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Hydrodynamic transport functions from quantum kinetic field theory
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Starting from the quantum kinetic field theory@E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 ~1988!#
constructed from the closed-time-path~CTP!, two-particle-irreducible~2PI! effective action we show how to
compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic
regime. For a real scalar field withlF4 self-interaction we need to include four-loop graphs in the equation of
motion. This work provides a microscopic field-theoretical basis to the ‘‘effective kinetic theory’’ proposed by
Jeon and Yaffe@S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799~1996!#, while our result for the bulk viscosity
reproduces their expression derived from linear-response theory and the imaginary-time formalism of thermal
field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using funda-
mental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic
theory approach, as the success of the latter requires a clever rendition of diagrammatic resummations which
is neither straightforward nor fail-safe. Moreover, the method based on the CTP-2PI effective action illustrated
here for a scalar field can be formulated entirely in terms of functional integral quantization, which makes it an
appealing method for a first-principles calculation of transport functions of a thermal non-Abelian gauge
theory, e.g., QCD quark-gluon plasma produced from heavy ion collisions.

PACS number~s!: 11.10.Wx, 03.70.1k, 05.20.Dd, 12.38.Mh
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I. INTRODUCTION

In a recent series of papers@1–3#, Jeon and Yaffe~JY!
derived expressions for the transport functions for a re
self-interacting scalar field in flat space, from first principle
using the Kubo formulas@4# and the imaginary-time formal
ism of thermal field theory. A necessary step in evaluat
transport functions using the Kubo formulas is taking t
zero-frequency limit of the time-Fourier-transformed spa
correlator of the energy momentum tensor. In order to av
infrared divergences which arise in taking thev→0 limit, a
complicated set of resummations of ladder diagrams ha
be performed@2#. However, it was observed in@3# that the
same integral equations for the transport functions obtai
from the Kubo formulas can be derived from aneffective
kinetic theorywhich takes into account the one-loop finit
temperature corrections to the mass of quasiparticles in
scalar theory, and to the effective vertices for quasipart
scattering. In their treatment, the effective kinetic theory
presented as a physically well motivated, but phenome
logical, theory, whose justification is taken to be the fact t
it gives transport properties which agree with the leadi
order nonperturbative results computed using thermal fi
theory.

We demonstrate in this work that, in fact, the effecti
kinetic equations forlF4 theory proposed by Jeon an
Yaffe are derivable from a kinetic theory of quantum fiel
constructed earlier by two of us@5# following the work of
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Kadanoff and Baym@6# and continued by many others@7#.
In particular their effective kinetic equations are derivable
our approach from the closed-time-path~CTP!, two-particle-
irreducible~2PI! effective action@5# truncated at four loops
for the lF4 theory. Even though the calculation of high
loop effects is necessarily involved technically, we feel t
quantum kinetic field theory approach is conceptually clea
and methodically simpler than the Jeon-Yaffe approach
the success of the latter requires a clever rendition of d
grammatic resummations which is neither straightforwa
nor fail safe. For example, the usual form of the Boltzma
equation derived in, say,@5# assumes 2-2 particle scatterin
which conserves particle number, but bulk viscosity aris
from particle nonconserving processes~this was emphasized
by JY!. When we take into account 2-4 or 4-2 processes,
need to go to four-loop diagrams in the Bolt
mann and the gap equations which will no longer assume
simpler form familiar in the usual derivations based on 2
processes. This extra effort is expected for tackling high
order effects but within the same context of the same fun
mental~not effective! kinetic theory. We show that the der
vation of the effective kinetic equations from the CTP-2
effective action requires only the basic assumptions of
netic theory: namely, the existence of a separation of ma
scopic and microscopic time scales1 and the existence o

1This means that the short wavelength quantum fluctuations of
field are in a state of nearlocal thermal equilibrium, whose prop
erties vary slowly on the scale of the correlation length for the fie
We also assume a nearly Gaussian initial state, so that low-o
correlation functions are sufficient to capture the dominant phys
processes.
©2000 The American Physical Society13-1
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well-defined~perhaps modified! ‘‘on-shell’’ asymptotic par-
ticle states@8#. The assumption of weak coupling is als
necessary in order to justify the neglect of yet higher-or
scattering terms which arise in the collision integral for t
derivation of a generalized Boltzmann equation.

The apparent reported ‘‘failure’’ of existing kinetic equ
tions in the literature to account for the bulk viscosity of t
scalar quantum field is due to the fact that previous w
along this line entails perturbative expansions to insuffici
accuracy, and not to any flaw or defect of the theory. Wh
the calculation to a sufficient accuracy is performed, as d
here, fundamental quantum kinetic field theory produces
‘‘effective kinetic theory’’ of Jeon and Yaffe, in particular
the result for the bulk viscosity reproduces JY’s express
derived from linear-response theory. More importantly p
haps, our method based on the CTP-2PI effective action
lustrated here for a scalar field can be formulated entirely
terms of functional integral quantization, which makes it
appealing method for a first-principles calculation of tran
port functions of a thermal non-Abelian gauge theory, e
QCD quark-gluon plasma produced from heavy ion co
sions. The first-principles approaches with a clear bearing
fundamental physics, involving nonlinear and nonpertur
tive effects, such as those employed here for this task,
elsewhere for related problems, are, in our opinion, esse
for the successful establishment of a viable and useful qu
tum field theory of nonequilibrium processes.~For a sam-
pling of current activities, see, e.g.,@9#.!

A. Statement of the problem

Let us begin by stating in simple terms what are the tra
port coefficients to be computed@10–12#. For a real scalar
field, there are no other conserved quantities than energy
momentum. Since there is no fundamental concept of p
ticle number~equivalently, since the field describes both p
ticles and antiparticles!, chemical potential must be set t
zero identically in the grand canonical~equilibrium! density
matrix. Equilibrium states are parametrized by the vec
bm5bum, whereum is a timelike unit vector (umum521)
andb51/T is the inverse temperature.

In the semiclassical limit, we define the energy mome
tum tensorTmn as the expectation value of the correspond
Heisenberg operator.Tmn may be decomposed with respe
to um as

Tmn5rumun1pPmn; Pmn5hmn1umun; Pmnun50,
~1!

where hmn is the Minkowsky metric diag (21,1,1,1) ~for
simplicity we shall work in flat spacetime, although a gen
ally covariant formulation is readily available!, thus defining
the energy densityr and pressurep. Observe that there is n
heat conduction, namely, that in the rest frame there is n
energy flux. In this case this shall be true even in noneq
librium states, since there are no currents other than the
velocity to break the isotropy of space in the rest frame.
other words, we are forced to adopt the Landau-Lifshitz f
mulation over Eckart’s.~See footnote below.!
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The functional dependencesr5r(T) andp5p(T) define
the equation of state in parametric form. The macrosco
description is completed by giving a concrete expression
the entropy fluxSm, which must be consistent with the firs
law of thermodynamicsdSm52bndTmn. Moreover, in equi-
librium, vanishing entropy productionS,m

m 50 must follow
from energy-momentum conservationT,n

mn50. If we intro-
duce the thermodynamic potentialFm5Sm1bnTmn, consis-
tency requiresFm5pbm, and the identity

T
dp

dT
5p1r. ~2!

Energy-momentum conservation implies the identities~recall
that umu,n

m 50)

r ,t2~r1p!u;n
n 50; 2~r1p!u,t

m1Pmnp,n50, ~3!

where

X,t[2umX,m . ~4!

Sincer andp become space dependent only through th
temperature dependence, we may writer ,t5r ,TT,t , and
similarly for p. Using the identity Eq.~2!, Eqs.~3! simplify
to

1

T
T,t2cs

2u;n
n 50; 2u,t

m1
1

T
PmnT,n50, ~5!

wherecs5Ap,T /r ,T is the speed of sound.
Let us now consider a near equilibrium state, mean

that the properties of the actual state remain close to that
conveniently chosen fiducial equilibrium state. There is so
arbitrariness in this choice,2 but, following the so-called
Landau-Lifshitz prescription@10#, we shall choose the fidu
cial equilibrium state as that having the same four veloc
and energy density as the actual state. More precisely,
define the four velocity as the only timelike unit eigenvec
of the actual energy momentum tensorTmn ~assumed to sat
isfy suitable energy conditions!, and then the energy densit
is defined asr5Tmnumun . Knowingr, we may compute the
temperatureT and pressurep of the equilibrium state, and
thus the departure of the actualTmn from its valueT0

mn in the
fiducial equilibrium state. Observe that if we writeTmn

5T0
mn1dTmn, then by constructionundTmn50. dTmn is

usually parametrized in terms of the bulkt and sheartmn

stresses, asdTmn5tPmn1tmn, tm
m50.

2There are two common choices of fiducial states. In the Eck
prescription, one chooses an equilibrium state with the same
ticle current and energy density as the actual state, and reads o
equilibrium pressure from the equation of state. Thus in the Ec
frame there may be energy flux relative to the particle flux, which
interpreted as heat. In the Landau-Lifshitz prescription, the fidu
state has the same energy density, energy flux, and particle nu
density as the actual state. Thus heat is read out of the par
current.
3-2
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HYDRODYNAMIC TRANSPORT FUNCTIONS FROM . . . PHYSICAL REVIEW D61 125013
Remaining within the so-calledfirst-order formalism
@12,13#, we may write the entropy production in the noneq
librium evolution asS,m

m 52bm,ndTmn ~we refer the reader to
the literature for a thorough discussion of the hypothesis
volved in this formula!. Decompose

bm,n52
1

T
unumcs

2u;n
n 1

1

T2
@Pm

l unT,l2Pn
lT,lum#

2
1

T
unumFT,t

T
2cs

2u;n
n G1

1

T
Pm

sunFus,t2
1

T
Ps

lT,lG
1

1

T
H̃mn1

1

T
Hmn1

1

3T
Pmnu,r

r , ~6!

where

Hmn5
1

2
PmlPnsFul,s1us,l2

2

3
Plsu,r

r G ;
~7!

H̃mn5
1

2
PmlPns@ul,s2us,l#.

The condition that entropy is created rather than destro
leads us to parametrize

tmn52hHmn; t52zu,r
r ; h,z>0, ~8!

whereh andz are theshearandbulk viscosity coefficients,
respectively. We wish to compute these coefficients as fu
tions of the temperature and other parameters in the the

B. Transport coefficients from kinetic equations

Since thermodynamics alone cannot determine the de
dence of the viscosity coefficients on temperature, to proc
we must place the macroscopic description within a m
basic and comprehensive framework, i.e., kinetic theo
where there is a well-known method to extract the transp
functions@14,15#.

The framework is a system described by a one-part
distribution functionf. There is a known prescription to com
pute the energy momentum tensorTmn from the moments of
the distribution function. In equilibrium,f depends only on
the inverse temperature four-vector fieldbm . The starting
point is the transport equation forf:

F pm
]

]Xm
2

1

2
M ,m

2 ]

]pm
G f 5I col@ f #, ~9!

whereI col is the collision integral andM2 is the mass of the
particle~with possible position dependence!. f is assumed to
be of the formf 5 f 01d f , where f 0 is the local equilibrium
distribution

f 05
1

eubm
0 pmu21

, ~10!
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wherebm
0 5um /T0 andd f is a perturbation. Since the colli

sion integral vanishes identically for local thermal equili
rium, we can write the collision integral as a linear integ
operatorQ̂ acting ond f

I col@ f 01d f #5Q̂@d f #. ~11!

On the other hand, if we neglectd f on the left-hand side
~lhs! of the transport equation, we can write it as some d
ferential operator acting onbm

0 , thus obtaining a linear inte
gral equation ford f

Q̂@d f #5QE@] t ,] i #~bm
0 !. ~12!

The Q̂ operator satisfies four constraints, which follow fro
energy-momentum conservation, namely

E d4p

~2p!4
u~p0!d~V0!pmQ̂50, ~13!

where V05p21M2 enforces the on-shell condition. Thu
the equation ford f requires four integrability conditions

E d4p

~2p!4
u~p0!d~V0!pmQE@] t ,] i #~bm

0 !50. ~14!

The integrability conditions reduce to a system of diffe
ential equations forbm

0 , which are in fact the conservatio
laws for the energy-momentum tensorTmn Eqs. ~5!. These
equations allow us to eliminate time derivatives from t
transport equation, which simplifies to

Q̂@d f #5QE@] i #~bm
0 !. ~15!

On solving this equation, we determine the correctiond f to
the distribution function, and thereby the correction to t
energy momentum tensor. In general, the terms contain
d f will contribute a termdr to the energy density; thus w
define the physical temperatureT from the conditionr(T)
5r(T0)1dr, or equivalently T05T1dT, where dT
52dr/r ,T . Knowing the temperatureT we may compute
the energy momentum tensorT0

mn in the fiducial state, sub-
tract it from the physicalTmn to determine the nonequilib
rium partdTmn, and then read out the viscosity coefficien
by matching it to the form given in Eq.~8!.

C. Transport functions in quantum kinetic field theory

From the discussion above, we may identify the ma
steps involved in computing the transport functions: name
~1! find a description of the system in terms of a one-parti
distribution functionf, and the corresponding transport equ
tion; ~2! find the structure of equilibrium states, including th
expression of conserved currents in terms off, and the equi-
librium equation of state;~3! solve the linearized transpor
equation to obtain the response of the system to gradien
the hydrodynamical variables, and read out the nonequ
rium stresses.
3-3
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E. A. CALZETTA, B. L. HU, AND S. A. RAMSEY PHYSICAL REVIEW D61 125013
Step 1 is done in detail in@5#, where the self-energy is
computed to two-loops accuracy, giving as a result that, fo
lf4 type interaction, the transport equation forf is simply
the relativistic Boltzmann equation for Bose particles, w
the only modification of allowing for a variable mass as
Eq. ~9!. This Vlasov-type correction takes into account t
fact that the physical massM2 of the particles is connecte
to the temperature through the gap equation, and therebyM2

becomes position dependent ifT is. The ~only! conserved
currentTmn is defined as the expectation value of the cor
sponding Heisenberg operator, and the hydrodynamic v
ables are read out from it, so step~2! does not present grea
difficulty.

The problem arises in step~3!, because the Boltzman
collision operator satisfies, besides the four conserva
laws associated to energy-momentum, a fifth constraint

E d4p

~2p!4
u~p0!d~V0!Q̂50 ~16!

associated to the conservation of the particle number in
nary collisions. There is, therefore, a fifth integrability co
dition, and the system of macroscopic equations forT0 and
um becomes overdeterminated. One could hope that the
constraint would be true just as a consequence of the o
four, but we shall show below that in an interacting theo
this is not the case.

Continuing on this route, the linearized transport equat
built out of the Boltzmann collision operator is not int
grable, and the calculation grinds to a halt. If we are going
compute the bulk viscosity out of quantum kinetic theo
then the collision operator cannot be just Boltzmann’s
rived from 2-2 collision processes. A generalized collisi
operator including particle number changing terms besi
the usual binary scattering terms is needed. Thus the
constraint has to be lifted to eliminate the inconsisten
However, in the ‘‘effective kinetic theory’’ of Jeon an
Yaffe these new terms are not derived but rather postula
to match an independent calculation of cross sections f
linear-response theory. We feel that it is conceptually a
methodically more gratifying if these terms can be deriv
ab initio from a kinetic theory of quantum fields. This
indeed possible, as our present work aims to demonstra

Since these particle number changing interactions
higher order in the coupling constant~for pure lf4 theory
they appear atl4th order!, it is to be expected that they ma
be retrieved by simply carrying the calculation in@5# to a
higher loop order. However, there appears a matter of p
ciple: if we are going to work to high~eventually, arbitrarily
high! order in perturbation theory, we cannotassumethat the
Green functions will look anything like those of the fre
theory. Thus we must first confront the need to provide
nonperturbative definition of the one-particle distributi
function, ~which should of course reduce to the one used
@5# at first order in perturbation theory!. In equilibrium, this
problem is solved by the Kubo-Martin-Schwinger~KMS!
theorem~@16#!, which implies the proportionality of the Fou
rier transforms of the Hadamard and Jordan propagators~see
below!. Off equilibrium, following @6#, we shall define the
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one-particle distribution function from the ratio of the parti
Fourier transforms of these propagators. Familiarity with
KMS theorem and the Kadanoff-Baym equations should
blind us to the highly nontrivial nature of this definition
With this we will then have come to a full circle of delibera
tions for consistency.

For the specific goal laid out for this investigation, th
main technical difficulty lies in the analysis of the collisio
term giving rise to the bulk viscosity, as it is due to th
particle-changing processes which even in the leading o
already involve four-loop self-energy diagrams. This is o
of the main tasks we need to overcome.

D. Summary of the paper

The outline above provides us with a step by step guide
computing transport functions in quantum kinetic fie
theory, which we shall execute in the following sections.
noted above, the first step is the precise definition of
one-particle distribution function, which is discussed in S
II. In Sec. III we derive the transport equation. For simpli
ity, after showing that to lowest nontrivial order the Bolt
mann collision operator is recovered, we shall write do
only the terms related to particle number changing inter
tions. Section IV is dedicated to studying the equilibriu
states of the field, with the aim of finding the precise equ
tion of state. The results of Secs. III and IV amount to
first-principles derivation of Jeon and Yaffe’s effective k
netic theory from quantum field theory. Finally, in Sec. V w
go through the actual calculation of the bulk viscosity, whi
in the appropriate limit reproduces JY’s estimates fro
linear-response theory.

II. NONPERTURBATIVE QUANTUM KINETIC THEORY

Our specific goal is to show that by consistently extend
the existing methods of quantum kinetic field theory~see
e.g.,@5#! to four-loop order, it is possible to account both f
the shear and bulk viscosity of an interacting scalar field,
computed by Jeon and Yaffe. We consider a purely qua
interaction, although for the application to gauge theor
cubic plus quartic would seem closer to what is need
Since bulk viscosity entails particle number changing sc
tering, and these processes appear for the first time atO(l4),
we must push the calculation through to five loops in t
closed time path~CTP! two-particle irreducible~2PI! effec-
tive action~EA! @17,18#, which will yield four loops in the
equations of motion for the propagators. We assume that
background field vanishes identically, so we shall look at
2PI-EA as a functional of the propagators alone@19,20#.

A. The model

Let us begin with the classical action for a quartica
self-interacting scalar field in Minkowski space. Using
modification of DeWitt’s notation in which capital letter
denote both spacetime (xm) and time branch~1,2! indices
@21#, the action can be written

S5
1

2
fADABfB1Si , ~17!
3-4
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DAB5@Zbh2mb
2#cAB ;

Si@f#5
21

4!
lbcABCDfAfBfCfD, ~18!

where mb is the bare ‘‘mass’’ of the field,lb is the bare
coupling constant andfA is the scalar field. With the benefi
of hindsight, we set the wave-function renormalization fac
Zb51, but it should be generally included. The two- a
four-index objectscAB andcABCD are defined by their con
traction into the scalar field:

cABfAcB5E d4x@f1c12f2c2#~x!, ~19!

cABCDfAfBfCfD5E d4x@~f1!42~f2!4#~x!. ~20!

We usecAB and its inversecAB to raise and lower indices
and with the use of the Einstein convention of summing o
repeated indices, their appearance may be implicit.

We wish to derive an effective kinetic description of th
theory valid at arbitrary temperature, for sufficiently we
couplingl, in the case of unbroken symmetry. This assum
that the expectation value of the Heisenberg field oper
FH vanishes. The two-point function̂FH(x)FH(y)& is the
lowest-order nonvanishing correlation function for the spa
of initial conditions with which we are presently concerne
Therefore, let us couple an external,c-number, nonlocal
sourceKAB to the scalar field as follows:

S@f#→S@f#1
1

2
KABfAfB, ~21!

and construct a quantum generating functional

Z@K#[E Df expF i

\ S S@f#1
1

2
KABfAfBD G , ~22!

whose functional power series expansion contains all
n-point functions of the theory. The generating functional
normalized expectation values is given by

W@K#[2 i\ ln Z@K#. ~23!

Now, we define

FIG. 1. Two-loops contribution to the CTP effective action.
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\GAB[2
dW@K#

dKAB
, ~24!

and construct a new functionalG@G# which is the Legendre
transform ofW@K#,

G@G#[W@K#2
\

2
KABGAB. ~25!

It follows immediately from the above definition that

dG@G#

dGAB
52

\

2
KAB , ~26!

andG obeys the integrodifferential equation

G@G#52 i\ lnF E Df expH i

\ S S@f#2
1

\

dG@G#

dGAB

3~fAfB2\GAB!D J G . ~27!

By expandingG in a functional power series in\, this
equation can be solved@18#. The solution has the form

G@G#52
i\

2
Tr ln G1

i\

2
DABGAB1G2@G#, ~28!

where the functionalG2 is 2 i\ times the sum of all two-
particle-irreducible diagrams with lines given by\G and
vertices given by the quartic interaction.

The functionalG@G# is the two-particle-irreducible~2PI!
effective action whose variation with respect toG gives the
equation of motion for the two-point function. Because w

FIG. 2. Three-loops contribution to the CTP effective action.

FIG. 3. Four-loops contribution to the CTP effective action.
3-5
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are interested in computing transport properties of t
theory, we will need to include those terms in the pertur
tive expansion forG@G# which will contribute to the bulk
and shear viscosity in the weak-coupling, near-equilibri
limit. In order to have binary scattering of quasiparticles
the effective kinetic theory, we need to have a term with fo
propagators, which appears atO(l2). In order to have
number-changing processes such as two quasiparticles
tering into four~and vice versa!, we need to include a term
with eight ~six asymptotic on-shell propagators and two
ternal lines@2#!, which appears atO(l4) in the 2PI effective
action. This means taking into account the Feynman gra
in Figs. 1–5@22#. Taking the functional derivative with re
spect toGAB yields a formal equation for the two-point func
tion of the theory:

\DAB2 i\~G21!AB2
1

2
TAB1PAB50, ~29!

where we have singled out the tadpole termT, Fig. 6. The
remainder of the self-energy~which we shall refer to as the
self-energy, for short! is given by the sum of the graphs i
Figs. 7–11~Note: observe that in the graphs Figs. 1–4
internal lines are equivalent; in Fig. 5 we have instead t
sets of equivalent lines, markeda andb in the figure. Thus
this last graph gives rise to two different graphs upon va
tion, i.e., Figs. 10 and 11!. This is just the Dyson equatio
for the inverse propagator, where the self-energy is alre

FIG. 4. Five-loops contribution to the CTP effective action.

FIG. 5. The other five-loops contribution to the CTP effecti
action. Observe the two sets of inequivalent lines, markeda andb.
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expressed in terms of the propagators themselves. In
sense of@19,20# we say the self-energy has beenslavedto
the propagators.

There are two ways we can proceed. We can either rig
multiply GBC, or left-multiply GCA into the equation, obtain-
ing the right-multiplied and left-multiplied Dyson equation
respectively. Note that only the tadpole term is invariant u
der simultaneous translations of theA andB spacetime indi-
ces. The higher-order terms all violate translation invarian
in the equation of motion for the two-point function as
consequence of slaving—they describe the dissipative
cesses by which the system approaches equilibrium@5#.
From now on we set\51.

B. Nonperturbative properties of the propagators

Our strategy is as follows. In equilibrium, the propagato
are translation invariant, and their Fourier transform are s
ply proportional @Kubo-Martin-Schwinger~KMS! theorem
@16##. Out of equilibrium, we write

G~x,x8!5E d4p

~2p!4
eipuG~X,p! ~30!

with u5x2x8 and X5(x1x8)/2. We assume thatG(X,p)
is slowly varying with respect to the center-of-mass varia
X.

Before we start, it is useful to display the properties of t
propagators which actually follow from their definition a
path ordered products of field operators. We consider e
different propagators.

FIG. 6. One-loop contribution to the self-energy~tadpole
graph!.

FIG. 7. Two-loops contribution to the self-energy~setting sun
graph!.
3-6
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~a! The four basic propagators, appearing in equat
~24!: FeynmanG11[^T„FH(x)FH(x8)…&, where T stands
for time ordering, DysonG22[^T̃„FH(x)FH(x8)…&, where
T̃ stands for antitime ordering, positive frequen
G21[^FH(x)FH(x8)& and negative frequency G12

[^FH(x8)FH(x)&. The Feynman and Dyson propagato
are even. We also have

G115G22* ; G125G21* ; G12~x,x8!5G21~x8,x!.
~31!

As a consequence,G11 andG22(X,p) are even functions
of momentum, whileG12(X,p)5G21(X,2p). Moreover,
G12 and G21(X,p) are real, andG22(X,p)* 5G11. Finally,
we have the identity

G111G225G121G21, ~32!

which follows from the path-ordering constraints

G115u~ t2t8!G211u~ t82t !G12, ~33!

G225u~ t2t8!G121u~ t82t !G21. ~34!

~b! The Hadamard propagator G15G211G12

[^$FH(x),FH(x8)%& is real and even and, therefore, also
G1(X,p). The Jordan propagatorG5G212G12[^@FH(x),
FH(x8)#& is imaginary and odd, and soG(X,p) is odd but
real.

~c! The advanced and retarded propagators

Gadv~x,x8!52 iG~x,x8!u~ t82t !,
~35!

FIG. 8. Three-loops contribution to the self-energy.

FIG. 9. Four-loops contribution to the self-energy.
12501
n

Gret~x,x8!5Gadv~x8,x!5 iG~x,x8!u~ t2t8!

or else

Gret5 i ~G112G12!; Gadv5 i ~G222G12!. ~36!

OnceGret is known, we can reconstructG as

G~x,x8!5~2 i !@Gret~x,x8!2Gret~x8,x!# ~37!

So,

G~p!5~2 i !@Gret~p!2Gret~2p!#52 ImGret~p!, ~38!

where we have used thatGret(x,x8) is real, soGret(2p)
5Gret(p)* . Also observe thatGadv(p)5Gret(p)* .

Since the retarded propagator is causal, it satisfies
equation

Gret5u~ t2t8!Gret. ~39!

Therefore, the real and imaginary parts of its transform
Hilbert transforms of each other

Gret~p!5
i

2pE dv

p02v1 i«
Gret~v,pW !

5
1

2
Gret~p!1

i

2p
PVE dv

p02v
Gret~v,pW ! , ~40!

FIG. 10. Another four-loops contribution to the self-energ
Cutting as shown, we go across five internal lines. The symme
cut also goes across five lines.

FIG. 11. The final four-loops contribution to the self-energ
Cutting as shown, we go across five internal lines.
3-7
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ReGret~p!5
1

p
PVE dv

v2p0
Im Gret~v,pW !. ~41!

This implies in particular that the real and imaginary pa
are orthogonal to each other

E dv Im Gret~v,pW !ReGret~v,pW !50. ~42!

All other propagators can be decomposed in a sim
way. For example, since

G11~x,x8!5
1

2
@G1~x,x8!1G~x,x8!sgn~ t2t8!#

5
1

2
$G1~x,x8!2 i @Gret~x,x8!1Gret~x8,x!#%

~43!

so

G11~X,p!5
1

2
@G122i ReGret#;

G22~X,p!5
1

2
@G112i ReGret#. ~44!

To give a nonperturbative definition of the one-partic
distribution function f, which is the focus of attention in
quantum kinetic theory, we assume that the partial Fou
transforms of the Hadamard and Jordan propagators are
portional

G15sgn~p0!@112 f #G. ~45!

Introducing a density of states functionD(p)

G~p![2p sgn~p0!D~p!, ~46!

then

G152p@112 f #D, ~47!

G2152p@u~p0!1 f #D52pF21D, ~48!

G1252p@u~2p0!1 f #D52pF12D. ~49!

In equilibrium,f is the Bose-Einstein distribution functio
~KMS theorem!. It can be assumed that Eq.~45! serves as the
definition of the functionf, valid to all orders in perturbation
theory. Observe that, since the relevant Fourier transfo
are distributions~e.g., in free theories!, this definition may
only be applied if both Fourier transforms have the sa
singularity structure, which in the last analysis is a restrict
on allowed quantum states. In what follows, we assume th
restrictions are met.

C. The nonperturbative retarded and Jordan propagators

In the approximation where only terms linear in the g
dients of the Fourier transforms of propagators are retain
12501
s

r

r
ro-

s

e
n
se

-
d,

it is possible to write down a nonperturbative~in the cou-
pling constant! expression for the retarded and Jordan pro
gators.

Let us obtain an equation forGret from, say, the equations
for G11 andG12, namely

Gret5 i ~G112G12!5 i ~G212G22! ~50!

leading to

215DGret2
1

2
T11Gret1P retGret, ~51!

where we have used thatT1250, and

P ret5P111P12. ~52!

Next we perform the Fourier transform. Since we are o
interested in computing the transport coefficients, we o
need to keep terms which are first order in gradients~this
approximation which is formally invoked in the derivation o
kinetic theory may not be always useful when dealing w
realistic physical conditions, see, e.g.,@23#!. Therefore, in
computing the transforms, we drop all second derivat
terms. The free termD5h2mb

2 transforms into

D52p21 ip
]

]X
1

1

4
hX2mb

2 . ~53!

We drop the D’Alembertian as it contains second deriv
tives:

D;2p21 ip
]

]X
2mb

2 . ~54!

The tadpole~for a generic propagatorG) reads in position
space

T11G5lG11~x,x!G~x,x8!. ~55!

We write

l

4
G1~x,x!G~x,x8!5

l

4E d4p

~2p!4

d4q

~2p!4
eipuG1~x,q!G~X,p!

~56!

and retain only terms linear in gradients to obtain

l

4
G1~x,x!G~x,x8!5

l

4E d4p

~2p!4

d4q

~2p!4
eipuG~X,p!

3FG1~X,q!1
u

2

]

]X
G1~X,q!G .

~57!

The contribution to the equation has the form

F2dM2~X!2
i

2

]~dM2!

]X

]

]pGG~X,p!, ~58!

where
3-8
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dM2~X!5
l

4E d4q

~2p!4
G1~x,q!. ~59!

Let us write the remaining term collectively as

PG5E d4y P~x,y!G~y,x8!, ~60!

which transforms into

E d4yE d4p

~2p!4

d4q

~2p!4
eip(y2x8)eiq(x2y)

3PS x1y

2
,qDGS x81y

2
,pD . ~61!

Keeping only first terms in gradients, this transforms into

E d4yE d4p

~2p!4

d4q

~2p!4
eip(y2x8)eiq(x2y)

3H P~X,q!G~X,p!1
y2x8

2
~]XP!~q!G~p!

1
y2x

2
P~q!]XG~p!J ~62!

and then into

E d4yE d4p

~2p!4

d4q

~2p!4
eip(y2x8)eiq(x2y)

3H P~X,q!G~X,p!1
i

2
~]XP!~q!]pG~p!

2
i

2
]qP~q!]XG~p!J , ~63!

which contributes a term

F i

2
@~]XP ret!]p2~]pP ret!]X#1P ret~p!GGret ~64!

to the equation of motion.
Introducing the Poisson bracket

$ f ,g%5]pf ]Xg2]Xf ]pg, ~65!

we may write the equation forGret as

2152VGret1
i

2
$V,Gret%, ~66!

where

V5p21M22P ret~p!, M25mb
21dM2, ~67!

and we get theexact~formal! solution
12501
Gret5@Zb~p1 i«!21M22P ret~p!#215
1

V U
Im p0→01

,

~68!

where

~p1 i«!252~p01 i«!21pW 2 ~69!

~we have displacedp0 into the complex plane to account fo
the retarded boundary conditions!. Now we write

Gret5ReGret1
i

2
G. ~70!

Then

G5
22 ImV

uVu2
; D5

2sgn~p0!Im V

puVu2
. ~71!

D. Equation for the negative frequency propagator

The equation for the negative frequency propagator is

DG122
1

2
T1BGB21P1BGB250. ~72!

Recall that

G225G121 iGadv, Gret* 5
1

V*
5

V

uVu2
. ~73!

After Fourier transforming, we obtain

052VFG122
iP12

uVu2
G1

i

2
$V,G12%1

1

2V* 2
$V* ,P12%.

~74!

In keeping with the stipulation to consider only first-ord
corrections to local thermal equilibrium, we shall neglect
terms containing both derivatives and radiative correctio
So the equation is equivalent to

052VFG122
iP12

uVu2G1
i

2
$V,G12%. ~75!

To separate this equation into real and imaginary parts,
must notice that the combinationiP12 is actually real~see
Appendix A!.

E. The unperturbed theory

The unperturbed theory is obtained by neglecting
O(l2) terms in our equations. The unperturbed equations

V05p21M2 ~76!

and

D~p!5d~p21M2!1O~l2!. ~77!
3-9
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These are exact solutions of the above equations.
Concerning the distribution function, the real part of E

~75! above shows thatG12 is concentrated on the zeroes
V, as required by Eq.~45!, and, since$V0 ,D%50, the
imaginary part becomes the unperturbed transport equat

05DFp
]

]X
2

1

2
]XM2]pGF12,

which is in the form of a Vlasov equation.

III. THE TRANSPORT EQUATION

The nonperturbative~in the coupling constant! equation
we have derived forG12, plus the decomposition Eq.~49!
lead in a straightforward way to the transport equation. N
glecting$V,D% as before, we write Eq.~75! as

052VFG122
iP12

uVu2G1 ipD$ReV,F12%. ~78!

Since ImV52uVu2G/2, its imaginary part reduces to

05DF2F12 Im V2
i

2
P12sgn~p0!1

1

2
$ReV,F12%G ,

~79!

which is the Boltzmann equation. To simplify it even furthe
we observe that since sgn(p0)5F212F12,

Im V52Im P ret52Im P111 iP125~ i /2!~P122P21!
~80!

~see the Appendix!, so

05DF1

2
$ReV,F12%2

i

2
~P12F

212P21F
12!G . ~81!

This equation is formally valid to all orders in the co
pling constant. However, it is convenient to consider the lo
expansion ofP to reduce this equation to a more famili
form.

A. The collision term

In this subsection we consider the expansion of the s
energyP in terms of Feynman graphs of increasing lo
order, as a means to obtain a definite expression for the
lision term in the kinetic equation~81!. Since we have the
relationshipP21(p)5P12(2p) ~see Appendix! it is enough
to analyze only the expansion ofP12. Physically this means
considering only the gain processes, which produce a par
within a given phase-space cell. The collision term is th
obtained by subtracting the loss processes, which remo
particle therein.

The first term in the expansion is the single two-lo
graph Fig. 7. To this order,

P12~x,y!5
2 i

6
l2S12~x,y!5

2 i

6
l2@G12~x,y!#3. ~82!
12501
.

n
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p

f-
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n
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In momentum space, dealing with the propagators as if t
were translation invariant,

S12~p!5~2p!4E d4r

~2p!4

d4s

~2p!4

d4t

~2p!4
d~p2r 2s2t !

3G12~r !G12~s!G12~ t !, ~83!

and, using the definition Eq.~49!, we get

S12~p!5~2p!4E d4rD~r !

~2p!3

d4sD~s!

~2p!3

d4tD~ t !

~2p!3

3d~p2r 2s2t !F12~r !F12~s!F12~ t !. ~84!

If we substituteD by its lowest order valueD05d(p2

1M2), this yields the collision term given earlier in@5#. This
represents binary collisions, which conserves the part
number. For the reasons discussed in the Introduction
leads to an inconsistency when one tries to compute the
viscosity coefficient.

The first correction to Eq.~84!, within the two-loop
theory, comes from the radiative corrections to the density
states, as given by Eqs.~71! and ~80!. We write

S125S0
121dS12, ~85!

whereS0
12 is the lowest order result just discussed, and~writ-

ing V0s5s21M2 for short!

dS12~p!53i ~2p!3E d4r sgn~r 0!

~2p!3

d4sd~V0s!

~2p!3

3
d4td~V0t!

~2p!3
d~p2r 2s2t !

3Gret~r !Gadv~r !F12~r !F12~s!F12~ t !

3@P212P12#~r !. ~86!

We use again Eq.~82! to get

dS12~p!5
2l2~2p!4

2 E d4sd~V0s!

~2p!3

d4td~V0t!

~2p!3

3
d4ud~V0u!

~2p!3

d4vd~V0v!

~2p!3

d4wd~V0w!

~2p!3

3d~p1u1v1w1s1t !s~u1v1w!

3F21~s!F21~ t !@F12~u!F12~v !F12~w!

2F21~u!F21~v !F21~w!#, ~87!

where

s~r !5sgn~r 0!Gret~r !Gadv~r !F21~r !.

A successful contribution to the gain part of the collisio
term describing scattering of two into four particles~this be-
3-10
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ing the simplest particle number nonconserving proces
this theory! must involve, besides the factor (11 f p) already
explicit in Eq. ~81!, five other factorsf or 11 f evaluated on
on-shell momenta adding up top. But Eq. ~87! cannot con-
tain a term like this, because of the interference between
two terms in brackets. After all cancellations, we are l
with radiative corrections to the already known binary co
sion term. We conclude that to orderl4 there are no contri-
butions to a particle number nonconserving collision te
arising from the setting sun graph. We must consider inst
the higher loop graphs, Figs. 8–11.

B. Higher loops

Generally speaking, we expect the collision term to d
scribe both particle number conserving (2→2) and changing
(2→4) scattering. Because of parity, we do not expect tr
sitions between an even and odd number of particles.
2→2 scattering is already present in the two-loop theo
12501
in

he
t

d

-

-
e
,

and any further correction to it will not contribute to th
transport functions. So from the three and four loop con
butions we seek only terms related to 2→4 scattering.

Since we only seek the lowest order contribution to t
bulk viscosity, we may substitute the density of statesD by a
delta function concentrated on mass shell, so the notion
on and off shell recover their usual meaning. It is then p
sible to ascertain from the momentum flow in the gra
whether the condition of five on-shell momenta adding top
may be fulfilled: this is just the question of whether it
possible to cut the graph by going across five internal lin
@24#. The three-loop contribution cannot satisfy this crit
rium, and we shall not analyze it further~it only renormalizes
the binary scattering amplitude!. For the same reason, w
discard the graph in Fig. 9, and concentrate on the graph
Figs. 10 and 11, whicha priori pass the test.

The complete contribution toP12 from the graph in Fig.
10 reads
t
in curly
r

e to 2
m, since

et the

ll

ta
st be
r of future
2 il4

4
~2p!12E d4q

~2p!4

d4r

~2p!4

d4s

~2p!4

d4t

~2p!4

d4u

~2p!4

d4v

~2p!4

d4w

~2p!4
d~q1r 1s2p!d~ t1u1v2q!d~u1t1r 2w!

3$2G11~q!G12~r !G12~s!G12~ t !G12~u!G12~v !G22~w!2G11~q!G11~r !G12~s!G11~ t !G11~u!G12~v !G12~w!

2G12~q!G12~r !G12~s!G22~ t !G22~u!G22~v !G22~w!%. ~88!

In a true contribution to 2→4 scattering, the six on-shell momenta involved~includingp) areirreducible, in the sense tha
there are no other linear relations among them than overall momentum conservation. If we look at the three terms
brackets in Eq.~88!, we see that in the second term the three momentas, v, andw are on shell, but they satisfy the linea
relations1v1w2p50, irrespective of the other momenta. Thus this term is not irreducible, and does not contribut
→4 scattering; it is another radiative correction to the binary collision term. The same analysis disposes of the third ter
here the on-shell momentaq, r, ands are constrained to satisfyq1r 1s2p50. We will disregard these two terms.

The graph in Fig. 11 contributes

2 il4

4
~2p!12E d4q

~2p!4

d4r

~2p!4

d4s

~2p!4

d4t

~2p!4

d4u

~2p!4

d4v

~2p!4

d4w

~2p!4
d~q1r 1s2p!d~ t1u1v2q!d~ t1r 1s2w!

3$G11~q!G12~r !G12~s!G12~ t !G12~u!G12~v !G22~w!1G12~q!G11~r !G11~s!G21~ t !G22~u!G22~v !G12~w!

2G11~q!G11~r !G11~s!G11~ t !G12~u!G12~v !G12~w!2G12~q!G12~r !G12~s!G22~ t !G22~u!G22~v !G22~w!%. ~89!

Only the first term in curly brackets is irreducible. Retaining only the irreducible contributions from both graphs, we g
prospective particle number nonconserving collision term as

2 il4

4
~2p!4E d4r

~2p!4

d4s

~2p!4

d4t

~2p!4

d4u

~2p!4

d4v

~2p!4
d~r 1s1t1u1v2p!s2~2p,r ,s,t,u,v !

3G12~r !G12~s!G12~ t !G12~u!G12~v !,
~90!

s25G11~p1r 1s!@2G22~p1v1s!1G22~p1u1v !#.

It is clear that only the totally symmetric~as a function ofr, s, t, u, andv) partss
2 of s2 contributes to the integral, so we sha

assume thats2 has been symmetrized.
To reduce Eq.~90! to a more familiar form, let us assume thatp0.0, and restrict the integral to future oriented momen

~that is, when a momentum is past oriented, we reverse its sign!. Because of momentum conservation, some momenta mu
future oriented, but because they are all on mass shell, they cannot be all future oriented at the same time; the numbe
3-11
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oriented momenta can only be 4, 3 or 2. The terms with three future oriented momenta describe 3→3 scattering, which
conserves particle number, so they are not related to the bulk viscosity. With these considerations we finally get the
number nonconserving collision term as

I 2→45E d4ru~r 0!d~V!

~2p!3

d4su~s0!d~V!

~2p!3

d4tu~ t0!d~V!

~2p!3

d4uu~u0!d~V!

~2p!3

d4vu~v0!d~V!

~2p!3

3$R1d1@~11 f p!~11 f r !~11 f s!~11 f t! f uf v2~11 f u!~11 f v! f pf r f sf t#

1R2d2@~11 f p!~11 f r ! f sf t f uf v2~11 f s!~11 f t!~11 f u!~11 f v! f pf r #%, ~91!
y
a
O

t

co
,

ate
al
where

R1[
5l4

4
~2p!4ss

2~2p,2r ,2s,2t,u,v !;

~92!

R2[
5l4

8
~2p!4ss

2~2p,2r ,s,t,u,v !,

d1[d~p1r 1s1t2u2v !;
~93!

d2[d~p1r 2s2t2u2v !.

IV. THERMODYNAMICS FROM QUANTUM
KINETIC THEORY

Our goal in this section is to investigate the thermod
namic and hydrodynamic properties of a quantum field, p
ticularly the equation of state and the speed of sound.
starting point is the on-shell Boltzmann equation~79!. To
render the Poisson bracket manageable, we keep only
unperturbedV, equation ~76!, where M2 is given self-
consistently by Eqs.~59! and ~67!, namely

M25mb
21dM2;

~94!

dM2~X!5
lb

2 E d4p

~2p!3
d~V0!F1

2
1 f ~X,p!G .

The kinetic equation can be written as

1

2
$V0 , f %5I col~X,p!, ~95!

whereI satisfies the constraint

E d4p

~2p!4
u~p0!d~V0!pmI col~X,p!50, ~96!

which expresses energy-momentum conservation. Our
cern is to investigate this~only! conservation law, but first
we need to express the gap equation~94! in terms of finite
quantities.
12501
-
r-
ur

he

n-

A. The gap equation

Let us write the gap equation as

M25mb
21mV

21
lb

2
MT

2 , ~97!

where

MT
25E d4p

~2p!3
d~V0! f ~X,p!, ~98!

mV
25

lb

4 E d4p

~2p!3
d~V0!. ~99!

This second quantity is actually divergent, so to evalu
it we need to regularize it first. We shall use dimension
regularization, writing

mV
25

lb

2
m«E ddp

~2p!d

~2 i !

p21M22 i«
, ~100!

where the dimensionalityd542«. We also go to Euclidean
momenta,p0→ ip0, so

mV
25

lb

2
m«E ddp

~2p!d

1

p21M2
. ~101!

We obtain

mV
252

lbM2

16p2 S M2

4pm2D 2«/2GF11
«

2G
«F12

«

2G .

Then, we write

GF11
«

2G
«F12

«

2G 5
1

«
1

1

2
~12g!1•••[z ~102!

(g5.5772 . . . ). We get
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mV
252

lBM2

16p2 Fz2
1

2
lnS M2

4pm2D G . ~103!

We go back to the gap equation and write it as

ZM25mb
21

lb

2 F M2

16p2
lnS M2

4pm2D 1MT
2G , ~104!

where

Z511
zlb

16p2
. ~105!

We now renormalize the bare couplings

mb
25Zm2; lb5Zl ~106!

~the actual coupling ind dimensions beingm«lb) to obtain
the physical gap equation

M25m21
l

2
M f

2 , ~107!

where

M f
25

M2

16p2
lnS M2

4pm2D 1MT
2 . ~108!

With these we turn our attention to the energy-moment
tensor.

B. Energy-momentum tensor

To define the energy-momentum tensor, we write the
fective action in a general curved background, and then
the customary definition@25#

Tmn5
2

A2g

dG

dgmn
(1)

, ~109!

where only the derivative with respect to the metric in t
first time branch is taken. The effective action itself is giv
by Eq. ~28!. The first term Tr lnG does not depend on th
metric. Written in full, the second term reads

1

2E d4x$A2g(1)~hx
(1)2mb

2!G11~x,x8!ux85x2~1→2!%.

~110!

As usual

dA2g

dgmn
5

1

2
A2ggmn;

dgmn

dgrs
52gmrgns, ~111!

and so the contribution from this term toTmn is

F2]m]n1
1

2
hmn~hx2mb

2!GG11~x,x8!ux85x . ~112!
12501
f-
se

In the third term, the metric appears through theA2g
factors multiplying the coupling constants. Therefore, t
contribution toTmn takes the form

hmnlB

d

dl1111
G252

lb

8
hmn@G11~x,x!#21Lbhmn,

~113!

whereLb contains all the higher-order contributions. To th
accuracy desired,Lb is position independent, and we sha
not analyze it further. Adding the two nontrivial contribu
tions we get

Tmn~X!52F]m]n2
1

2
hmnhxGG11~x,x8!ux85x

2
1

2
hmnFmb

21
lb

4
G11GG111Lbhmn. ~114!

To write the first term in terms of the distribution func
tion, observe that]x→ ip1 1

2 ]X . We must neglect secon
derivative terms, and observe that terms involvingp]X even-
tually vanish becauseG11(X,p) is even inp. So

Tmn~X!5E d4p

~2p!4 Fpmpn2
1

2
hmnp2GG11~X,p!

2
1

2
hmnFmb

21
lb

4
G11GG111Lbhmn. ~115!

We are entitled to use the unperturbed approximation
G11:

G115
~2 i !

p21M22 i«
12pd~V0! f ~X,p!. ~116!

The expressions that appear inTmn are divergent and we
must regularize them. Let us consider

TV
mn52 i E ddp

~2p!d

Fpmpn2
1

2
hmnp2G

p21M22 i«

5S i ~d22!

2d DhmnE d4p

~2p!4

p2

p21M22 i«
. ~117!

We rotate the integral into the Euclidean domain and co
pute the integral ind542« dimensions, so finally

TV
mn52

M4hmn

32p2 Fz2
1

4
2

1

2
lnS M2

4pm2D G . ~118!

We also need

G11~x,x!5
2

lB
dM25Z21FM f

22Z
zm2

8p2G .

Therefore,
3-13
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mb
21

lb

4
G11~x,x!5ZFm21

l

4Z S M f
22Z

zm2

8p2D G
5ZFm21

l

4 S M f
22

zm2

8p2D G1O~l2!

~119!

and

Fmb
21

lb

4
G11GG1152m2S zm2

8p2
2M f

2D
2

l

4 F S zm2

8p2D 2

1
zm2M f

2

4p2
2M f

4G
1O~l2!.

So far, we get

TV
mn1

1

2
hmnFmB

21
lB

4
G11GG11

52hmnH 2
l

8 S zm2

8p2D 2

2
zm4

32p2
2

m4

2l

1
M2m2

2l
2

M4

128p2
1

M2MT
2

4
1O~l2!J .

~120!

Next, we call

TT
mn5E d4p

~2p!4
pmpn2pd~V0! f ~X,p!, ~121!

and observe that

E d4p

~2p!4 Fpmpn2
1

2
hmnp2G2pd~V0! f ~X,p!

5TT
mn1

1

2
hmnM2MT

2 , ~122!

so

Tmn5T0
mn1Tf

mn1TT
mn , ~123!

where

T0
mn5hmnH l

8 S zm2

8p2D 2

1
zm4

32p2
1

m4

2lJ , ~124!

Tf
mn52L fh

mn;
~125!

L f5
M2m2

2l
2

M4

128p2
2

M2MT
2

4
1O~l2!.
12501
Here,T0
mn is infinite, but state independent and conserv

It belongs to the theory of the renormalization of the gra
tational action~see@25,26# and references therein!, and we
shall not consider it further.

Consistency requires that we actually neglect theO(l2)
terms in L f , or at least that we consider them as a tr
~temperature independent! constant. Then we can establis
the following identity, which will be useful later on. First, w
write

MT
25

2

l
~M22m2!2

M2

16p2
lnS M2

4pm2D ,

L f5
M2m2

l
2

M4

128p2
2

M4

2l
1

M4

64p2
lnS M2

4pm2D 1const.

~126!

Then observe that
~a! L f depends on temperature only through the phys

massM2, and
~b!

dL f

dM2
5

m2

l
2

M2

l
1

M4

32p2
lnS M2

4pm2D 5
21

2
MT

2 .

~127!

This is the identity we need below. This expression
the energy momentum tensor is equivalent to that given
Jeon and Yaffe. In particular, Eq.~127! implies that energy
momentum conservation follows from the transport equati

C. Entropy flux and the H theorem

Let us mention also the entropy flux

Sm52E d4p

~2p!4
u~p0!pm2pd~V0!$~11 f !ln~11 f !2 f ln f %.

~128!

Associated with this, entropy generation is given by

S;m
m 52E d4p

~2p!4
u~p0!2pd~V0!F ln

~11 f !

f G I col .

~129!

The positivity of this integral expresses theH theorem. Let
us write

I col5I 2→21I 2→4 , ~130!

where the first term is the usual binary collision term
3-14
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I 2→25sE d4ru~r 0!d~V!

~2p!3

d4su~s0!d~V!

~2p!3

3
d4tu~ t0!d~V!

~2p!3
d~p1r 2s2t !

3$~11 f p!~11 f r ! f sf t2~11 f s!~11 f t! f pf r%

~131!
ng
uc

t
tri

t

he

12501
and the second term involves the number changing inte
tions, already given in Eq.~91!.

When inserted in Eq.~129!, we find

S;m
m 5H2→21H2→4 , ~132!

whereH2→2 is the usual result@14#
H2→25
1

2E d4pu~p0!d~V!

~2p!3

d4ru~r 0!d~V!

~2p!3

d4su~s0!d~V!

~2p!3

d4tu~ t0!d~V!

~2p!3 F ln
~11 f p!~11 f r ! f sf t

~11 f s!~11 f t! f pf r
G

3d~p1r 2s2t !$~11 f p!~11 f r ! f sf t2~11 f s!~11 f t! f pf r%, ~133!

whereas@from I 2→4 in Eq. ~91!#

H2→45
1

3E d4pu~p0!d~V!

~2p!3

d4ru~r 0!d~V!

~2p!3

d4su~s0!d~V!

~2p!3

d4tu~ t0!d~V!

~2p!3

d4uu~u0!d~V!

~2p!3

d4vu~v0!d~V!

~2p!3

3~R12R2!F ln
~11 f p!~11 f r !~11 f s!~11 f t! f uf v

~11 f u!~11 f v! f pf r f sf t
Gd~p1r 1s1t2u2v !

3@~11 f p!~11 f r !~11 f s!~11 f t! f uf v2~11 f u!~11 f v! f pf r f sf t# ~134!
.

ur
res-
is new. Thus theH theorem demands the inequality

R1>R2 . ~135!

We expect that the integral will be dominated by grazi
collisions, where one of the reactants and one of the prod
carry essentially all the momentum. In this limit,R1;2R2
@see Eq.~92!#, so theH theorem is satisfied.

D. „Local… thermal equilibrium states

Our next concern is to investigate the equation of sta
for a local equilibrium state described by a Planckian dis
bution function f 0 as in Eq.~10!. The energy momentum
tensor is decomposed as in Eq.~1!. The thermal componen
TT

mn admits a similar decomposition:

T0T
mn5E d4p

~2p!4
pmpn2pd~V0! f 0~X,p!5rTumun1pTPmn,

~136!

where

rT5E d4p

~2p!4
~up!22pd~V0! f 0~X,p!. ~137!

SincerT and M2 are scalars, we may compute them in t
rest frame:
ts

e,
-

rT5
1

p2EM

`

dv
v2

ebv21
Av22M2,

~138!

MT
25

1

p2EM

`

dv
1

ebv21
Av22M2.

For the thermal pressure, we find 3pT2rT52M2MT
2 , so

pT5
1

3
~rT2M2MT

2!. ~139!

The total energy density and pressure are then

r5rT1L f ; p5pT2L f . ~140!

The equilibrium entropy flux takes the formS0
m5pbm

2T0
mnbn5(r1p)bm5(rT1pT)bm. On the other hand, Eq

~128! yields S0
m5F0T

m 2T0T
mnbn , where

F0T
m 522E d4p

~2p!4
u~p0!pm2pd~V0!ln@12e2ubmpmu#.

~141!

This form of the thermodynamic potential brings to o
attention other equivalent expressions for the thermal p
sure
3-15
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pT

T
5

21

p2 EM

`

dv vAv22M2 ln@12e2bv# ~142!

and

pT5
1

3p2EM

`

dv@v22M2#3/2f 0 . ~143!

Observe that Eqs.~127! and ~142! imply the thermody-
namic relationship Eq.~2! ~here and henceforth, we shall us
d/dT to denote a total temperature derivative, that is w
respect to the explicit temperature dependence throughf 0 as
well as the implicit dependence throughM2. We shall use
]/]T when we mean only the former!. Indeed, Eq.~142!
implies

T
dpT

dT
5pT1rT2

MT
2

2
T

dM2

dT
. ~144!

But pT1rT5r1p, and

T
dp

dT
5T

dpT

dT
2T

dL f

dT
. ~145!

So Eq.~2! follows from Eq.~127!. This concludes our study
of the local equilibrium states.

V. LINEARIZED TRANSPORT EQUATION

Under local thermal equilibrium, the transport equation
violated. We haveI col50, while the transport part~for p0

.0)

F pm
]

]Xm
2

1

2
M ,m

2 ]

]pm
G f 0

5 f 0~11 f 0!Fpmpnbm,n2
1

2
M ,m

2 bmG . ~146!

Recalling the decomposition Eq.~6! and assuming the
macroscopic equations Eq.~5!, the lhs of the transport equa
tion becomes

f 0~11 f 0!F 1

T
pmpnHmn2

1

T H ~p•u!2Fcs
22

1

3G
1

M2

3
2

cs
2

2
TM ,T

2 J u,l
l G . ~147!

This plays the role of theQE differential operator in Eq.~15!.

A. The linearized collision term

At this point we need to shift our attention to the righ
hand side of the transport equation, Eqs.~130!, ~131!, and
~91!. The collision term vanishes identically under local the
mal equilibrium, so we need to consider a distribution fun
tion deviating from it. Write
12501
s

-
-

f 5 f 01 f 0~11 f 0!x. ~148!

Since I col@ f 0#[0, only the deviation contributes to the co
lision integral. We keep only linear terms, and write, by an
ogy with Eq.~147!

dI col5 f 0p~11 f 0p!@dI 2→21dI 2→4#, ~149!

where, upon introducing the momentum space volume
ment

Dp5
d4pu~p0!d~V!

~2p!3
f 0p~11 f 0p!, ~150!

we have

dI 2→25sE DrDsDt d~p1r 2s2t !

3
$2xp2x r12xs%

@~11 f 0p!~11 f 0r ! f 0sf 0t#
, ~151!

and similarly

dI 2→45E DrDsDtDuDv

3H R1d1

@2xp23x r12xu#

@~11 f p!~11 f r !~11 f s!~11 f t! f uf v#

1R2d2

@2xp2x r14xs#

@~11 f p!~11 f r ! f sf t f uf v#J , ~152!

whereR1,2 andd1,2 were defined in Eqs.~92! and ~93!.

B. The method of moments

Given Eqs.~147! and~149!, the linearized transport equa
tion can be rewritten as

1

T
pmpnHmn2

u,l
l

T H ~p•u!2Fcs
22

1

3G1
M2

3
2

cs
2

2
TM ,T

2 J
5K@x#, ~153!

where K is a Hermitian operator in the space of functio
defined on the positive energy mass shell. We further in
duce an inner product in this space by defining

^§,x&5E Dp §* ~p!x~p!; ^x&[^1,x&. ~154!

For our purposes, it will be enough to forfeit a rigorous s
lution, and to seek instead a solution using the method
moments. This entails first writing Eq.~153! in the orthogo-
nal basis built out of the monomials 1,pm, pmpn, etc. @al-
ways with respect to the inner product Eq.~154!, with Dp
defined as in Eq.~150!#, and then truncating it to only the
first few moments.
3-16
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To simplify our notation, let us adopt the local rest fram
and writev5p052u•p. Let x051 be the first element o
our basis. The remaining functions are (i 51,2,3!:

x15v2
^v&

^1&
;

x25v21v
^v2&^v&2^v3&^1&

^1&^v2&2^v&2
1

^v3&^v&2^v2&2

^1&^v2&2^v&2
,

q1
i 5pi ; q2

i 5piFv2
^vpW 2&

^pW 2&
G . ~155!

To this we must add five independent functions built o
of the binary productspipj ~there are only five independen
functions, becausepW 25v22M2 is not independent of the
above!. The simplest procedure is to think of these monom
als as the composition of two spin 1 objects; the spin z
component of the composition is preciselypW 2, and the spin 1
part, being antisymmetric, will vanish, so our functions a
the five l 52 spherical harmonics. For example, callingp6

5px6 ipy , we may choose

Ym5~p1
2 ,p1pz ,pz

22p1p2 ,p2pz ,p2
2 !; 2>m>22.

~156!

We also have the relationships~see Appendix B!

^v&5T2
dr

dT

@123cs
2#

FM22
1

2
TM ,T

2 G , ~157!

^v3&5T2
dr

dT

FM22
3

2
TM ,T

2 cs
2G

FM22
1

2
TM ,T

2 G , ~158!

^vpW 2&53cs
2T2

dr

dT
. ~159!

In terms of the new functions, Eq.~153! reads

1

T
G i j

mYmHi j 1GH ^v&x21cF ^v&x1

^v,x1&
21G J 5K@x#,

~160!

where

G5

u,l
l FM22

1

2
TM ,T

2 G
3T3

dr

dT

; G i j
m5

K Ym ,pipj2
1

3
pW 2L

^Ym ,Ym&
;

c5
^v3&^1&2^v2&^v&

^1&
. ~161!
12501
,

t

-
o

When we expand the operatorK@x# we notice that, when
truncated to the subspace spanned by the functions Eq.~155!,
the operator matrix acquires a block form, with one blo
corresponding to thexa functions (a50, 1 or 2!, another to
the qa

i , and yet another to theYm functions. Since there are
no qa

i functions in the left-hand side of Eq.~160!, we may as
well write

x5
21

T
bmYm2G@A1Bx11Cx2#. ~162!

SinceK@v#50, theB coefficient will remain undetermined
@the left-hand side of Eq.~160! is orthogonal tov, so the
system is integrable#. We will set B50 for the time being,
and postpone further discussion until we enforce the Land
Lifshitz conditions.

To determine thebm coefficients, we must solve the linea
system

G i j
mHi j 5Xmnbn , ~163!

where

Xmn52
^Ym,K@Yn#&

^Ym ,Ym&
. ~164!

By symmetry, theX matrix must be diagonal

Xmn5bdmn; b>0 ~165!

~for the positivity ofb, see Israel@15#! leading to

bm5
1

b
G i j

mHi j . ~166!

To find theA andC coefficients let us expand

K@1#5
^K@1#&

^1& F12
^v&x1

^v,x1&
G1b

x2

^x2
2&

,

K@x2#5
b

^1& F12
^v&x1

^v,x1&
G1g

x2

^x2
2&

, ~167!

where we have used̂v,K@x#&50. If only binary scattering
is considered, then alsôK@x#&50 and ^K@1#&5b50. In
general, then,̂K@1#&;b!g. Therefore, these equations a
mit an approximate solution withC50, yielding

x5
21

bT
G i j

mHi j Ym1c0 ; c05G
$^v3&^1&2^v2&^v&%

u^K@1#&u
,

~168!

where we have used̂K@1#&<0, as follows from the inequal-
ity Eq. ~135! and the identity

^K@1#&54l4E DpDrDsDtDuDv~R22R1!d1

@~11 f p!~11 f r !~11 f s!~11 f t! f uf v#
.

~169!
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C. The temperature shift and the bulk stress

It can be seen from Eq.~168! that the correction to the
distribution function has two components. The one ass
ated with theHmn tensor contributes to shear stress, bu
does not induce a change in the energy density, and there
it is compatible with the Landau-Lifshitz matching cond
tions. The constant shift ofx by c0, on the other hand, af
fects in principle both the energy density and the therm
massMT . So, to enforce the Landau-Lifshitz conditions,
must be partially compensated by a temperature shift. C
cretely, if we callT the temperature of the fiducial equilib
rium state, such thatr(T) is equal to the energy density i
the nonequilibrium state, then the temperature appearin
the local equilibrium distribution functionf 0 must beT0
5T1dT. The effect of this temperature shift is the same
that in the coefficientB in Eq. ~162!.

The distribution function and temperature shifts in tu
produce a shiftdM2 in the physical mass, which likewis
does not affect the transport equation. However, bothdT and
dM2 are relevant to the bulk stress. Observe that there is
shift in the four velocityum.

The three displacementsc0 , dT, anddM2 are related by
the constraints that the gap equation must hold, and the
energy density in the nonequilibrium state must be the sa
as in the equilibrium state. We write the gap equation as

M22w~M2,m2!5
l

2
MT

2 . ~170!

The linearized equation then reads

F12w82
l

2

]MT
2

]M2GdM25
l

2 F]MT
2

]T
dT1c0^1&G . ~171!

As a matter of fact,

]MT
2

]T
5

^v&

T2
. ~172!

So, finally,

dM25M ,T
2 dT1M ,c

2 c0 , ~173!

where

M ,c
2 5T2M ,T

2 ^1&

^v&
. ~174!

Since the gap equation is enforced, we can look at
~cosmological! constantL as a function ofM2, and

dL f5
21

2
MT

2dM2, ~175!

then

dr5r ,TdT1F ]rT

]M2
2

1

2
MT

2GM ,c
2 c01^v2&c0 . ~176!
12501
i-
t
re
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Actually,

]rT

]M2
5

1

2
MT

22
^v&
2T

, ~177!

so

dr5r ,TdT1F ^v2&2
^1&
2

TM ,T
2 Gc0 . ~178!

And since the total energy remains the same,

r ,TdT52c0F ^v2&2
^1&
2

TM ,T
2 G . ~179!

Let us apply the same reasoning to the bulk stress, wh
results from both the departure of the pressure fromp(T)
and the direct contribution from the new terms in the dis
bution function

t5cs
2r ,TdT1F ]pT

]M2
1

1

2
MT

2GM ,c
2 c01

1

3
@^v2&2M2^1&#c0 .

~180!

Now,

]pT

]M2
5

21

2
MT

2 , ~181!

so

t52c0H Fcs
22

1

3G^v2&1FM2

3
2

cs
2

2
TM ,T

2 G^1&J .

~182!

Using Eqs.~168!, ~157!, and~158!, we get

t52

u,l
l FM22

1

2
TM ,T

2 G2

3T5S dr

dTD 2

$^v3&^1&2^v2&^v&%2

u^K@1#&u
.

~183!

D. Shear stress and viscosity

The shear stress can be read directly out of the new te
in TT

mn . In the rest frame, we get

t i j 5
21

bT
Gkl

mHkl^pipj ,Ym&

5
21

bT
HklK pipj2

1

3
d i j pW 2,pkpl2

1

3
dklpW 2L

5
2R

bT
Hi j ~184!

from which we can read out the shear viscosity
3-18
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h5
R

bT
. ~185!

To estimateh, it is enough to keep only the leading~bi-
nary scattering! contributions, soh;l22. On dimensional
grounds,b;T2 and R;T6, so we recover the usual resu
h;T3/l2.

E. Bulk viscosity

As expected, things are not so simple with the bulk v
cosity. We can read it out from Eq.~183! as

z5

FM22
1

2
TM ,T

2 G2

3T5S dr

dTD 2

$^v3&^1&2^v2&^v&%2

u^K@1#&u
. ~186!

However, in evaluating it we must consider that^1& is loga-
rithmically divergent in the massless limit, so we must c
rect the sheer dimensional estimate to^1&;T2 ln(M/T). As
for the size ofu^K@1#&u, observe that the integral is dom
nated by the Rayleigh-Jeans tail, wheref 0;T/v@1. Thus
u^K@1#&u;l4T6F(M2). Since the overall units are Mass4, it
must beu^K@1#&u;T6/M2. For the remaining elements w
may use the conventional estimates^v3&;T5, r;T4, and
thus obtain

z;
M2

l4T3 FM22
1

2
TM ,T

2 G2

ln2~M /T!, ~187!

which reproduces JY’s Eq.~5.6! @3#.
In the limit in which the bare mass vanishes, or equiv

lently in the T→` limit, we may write on dimensiona
grounds

M22
1

2
TM ,T

2 [
1

2
mM ,m

2 ;lM2 ~188!

and since M2;lT2 itself, Eq. ~187! reduces to z
;lT3 ln2(l), again in agreement with JY@3#.
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APPENDIX A: P12 IS PURELY IMAGINARY

To show this, observe thatP12 is the sum of all 1PI Feyn-
man graphs with two external vertices, one carrying a 1
dex and the other a 2 index~this follows from it being the
result of opening one 12 leg in each 2PI vacuum bubble!. It
can also be represented as

P125
]G1

]f1]f2U
f50

, ~A1!

whereG1 is the usual~1PI! effective action, andfa is the
background field. The effective action has the structure

G15
1

2E dxdy$@f#~x!D~x,y!$f%~y!

1 i @f#~x!N~x,y!@f#~y!%1O~f3!, ~A2!

where$f%5f11f2, @f#5f12f2; both D andN are real,
N is even, andD is causal. Therefore,

]G1

]f1~x!
5

1

2E dy$D~x,y!$f%~y!1@f#~y!D~y,x!

12iN~x,y!@f#~y!%1O~f2!, ~A3!

and

P1252 iN~x,y!1
1

2
@D~x,y!2D~y,x!#. ~A4!

The real part ofP12 is odd, and its imaginary part even
which shows that its Fourier transform is purely imagina
Then we write

P12~x,y!5E d4p

~2p!4
eip(x2y)P12~p!, ~A5!

then the identityP12* (x,y)52P12(y,x) becomes indeed
P12* (p)52P12(p).

We may use the same argument to find thatP21(x,y)
5P12(y,x), so P21(p)5P12(2p) is also imaginary. We
also find

P115 iN~x,y!1
1

2
@D~x,y!1D~y,x!# ~A6!

from where ImP11(p)5( i /2)(P121P21).

APPENDIX B: Šv‹ AND Šv3
‹

Our objective is to compute

^v3&5
1

2p2EM

`

dv v3@v22M2#1/2f 0~11 f 0!,

^v&5
1

2p2EM

`

dv v@v22M2#1/2f 0~11 f 0!.
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Recall the identity

v f 0~11 f 0!5T2
] f 0

]T
. ~B1!

This and Eq.~2! may be used to establish the identity

^v3&2M2^v&53T~p1r!53T2
dr

dT
cs

2 . ~B2!

Similarly,

^v3&2
1

2
TM ,T

2 ^v&5T2
dr

dT
. ~B3!
s

-
.

-

12501
So

^v3&5T2
dr

dT

FM22
3

2
TM ,T

2 cs
2G

FM22
1

2
TM ,T

2 G ;

^v&5T2
dr

dT

@123cs
2#

FM22
1

2
TM ,T

2 G . ~B4!
es
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