones furnished by the two methods me
tioned above. This is done in the first two rows of Table
and also in Fig. 1. In all casesm1

2/m25m2
2/m251.0. Just

above the critical temperatures presented in the first
rows the thermal massM1

2 is negative whereasM2
2 is posi-

tive. Our numerical optimization strategy is the followin
for a temperature below the value predicted by the one-l

FIG. 1. The critical temperatureTc /m1 as a function ofl
(,0) for N151 andN251 with the following parameter values
m1,2

2 /m251.0, l150.018, andl250.6. The dashed line is the one
loop prediction, the continuous line is our result and the dots r
resent the values obtained with the RGA.

TABLE I. Results for the critical temperature as obtained in t
one-loop approximation, the renormalization group approach
Ref. @14# and in thed expansion, respectively.

l1 l2 l Tc
1-loop/m1 Tc

RGA/m1 Tc
d2

/m1

0.06 1.8 20.1 24.5 33.6 33.3
0.0167 0.6 20.025 53.7 67.9 66.9
6-7
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approximation ~1LA! we identify the extremum in the
h1 ,h2 space. Both masses in the extremum positions
found to be consistently positive and the extremum positi
are found to be unique~and consistent with the high
temperature approximation, in the sense thath̄1,2,T). The
extremum is then followed as the temperature is increa
When one of the masses becomes negative the value ofTc is
obtained and the values ofh̄1 ,h̄2 are registered. For ex
ample, around the critical temperature the values obtaine
extremizing M1

2 are h̄1'0, h̄2'0.25T and h̄1'0, h̄2

'0.15T for the parameters in the first and second rows,
spectively, in Table I. From this table one can see the
markable agreement between our results and the ones
vided by the RGA. In Fig. 1 we compare the numeric
values of the critical temperature with the ones predicted
the 1LA and RGA for several values of the cross couplin
Once again our results agree with the ones given by the R
@14,15#. We have also investigated the behavior of the cr
cal temperature as a function ofl2 for fixed m1,2

2 /m251.0,
l150.009, andl520.025. As can be seen directly from
Eq. ~2.4!, the one-loop predicts thatTc /m1;49.0 for any
value ofl2, while the RGA predicts that it increases with th
latter. Once again our results, not shown, agree with the o
given by the RGA. These findings give us confidence ab
the correctness of the optimization procedure adopted.

The critical temperatures predicted by thed expansion, as
well as by the RGA, are higher than those predicted by
1LA. This could be roughly understood by recalling that f
the phase transitions considered the PMS applied to the m
which signals the phase transition (M1

2 for the parameters o

Table I! generates ah̄2 which is an increasing function ofT
whereas it givesh̄1'0. Therefore, at highT, the optimized

massV̄2 which ‘‘dresses’’ thed-expansion propagator ass

ciated withf2 is greater than its counterpartV̄1
2. In M1

2, the

quantityV̄2
2 is always associated with the couplingl which

drives ISB. It seems that the increasing ofV̄2
2 with the tem-

perature suppresses the effect ofl in enhancing ISB. An-
other interesting point to be discussed regards the inclu
of temperature-dependent coupling constants. While
possible dependence is overlooked in the 1LA it is taken i
account in the RGA. These effects are more subtle to
observed directly in our case. However, by looking at
nature of the diagrams considered by us at orderd2, one may
have an idea of how these effects enter our calculatio
Basically, one can think of double scoops and setting s
diagrams as being tadpole diagrams with vertex correctio
Expanding the vertex to orderd gives the simple one loop
diagrams considered in Eq.~3.11!, while expanding the ver-
tex to orderd2 gives the double scoops and setting su
which indirectly contain one-loop temperature-depend
corrections to the vertex.

B. The O„N1…ÃO„N2… case

Let us now consider the more realisticO(N1)3O(N2)
case. We follow Bimonte and Lozano, in the first citation
Ref. @11#, by choosingN1590 andN2524 so that the mode
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can be thought of as representing the Kibble-Higgs secto
a SU~5! grand unified model. Let us start by estimating som
critical temperatures and comparing our results with the lo
est order one-loop results given by Eqs.~2.4! and~2.5!. The
two first rows of Table II display our results for the set
parameters considered in the previous subsection. Our
dicted values for the critical temperatures are proportiona
much higher than for theN15N251 case. The two last rows
of Table II display the results for more typical parame
values for this model, which are usually taken aroundl1
50.8 andl251.0 ~see Ref.@4#!. These results suggest th
the parameter region for ISB predicted by thed expansion is
smaller than the one predicted by the lowest order 1LA p
diction. To illustrate that we offer Figs. 2 and 3. Figure
shows ourO(d2) result~dot-dashed line! compared with the
results produced by the 1LA at lowest order~thin continuous
line! for fixed l150.8 andT55.0 m. The upper parabola
represents the limiting region for boundness. The dashed
is the Bimonte and Lozano’s next to leading order one-lo
~BLA ! result for an arbitrarily largeT. Figure 3 is similar to
Fig. 2 except thatl1 varies whilel2 is kept fixed at the unity
value. Note that the next to leading order correction cons
ered in Ref.@11# for the one-loop approximation reduce
significantly the region of ISB given at lowest order. How
ever, the next to leading order calculation of the BLA a

TABLE II. Results for the critical temperature in theO(90)
3O(24) scalar model.

l1 l2 l Tc
1-loop/m1 Tc

d2
/m1

0.06 1.8 20.1 6.5 15.3
0.0167 0.6 20.025 16.5 65.4
0.9 1.0 20.141 2.2 5.0
0.8 0.7 20.091 3.4 10.0

FIG. 2. Region of ISB at fixedl150.8 for N1590 and N2

524. The thick parabola limits the region for which the potential
bounded. The continuous and dashed lines are the zeroth orde~at
T/m55.0) and first order~at an arbitrarily largeT) results given in
Ref. @11#. The dot-dashed line is our result atT/m55.0. The region
of ISB is the one in between the boundness curve and the o
curves for each case.
6-8
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proach considers up to the second term, which is mass
pendent, in the expansion of the temperature depen
integral given by Eq.~3.7!. This means that their procedur
does not take into account logarithmic terms in the expans
of h(yi) since they would give corrections of orderl i

2 ln li

which also arise from two-loop diagrams. Our calculatio
on the other hand, avoid these book-keeping problems
all contributions are consistently and explicitly considered
a given order. Moreover, support for ISB or SNR also ari
in the work of Amelino-Camelia Ref.@12# who, similar to us,
considers two-loop diagrams in the simpleZ23Z2 model.

To illustrate how the temperature affects the ISB reg
we offer Fig. 4 where we have fixedl150.8 whilel2 varies.
It is clear that the ISB parameter region forT55.0 m is
smaller than forT510.0m. That is, increasing temperature
favor ISB. The parameter regions predicted by the 1LA ha
the same temperature dependence although the differen
size is less significant than the one displayed in Fig. 3 for
d expansion.

Finally, let us investigate the possible patterns for IS
According to the one-loop approach~to lowest and next to

FIG. 3. Same as in Fig. 2, but now at fixedl251.0.

FIG. 4. The region of ISB for two different temperatures (l1

50.8) T/m55.0 ~dashed line! andT/m510.0 ~thin full line!.
12501
e-
nt

n

,
nd

s

n

e
in

e

.

leading order! as well as to the RGA, there are only tw
possible phases at highT: either the theory is completely
symmetric or one of the two symmetries is broken. Howev
including two-loop contributions and going beyond th
simple perturbative expansion could alter this picture int
ducing a third possibility where the two symmetries are b
ken at highT. To analyze this possibility one must increa
the temperature beyond the critical values shown in Tabl
and II which display only theTc connected with the phas
transition from the symmetric phase to one of the nonsy
metric phases. Surprisingly we find, that for some param
values, the mass associated with the symmetry which
vives the first transition has a tendency to decrease as
temperature increases beyond the first critical value. As
example of this, we show in Fig. 5 the results for the ca
analyzed in the first row of Table II for bothM1

2 andM2
2. M2

2

is positive right above the critical temperature shown~now
labeledTc1) which is associated with the breaking in thef1

direction. We see that, very quickly,M2
2 becomes monotoni-

cally decreasing with the temperature and becomes nega
through a second order phase transition, atTc2 /m2.18.9.
The same behavior is observed for the parameters show
the second row of Table II, where we observe symme
breaking inf2 direction atTc2 /m2.139. However, analyz-
ing the other two cases shown in the third and fourth rows
Table II, we find that the would be mass associated with
second symmetry breaking increases monotonically with
temperature, signalling that this symmetry possibly rema
unbroken at high temperatures. A similar behavior happ
for the two cases analyzed in Table I, forN15N251. Al-
though M2

2 initially shows a decrease in value as the te
perature is raised, it soon becomes monotonically increa
with T. Note that just by interchanging the values ofl1 and
l2 one trivially observes yet another pattern this time w
Tc2,Tc1. Which pattern will be actually followed depend
on our initial choice for the values of the couplings.

Therefore, our results suggest that a possible symm
breaking along the second field direction takes place,
large values ofN, in a narrow region of parameters. It

FIG. 5. The behavior ofM1
2 ~dashed line! and M2

2 ~upper full
line! as a function of the temperature forl150.06, l251.8, and
l520.1 (N1590 andN2524).
6-9
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possible that this alternative symmetry breaking pattern
show up only in nonperturbative calculations which consi
up to two loop terms. It would be interesting to investiga
this possibility using other nonperturbative approaches.

V. CONCLUSIONS

We have used the optimized lineard expansion to inves-
tigate inverse symmetry breaking at high temperatures u
multifield theories. Our order-d2 calculations take full con-
sideration of two-loop contributions, including th
momentum-dependent ‘‘setting sun’’ type of diagrams.
our knowledge, a complete calculation associated with
phenomenon of ISB or SNR which includes these contri
tions in theO(N1)3O(N2) model has not been fully con
sidered before. In order to assure the reliability of the meth
we have started with the scalarZ23Z2 model which has
been extensively investigated in connection with inve
symmetry breaking problem. We have shown that our o
mized results agree well with those obtained with the ren
malization group approach, especially as far as the crit
temperatures are concerned. This has allowed us to esta
the d expansion as a reliable nonperturbative technique
investigate ISB. We have then investigated the more real
scalarO(N1)3O(N2) model which may be related to th
Kibble-Higgs sector of a SU~5! grand unified model. All our
results strongly support the possibility of inverse symme
breaking~or symmetry nonrestoration! at high temperatures
Surprisingly, we have also found evidence for a seco
s
c

th

in
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phase transition taking place for some values of the c
plings and large values ofN. According to our results two
other possible high temperature inverse symmetry break
patterns are

O~N1!3O~N2!→
Tc1

O~N121!3O~N2!

→
Tc2

O~N121!3O~N221!,

whereTc1,Tc2 or

O~N1!3O~N2!→
Tc2

O~N1!3O~N221!

→
Tc1

O~N121!3O~N221!,

whereTc1.Tc2.
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APPENDIX A

Consider a general setting sun diagram given by (d54
22e)
Gi j j ~p!5m4eE ddk

~2p!dE ddq

~2p!d

1

@k22V i
21 i e#@q22V j

21 i e#@~p2k2q!22V j
21 i e#

. ~A1!
At finite temperature we express the momentum integral
in Eq. ~3.3!. The discrete sums in the Matsubara frequen
can easily be done if we reexpress Eq.~A1! in terms of the
Fourier transformed, in Euclidean time, expressions for
field propagators

Gi j j ~p,ivn!5m4eE dd21k1

~2p!d21

dd21k2

~2p!d21

dd21k3

~2p!d21

3E
0

b

dt eivntGi~k1 ,t!Gj~k2 ,t!Gj~k2 ,t!

3d3~p2k12k22k3!, ~A2!

where Gi(k,t) is the propagator, which can be written
terms of a spectral functionr(k,h), as

Gi~k,t!5E
2`

1`dh

2p
@11n~h!#r i~k,h!e2hutu, ~A3!

wheren is the Bose distribution and
as
y

e

r i~k,h!5
2p

2Ei~k!
$d@h2Ei~k!#2d@h1Ei~k!#%.

~A4!

Using Eq. ~A3! in Eq. ~A2!, the identitieseibvn51, n(h)
5e2bh@11n(h)#, n(h)52@11n(2h)# and performing
the t integration, we get

Gi j j ~p,ivn!5m4eE dd21k1

~2p!d21

dd21k2

~2p!d21

dd21k3

~2p!d21

3E
2`

1`dh1

2p

dh2

2p

dh3

2p

3r i~k1 ,h1!r j~k2 ,h2!r j~k3 ,h3!

3@11n~h1!#@11n~h2!#@11n~h3!#

3F 1

inn1h11h21h3
2

1

inn2h12h22h3
G

3d3~p2k12k22k3!. ~A5!
6-10
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Performing the analytic continuation in the above express
ivn→p01 i e and using

lim
e→0

e

x21e2
5pd~x!, ~A6!
on

e

a
io

12501
nwe can separateGi j j in real and imaginary contributions
Gi j j 5ReGi j j 1 i Im Gi j j . The imaginary contribution gives
the field decay rate and it is not important in the pres
work. The real part contributes to the thermal mass and
given by @after performing thek3 momentum integral with
the help of the Dirac delta-function in Eq.~A5!#
ReGi j j ~p,p0!5E dd21k1

~2p!d21

dd21k2

~2p!d21

m4e

8Ei~k1!Ej~k2!Ej~p2k12k2!

3E
2`

1`

dh1 dh3 dh3$d@h12Ei~k1!#2d@h11Ei~k1!#%$d@h22Ej~k2!#

2d@h21Ej~k2!#%$d@h32Ej~p2k12k2!#

2d@h31Ei~p2k12k2!#%F 1

p01h11h21h3
2

1

p02h12h22h3
G

3d3~p2k12k22k3!. ~A7!
the
ve-

ing
After performing theh integrals with the help of the Dirac
delta-functions and after some algebra, Eq.~A7! can be writ-
ten in terms of three terms: a temperature-independent
which is just the zero-temperature contributionGi j j ,0 , and
two other terms with one and two Bose factors, which giv
the Gi j j ,1 andGi j j ,2 terms appearing in Eq.~3.31!.

The zero-temperature contributions in both cases have
ready been evaluated in the literature. The contribut
Giii ,0(p) has been evaluated in details in Refs.@34,35# where
the quoted result for the on mass shell (p25V i

2) case is

Giii ,0~p!5
V i

2

~4p2!4

G2~11e!

~12e!~122e! S 4pm2

V i
2 D 2e

3F2
3

2e2
1

1

4e
1

19

8 G , ~A8!

which gives

Giii ,0~p!52
3V i

2

2~4p!4 F 1

e2
1

322gE

e
2

2

e
lnS V i

2

4pm2D G
1

p2

4~4p!4e
2

3V i
2

~4p!4 F ln2S V i
2

4pm2D
1S 2gE2

17

6 D lnS V i
2

4pm2D 11.9785G , ~A9!
e,

s

l-
n

where we purposefully left the momentum dependence in
relevant divergent term to make explicit the need for a wa
function renormalization counterterm.

The zero-temperature contribution to the mixed sett
sun diagram is also given in Ref.@35#, for the on shell case
(p25V i

2) it can be written as

Gi j j ,0~p!5
V j

2

~4p!4

G2~11e!

~12e!~122e! S 4pm2

V j
2 D 2e

3H 2
21n2

2e2
1

n2

e F1

4
1 ln~n2!G

1F11
11

8
n22S 11

n2

2 D ln~n2!2
1

2
n2 ln2~n2!

1
~12n2!2

n2 S Li2~12n2!2
p2

6 D G J , ~A10!

wheren5V i /V j and Li2(z)5( l 51
` zl / l 2. We then obtain the

result
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Gi j j ,0~p!52
V j

2

~4p!4 H 1

e2 S 11
n2

2 D1
1

e S 11
n2

2 D F322gE22 lnS V j
2

4pm2D G2
p2

4V j
2e

2
n2

e
ln~n2!J

2
V j

2

~4p!4 S 11
n2

2 D F71
p2

6
26gE12gE

222~322gE!lnS V j
2

4pm2D 12 ln2S V j
2

4pm2D G
1

V j
2

~4p!4 F11
11

8
n22S 11

n2

2 D ln~n2!2
1

2
n2 ln2~n2!1

~12n2!2

n2 S Li2~12n2!2
p2

6 D G
1

V i
2

~4p!4 H F322gE22 lnS V j
2

4pm2D G S 1

4
1 ln~n2! D J . ~A11!

The finite temperature termsGi j j ,1 and Gi j j ,2 can be worked out as follows. Takingp50 in these terms, allows us t
reexpress them by~usingk1•k25k1k2 cosu)

ReGi j j ,1~0,p0!5m4eE dd21k1

~2p!d21

dd21k2

~2p!d21

1

8Ei~k1!Ej~k2!

1

k1k2

3Fn@Ei~k1!#
]

] cosu
ln„$p0

22@Ei~k1!1Ej~k2!1Ej~k11k2!#2%$p0
22@2Ei~k1!1Ej~k2!1Ej~k11k2!#2%…

12n@Ej~k2!#
]

] cosu
ln„$p0

22@Ei~k1!1Ej~k2!1Ej~k11k2!#2%

3$p0
22@Ei~k1!2Ej~k2!1Ej~k11k2!#2%…G ~A12!

and

ReGi j j ,2~0,p0!5m4eE dd21k1

~2p!d21

dd21k2

~2p!d21

3
1

8Ei~k1!Ej~k2!

1

k1k2
3$2n@Ei~k1!#n@Ej~k2!#1n@Ej~k1!#n@Ej~k11k2!#%

3
]

] cosu
ln„$p0

22@Ei~k1!1Ej~k2!1Ej~k11k2!#2%3$p0
22@2Ei~k1!1Ej~k2!1Ej~k11k2!#2%

3$p0
22@Ei~k1!2Ej~k2!1Ej~k11k2!#2%$p0

22@Ei~k1!1Ej~k2!2Ej~k11k2!#2%…. ~A13!
-
ted
For i 5 j ~equal mass propagators! Eqs.~A12! and~A13! give
the same expressions obtained by Parwani in Ref.@36#. In
special, we note that, in Eq.~A12!, the terms given by
]/] cosu ln$•••%→2k1 /k2 as k2→`. We can subtract and
add this term in the appropriate places in Eq.~A12!, obtain-
ing the analogous expressions given by Parwani

2
l2d2Nj

2
ReGi j j ,1~0,p0!5Fi j j ,01Fi j j ,11Fi j j ,2~p0!,

~A14!

where

Fi j j ,052d2Nj

l2T2

~4p!2

1

e FhS V i

T D12hS V j

T D G ~A15!
12501
and

Fi j j ,152d2Nj

l2T2

~4p!2 H hS V i

T D F2 lnS V j
2

4pm2D 122gEG
12hS V j

T D F2 lnS V i
2

4pm2D 122gEG J , ~A16!

where in the above equations,h(yi) is given by Eq.~3.10!.
The remaining terms,Fi j j ,2 and Gi j j ,2 can be evaluated on
shell and a similar contribution has already been compu
earlier in the literature, see Ref.@37#, from where we obtain
6-12



s

ul

e
ne is

e
ms

s in
ass
ady
re

on
to

ing
he

o-

t

e

d

that

ex-

lo-
,
iza-

ple

NONPERTURBATIVE STUDY OF INVERSE SYMMETRY . . . PHYSICAL REVIEW D61 125016
Fi j j ,2~V i !2
l2d2Nj

2
ReGi j j ,1~0,V i !

;2d2Nj
2 l2T2

8~4p!2 F2 lnS V i12V j

3T D15.0669G .
~A17!

The finite temperature contributionsGiii ,1 and Giii ,2 are
given, as in Ref.@36# and, from the previous equations, Eq
~A14!–~A17!, they can be written as

2d2
l i

2~Ni12!

18
Re@Giii ,1~0,V i !#5Fiii ,01Fiii ,11Fiii ,2 ,

~A18!

where3

Fiii ,052d2
l i

2~Ni12!T2

3~4p!2

1

e
hS V i

T D , ~A19!

Fiii ,152d2
l i

2~Ni12!T2

3~4p!2
hS V i

T D
3F2 lnS V i

2

4pm2D 122gEG , ~A20!

and

Fiii ,2~V i !2
d2l i

2~Ni12!

18
Re@G2~0,V i !#

;d2
l i

2~Ni12!T2

72~4p!2 F lnS V i
2

T2 D 15.0669G .

~A21!

Putting all these contributions together, we obtain the res
given in Eqs.~3.32! and ~3.33!.

3Note that there is a misprint in Eq.~2.32! of Ref. @20#, where
there is an extra 1/2 multiplying that equation.
l.

Le
tt.

12501
.

ts

APPENDIX B

To obtain the total finite orderd2 contribution one can
add all divergences appearing in Eqs.~3.18!–~3.25!, ~3.28!,
~3.29!, ~3.32!, and ~3.33!. As it can be easily seem all th
temperature-dependent divergences cancel exactly and o
left with temperature-independent poles.

By looking at all terms which contribute to this order on
can identify two classes. The first is composed by diagra
such as the ones described by Eqs.~3.20!–~3.25!, ~3.28!,
~3.29!, ~3.32!, and ~3.33!. All of them are analogous to the
diagrams which appear at second order in the coupling
the original theory and can be rendered finite by similar m
and wave-function counterterms. This procedure has alre
been illustrated at orderd. One can generalize this procedu
by stating that diagrams belonging to a general orderdn, and
containing any combinationlml1

kl2
l such thatm1k1 l 5n

will be renormalized exactly as when ordinary perturbati
theory is applied to the original model. Then, one just has
replace the original masses with the relevant interpolat
massesV1,2. It is easy to check that for those diagrams t
most divergent terms will displaye2n poles.

The second kind of diagram is exclusive of the interp
lated theory and carries at least onedh i

2 ~or dh j
2) vertex. At

O(d2) these diagrams are described by Eqs.~3.18! and
~3.19!, which display the divergenth i

2 andh j
2 pieces. Look-

ing at L ct
d one identifies ah i

2 ,h j
2-dependent coefficien

whose Feynman rule isidBi
d(h1 ,h2). Since the actual pole

is of order-d2 one identifies this coefficient as having th
same structure as the mass countertermBd1

(V1 ,V2), dis-
played in Eq.~3.6!, except that we now haveh i , j

2 instead of
V i , j

2 . Therefore,O(dn) diagrams belonging to the secon
class will make use of the countertermdBdn

(h1 ,h2). This
coefficient is similar toBd12n

(V1 ,V2) which has been
evaluated in a previous order. One can also easily check
for these diagrams the most divergent terms will haveen21

poles. Moreover, power counting reveals that thosedh i
2 ~or

dh j ) insertions make the loops more convergent. For
ample,all one loop diagrams of orderO(dn), with n>3 are
finite.

The renormalization prescription adopted here is ana
gous to the one shown in Ref.@20# for the one-field case
where we have shown that the order by order renormal
tion holds at any higher orders ind. In Ref. @20# the renor-
malization procedure is treated in more detail for the sim
lf4 case.
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