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Monopole dynamics and BPS dyons inNÄ2 super-Yang-Mills theories
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We determine the low-energy dynamics of monopoles in pureN52 Yang-Mills theories for points in the
vacuum moduli space where the two Higgs fields are not aligned. The dynamics is governed by a supersym-
metric quantum mechanics with potential terms and four real supercharges. The corresponding superalgebra
contains a central charge but nevertheless supersymmetric states preserve all four supercharges. The central
charge depends on the sign of the electric charges and consequently so does the BPS spectrum. We focus on
the SU~3! case where certain BPS states are realized as zero modes of a Dirac operator on Taub-NUT space
twisted by the triholomorphic Killing vector field. We show that the BPS spectrum includes hypermultiplets
that are consistent with the strong- and weak-coupling behavior of Seiberg-Witten theory.

PACS number~s!: 14.80.Hv, 12.60.Jv
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I. INTRODUCTION

The Bogomol’nyi-Prasad-Sommerfield~BPS! spectrum of
monopoles and dyons is an important nonperturbative fea
of supersymmetric Yang-Mills theories. At weak couplin
one can determine the BPS spectrum using semiclas
techniques. Following@1,2#, the BPS spectrum ofN52 and
N54 theories was studied in a number of papers@3–6# at
points in the moduli space of vacua where only a sin
Higgs field was involved or, more precisely, where all of t
Higgs fields were aligned. In these cases one studies ce
supersymmetric quantum mechanics models with the ta
manifold given by the moduli space of classical BPS mo
pole solutions.

New features arise when one studies the spectrum
points in the moduli space where the Higgs fields are
aligned@7–12#. For theories withN54 supersymmetry, the
BPS bound is determined by two complex central char
that appear in the supersymmetry algebra. For aligned H
fields the two charges are necessarily equal and a BPS
preserves 1/2 of the supersymmetry. When the six Hi
fields are not aligned the central charges can be different
then the BPS states preserve 1/4 of the supersymmetry.

The low-energy dynamics of monopoles for nonalign
Higgs fields inN54 theories was recently studied by Ba
et al. @13#. The supersymmetric quantum mechanics is s
based on the same BPS monopole moduli space, but is
supplemented by a supersymmetric potential term whic
constructed from a set of triholomorphic Killing vector field
that generate unbroken U~1! gauge symmetries. It was no
ticed in Ref.@12# that this potential naturally appears in th
expression for the energy of BPS states, while Baket al.
later showed how the same potential occurs in the lo
energy dynamics, albeit with an important multiplicative fa
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tor of 1/2, and used the resulting Lagrangian to study
spectrum ofN54 Yang-Mills, including 1/4 BPS states.

In this paper we will analyze analogous issues for p
N52 supersymmetric Yang-Mills theories. Since theN52
supersymmetry algebra has one complex central cha
there can only be BPS states preserving 1/2 of the supers
metry. Since the pureN52 Yang-Mills theory can be em
bedded in theN54 theory, it is not surprising that the cen
tral charge is one of the central charges that appear in
N54 theory. It is interesting that the otherN54 central
charge also appears as a bound on the classical mass o
ons, but it is no longer related to the preservation of sup
symmetry. If this latter bound is stronger than the BPS bou
for a given set of charges, then no BPS state can exist w
those charges.

At points in the vacuum moduli space of pureN52
Yang-Mills theories where the Higgs fields are aligned, t
low-energy dynamics is a supersymmetric quantum mech
ics on the moduli space of BPS monopoles with four r
supersymmetries@1#. The BPS states correspond to harmon
spinors on the monopole moduli space~or, equivalently, on a
hyper-Kähler manifold, harmonic holomorphic forms!. This
follows from the simple fact that one of the low-energy s
perchargesQ is proportional to a Dirac operator on th
moduli space,

D52 igm¹m , ~1!

with covariant derivative on the moduli space¹, and its
square gives the supersymmetric sigma-model Hamilton

Q25
1

2
D 25H0 . ~2!

With two Higgs fields active, we will argue that the low
energy dynamics includes a supersymmetric potential t
as in theN54 theories@13#. The only difference from the
N54 case is that the number of fermions and the numbe
supercharges is reduced by half. We will write down th
low-energy Lagrangian explicitly in Sec. III. The supe
©2000 The American Physical Society12-1
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charge is now given by the Dirac operator twisted by a
holomorphic vector fieldG. The superalgebra then has th
general form

Q25
1

2
~D2gmGm!25H2Z, ~3!

whereH is the modified Hamiltonian, andZ is a real central
charge defined by the Lie derivative alongG,

Z52 iLG , ~4!

and measures a linear combination of electric charges.
The BPS states withH5Z preserve not only the supe

chargeQ but, as we will show, all four supercharges. This
consistent with preservation of 1/2 of the spacetime sup
symmetry. It is interesting to note that if we flip the signs
the electric charges so thatZ→2Z, the state will no longer
be BPS. This should be contrasted with theN54 theory,
where BPS states with electric charges of both signs m
occur and break a further half of the supersymmetries
general.

We will analyze in some detail the simplest case of SU~3!
broken to U(1)3U(1) by two adjoint Higgs fields. In par
ticular we will focus on BPS states with a (1,1) magne
charge. The BPS monopole moduli space for this cas
given by R33(R3M )/Z where M is Taub-Newman-Unti-
Tamburino~Taub-NUT! space@5,14#. The BPS spectrum is
then determined by solving the Dirac equation on the Ta
NUT manifold twisted by the triholomorphic Killing vecto
field and we will be able to utilize the results of Pope w
studied precisely the same operator in@16#.

An early analysis of the BPS spectrum ofN52 SU~3!
Yang-Mills theories in the weak-coupling regime was carr
out in the context of Seiberg-Witten theories@17# by Fraser
and Hollowood@18#. Acting with semiclassical monodrom
transformations on purely magnetic states, they argued
in a certain part of the vacuum moduli space there sho
exist hypermultiplets with magnetic charge (1,1) and elec
charge (n,n21) with arbitrary integern. Since the mono-
dromy cannot alter the supermultiplet structures, all of th
dyons fill out hypermultiplets. By solving the low-energ
dynamics of two distinct monopoles, we will find that the
are particular cases of more general states with elec
charges (m,l ), where integersm and l are such thatm. l .
The size of supermultiplet of the BPS state grows linea
with the positive integerm2 l .

This paper is organized as follows. Section II will briefl
summarize the classical energy bound of the pureN52
Yang-Mills theory. We will show that there are two boun
on the classical energy and only one of them correspond
a supersymmetric BPS bound. In Sec. III we will present
supersymmetric quantum mechanics with potential t
should describe the low-energy dynamics of monopoles
dyons. We analyze the conditions for preserved supers
metry and use this in Sec. IV to analyze the BPS spect
for the case of SU~3!. In Sec. V, we summarize some of th
previously known results on the spectrum of pure SU~3!
Seiberg-Witten theory from monodromies as well as stro
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coupling singularities in the vacuum moduli space, and sh
that the results are consistent with those in Sec. IV. We c
clude in Sec. VI.

II. BPS BOUND

The N52 super-Yang-Mills Lagrangian is given by

L5
1

2
trH 2

1

2
FmnFmn1Dmf IDmf I1e2@f1,f2#2

1 i x̄GmDmx2ex̄@f1,x#2 iex̄g5@f2,x#J , ~5!

wheref I , I 51,2, denote the two real Higgs fields,Dmf I

5]mf I2 ie@Am ,f I #, andx is a Dirac spinor and all fields
are in the adjoint representation of the gauge groupG. The
classical vacuum moduli space demands that@f1,f2#50;
we may choose the asymptotic values of the Higgs fie
along the positivez axis, say, to be in the Cartan subalgeb
f I5fI

•H, wherefI are vectors of dimensionr 5rank(G).
This does not completely fix the gauge transformations
one has the freedom to perform discrete gauge transfor
tions by elements of the Weyl group. These can be fixed
demanding, for example, thatf1

•ba>0 for a given set of
simple rootsba of the Lie algebraG of G. We will only
consider points in the moduli space of vacua where the s
metry is maximally broken to U(1)r .

For a given vacuum we can define electric and magn
charge two-vectors

QW e5tr R dSiEifW , QW m5tr R dSiBifW , ~6!

with i 51,2,3 andfW 5(f1,f2). These can be written as

Qe
I 5fI

•q, Qm
I 5fI

•g, ~7!

where we have introduced the electric and magnetic cha
vectors given by

q5ene
aba,

g5
4p

e
nm

a ba* , ~8!

respectively, whereba are the simple roots,ba* are the
simple coroots ofG, nm

a are the topological winding num
bers, andne

a are, in the quantum theory, the electric quantu
numbers.

By determining the central charges that appear in the
persymmetry algebra as in@15# we can determine the BPS
bound:

M>uZ25~Qe
12Qm

2 !1 i ~Qm
1 1Qe

2!u. ~9!

Note that if we introduce a complex rescaled Higgs vec
A5e(f11 i f2) and rescale the charge vectors viaq̂5q/e
and ĝ5(e/4p)g, then the BPS condition becomesM
5uA•q̂1AD•̂gu where AD5( i4p/e2)A which is the form
familiar from Seiberg-Witten theory~for vanishingu) @17#.
2-2



g
o
t t
th

a
io

th

he
u

es

m
-
et

. A
w

s
ar

f
su
a
n
n

gy
e

g
n

d

e

s is

n by
-

t
with
ics
are
the

has
s,
ctric

-

olu-

the

lly

MONOPOLE DYNAMICS AND BPS DYONS INN52 . . . PHYSICAL REVIEW D 61 125012
It is illuminating to rederive the BPS bound usin
Bogomol’nyi’s method of rewriting the energy as a sum
squares plus conserved charges. Indeed we will see tha
gives rise to two bounds on the classical energy. Since
bosonic part of theN52 Lagrangian differs from theN54
theory only in the fact that there are two Higgs fields inste
of six Higgs fields, one can immediately adapt the derivat
of the general BPS bound for theN54 theory@7,10# to the
N52 case. One finds that the most stringent bound on
mass is given by

M>AuQW eu21uQW mu212uQW euuQW musinj

5Max~AuQW eu21uQW mu262@Qm
2 Qe

12Qm
1 Qe

2!#, ~10!

where 0<j<p is the angle between the two 2-vectorsQW e

andQW m . This is equivalent to

M>MaxuZ65~Qe
16Qm

2 !1 i ~Qm
1 7Qe

2!u. ~11!

In N54 theories,Z6 appear as central charges in t
supersymmetry algebra. If a state saturates the BPS bo
~11!, it will preserve 1/4 of the supersymmetry. In cas
whereZ15Z2 , which occurs when the angle betweenQW e

andQW m vanishes, the state will preserve 1/2 of the supersy
metry. By contrast, inN52 theories there is only one com
plex central charge that appears in the supersymm
algebra,1 Z2 , giving rise to the BPS bound~9!. A state satu-
rating this bound will preserve 1/2 of the supersymmetry
classical soliton can only saturate the larger of the t
bounds,uZ6u. Thus, if it so happens thatuZ2u,uZ1u, then
there can be no classical BPS soliton with such charge
such a vacuum. In particular, suppose that a state of ch
(g,q) saturates the BPS bounduZ2u.uZ1u. Then, for a state
of charge (g,2q), the BPS bounduZ2u will be smaller than
the classical energy bounduZ1u. In the asymptotic region o
vacuum moduli space where a semiclassical analysis is
able the quantum corrections to the classical soliton m
will be small and we conclude that that the latter state can
be BPS saturated. This asymmetry with respect to the sig
the electric charge is a generic feature of theN52 dyon
spectrum. This feature will be manifest in the low ener
superalgebra derived in Sec. III and will be further analyz
for the specific example of SU~3! in Sec. IV.

With this knowledge in mind, let us continue explorin
the energy bound further. Defining the linear combinatio
of Higgs fields via

a5cosaf12sinaf2,

b5sinaf11cosaf2, ~12!

using the arguments of@7,10# the mass bound is saturate
when

Ei56Dia,

1If f2→2f2 in Eq. ~5!, the central charge would beZ1 .
12501
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Bi5Dib, ~13!

and the anglea is constrained to be

tana5
Qm

1 7Qe
2

Qm
2 6Qe

1 . ~14!

In addition, in the gaugeA052a all fields are static and
Gauss’ law becomes

D2a2e2
†b,@b,a#‡50. ~15!

Note that the second equation in Eq.~13! is the usual BPS
equation for a single Higgs field.

In terms of the vectorsa,b, the mass bound can then b
written

M>Max~6a•q1b•g!, ~16!

and the constraint~14! is replaced with

a•g56b•q. ~17!

It should be emphasized thatfI and nota,b specify the point
in vacuum moduli space where a semiclassical analysi
relevant2 since the latter depend ong,q via the anglea.

Note that for gauge group SU~2!, in order that@f1,f2#
50, f1 must be proportional tof2. For finite energy con-
figurations we then deduce thatQW e is proportional toQW m and
hence the only bound on the mass is the BPS bound give
M2>(QW e)

21(QW m)2 as in@15#. It is perhaps worth comment
ing that even for gauge group U~1! there are infinite energy
configurations withQW e not proportional toQW m @19#.

III. LOW-ENERGY DYNAMICS OF MONOPOLES
AND DYONS

For a single adjoint Higgs field, it is well known tha
classical bosonic dyons can be described as monopoles
some internal momentum excited. The low-energy dynam
is determined by a sigma model whose classical orbits
geodesics on the moduli space of monopole solutions. In
case of maximal symmetry breaking, the moduli space
U(1)r symmetry, arising from global gauge transformation
and the corresponding momenta are the conserved ele
charges.

It was argued in@10# that one can similarly analyze solu
tions of Eqs. ~13!,~15! by constructing a modified low-
energy dynamics on monopole moduli spaces. Given a s
tion of the BPS equationB5Db, the other BPS equation
~15! is solved by any gauge-zero mode of the solution. In
case of widely separated fundamental monopoles@20# with
respect tob, the solution can be thought of as classica
bound dyons~with respect tob). Using this information, it

2This can be further illustrated forN54 Yang-Mills theory. To
ensure a duality invariant BPS mass formula,fI are invariant while
a,b transform under SL(2,Z) duality because the anglea trans-
forms.
2-3
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GAUNTLETT, KIM, PARK, AND YI PHYSICAL REVIEW D 61 125012
was argued that the correct low-energy dynamics is de
mined by the sigma model supplemented with a poten
term. The arguments presented in@10# were in the context of
N54 theories, but since only two Higgs fields were i
volved, the arguments can be immediately adapted to thN
52 case. In particular, the bosonic Lagrangian should
given by

L5
1

2
gmnżmżn2

1

2
gmnGmGn, ~18!

whereg is the metric on the monopole moduli space, andG
is a triholomorphic Killing vector field on the moduli spac
which is associated with a certain unbroken U~1! gauge sym-
metry. More precisely,G is given by

G5e a•K , ~19!

where ther Killing vectors Ka are generated by the U(1)r

unbroken gauge group acting on the moduli space.
This low-energy dynamics is a nonrelativistic approxim

tion, so we always assume slow motion in the moduli sp
of monopoles. A related but independent condition tha
needed to justify the above dynamics is that the poten
energy contribution be small compared to the rest mas
the monopoles. In particular, when we realize dyons
bound states of monopoles, the low-energy approximatio
valid only if the following condition holds:

a•q!b•g, ~20!

which is satisfied for weak coupling, since the left-hand s
;e while the right-hand side;1/e.

The above bosonic dynamics must be generalized to
clude fermions and supersymmetry. Monopoles preserve
of the N52 supersymmetry in four dimensions, so the lo
energy dynamics will have exactly four real supercharges
the absence of the potential term~i.e., when only one Higgs
field is active!, the dynamics has been derived and takes
following form @1#:

L5
1

2
~gmnżmżn1 igmnlmDtl

n!, ~21!

whereDtl
m5l̇m1Gnr

m żnlr. The addition of the bosonic po
tential G2/2 induces a term involving fermions, and the fu
supersymmetric Lagrangian with potential is given by

L5
1

2
~gmnżmżn1 igmnlmDtl

n2gmnGmGn2 iD mGnlmln!.

~22!

Assuming that the target is hyper-Ka¨hler and that the Killing
vector fieldG is triholomorphic, the action is invariant unde
the following four supersymmetry transformations:

dzm52 i elm1 i eaJ(a)m
nln,
12501
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dlm5~ żm2Gm!e1J(a)m
n~ żn2Gn!ea

2 i ealrlnJ(a)s
rGsn

m , ~23!

wheree,ea are constant one-component Grassmann odd
rameters. Note that the two-formdG is ~1,1! with respect to
all complex structures whenG is triholomorphic. This in turn
implies that dG is anti-self-dual. The commutator of tw
different supersymmetry transformations vanishes, wh
those of like supersymmetry transformations give rise to
combination of a time translation and the symmetry gen
ated by the Killing vector fieldG:

dzm5kGm,

dlm5kGm
,nln. ~24!

This supersymmetric quantum mechanics thus has all
features we require and on this basis we will assume that
in fact the correct description of the low energy dynamic

To quantize we first introduce a frameem
A and definelA

5lmem
A which commute with all bosonic variables. The r

maining canonical commutation relations are then given

@zm,pn#5 idn
m ,

$lA,lB%5dAB. ~25!

We can realize this algebra on spinors on the moduli sp
by lettinglA5gA/A2, wheregA are gamma matrices. Sinc
the moduli space is hyper-Ka¨hler, an equivalent quantizatio
is obtained using holomorphic differential forms. The sup
covariant momentum operator defined by

pm5pm2
i

4
vmAB@lA,lB#, ~26!

wherevmB
A is the spin connection, then becomes the cova

ant derivative acting on spinorspm52 iD m . Note that

@pm ,ln#5 iGmr
n lr,

@pm ,pn#52
1

2
Rmnrslrls. ~27!

The supersymmetry charges take the form

Q5lm~pm2Gm!,

Qa5lmJm
(a)n~pn2Gn!. ~28!

Introducing the spin charges

Sa5
1

2
lmlnJmn

(a) , ~29!

satisfying

@Sa,Sb#54eabcS
c, ~30!

we have
2-4
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MONOPOLE DYNAMICS AND BPS DYONS INN52 . . . PHYSICAL REVIEW D 61 125012
Qa5@Sa,Q#,

@Qa,Sb#5dabQ1eabcQc. ~31!

The algebra of supercharges is given by

$Q,Q%52~H2Z!,

$Qa ,Qb%52dab~H2Z!, ~32!

$Q,Qa%50,

where the HamiltonianH and the central chargeZ are given
by

H5
1

2 S 1

Ag
pmAggmnpn1GmGm1 ilmlnDmGnD ,

~33!

Z5Gmpm2
i

2
lmln~DmGn!. ~34!

Note that the operatoriZ is the Lie derivativeLG acting on
spinors~see, e.g.,@21#!,

LG[DG1
1

8
@gm,gn#DmGn . ~35!

Although the algebra of supercharges contains a cen
chargeZ, we see that the states will either preserve all fo
supersymmetries of the supersymmetric quantum mecha
if H5Z or none. This is entirely consistent with the fact th
the parentN52 field theory has a complex central char
and hence BPS states preserve 1/2 of the eight field th
supercharges, while generic states preserve none of the
persymmetry~of course the vacuum preserves all of the s
persymmetry!. The BPS bound states satisfyingH5Z are
obtained by finding the normalizable zero modes of the
lowing Dirac operator on the moduli space:

QC5
1

A2
gm~2 i¹m2Gm!C50. ~36!

The BPS states of theN52 theory are obtained by solv
ing this equation on the monopole moduli space specified
the Higgs fieldb. The spin content of the supermultiplets w
be the tensor product of that of a half-hypermultiplet, (0
61/2), which comes from the noninteracting center-of-m
fermions, with the spin of the bound states on the relat
moduli space. In the simplest case of a singlet bound s
we get a full hypermultiplet when combined with the corr
sponding states from the antimonopole sector.
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Note that BPS states are only possible if theZ eigenvalue
is non-negative, sinceH is non-negative.3 From Eq.~19! we
see that this eigenvalue is given by a linear combination
the electric charges. Since classical bosonic dyonic bo
states should exist for both signs of the electric charge~recall
the BPS bound and the mass bound discussed in Sec. II!, we
expect ‘‘wrong-sign’’ non-BPS dyons as quantum bou
states, unless the potentialG2/2 is too weak. Such states wi
solve only the second order Schro¨dinger equation,

HC5EC, ~37!

and will break all of the supersymmmetries. Because of t
these states will form longerN52 supermultiplets. For ex-
ample, the smallest possible non-BPS multiplet has deg
eracy 16 arising from the four states coming from the cen
of-mass fermions with an additional factor of 4 arising fro
the supercharges acting on the bound states on the rel
moduli space. This multiplet has highest spin 1. It is identi
to the N54 vector multiplet and is a long multiplet with
respect toN52 supersymmetry algebra. In the rest of pap
we will consider BPS bound states only.

IV. BPS DYONS IN NÄ2 SU„3… YANG-MILLS THEORY

We now use the supersymmetric monopole dynamics
analyze the special case of two distinct monopoles in p
N52 SU~3! Yang-Mills theory. As we discussed, when tw
Higgs fields are involved one considers this the monop
moduli space determined byb and the effects ofa are incor-
porated via the potential terms. Recall that for the case o
single Higgs field classical SU~3! monopoles can be built ou
of two distinct species of monopoles, known as fundamen
monopoles. The magnetic charges of these fundame
monopoles correspond to the two simple roots of SU~3! Lie
algebra which are defined by the asymptotic behavior of
Higgs field@20#. When two Higgs fields are involved we us
the expectation value ofb to specify the simple rootsa, b
by demandingb•a>0 andb•b>0. This is illustrated in the
root diagram in Fig. 1. We take the normalization such t
a25b251 and thusa•b521/2.

Dyons built on a singlea or a singleb magnetic charge
are easy to find. The moduli space is flat,R33S1, and one
obtains integral electric charges by exciting moment
along the internal U~1! angle, which give rise to integra
electric charges parallel to the magnetic charge. The poss
charges (ĝ,q̂)[(ge/4p,q/e) are

~a,na!, ~b,mb!, ~38!

for integersn and m. The potential term in the quantum
mechanics is constant and just contributes to the BPS m
The quantization of the free fermions gives a ha

3This can easily be seen by introducing a complex conjuga
operatorQ* 5gm(1 i¹m2Gm)/A2. It satisfies the identity (Q* )2

5H1Z, so that we have 2H5Q21(Q* )2, which is clearly non-
negative.
2-5
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GAUNTLETT, KIM, PARK, AND YI PHYSICAL REVIEW D 61 125012
hypermultiplet with spin content (0,0,61/2) which combines
with the charge conjugate states to form a full hypermult
let.

Dyons with magnetic chargea1b are more difficult to
analyze since the moduli space is now eight dimensio
The exact metric is known@14,5# and it factors into a center
of-mass piece and a relative moduli space. The center
mass part is flat, with metric given by

dsc.m.
2 5~m11m2!dXW 21

16p2

e4~m11m2!
dj2, ~39!

where XW is a three-vector that encodes the center-of-m
position of the two monopoles, andj is an internal phase
Here we introduced the masses of the two fundame
monopolesm154pb•a/e andm254pb•b/e.

The relative moduli space is more complicated and
given by the Taub-NUT metric

dsrel
2 5S m1

2p

e2r
D drW21

4p2/e4

m12p/e2r
@dc1wW ~rW !•drW#2,

~40!

whererW is the relative position vector, whilec is an angular
coordinate of period 4p. The reduced massm is defined as
m1m2 /(m11m2). The three-vectorwW (rW) is the Dirac poten-
tial such that¹3wW (rW)52rW/r 3. The eight-dimensional, tota
moduli space is then given by

M5R33
R13MTN

Z
, ~41!

whereMTN is the Taub-NUT manifold. The identificatio
mapZ,

~j,c!5S j12p,c1
4pm2

m11m2
D , ~42!

arises from the relationships

j5j11j2 , c52~m1j22m2j1!/~m11m2!, ~43!

FIG. 1. The root diagram of SU~3! Lie algebra. Considering the
Higgs expectation valueb as a vector in the root space definesa
andb to be the simple roots.
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where j i are internal U~1! angles of the two fundamenta
monopoles, respectively, with eachj i having period 2p.

In the special case thatm15m2 , j becomes periodic by
itself with the range of@0,4p) and the moduli space get
simplified a bit,

M5R33
S13MTN

Z2
. ~44!

The Z2 action shiftsc and j by 2p simultaneously. The
half-integer-quantized momentum alongj corresponds to the
overall U~1! charge in units ofe(a1b), while the half-
integer-quantized momentum alongc corresponds to the
relative U~1! charge in units ofe(a2b). Because of theZ2
action, under which the wave function should be invaria
the two momenta are correlated such that either both
integers or both are half integers.

When the second Higgs expectationa is turned on, the
low-energy dynamics is twisted by the triholomorphic vec
fields. The moduli space has two triholomorphic isometr
Ka’s, generated by]/]j i or, equivalently, generated by]/]c
and]/]j. The relevant triholomorphic vector fieldG can be
decomposed into two orthogonal pieces

G5e a•K5eS āT

]

]j
1ā

]

]c D , ~45!

where āT and ā are defined asa•(a1b) and a•(a2b),
respectively. The potential associated with]/]j is a constant
and accounts for an important contribution to the total el
tric ~or excitation! BPS energy when an electrica1b charge
is excited. The potential associated with]/]c is position
dependent, and leads to interesting dyonic bound sta
Thus, the interaction between the two fundamental mo
poles is dictated by the low energy supersymmetric quan
mechanics on Taub-NUT space, twisted by the triholom
phic vector fieldG̃[eā]/]c.

Given this and the results of the previous section, to
termine the BPS states with magnetic chargeg54p(a
1b)/e we need to find normalizable solutions to the Dir
equation

gm~2 i¹m2G̃m!C50, ~46!

where¹ is a covariant derivative with respect to Taub-NU
space. This particular problem has been solved by Pope
different context@16# and we can summarize his results
follows. Letn be the half-integral charge of the stateC with
respect to2 iL]c

. The spectrum is different depending on th

sign of ān: for negative or vanishingān, no normalizable
bound state exists; for positiveān, there exists a set ofu2nu
normalizable states, forunu,(4p2/e3m)uāu, which form an
angular momentumunu21/2 multiplet.4

4The restriction of the BPS spectrum tounu,(4p2/e3m)uāu is
reminiscent of 1/4 BPS dyon spectrum inN54 theories@8,10#.
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TABLE I. The number of states with various eigenvalues ofJ3.

J3 unu unu21/2 unu21 ••• 2unu11/2 2unu

Degeneracy 1 2 2 ••• 2 1
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One must consider the full moduli space to construct
actual wave function. The electric charges of the state
determined by momenta alongc andj. Taking into account
theZ2 identification in Eq.~44! in the case thatm15m2, the
general electric charge is given by

q5e~k1n!a1e~k2n!b, ~47!

where thej momentumk is ~half-!integer whenevern is
~half-!integer. In other words,

q5e n~a1b!22en b. ~48!

Although we derived this for the special case when
masses of the two fundamental monopoles are equal,
form is valid more generally.

The center-of-mass part of the moduli space also gi
rise to an additional degeneracy factor. The four free fer
onic partners toXW andj generate a half-hypermultiplet struc
ture of degeneracy 4. Thus, for each bound state wave f
tion of charge (n,k), a single BPS supermultiplet of th
highest spinunu is formed. The degeneracy of these sup
multiplets is summarized in Table I.

In particular, the smallest possible multiplet is the ha
hypermultiplet associated withn51/2 ~for positive ā) or n

521/2 ~for negativeā). Combined with charge conjugat
states, it forms a full hypermultiplet of theN52 theory. We
thus find an infinite tower of hypermultiplets with electr
charge given byq5e n(a1b)7e b, for ā positive or nega-
tive, respectively, as a subset of the more general BPS s
with electric charge~48!.

In the limit of ā50 it is known that a purely magneti
BPS bound state of onea and oneb monopole does no
exist. Indeed such a state corresponds to a holomorphic
monic form on Taub-NUT space and its existence wo
have contradicted theN54 S-duality prediction of a unique
anti-self-dual harmonic form. Here we have found that t
feature persists for more general vacua whenāÞ0.

V. CONSISTENCY WITH SEIBERG-WITTEN THEORY

In Sec. IV we found the complete BPS spectrum of dyo
for magnetic chargesa, b, anda1b, for values ofb where
where thea andb monopoles are approximately fundame
tal. These states include dyons in hypermultiplets and
now comment how this subsector relates to the known res
of Seiberg-Witten theory.

The weak-coupling spectrum of pure SU(N) theory was
studied by Fraser and Hollowood by analyzing monodro
transformations on the vacuum moduli space@18#. Starting
with the hypermultiplets corresponding to fundamen
monopoles in regions where only a single Higgs field is n
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vanishing, the monodromy transformations predict additio
hypermultiplets. For the case of SU~3!, the vacuum moduli
space splits into two disjoint regions separated by a curve
marginal stability. In one region there are hypermultiple
with charge vectors (ĝ,q̂) given by

~a,na!,

~b,nb!, ~49!

„a1b,n~a1b!2b…,

for any integern. In the second region the states have ide
tical charges except that the electric charge of the third se
states has the formn(a1b)1b. Consistency then require
that the states with magnetic chargea1b decay as they
cross the curve of marginal stability. This is entirely cons
tent with the spectrum of hypermultiplets that we found
Sec. IV.

The curious asymmetry of the spectrum with respect
the sign of the electric charge also manifests itself in
strong-coupling behavior of Seiberg-Witten vacuum mod
space. For example, the asymmetry shows up in the cha
of those BPS states that become massless at strong-cou
singularities. The electromagnetic charges of such state
pure SU~3! have been initially worked out explicitly on a
symplectic basis@23# and later in terms of weight vector
@18#.

Let us make some additional observations concerning
singularity structure of the SU~3! theory. Recall that the
moduli space of vacua can be described in terms of a spe
curve of genus 2, which can be written in the Weierstra
form as follows@22#:

y25)
i 51

3

~x2f i !
22L6. ~50!

Here thef i ’s satisfy the traceless condition( if i50 and the
vacuum moduli space is parametrized by the gauge-invar
combinationsu[f1f21f2f31f3f1 andv[f1f2f3.

The x plane has a set of three square-root branch c
which, for a small UV cutoffL, are located near thef i ’s.
Some of the six end points of these branch cuts can m
pairwise for special values of thef i ’s. Along such hypersur-
faces, a certain charged state becomes massless and g
ates a singularity of complex codimension 1 on the mod
space. WithLÞ0, there are six different ways that this ca
happen in terms of thef i coordinates, and therefore six di
ferent charged states that can become massless along
hypersurfaces. The six homology cycles of the Riemann s
face have some mutual intersection numbers, which are
lated to the Schwinger products between the correspon
2-7
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dyons. From this one can deduce that the electric and m
netic charges of these six dyons are given in a symple
basis by@23#,

~1,0;1,0!, ~1,0;21,1!,

~0,1;21,1!, ~0,1;0,21!, ~51!

~1,1;0,1!, ~1,1;21,0!.

Here (m1 ,m2 ;n1 ,n2) represents a charge of the formm1b1
1m2b21n1a11n2a2 with ai and bi a charge basis whos
pairwise Schwinger products are such that 2(ai(bj )5d i j
and a1(a2505b1(b2. This does not fix the electromag
netic charges uniquely. First of all, there are monodrom
on the moduli space which must be fixed by hand. Furth
more, the same intersection matrix shows up regardles
the number of flavors in the theory, which implies that the
must be certain ambiguity in translating the symplectic ba
to its counterpart in the weight lattice. Part of the ambigu
is resolved by noting that near each pair of singularities t
extend far out into the asymptotic region, the local phys
should resemble that of SU~2!. Each of the states must thu
have a unit magnetic charge that corresponds to one of t
positive rootsa, b, a1b. Finally, when we discuss theo
ries with adjoint matter only, the electric charges must a
fall onto the root lattice, and this knowledge determines
charges up to the monodromies.

Let us choose the monodromy so that (1,0;1,0) is a p
monopole with charge (a,0) and that (0,1;0,21) is a pure
monopole with charge (b,0). This is possible because

~a,0!(~b,0!5a•020•b50. ~52!

Using the above arguments, one then finds the follow
minimal set of charge vectors on the root lattice:

~a,0!, ~a,a!,

~b,2b!, ~b,0!, ~53!

~a1b,2b!, ~a1b,a!.

In this set of charges, we again find the prominent feature
found in the low-energy dynamics, namely, the asymme
with respect to the sign of electric charges. Furthermore,
suming that there is no marginal stability domain wall for t
last two states in passing to the asymptotic region we wor
in, this also tells us that there must be dyonic bound state
charges (a1b,2b) and (a1b,a) in hypermultiplets,
which are exactly the lowest-lying bound states found in S
IV.

VI. CONCLUSIONS

We have presented a low-energy effective dynamics
allows one to study the weak-coupling spectrum of dyons
12501
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pure N52 Yang-Mills gauge theory for general gaug
groups in a systematic manner. For aligned Higgs field
has been known for some time that one should study a
persymmetric quantum mechanics on the BPS monop
moduli space@1#. For generic vacua, we have argued th
supersymmetric quantum mechanics is supplemented b
potential term constructed from the triholomorphic Killin
vectors on the moduli space. The BPS states correspon
normalizable zero modes of a Dirac operator twisted by
Killing vectors. It would be interesting to derive this dynam
ics directly by generalizing the arguments of@1#.

We used the formalism to study the semiclassical B
spectrum for the pureN52 SU~3! gauge theory. The vecto
b, defined by the Higgs vacuum expectation values~VEVs!
and by the choice of the Weyl chamber, specifies a basi
simple roots in the algebra. When the magnetic charge
given by a simple roota or b, there is a tower of dyons in
hypermultiplets with parallel electric charges. A more inte
esting structure emerges for a magnetic charge given ba
1b. First, the electric charge vector is necessarily not pa
lel to the magnetic charge, and in particular, there is
purely magnetic BPS state of this charge. Second, there
tower of hypermultiplets with electric charge that are cons
tent with previous results in Seiberg-Witten theory in th
they are in accordance with semiclassical monodromy
strong-coupling singularities. More generally, the hyperm
tiplets are a special case of an infinite tower of BPS sta
with electric charge (m,l ), with either m. l or m, l , de-
pending on the sign of the second Higgsa, with maximal
spin um2 l u/2.

It would be interesting to extend these results to a m
general magnetic charge, but as a result of a lack of un
standing of the relevant SU~3! monopole moduli spaces, thi
appears difficult. A more accessible problem would be
generalize the results of this paper to analyze the BPS s
trum for an SU(N) gauge group with a magnetic charg
given by (1,1, . . . ,1).

The effective Lagrangian in this paper is for the ca
when hypermultiplets in theN52 Yang-Mills theory can be
ignored. If there are light hypermultiplets, one must intr
duce new quantum mechanical degrees of freedom ass
ated with them. Presumably, there is a way to couple them
our Lagrangian while preserving the four real supercharg
However, it goes beyond the scope of this paper, and wil
worked out elsewhere.
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