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Hydrodynamic transport functions from quantum kinetic field theory
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Starting from the quantum kinetic field theofg. Calzetta and B. L. Hu, Phys. Rev. &, 2878(1988]
constructed from the closed-time-patbTP), two-particle-irreduciblg2Pl) effective action we show how to
compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic
regime. For a real scalar field withd* self-interaction we need to include four-loop graphs in the equation of
motion. This work provides a microscopic field-theoretical basis to the “effective kinetic theory” proposed by
Jeon and Yaff¢S. Jeon and L. G. Yaffe, Phys. Rev.33, 5799(1996 ], while our result for the bulk viscosity
reproduces their expression derived from linear-response theory and the imaginary-time formalism of thermal
field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using funda-
mental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic
theory approach, as the success of the latter requires a clever rendition of diagrammatic resummations which
is neither straightforward nor fail-safe. Moreover, the method based on the CTP-2PI effective action illustrated
here for a scalar field can be formulated entirely in terms of functional integral quantization, which makes it an
appealing method for a first-principles calculation of transport functions of a thermal non-Abelian gauge
theory, e.g., QCD quark-gluon plasma produced from heavy ion collisions.

PACS numbgs): 11.10.Wx, 03.70+k, 05.20.Dd, 12.38.Mh

I. INTRODUCTION Kadanoff and Baym[6] and continued by many othefg].
In particular their effective kinetic equations are derivable in
In a recent series of papef$—3], Jeon and YaffgJY)  our approach from the closed-time-pd@iTP), two-particle-
derived expressions for the transport functions for a realirreducible (2PI) effective action5] truncated at four loops
self-interacting scalar field in flat space, from first principles,for the A®* theory. Even though the calculation of higher
using the Kubo formulap4] and the imaginary-time formal- loop effects is necessarily involved technically, we feel the
ism of thermal field theory. A necessary step in evaluatingguantum kinetic field theory approach is conceptually clearer
transport functions using the Kubo formulas is taking theand methodically simpler than the Jeon-Yaffe approach, as
zero-frequency limit of the time-Fourier-transformed spatialthe success of the latter requires a clever rendition of dia-
correlator of the energy momentum tensor. In order to avoidyrammatic resummations which is neither straightforward
infrared divergences which arise in taking thhe-0 limit, a  nor fail safe. For example, the usual form of the Boltzmann
complicated set of resummations of ladder diagrams had tequation derived in, say5] assumes 2-2 particle scattering,
be performed?2]. However, it was observed i8] that the  which conserves particle number, but bulk viscosity arises
same integral equations for the transport functions obtainettom particle nonconserving procesgéss was emphasized
from the Kubo formulas can be derived from affective by JY). When we take into account 2-4 or 4-2 processes, we
kinetic theorywhich takes into account the one-loop finite- need to go to four-loop diagrams in the Boltz-
temperature corrections to the mass of quasiparticles in th@ann and the gap equations which will no longer assume the
scalar theory, and to the effective vertices for quasiparticléimpler form familiar in the usual derivations based on 2-2
scattering. In their treatment, the effective kinetic theory isprocesses. This extra effort is expected for tackling higher-
presented as a physically well motivated, but phenomencerder effects but within the same context of the same funda-
logical, theory, whose justification is taken to be the fact thatmental(not effective kinetic theory. We show that the deri-
it gives transport properties which agree with the leadingvation of the effective kinetic equations from the CTP-2PI
order nonperturbative results computed using thermal fiel@ffective action requires only the basic assumptions of ki-
theory. netic theory: namely, the existence of a separation of macro-
We demonstrate in this work that, in fact, the effectivescopic and microscopic time scaleand the existence of

kinetic equations fornd®* theory proposed by Jeon and
Yaffe are derivable from a kinetic theory of quantum fields

constructed earlier by two of U$] following the work of This means that the short wavelength quantum fluctuations of the

field are in a state of nedocal thermal equilibrium, whose prop-
erties vary slowly on the scale of the correlation length for the field.

*Electronic address: calzetta@df.uba.ar We also assume a nearly Gaussian initial state, so that low-order
"Electronic address: hub@physics.umd.edu correlation functions are sufficient to capture the dominant physical
*Electronic address: sramsey@physics.umd.edu processes.
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well-defined(perhaps modified“on-shell” asymptotic par- The functional dependences=p(T) andp=p(T) define

ticle states[8]. The assumption of weak coupling is also the equation of state in parametric form. The macroscopic

necessary in order to justify the neglect of yet higher-ordedescription is completed by giving a concrete expression for

scattering terms which arise in the collision integral for thethe entropy fluxS*, which must be consistent with the first

derivation of a generalized Boltzmann equation. law of thermodynamicd &= — 8,dT#". Moreover, in equi-
The apparent reported “failure” of existing kinetic equa- librium, vanishing entropy productios, =0 must follow

tions in the literature to account for the bulk viscosity of thefrom energy-momentum Conservatidﬁ:”zo_ If we intro-

scalar quantum field is due to the fact that previous workgyce the thermodynamic potent&¥=S*+ 8,T#", consis-

along this line entails perturbative expansions to insufficientency requiresb#=pp*, and the identity

accuracy, and not to any flaw or defect of the theory. When

the calculation to a sufficient accuracy is performed, as done p

here, fundamental quantum kinetic field theory produces the T =PFp 2

“effective kinetic theory” of Jeon and Yaffe, in particular,

the result for the bulk viscosity reproduces JY's expressiorEnergy_momemum conservation implies the identitresall

derived from linear-response theory. More importantly perhaty u* =0)

haps, our method based on the CTP-2PI effective action il- ro

lustrated here for a scalar field can be formulated entirely in pi—(p+p)u’,=0; —(p+put+P*p,=0, (3

terms of functional integral quantization, which makes it an ' ’ ’ '

appealing method for a first-principles calculation of trans-where

port functions of a thermal non-Abelian gauge theory, e.g.,

QCD quark-gluon plasma produced from heavy ion colli- Xi=—Uu#xX ,. (4)

sions. The first-principles approaches with a clear bearing on

fundamental physics, involving nonlinear and nonperturba- Sincep andp become space dependent only through their

tive effects, such as those employed here for this task, ani@mperature dependence, we may wriig=p T, and

elsewhere for related problems, are, in our opinion, essentigimilarly for p. Using the identity Eq(2), Egs.(3) simplify

for the successful establishment of a viable and useful quari©

tum field theory of nonequilibrium processdg&or a sam-

i iviti 1 1
pling of current activities, see, e.49].) ?T,t—Cgu-VV:O; —uf+ ZPHT =0, (5)
s ) T ,
A. Statement of the problem wherecs=p 1/p 7 is the speed of sound.

Let us begin by stating in simple terms what are the trans- Let us now consider a near equilibrium state, meaning
port coefficients to be computdd0—12. For a real scalar that the properties of the actual state remain close to that of a
field, there are no other conserved quantities than energy armbnveniently chosen fiducial equilibrium state. There is some
momentum. Since there is no fundamental concept of pamrbitrariness in this choicebut, following the so-called
ticle number(equivalently, since the field describes both par-Landau-Lifshitz prescriptiof10], we shall choose the fidu-
ticles and antiparticles chemical potential must be set to cial equilibrium state as that having the same four velocity
zero identically in the grand canonic@quilibrium) density ~ and energy density as the actual state. More precisely, we
matrix. Equilibrium states are parametrized by the vectodefine the four velocity as the only timelike unit eigenvector
B*=Bu*, whereu” is a timelike unit vector *u,=—1) of the actual energy momentum ten§ét” (assumed to sat-
and B=1/T is the inverse temperature. isfy suitable energy conditionsand then the energy density

In the semiclassical limit, we define the energy momen-s defined ap=T#"u,u, . Knowing p, we may compute the
tum tensofT*” as the expectation value of the correspondingtemperaturel and pressure of the equilibrium state, and
Heisenberg operato*” may be decomposed with respect thus the departure of the actUgt” from its valueT}" in the
to u* as fiducial equilibrium state. Observe that if we wrifB*”

P . PP v =T{Y+ 6T#”, then by constructioru,6T#”=0. §T*" is

TH'=pufu"+pPe PE =7 +ufu” P “V_O’l usually parametrized in terms of the butkand shearr*”

@ stresses, agT#"=7P*"+ 7", 7),=0.

where »*” is the Minkowsky metric diag €1,1,1,1) (for

simplicity we shall Wor_k in_ flat Sp_acetim_e' although & g€Ner- 21nere are two common choices of fiducial states. In the Eckart
ally covariant formulation is readily availablehus defining  ,oqcrintion, one chooses an equilibrium state with the same par-
the energy density and pressure. Observe that there is N0 icje current and energy density as the actual state, and reads out the
heat conductionnamely, that in the rest frame there is N0 equilibrium pressure from the equation of state. Thus in the Eckart
energy flux. In this case this shall be true even in nonequiframe there may be energy flux relative to the particle flux, which is
librium states, since there are no currents other than the foufiterpreted as heat. In the Landau-Lifshitz prescription, the fiducial
velocity to break the isotropy of space in the rest frame. Instate has the same energy density, energy flux, and particle number
other words, we are forced to adopt the Landau-Lifshitz fordensity as the actual state. Thus heat is read out of the particle
mulation over Eckart's(See footnote below. current.
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Remaining within the so-calledirst-order formalism where,B =u, /Ty and 6f is a perturbation. Since the colli-
[12,13, we may write the entropy production in the nonequi- sion mtegral vamshes identically for local thermal equilib-
librium evolution asS;, = — g, ,6T*" (we refer the reader to  rium, we can write the collision integral as a linear integral
the literature for a thorough discussion of the hypothesis inpperator® acting onsf

volved in this formula. Decompose

. leol fo+ 6F1=QL 5f]. (1D
Buw=" Uy cau’ +—[PZUVT,>\—P§T,AUM] On the other hand, if we negledf on the left-hand side
(Ihs) of the transport equation, we can write it as some dif-
1 T, 1 1, ferential operator acting oﬁg, thus obtaining a linear inte-
— Ul T = —clu’, [+ = 7 Pl Ugi =5 PoT gral equation forsf
1.1 1 QI 5f1=Qel d1, 3 1(BY).- (12
il P u
+ TH,LLV+ T HMV+ 3T P,lLVu (6) A
The Q operator satisfies four constraints, which follow from
where energy-momentum conservation, namely
v 1 Apvo 2 p d4 0
HA =S PEEP™ Uy o+ Upp = 3 PaoU, |3 2 )40(p ) 3(Q0)p*Q=0, (13
(7) N
- oo where Qy=p?+M? enforces the on-shell condition. Thus
H —EP# PY[uy e = Uga]- the equation fosf requires four integrability conditions
4
The condition that entropy is created rather than destroyed f d’p 0 u
leads us to parametrize (2m)* ——— 0(p°) 8(Q0)p*Qeldr,ai1(Bp)=0.  (14)
'=—qgH""  r=—0u" 9,{=0, (8) The integrability conditions reduce to a system of differ-

ential equations fo;82, which are in fact the conservation
where 7 and ¢ are theshearandbulk viscosity coefficients, laws for the energy-momentum tensbt” Egs. (5). These
respectively. We wish to compute these coefficients as funcequations allow us to eliminate time derivatives from the
tions of the temperature and other parameters in the theorytransport equation, which simplifies to

B. Transport coefficients from kinetic equations Q[5f]:QE[(9i](ﬂ?)- (15

n solving this equation, we determine the correciifno
e distribution function, and thereby the correction to the
nergy momentum tensor. In general, the terms containing
f will contribute a termdp to the energy density; thus we
efine the physical temperatufiefrom the conditionp(T)
=p(Tg)+p, or equivalently To=T+ 6T, where 6T
—0plp t. Knowing the temperatur@ we may compute
the energy momentum tens®f” in the fiducial state, sub-
tract it from the physicall#” to determine the nonequilib-
rium part 5T#”, and then read out the viscosity coefficients
by matching it to the form given in Ed8).

Since thermodynamics alone cannot determine the depens
dence of the viscosity coefficients on temperature, to proceeﬁ
we must place the macroscopic description within a mor
basic and comprehensive framework, i.e., kinetic theory,
where there is a well-known method to extract the transpor
functions[14,15.

The framework is a system described by a one- partlcle
distribution functionf. There is a known prescription to com-
pute the energy momentum tendat” from the moments of
the distribution function. In equilibriumf, depends only on
the inverse temperature four-vector fig),. The starting
point is the transport equation fér

C. Transport functions in quantum kinetic field theory

f=lclfl, 9

From the discussion above, we may identify the main
steps involved in computing the transport functions: namely,
wherel o, is the collision integral an#? is the mass of the (1) find a description of the system in terms of a one-particle
particle (with possible position dependencéis assumed to distribution functionf, and the corresponding transport equa-
be of the formf =f,+ &f, wheref, is the local equilibrium ~ tion; (2) find the structure of equilibrium states, including the

distribution expression of conserved currents in termd, @ind the equi-
librium equation of state(3) solve the linearized transport
1 equation to obtain the response of the system to gradients in
fo=—o——, (100  the hydrodynamical variables, and read out the nonequilib-
elBuP’l—1 rium stresses.
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Step 1 is done in detail if5], where the self-energy is one-particle distribution function from the ratio of the partial
computed to two-loops accuracy, giving as a result that, for &ourier transforms of these propagators. Familiarity with the
A ¢* type interaction, the transport equation fois simply ~ KMS theorem and the Kadanoff-Baym equations should not
the relativistic Boltzmann equation for Bose particles, withblind us to the highly nontrivial nature of this definition.
the only modification of allowing for a variable mass as in With this we will then have come to a full circle of delibera-
Eq. (9). This Vlasov-type correction takes into account thetions for consistency.
fact that the physical madd? of the particles is connected For the specific goal laid out for this investigation, the
to the temperature through the gap equation, and théveby main technical difficulty lies in the analysis of the collision
becomes position dependentTifis. The (only) conserved term giving rise to the bulk viscosity, as it is due to the
currentT#? is defined as the expectation value of the corre{article-changing processes which even in the leading order
sponding Heisenberg operator, and the hydrodynamic varilready involve four-loop self-energy diagrams. This is one
ables are read out from it, so st&)) does not present great of the main tasks we need to overcome.
difficulty.

The problem arises in ste8), because the Boltzmann D. Summary of the paper
collision operator satisfies, besides the _four conse_rvation The outline above provides us with a step by step guide to
laws associated to energy-momentum, a fifth constraint  computing transport functions in quantum kinetic field

4 theory, which we shall execute in the following sections. As
f d’p 0(p%) 5(Q )6:0 (16) noted above, the first step is the precise definition of the
(2m)* 0 one-particle distribution function, which is discussed in Sec.
Il. In Sec. lll we derive the transport equation. For simplic-
associated to the conservation of the particle number in biity, after showing that to lowest nontrivial order the Boltz-
nary collisions. There is, therefore, a fifth integrability con- mann collision operator is recovered, we shall write down
dition, and the system of macroscopic equationsTigrand  only the terms related to particle number changing interac-
u* becomes overdeterminated. One could hope that the fiftions. Section IV is dedicated to studying the equilibrium
constraint would be true just as a consequence of the othetates of the field, with the aim of finding the precise equa-
four, but we shall show below that in an interacting theorytion of state. The results of Secs. Il and IV amount to a
this is not the case. first-principles derivation of Jeon and Yaffe's effective ki-

Continuing on this route, the linearized transport equatiometic theory from quantum field theory. Finally, in Sec. V we
built out of the Boltzmann collision operator is not inte- go through the actual calculation of the bulk viscosity, which
grable, and the calculation grinds to a halt. If we are going tdn the appropriate limit reproduces JY’s estimates from
compute the bulk viscosity out of quantum kinetic theory,linear-response theory.
then the collision operator cannot be just Boltzmann's de-
rived from 2-2 collision processes. A generalized collision . NONPERTURBATIVE QUANTUM KINETIC THEORY
operator including particle number changing terms besides » ) ) )
the usual binary scattering terms is needed. Thus the fifth Our specific goal is to show that by consistently extending
constraint has to be lifted to eliminate the inconsistencythe existing methods of quantum kinetic field thedeee
However, in the “effective kinetic theory” of Jeon and e.g.,[5]) to four-loop order, it is possible to account both for
Yaffe these new terms are not derived but rather postulatet® shear and bulk viscosity of an interacting scalar field, as
to match an independent calculation of cross sections froriomputed by Jeon and Yaffe. We consider a purely quartic
linear-response theory. We feel that it is conceptually andnteraction, although for the application to gauge theories
methodically more gratifying if these terms can be derivedcubic plus quartic would seem closer to what is needed.
ab initio from a kinetic theory of quantum fields. This is Since bulk viscosity entails particle number changing scat-
indeed possible, as our present work aims to demonstrate. tering, and these processes appear for the first tiriet),

Since these particle number changing interactions aré/@ must push the calculation through to five loops in the
higher order in the coupling constaffor pure X ¢* theory qlosed time patiCTP) two—partlc_le |rredUC|bIe(2P|) effec-
they appear at“th orde, it is to be expected that they may tive aonn(EA) [_17,1@, which will yield four loops in the
be retrieved by simply carrying the calculation [i] to a equations of motion f_or the_ propagators. We assume that the
higher loop order. However, there appears a matter of prinbackground field yanlshes identically, so we shall look at the
ciple: if we are going to work to higkeventually, arbitrarily ~2P1-EA as a functional of the propagators al¢8,20.
high) order in perturbation theory, we canragsumehat the
Green functions will look anything like those of the free
theory. Thus we must first confront the need to provide a Let us begin with the classical action for a quartically
nonperturbative definition of the one-particle distribution self-interacting scalar field in Minkowski space. Using a
function, (which should of course reduce to the one used ifTmodification of DeWitt's notation in which capital letters
[5] at first order in perturbation theoryln equilibrium, this  denote both spacetimex{) and time branch1,2) indices
problem is solved by the Kubo-Martin-Schwingé£MS) [21], the action can be written
theorem([16]), which implies the proportionality of the Fou-
rier transforms of the Hadamard and Jordan propagésess s
below). Off equilibrium, following [6], we shall define the

A. The model

1
= §¢ADAB¢B+SM (17
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FIG. 1. Two-loops contribution to the CTP effective action. i

) FIG. 2. Three-loops contribution to the CTP effective action.
Das=[ZpJ—mg]Cag;

_1 ﬁGABEZCSZ:/([K]’
Sl¢]= T)\bCABCD¢A¢B¢C¢D, (18 AB

and construct a new functionB[ G] which is the Legendre
wherem, is the bare “mass” of the field\, is the bare transform ofW[K],
coupling constant ang” is the scalar field. With the benefit 5
of hlndS|ght,_ we set the Wave—funcuc_)n renormalization factor T[G]=W[K]— = K sG"®. (25)
Zp=1, but it should be generally included. The two- and 2
four-index objectc,g andcagcp are defined by their con-

(24)

traction into the scalar field: It follows immediately from the above definition that
or[G] &
Chpd Y= f A% 10— %A%, (19 5GrE 2 Rae: (26)

andI" obeys the integrodifferential equation

i 1 6T[G]
fD¢eX 7| Slel—5 5GAE

CABCD¢’A¢B¢C¢D:J d*X[(¢H)* = (%) *(X). (20
I'G]=—ifaln

We usec,g and its inversec”B to raise and lower indices,
and with the use of the Einstein convention of summing over
repeated indices, their appearance may be implicit.

We wish to derive an effective kinetic description of this
theory valid at arbitrary temperature, for sufficiently weak
couplingX, in the case of unbroken symmetry. This assumes By expandingl’ in a functional power series if, this
that the expectation value of the Heisenberg field operatogquation can be solvdd8]. The solution has the form
®, vanishes. The two-point functiofib,(x)P(y)) is the )
lowest-order nonvanishing correlation function for the space rGl=- ﬁTr NG+
of initial conditions with which we are presently concerned. 2

Therefore, let us couple an externaknumber, nonlocal ) . S
sourceK g to the scalar field as follows: where the functional’, is —i#% times the sum of all two-

particle-irreducible diagrams with lines given G and
1 vertices given by the quartic interaction.
S pl—S ]+ EKAB¢A¢B, (21 The functionall'[G] is the two-particle-irreduciblé2Pl)
effective action whose variation with respectGogives the
equation of motion for the two-point function. Because we

X(¢PpP—1GA®) | ¢ 1. (27)

if AB
?DABG +I',[G], (28

and construct a quantum generating functional

[ 1
zik1= | D¢exp[,'l—(8[¢]+§KAB¢A¢B . (@

whose functional power series expansion contains all the
n-point functions of the theory. The generating functional of
normalized expectation values is given by

W[K]=—i#InZ[K]. (23
Now, we define FIG. 3. Four-loops contribution to the CTP effective action.
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FIG. 4. Five-loops contribution to the CTP effective action. FIG. 6. One-loop contribution to the self-energyadpole
graph.

are interested in computing transport properties of this .
i ' . Xpr in terms of the pr rs themselves. In th
theory, we will need to include those terms in the perturba—e pressed in terms of the propagators themselves the

. . . : . sense 0119,2Q we say the self-energy has beslavedto
tive expansion fol'[G] which will contribute to the bulk the propagators.

?”‘?‘t slhear dws;_:osr:ty mbt_he weak-t;:ogplln%, near_-qulhlbrlu_m There are two ways we can proceed. We can either right-
IMit. 'n order 1o have binary scatlering of quasipartices Ir]multiply GBC, or left-multiply G* into the equation, obtain-

the effective kinetic theory, we need to have a term with four; e o : - X
propagators, which appears ﬁt()\z). In order to have ing the right-multiplied and left-multiplied Dyson equations,

. . . respectively. Note that only the tadpole term is invariant un-
numbe_r—changmg processes such as two qua5|part|cles SC3Er simultaneous translations of theand B spacetime indi-
tering Into fqur(and vice versp we need to include a term cos. The higher-order terms all violate translation invariance
with e|ght (six asymptotic on-shell aro_pagators and WO Ny the equation of motion for the two-point function as a
te”_‘a' "”eiz])* which appears aD(1") in the 2P effective consequence of slaving—they describe the dissipative pro-
action. This means t"’?"'”g Into account the_ Feynman 9raphSesses by which the system approaches equilibri6in
in Figs. 1-5[22]. Taking the functional derivative with re- From now on we seb = 1
spect toG 4 Yields a formal equation for the two-point func- '

tion of the theory:
y B. Nonperturbative properties of the propagators

Our strategy is as follows. In equilibrium, the propagators
are translation invariant, and their Fourier transform are sim-
ply proportional [Kubo-Martin-Schwinger(KMS) theorem
[16]]. Out of equilibrium, we write

) B 1
hDAg—i%(G ™M) ap— ETAB"_HAB:Oa (29

where we have singled out the tadpole tefmFig. 6. The d*p

remainder of the self-energyhich we shall refer to as the G(X,X')ZJ ;€P'G(X,p) (30
self-energy, for shoytis given by the sum of the graphs in (2m)

Figs. 7—;1(Note: obsgrve tha_lt m_the graphs Figs. 1-4 allWith u=x—x' andX=(x+x')/2. We assume thas(X,p)
internal lines are equivalent; in Fig. 5 we have instead two

sets of equivalent lines, markedandb in the figure, Thus Is slowly varying with respect to the center-of-mass variable
this last graph gives rise to two different graphs upon varia-
tion, i.e., Figs. 10 and 121 This is just the Dyson equation

for the inverse propagator, where the self-energy is alread

Before we start, it is useful to display the properties of the
ropagators which actually follow from their definition as
ath ordered products of field operators. We consider eight

different propagators.
b

T )

b

FIG. 5. The other five-loops contribution to the CTP effective  FIG. 7. Two-loops contribution to the self-ener¢getting sun
action. Observe the two sets of inequivalent lines, makkaddb. graph.
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FIG. 8. Three-loops contribution to the self-energy.
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FIG. 10. Another four-loops contribution to the self-energy.
Cutting as shown, we go across five internal lines. The symmetric

(@ The four basic propagators, appearing in equatiorcut also goes across five lines.

(24): FeynmanGH=(T(®(x)®y(x"))), where T stands

for time ordering, DysorG?*=(T(®y(x)®y(x'))), where
T stands for antitime ordering,

G?=(d(x)Py(x')) and negative frequency G*?

=(dy(x")Py(x)). The Feynman and Dyson propagators

are even. We also have

G11: G22~k; GlZZGZLk; Glz(X,X'):GZl(X’,X).

(31

As a consequenc&!! and G?4(X,p) are even functions

of momentum, while G*%(X,p)=G?}X,—p). Moreover,
G'? and G?Y(X,p) are real, andG?(X,p)* =G Finally,
we have the identity

GM+G*=G"*+ G, (32

which follows from the path-ordering constraints

GM=6(t—t")G*+6(t' —t)G*, (33
G?=0(t—t")G¥+ a(t' —1t)G?L (34)
(b) The Hadamard propagator G;=G?'+ G*?

={{dy(x),Py(x")}) is real and even and, therefore, also is

G1(X,p). The Jordan propagat@®=G?'—G2=([®(x),

®(x')]) is imaginary and odd, and €B(X,p) is odd but

real.
(c) The advanced and retarded propagators

GagdX,X')=—iG(x,x")O(t' —1),
(35

FIG. 9. Four-loops contribution to the self-energy.

positive frequency

Gre( X, X" ) =Gz X', X)=1G(x,x") 6(t—t")
or else
Gre=i1(GM—G'); Guq=i(G#-G¥). (36
OnceG,¢ is known, we can reconstru@ as
G(X,x")=(—[Gre(X,X") = Gre( X", X)] (37)
So,
G(p)=(~1)[GredP) = Gred —P)]1=21IMGe(p), (38

where we have used th@(x,x’') is real, soG,{—p)
=G,ep)*. Also observe thaG 4(p) =G(P)* .

Since the retarded propagator is causal, it satisfies the
equation

Gre= 0(t—t')Gper. (39

Therefore, the real and imaginary parts of its transform are
Hilbert transforms of each other

i dow N
GrelP)= EJ mGre{w,p)

1 i dow -
:EGret(p)+ EPVI EG@t(w'p) , (40)

FIG. 11. The final four-loops contribution to the self-energy.
Cutting as shown, we go across five internal lines.
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1 de R it is possible to write down a nonperturbatii@ the cou-
ReG p)=;PVJ - poIm Gref(w,p). (41)  pling constantexpression for the retarded and Jordan propa-
- gators.

Let us obtain an equation f@ . from, say, the equations
or G andG*?, namely

This implies in particular that the real and imaginary partsf
are orthogonal to each other

Ge= (G- G =i(G*-G*) (50
f dw IM G e @,p)REG e @, p) =0. (42) leading to
All other propagators can be decomposed in a similar 1
way. For example, since ~1=DGrer 5 T11Grert HreGret, (52)
GH(x,x")= %[Gl(x,x’)JrG(x,x’)sgr(t—t’)] where we have used that,=0, and
L =111+ 14,. (52
= 51G1(X,X") ~i[GrelX,X") + Gred X", ¥) I} Next we perform the Fourier transform. Since we are only

interested in computing the transport coefficients, we only
(43 need to keep terms which are first order in gradigttss
approximation which is formally invoked in the derivation of
kinetic theory may not be always useful when dealing with
1 realistic physical conditions, see, e.f23]). Therefore, in
G“(X,p)zE[Gl—Zi ReG e; computing the transforms, we drop all second derivative
terms. The free terrd=[1—mj transforms into

SO

1
2(X.p)= = i s 1
G#(X,p)= 5[G1+2i ReGrel. (44) D= p?+ip 2+ £ L. 53

. T(.) give a nonperturbqtlve_deflnltlon of the one-_part_cheWe drop the D’Alembertian as it contains second deriva-
distribution functionf, which is the focus of attention in tives:

guantum kinetic theory, we assume that the partial Fourier
transforms of the Hadamard and Jordan propagators are pro-

ortional D~— p2+ipi —m? (54)
p X Mo
— 0
Gi=sgrip[1+2f]C. “9 The tadpole(for a generic propagatds) reads in position
Introducing a density of states functid(p) space
G(p)=2msgnp®)A(p), (46) T1:G=AGM(x,x)G(x,X"). (55
then We write
Gi=2m[1+2f]A, 4n N[ dp dq .
7Gx G(xX) = Zf i 5@ G G(X.p)
G2=2x[0(p°) + f]lA=2mF2IA, (48) (2m)" (27)

(56)

12__ _ O — 12
G=2n[6(—p ) +f]A=27F"A. (49 and retain only terms linear in gradients to obtain

In equilibrium,f is the Bose-Einstein distribution function 4 4
(KMS theoren). It can be assumed that E@5) serves as the EG (XX)G(x.x') = EJ d’p d'q ePUG(X,p)
definition of the functiorf, valid to all orders in perturbation 4 =1 ’ 4) (2m)* (2m)* '
theory. Observe that, since the relevant Fourier transforms

are distributions(e.g., in free theorigs this definition may ud
only be applied if both Fourier transforms have the same x| GaX.a)+ 2 ﬁXGl(X’q) '
singularity structure, which in the last analysis is a restriction (57)
on allowed quantum states. In what follows, we assume these o )
restrictions are met. The contribution to the equation has the form
. i d(SM?) 9
C. The nonperturbative retarded and Jordan propagators — SM2(X)— 2 X % G(X,p), (58

In the approximation where only terms linear in the gra-
dients of the Fourier transforms of propagators are retainedyhere
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2 N[ d%g
MZ(X)= 7 f S G0

Let us write the remaining term collectively as

MG= f d*y I1(x,y)G(y,Xx'),

which transforms into

f f elP(y=x")gid(x-y)
(2m)* (271-)4

X+y X'+y
2 ,Q)G 2 |p)'

X1

Keeping only first terms in gradients, this transforms into

elP(y=x")gia(x-y)

f f (2m)% 277)4

< nxason+ L mm@sin)

y—X
+Tn<q>axe<p>]

and then into

f f vt elP(y—x")gid(x~y)
(27) (277)

— 2 31(@)xG(p)

which contributes a term

to the equation of motion.
Introducing the Poisson bracket

{fvg}:apf(?xg_(?xfapga
we may write the equation fdB, as
[
- _QGret+ E{QaGret}a

where
0= p2+ Mz_Hret(p):

and we get thexact(formal) solution

X H(X.Q)G(X,DHIE(&XH)(Q)ﬁpG(IO)

IE[(’?XHret)ap_ (apHret)ax] + Hret(p)}eret

M2=mZ+ M2,

(59

(60)

(61)

(62

(63

(64)

(65)

(66)

(67)

PHYSICAL REVIEW B1 125013

: 1
Gret:[zb(p+|8)2+ MZ—Hre[(p)] 1:5 ,

Im p9—0+ 69
where
(p+ie)?=—(p%+ie)?+p? (69)
(we have displace@® into the complex plane to account for
the retarded boundary condition®ow we write

i
Gyo= REG o+ = G. (70)

2
Then
-21ImQ —sgn(p®Im Q
G- _2me.,_Zsotp)imf (72)
Q2 7| Qf?

D. Equation for the negative frequency propagator

The equation for the negative frequency propagator is

1
DG?— ETlBGBZJr 1,;G®?=0. (72
Recall that
1 Q
22_ 12 ; * _ —
G2=G+iG 4, G'e‘_Q*_|Q|2' (73

After Fourier transforming, we obtain

|H12

GlZ
o)

0=—-0Q +5 {Q Glz}+

*2{9*,1112}.
(74)

In keeping with the stipulation to consider only first-order
corrections to local thermal equilibrium, we shall neglect all
terms containing both derivatives and radiative corrections.
So the equation is equivalent to

iy,
0=-0| G¥- W —{Q G2, (75)

To separate this equation into real and imaginary parts, we
must notice that the combinatianl,, is actually real(see
Appendix A.

E. The unperturbed theory

The unperturbed theory is obtained by neglecting the
O(\?) terms in our equations. The unperturbed equations are

Qo=p?+M? (76)
and

A(p)=48(p*+M?)+O(\?). (77
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These are exact solutions of the above equations. In momentum space, dealing with the propagators as if they
Concerning the distribution function, the real part of Eq.were translation invariant,
(75) above shows thaB!? is concentrated on the zeroes of

Q, as required by Eq(45), and, since{Q,,A}=0, the 1 Jf dfr ds  d%
imaginary part becomes the unperturbed transport equation 2 (p)=(2m) (2m* (2m)* (2m)* o(p—r—s-u
_ s+ 2 12 X G¥(r)G*(s)GMt), (83
0=A|p—=— 5 M3, |F2,

and, using the definition Eq49), we get
which is in the form of a Vlasov equation.
d*rA(r) d*sA(s) d*tA(t)
(2m)® (2m)® (2m)°

The nonperturbativéin the coupling constajptequation X S(p—r—s—t)F¥r)Fs)F14t). (84)
we have derived foG*?, plus the decomposition E449)
lead in a straightforward way to the transport equation. Ne- If we substituteA by its lowest order value\,= §(p?
glecting{Q,A} as before, we write E(75) as +M?), this yields the collision term given earlier [if]. This
represents binary collisions, which conserves the patrticle

12/ oy — 4
ll. THE TRANSPORT EQUATION 2™ (p) (ZW)J

B 1 | 1 number. For the reasons discussed in the Introduction, it
0=-0|G*~ W +imA{ReQ,F13. (78) leads to an inconsistency when one tries to compute the bulk
viscosity coefficient.
Since ImQ = — |Q|?G/2, its imaginary part reduces to The first correction to Eq{(84), within the two-loop

theory, comes from the radiative corrections to the density of

i 1 states, as given by Eq&/1) and (80). We write
0=A|—F2ImQ- Elesgr(po)—i- E{Reﬂ,FlZ} :

(79 3P=3g% 537, (85)
12 ; ;
which is the Boltzmann equation. To simplify it even further, yvhereEO 'ZS thezlowest order result just discussed, awdt-
we observe that since sgfl) =F?'—F1? ing Qos=s"+M* for shor
- - iTLao= (i - d*r sgn(r®) d*ss(Q
IMQ=—1ImII,o=— ImII;+ill;,=(i/2)(IT;, H21280) 5212(p):3i(277)3f gr(r®) (Qos)
(2m)° (2m)°
(see the Appendix so d*8(Qg,)
1 | xwﬁ(p—r—s—t)
a
0=A E{ReQ,Flz}—§(H12F21—H21F12) . (8
XGret(r)Gad\)(r)Flz(r)Flz(s)FlZ(t)
This equation is formally valid to all orders in the cou- X[ —T145](r). (86)

pling constant. However, it is convenient to consider the loop
expansion oflI to reduce this equation to a more familiar ~ We use again E(82) to get

form.
1 —\2(2m)* [ d*s8(Qgg) d*tE(Qg)
A. The collision term o (p) = 2 J (2m)3 (2m)3

In this subsection we consider the expansion of the self- 4 . 4
energylIl in terms of Feynman graphs of increasing loop ><d us(oy) d'v 5(Qo,) d"wé(Qoy)
order, as a means to obtain a definite expression for the col- (2m)3 (2m)3 (2m)3
lision term in the kinetic equatiof81). Since we have the
relationshipIl,,(p) =11, — p) (see Appendixit is enough Xo(ptutv+wrts+t)o(utv+w)
to analyze only the expansion Bff;,. Physically this means
considering only the gain processes, which produce a particle XFH(s)F2H(t)[F2(u)Fv)FH(w)
within a given phase-space cell. The collision term is then 21 21 21
obtained by subtracting the loss processes, which remove a FHWF )R W), (87)
particle therein. where

The first term in the expansion is the single two-loop
graph Fig. 7. To this order, a(r)=sgnr%) G e(r)Gagl r ) F?X(r).

A successful contribution to the gain part of the collision

___i 251 ___i 2r~12 3
Miox,y)= 6 NEHxY)= 6 MGTOOYI. (82 term describing scattering of two into four particlgisis be-
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ing the simplest particle number nonconserving process iand any further correction to it will not contribute to the
this theory must involve, besides the factor ¢if ;) already  transport functions. So from the three and four loop contri-
explicit in Eq. (81), five other factors or 1+ f evaluated on  butions we seek only terms related te-2 scattering.
on-shell momenta adding up o But Eq.(87) cannot con- Since we only seek the lowest order contribution to the
tain a term like this, because of the interference between thgylk viscosity, we may substitute the density of statelsy a
two terms in brackets. After all cancellations, we are leftge|ta function concentrated on mass shell, so the notions of
with radiative corrections to the already known binary quli- on and off shell recover their usual meaning. It is then pos-
sion term. We conclude that to ordef there are no contri- gjpje to ascertain from the momentum flow in the graph
butions to a particle number nonconserving collision term,hather the condition of five on-shell momenta addingto
arisin_g from the setting sun graph. We must consider insteaq]ay be fulfilled: this is just the question of whether it is
the higher loop graphs, Figs. 8-11. possible to cut the graph by going across five internal lines
[24]. The three-loop contribution cannot satisfy this crite-
rium, and we shall not analyze it furthét only renormalizes
Generally speaking, we expect the collision term to dethe binary scattering amplitugleFor the same reason, we
scribe both particle number conserving-¢2) and changing discard the graph in Fig. 9, and concentrate on the graphs in
(2—4) scattering. Because of parity, we do not expect tranFigs. 10 and 11, whicl priori pass the test.
sitions between an even and odd number of particles. The The complete contribution tél,, from the graph in Fig.
2—2 scattering is already present in the two-loop theory10 reads

B. Higher loops

—in? dq d* d% d* d*u d% d*w
(277)12J S(q+r+s—p)dttu+v—q)d(u+t+r—w)

4 (2m)* (2m* (2m)* (2m)* (2m)* (2m)* (2m)*
x{2G™(q)G(r)G(s)G A1) G u)G(v) G w) — G () G (1) G s) G (1) G H(u) G v) G w)
—G(q)GM(r)G(s)G?(1)GZ(u) G v)G?A(w)}. (89)

In a true contribution to 2-4 scattering, the six on-shell momenta involattluding p) areirreducible, in the sense that
there are no other linear relations among them than overall momentum conservation. If we look at the three terms in curly
brackets in Eq(88), we see that in the second term the three momsnita andw are on shell, but they satisfy the linear
relations+v+w—p=0, irrespective of the other momenta. Thus this term is not irreducible, and does not contribute to 2
—4 scattering; it is another radiative correction to the binary collision term. The same analysis disposes of the third term, since
here the on-shell momenta r, ands are constrained to satisty+r +s—p=0. We will disregard these two terms.

The graph in Fig. 11 contributes

—iNt o dfq dfr d's d%t d'u d  d'w
(27r) f S(q+r+s—p)s(t+ut+v—q)d(t+r+s—w)

4 (2m* (2m)* (2m)* (2m)* (2m)* (2m)* (2m)*
X{GM(q)G(r)G*(s)G 1) G*(u)G*(v)GZA(w) + G q) G(r)GM(s) GZ{(1) G u) G v) G4 w)
—G™(q)GM(r)GM(s)GM(1)GM(u)GM(v) G w) — G q)G(r)G(5)G?A1) GHAu)GH(v)G?(w)}. (89

Only the first term in curly brackets is irreducible. Retaining only the irreducible contributions from both graphs, we get the
prospective particle number nonconserving collision term as

—iNd 4j dr d*s d* d*u d%
. (2m*@2m* 2m* 2m* (2m*
X GX(r)G¥(s)G*(t)G*H(u)G(v),

S(r+s+t+ut+v—p)o?(—p,r,st,uo)

(90)
d?=G¥(p+r+s)[2G#p+v+s)+GHE(p+u+v)].

It is clear that only the totally symmetrias a function of, s, t, u, andv) parta§ of o contributes to the integral, so we shall
assume thatr® has been symmetrized.

To reduce Eq(90) to a more familiar form, let us assume thEt>0, and restrict the integral to future oriented momenta
(that is, when a momentum is past oriented, we reverse it$. Bgecause of momentum conservation, some momenta must be
future oriented, but because they are all on mass shell, they cannot be all future oriented at the same time; the number of future
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oriented momenta can only be 4, 3 or 2. The terms with three future oriented momenta desef3bscattering, which
conserves particle number, so they are not related to the bulk viscosity. With these considerations we finally get the particle
number nonconserving collision term as

s f d*ro(r° 8(Q) d*sa(s®)8(Q) d*t et s(Q) d*ub(u®)s(Q) d*v o) s(Q)
- (2m)* (2m)? (2m)* (2m)? (2m)®
X{R S (L+F ) (14 ) (14 F)(L+F)Ff,— (14 F ) (1+F,)Ff Fof,]
+ RS (1+F ) (14 F ) Fof fufy— (14 Fo) (L+F)(1+F)(1+F,) o T}, (91)

where A. The gap equation
Let us write the gap equation as

5\* 5
Ri=—(2m)*0i(—p,—r,—s,—t,u,p); N
4 M2=m2+m2+ —>M?2 (97
(92) b \ 2 T
4
Rz——(ZW)40§(—p,—r,S,t,U,v), where
d*p
61=08(ptr+s+t—u—v); M$:f—35(90)f(><.|0). (98
(93) (277)
=4§(p+r—s—t—u—v).
V= (99
IV. THERMODYNAMICS FROM QUANTUM f (2m )3

KINETIC THEORY , o ,
This second quantity is actually divergent, so to evaluate

Our goal in this section is to investigate the thermody-it we need to regularize it first. We shall use dimensional
namic and hydrodynamic properties of a quantum field, parregularization, writing
ticularly the equation of state and the speed of sound. Our

starting point is the on-shell Boltzmann equatitf9). To Ap d’p (—i)
render the Poisson bracket manageable, we keep only the m\2,=7,w9f 12 > (100
unperturbed(), equation (76), where M? is given self- (2m)" p*+M—ie

consistently by Eqs(59) and (67), namel . . . .
y by Eqsi59) 7 y where the dimensionalitsl=4—¢. We also go to Euclidean

0 in0
M2:m§+ (SMZ, momenta,p —I1p~, SO

(94 d
\ d 1
SMZ(X)——f 2n )3 Qo) +f(X p)|. (2m)" p+M
We obtain
The kinetic equation can be written as
&
el 1+
1 M2( m2 |7 2
5190, f}=1ca(X.p), (95) m=— —— :
167° \ 47w [ 8}
el l— E
wherel satisfies the constraint
Then, we write
d*p o
f 2 0(p%) (Q0)pHl co(X,p)=0,  (96) .
(2m) 1+= 1
+ (1 v+ =z (102
which expresses energy-momentum conservation. Our con- el 1— f
cern is to investigate thigonly) conservation law, but first, 2
we need to express the gap equati®d) in terms of finite
guantities. (y=.5772...). We get
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,  AgM? 1 [ M?
= o2 z—zln P (103
We go back to the gap equation and write it as
M2 2
ZMZ—mb-i-? 167Tzln p— +M2|, (104
where
7214 2o (105
1672
We now renormalize the bare couplings
=Zm?, \p=2Z\ (106)

(the actual coupling ird dimensions beingt®\},) to obtain
the physical gap equation

A
M2=m?+ 2 MF, (107)
where
2 2
2__ M 2
M2= In +M (108)
" 16m2 A’ T

With these we turn our attention to the energy-momentu

tensor.

B. Energy-momentum tensor

To define the energy-momentum tensor, we write the ef-

PHYSICAL REVIEW B1 125013

In the third term, the metric appears through tfie g
factors multiplying the coupling constants. Therefore, the
contribution toT#” takes the form

A
Tp=— 5 7 TG0+ Ay,
(113

%
7" e ON1111

whereA,, contains all the higher-order contributions. To the
accuracy desired), is position independent, and we shall
not analyze it further. Adding the two nontrivial contribu-
tions we get

THY(X)=—

v 1 v 11 ’
a*a —577” Oy |GHX,X ) g =«

A
— 57 Mt 2GHGHE Ay, (114

To write the first term in terms of the distribution func-
tion, observe thav,—ip+3dx. We must neglect second
derivative terms, and observe that terms involviig even-
tually vanish becaus&*Y(X,p) is even inp. So

4

1
LI X)=J Hp¥— o p*'p?|GH(X
( (Zw)4pp 5 7*'p?|GM(X,p)
1 A
—577”” m2+ ZbGll}Gll‘FAb??#V. (115)
MWe are entitled to use the unperturbed approximation for
G
Gr=———+275(Qp)f(X,p). (119
p?+M?—ig

fective action in a general curved background, and then use

the customary definitioh25]

5F
T =——

(109

where only the derivative with respect to the metric in the
first time branch is taken. The effective action itself is given
by Eg. (28). The first term TrlIrG does not depend on the

metric. Written in full, the second term reads

1
> f d*x{ /= gM(OM —md) GM(x,x") [y =x— (12)}.

(110
As usual
5;9: 1J_ i ’;g—;= -gg", (111
and so the contribution from this term 13" is
— P+ % (0= md) |G (XX ) |y, (112

The expressions that appear T” are divergent and we
must regularize them. Let us consider

dd
i [ 22
(27)

_(i(d—2)
“\2d

v 1 vn2
PP =5 7""p

p2+M2—i8

ﬂf dp p
7 (2m)* p?+M?—ie

We rotate the integral into the Euclidean domain and com-
pute the integral id=4—¢ dimensions, so finally

(117)

Tev Mty 11 | M i (118
=— z———=In )
v 3272 4 27\ 4p? ]
We also need
2 zr? ]
G(x,x)= —M?=Z"Y{ Mé-7Z2—|.
(%) N 87?|

Therefore,
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b \ 71 Here,T§" is infinite, but state independent and conserved.
m§+ ZG“(x,x):Z m?+ 7 MfZ—Z—2 It belongs to the theory of the renormalization of the gravi-
8m tational action(see[25,26] and references therginand we
N shall not consider it further.
=7l m?+ = Mf— — | |+0(\?) Consistency requires that we actually neglect @@ ?)
4 w2 terms in A¢, or at least that we consider them as a true
(119 (temperature independentonstant. Then we can establish
the following identity, which will be useful later on. First, we
and write
A zn?
m§+ZbGll}Gll=—m2(—2—M?) M2=E(M2—m2)— M? In M?
8 T 1672 \ 4w’ ,
N (zn?\? znPmE
4|\ 872 472 ! N M2m2  M* M m | M2 + cont
= - n const.
+O(\2). f A 12872 2N 6472 41’
(126
So far, we get
1 N Then observe that
TE+ < g mE+ _BGll}Gll (@ A¢ depends on temperature only through the physical
2 4 massM?, and
P R z?\? znft mt ()
7 8lex2) z2m2 2
dA; m? |v|2+ M4I M2\ -1
202 4 2p12 —_—= n =—M7.
+M m M M MT+O()\2) dM2 N N 32772 4771“‘2 2 T
2\ 12872 4 (127

120
(120 This is the identity we need below. This expression for
Next, we call the energy momentum tensor is equivalent to that given by
Jeon and Yaffe. In particular, E¢L27) implies that energy
v d*p e momentum conservation follows from the transport equation.
T =f (217)49 p"2mS(o) F(X,p), (121

C. Entropy flux and the H theorem
and observe that .
Let us mention also the entropy flux

d*p 1

“pv— = 2|21 8( Q) (X, d*

f 2mi PP 2T P mo{ko) T(X,Pp) s#=2f(2 [;40(p°)p“27r5((20){(1+f)In(1+f)—fInf}.
a

1 (128

=T+ 5 7 M2ME, (122
Associated with this, entropy generation is given by
S0
TH =T+ TE + T4, (123 d*p (1+1)
fh = f 2 0(p%)275(Qy) InT}ICO,.
where (2m)
(129
wo_ aw) N zt\?  znft mt
To' =7 8\ g 2 + 32772+ NE 124 The positivity of this integral expresses thietheorem. Let
us write
TH'= =A™
(125) I col— I 2~>2+ I 2—4 (130)
MZm2 M4 M2MZ2 ,

A== o~ tO0V). . | | -

A 128w where the first term is the usual binary collision term
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d*r6(r°)8(Q) d*se(s®) 6(Q) and the second term involves the number changing interac-
Izﬂzzof 3 3 tions, already given in Eq91).
(2m) (2m) When inserted in Eq129), we find
d*te(t% 8(Q)
X————F—8(p+r—s—t)
(2m)® S, =Hao ot Hy 4, (132

X{A+ ) (L+F)ff— (14 F)(1+ ) ff )
(131)  whereH,_,, is the usual result14]

_EJ d*pa(p®) 8(Q) d*r o(r°)8(Q) d*sa(s®) 8(Q) d*te(t®) s(Q) P(1+fp)(l+fr)fsft
(2m)3 (2m)3 (2m)3 (2m)3 (1+f)(L+Ffpf,
X S(p+r—s—O{(1+T,)(1+F)ff—(L+F)(L+T)T,f L, (133

2—»2_2

whereadfrom I,_, in Eqg. (91)]

1f d*pa(p®) 8(Q) d*ra(r® s(Q) d*se(s®) s(Q) d*ta(t°) s(Q) d*ub(u®) s(Q) d* 6(v°)5(Q)

H —
243 (2m)® (2m)® (2m)° (2m)° (2m)° (2m)°
(1+fp)(1+f,)(1+fs)(l+ft)fufv
X(Rl—Rz)[In FEEREIRIRERN }6(p+r+s+t—u—v)
XL+ Fp) (L F) (14 o) (L F) ffy— (14 ) (14 F,) Fof FF ] (134

is new. Thus thed theorem demands the inequality 2

1 (= w
p-|-=—2f do Jwl—M?,
s M

efr—1

Ri=R,. (135
(138
We expect that the integral will be dominated by grazing , 1 (= 1
collisions, where one of the reactants and one of the products Mr=— de Bo_
X oo mJm e 1
carry essentially all the momentum. In this limR; ~ 2R,
[see Eq(92)], so theH theorem is satisfied.

JoZ—M2,

For the thermal pressure, we fingh3— p1= — M2M$, SO

D. (Local) thermal equilibrium states

1
- 2012
Our next concern is to investigate the equation of state, pT_§(PT_M M7). (139
for a local equilibrium state described by a Planckian distri-
bution functionf, as in Eq.(10). The energy momentum Tha total energy density and pressure are then
tensor is decomposed as in Ed). The thermal component
T4" admits a similar decomposition: p=prt Al p=pr—A;. (140)
4
TgT":f d p4pﬂpvzwg(go)fo(x,p):pTuﬂuV+ prP*?, The equilibrium entropy flux takes the fori&y=pp*
(2m) —TE'B,=(p+p)B*=(pr+pt) B*. On the other hand, Eq.
(136 (128 yields Sf =Py —TH1B,, where
where d*
dh=-2 i 0(p%) p“2m8(Qg)In[1—e~ 1BuPl]
A oT (2m)* p7)pTemolile .
d*p
pT=f 2 )A(UP)ZZWCS(Qo)fo(X,p)- (137 (149
o

This form of the thermodynamic potential brings to our
Sincepr and M? are scalars, we may compute them in theattention other equivalent expressions for the thermal pres-
rest frame: sure
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$:—2 do oJo?—M2In[1-e F°] (142
M Sincel o[ fo]=0, only the deviation contributes to the col-
and lision integral. We keep only linear terms, and write, by anal-
ogy with Eq.(147)
1 ©
pf;f doof w?—M?]3%f, . (143 8 o= fop(1+ fop)[ 852+ Sl 5_4], (149
mcJIM

where, upon introducing the momentum space volume ele-
Observe that Eq9.127) and (142 imply the thermody- ment
namic relationship Eq2) (here and henceforth, we shall use

d/dT to denote a total temperature derivative, that is with d*po(p°) 5(Q)
respect to the explicit temperature dependence thréygts = —3f0p(1+ fop), (150
well as the implicit dependence through?. We shall use (2m)
dldT when we mean only the formerindeed, Eq.(142)
implies we have
d M%_dM? _
Td_F)TT:pT+pT_7TTF' (144) 5|2ﬂ2_af DrDsDt 8(p+r—s—t)

{=Xxp—XxrT2xs}

But pt+pr=p+p, and X , 1571
Prtpr=p+p [t o (Lt fo ool 2V
d d dA
Td—_T_=Td—F_)I_T— d_Tf (145  and similarly
So Eq.(2) follows from Eq.(127). This concludes our study Sl 2H4=f DrDsDtDuDv
of the local equilibrium states.
X[R 5 [—Xp—3xr+2xu]
V. LINEARIZED TRANSPORT EQUATION 1 l[(1+ fp)(1+fr)(1+fs)(1+ft)fufv]
Under local thermal equilibrium, the transport equation is [~ Xp— Xr+4xs]
violated. We havd .,,=0, while the transport partfor p° +R,6 , 152
o o port paior p PR, T+ )R] 152
J J whereR; , and 8, , were defined in Eqs92) and(93).
{P"—M‘EM%—}%
2 Pu B. The method of moments
1 Given Egs(147) and(149), the linearized transport equa-
— v 2 ’
=fo(1+T0)| P“P"Bu,,= 5MuB*|. (148 ion can be rewritten as
. . . A 2 2
Recalling the decomposition Ed6) and assuming the 1 ., Ui (p-w)?| 2 = LM G2
macroscopic equations E¢p), the lhs of the transport equa- T PuPy T|'P s 3 3 2 T
tion becomes
=K[x], (153
1 1 , 1 _ . : :
fo(1+fo) Tp“pny“’—T (p-u)?/ ci— 3 whereK is a Hermitian operator in the space of functions
defined on the positive energy mass shell. We further intro-

M2 c? duce an inner product in this space by defining
+?—§TM?T] U?\)\ . (147)

. : . . <9-X>:J Dps*(p)x(p); (x)=(Lx). (154
This plays the role of th@g differential operator in Eq.15).

For our purposes, it will be enough to forfeit a rigorous so-
lution, and to seek instead a solution using the method of
At this point we need to shift our attention to the right- moments. This entails first writing E¢L53) in the orthogo-

hand side of the transport equation, E¢k30), (131), and  nal basis built out of the monomials p*, p*p”, etc.[al-
(91). The collision term vanishes identically under local ther-ways with respect to the inner product HE454), with Dp
mal equilibrium, so we need to consider a distribution func-defined as in Eq(150)], and then truncating it to only the
tion deviating from it. Write first few moments.

A. The linearized collision term
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To simplify our notation, let us adopt the local rest frame, When we expand the operati§f x| we notice that, when
and writtw=p°=—u-p. Let yo=1 be the first element of truncated to the subspace spanned by the function€lB§),

our basis. The remaining functions aiie=(1,2,3: the operator matrix acquires a block form, with one block
corresponding to thg, functions @=0, 1 or 2, another to
o @ the q;, and yet another to th¥,, functions. Since there are
X1 (1)’ no g, functions in the left-hand side of E¢L60), we may as
well write
o (0?2 0)=(0®)(1) (0} w)—(w?)?
X2= 0"t 2 2t 2 2" —_—1b Y"-T[A+By,+C 162
(1w —{(w) (I w%)—(w) X= "7 PBm [ X1+ Cxzl. (162
P P <w52) SinceK[ w]=0, theB coefficient will remain undetermined
a=p, Q=P e- <52> : (159 [the left-hand side of Eq(160 is orthogonal tow, so the

system is integrable We will setB=0 for the time being,

To this we must add five independent functions built outdnd postpone further discussion until we enforce the Landau-
of the binary productp'p’ (there are only five independent Lifshitz conditions. o _
functions becausézz w?—M?2 is not independent of the To determine thé,, coefficients, we must solve the linear
above. The simplest procedure is to think of these monomi-syStem
als as the composition of_t_vvo _spln l.ota)jects; the spl_n zero Finquij — XMy (163
component of the composition is precis@l§, and the spin 1
part, being antisymmetric, will vanish, so our functions areyhere
the fivel =2 spherical harmonics. For example, callipg

=py=ip,, we may choose Y™ KLY"
Pxtipy y an:_<<Y E{ >]>_ (164
Yn=(p2 .p4Pz, P~ P4P-.p_P;,p%); 2=m=-2. m: Vm
(156 By symmetry, theX matrix must be diagonal
We also have the relationshigsee Appendix B XM=p M h=0 (165
2
<w>:T2d_P [1-3c] (157) (for the positivity ofb, see Israg[15]) leading to
daT 1 '
{MZ— STM% 1
b= T{THY. (166
2 3 2 .2 . ..
dp M<— ETM,TCS To find theA and C coefficients let us expand
(w3>=T2d—T I , (158
[MZ— —TMZT K[1]= (K[1]) _ (@)x1 iy X2
2 @O 17 (wx)] T3
<w52>=302T2d—p. (159 B, (oxi], x
ST Klxzl= m[ oy } Y0 (167)
®,X1) (x2)

In terms of the new functions, E¢153) reads
where we have use(,K[ x])=0. If only binary scattering

1 - (w)x1 is considered, then als(K[x])=0 and(K[1])=8=0. In
fFiTYmH” +I(w)x2t+c (@,x1) — 1|1 =KIx], general, then¢K[1])~ B<y. Therefore, these equations ad-
(160 mit an approximate solution witlE=0, yielding
where i (@) (0w}
1 1 XY= o7 Lt Ym TG0l Com Ty
- 168
Uy MZ= STV <Ym,pip;—§p2> (168
= d , Iij= AR ; where we have use[1])=<0, as follows from the inequal-
3T3ﬁ ms ¥m ity Eq. (135 and the identity
DpDrDsDtDuDv(R,—R;) 6,
3V(1)— (w2 K[1 =4>\4J :
o (@)D= () (w) (161 (KLL) [(L+ ) (1+ F)(L+ Fo)(1F FOTuf,]
(1) (169
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C. The temperature shift and the bulk stress Actually,

It can be seen from Ed168) that the correction to the
distribution function has two components. The one associ-
ated with theH*” tensor contributes to shear stress, but it
does not induce a change in the energy density, and therefore
it is compatible with the Landau-Lifshitz matching condi- so
tions. The constant shift of by cq, on the other hand, af-
fects in principle both the energy density and the thermal
massMt. So, to enforce the Landau-Lifshitz conditions, it
must be partially compensated by a temperature shift. Con-

op=poT+

(w?)—

PHYSICAL REVIEW D61 125013

77

(1)

TM2 (179

cretely, if we callT the temperature of the fiducial equilib- And since the total energy remains the same,

rium state, such thai(T) is equal to the energy density in
the nonequilibrium state, then the temperature appearing in
the local equilibrium distribution functiorf, must beT,
=T+ 6T. The effect of this temperature shift is the same as

T(ST_ - Co

(1)

(0?)= 5" TM%|.

(179

that in the coefficienB in Eq. (162).

Let us apply the same reasoning to the bulk stress, which

The distribution function and temperature shifts in turnresults from both the departure of the pressure fio()
produce a shift?M? in the physical mass, which likewise and the direct contribution from the new terms in the distri-

bution function

does not affect the transport equation. However, #Gttand
S5M? are relevant to the bulk stress. Observe that there is no

shift in the four velocityu”. ) apr L | 1, )

The three displacementy, 5T, andM? are related by 7~ CsP.TOT+ M2 M7 IMCot §[<“’ )~ MAD)]co.
the constraints that the gap equation must hold, and the total (180
energy density in the nonequilibrium state must be the same
as in the equilibrium state. We write the gap equation as Now,

M2—¢(M2M2)=£M$. (170 pr -1
2 M2 TMT’ (181
The linearized equation then reads
S0
A IM2 NEYE )
— ' — 5 —— | M= | —— 5T+c(1)|. (171 1 2 c
2 oM2 2| ot OTFColl] (471 7= Co| | ¢i= ()| 5~ 5 TME(1) .
As a matter of fact, (182
2 Using Egs.(168), (157), and(158), we get
M7 (o) 17
EET @72 o2 1TM2r
u
So, finally _ i {{0°)(1) = (0*)w)}?
’ ’ S dp\? [(K[1D) '
2 2 2 3T°| o=
SM2=MZ.5T+M2c,, 173 dT
' ’ (183
where
(1) D. Shear stress and viscosity
M?CzTZM?T@. (174 The shear stress can be read directly out of the new terms

in T4”. In the rest frame, we get

Since the gap equation is enforced, we can look at the

(cosmological constantA as a function oiM?, and

-1
5Af:7|v|$5|v|2,
then
l‘?pT 1 2
8 ST+|——5M7 MZ%co+(w?)c
P=P T M2 2 0 < >o

7.

bTFkI (p'p!,Yom)

17
(7 bTHk|<pp’——8‘p pp——é“'p>

—Hi
bTH

(184

(176
from which we can read out the shear viscosity
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R APPENDIX A: 11, IS PURELY IMAGINARY

A 18
7= bT (189 To show this, observe th&t,, is the sum of all 1P| Feyn-

man graphs with two external vertices, one carrying a 1 in-
To estimaten' itis enough to keep 0n|y the |ead|mg|- dex and the other a 2 de(mIS follows from it being the
nary scattering contributions, sop~X~2. On dimensional result of opening one 12 leg in each 2PI vacuum bublte
grounds,b~T2 andR~T®, so we recover the usual result, can also be represented as

n~T3I\2.
e (A1)
12—
E. Bulk viscosity ‘99{’15‘1’2 #=0

As expected, things are not so simple with the bulk vis-whereT, is the usual(1Pl) effective action, andp? is the
cosity. We can read it out from E@183 as background field. The effective action has the structure

M2 Sz i 1

5TME] (1) — () () P [ axavi 610D} y)
_ 2
NI (KT (189 . ;

3T% 57 FiLA]ONXY)[](y)}+0O(8%), (A2)

where{ ¢} = 1+ ¢?, [ $]= $p1— ¢?; both D andN are real,

However, in evaluating it we must consider tiia) is loga- N is even, and is causal. Therefore,
rithmically divergent in the massless limit, so we must cor-

rect the sheer dimensional estimate(fig ~ T2 In(M/T). As o'y _ }f

for the size of|(K[1])|, observe that the integral is domi- api(x) 2 AP YHAHY) +LA1(y)D(y.x)
nated by the Rayleigh-Jeans tail, whdge-T/w>1. Thus

[(K[1])] ~N*T®F(M?). Since the overall units are Mdsst +2iN(x,y)[ ¢1(y)}+O(?), (A3)

must be|(K[1])|~T®M?2. For the remaining elements we
may use the conventional estimat@s3)~T°, p~T* and and
thus obtain 1

o= —iN(x,y)+ 5[D(xy)=D(y.x)]. (A4
2
IN2(M/T), (187

1
2
M2—-TM%

¢ 2

The real part ofll,, is odd, and its imaginary part even,
which shows that its Fourier transform is purely imaginary.
Then we write

M2
- )\4T3[

which reproduces JY’s Ed5.6) [3].

In the limit in which the bare mass vanishes, or equiva- p
lently in the T—o limit, we may write on dimensional le(x,y)zf 4e'p("’y)le(p), (A5)
grounds (2)

4

then the identityIT7,(x,y) = —II;5(y,x) becomes indeed
1 1 IT%,(p)=—1II
2_TTM2=2 M2 ~\xM?2 12P) 12AP)-
M 2TM'T_ ZMM’“ MM (189 We may use the same argument to find thbt(x,y)
=I1,5(y,x), so Il,(p)=1II,5(—p) is also imaginary. We

and since M2~\T? itself, Eq. (187 reduces to¢ IS0 find

~\T2%In?(\), again in agreement with J§3]. 1
I3 =iIN(x,y) + 5[D(X,y) +D(y,X)] (AB)
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Recall the identity So
’ afg
d [MZ—ETM?Tcg
This and Eq(2) may be used to establish the identity <w3>:T2_p .
dT 1 ’
. o,
(w3>—M2<w)=3T(p+p)=3TzﬁC§. (B2)
Similarly, de [1—3c§]
1 dp (0)=T ar 1 T (B4)
3 2 _ T2 2 2
—=TM =T —. B M= =TM
<w > 2 ,T<w> aT ( 3) [ 2 T
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