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We determine the low-energy dynamics of monopoles in pN#e2 Yang-Mills theories for points in the
vacuum moduli space where the two Higgs fields are not aligned. The dynamics is governed by a supersym-
metric quantum mechanics with potential terms and four real supercharges. The corresponding superalgebra
contains a central charge but nevertheless supersymmetric states preserve all four supercharges. The central
charge depends on the sign of the electric charges and consequently so does the BPS spectrum. We focus on
the SU3) case where certain BPS states are realized as zero modes of a Dirac operator on Taub-NUT space
twisted by the triholomorphic Killing vector field. We show that the BPS spectrum includes hypermultiplets
that are consistent with the strong- and weak-coupling behavior of Seiberg-Witten theory.

PACS numbe(s): 14.80.Hv, 12.60.Jv

[. INTRODUCTION tor of 1/2, and used the resulting Lagrangian to study the
spectrum ofN=4 Yang-Mills, including 1/4 BPS states.
The Bogomol'nyi-Prasad-SommerfiglB8PS spectrum of In this paper we will analyze analogous issues for pure

monopoles and dyons is an important nonperturbative featutd=2 supersymmetric Yang-Mills theories. Since tRe-2
of supersymmetric Yang-Mills theories. At weak coupling supersymmetry algebra has one complex central charge,
one can determine the BPS spectrum using semiclassicttiere can only be BPS states preserving 1/2 of the supersym-
techniques. Following1,2], the BPS spectrum di=2 and metry. Since the pur&l=2 Yang-Mills theory can be em-
N=4 theories was studied in a number of papg&s6] at bedded in theN=4 theory, it is not surprising that the cen-
points in the moduli space of vacua where only a singleiral charge is one of the central charges that appear in the
Higgs field was involved or, more precisely, where all of theN=4 theory. It is interesting that the oth&=4 central
Higgs fields were aligned. In these cases one studies certagarge also appears as a bound on the classical mass of dy-
supersymmetric quantum mechanics models with the targetns, but it is no longer related to the preservation of super-
manifold given by the moduli space of classical BPS mono-symmetry. If this latter bound is stronger than the BPS bound
pole solutions. for a given set of charges, then no BPS state can exist with
New features arise when one studies the spectrum dhose charges.
points in the moduli space where the Higgs fields are not At points in the vacuum moduli space of puhe=2
aligned[7-12]. For theories withN=4 supersymmetry, the Yang-Mills theories where the Higgs fields are aligned, the
BPS bound is determined by two complex central chargetow-energy dynamics is a supersymmetric quantum mechan-
that appear in the supersymmetry algebra. For aligned Higgss on the moduli space of BPS monopoles with four real
fields the two charges are necessarily equal and a BPS statapersymmetriefl]. The BPS states correspond to harmonic
preserves 1/2 of the supersymmetry. When the six Higgspinors on the monopole moduli sp&aoe, equivalently, on a
fields are not aligned the central charges can be different arfayper-Kéaler manifold, harmonic holomorphic formsThis
then the BPS states preserve 1/4 of the supersymmetry. follows from the simple fact that one of the low-energy su-
The low-energy dynamics of monopoles for nonalignedperchargesQ is proportional to a Dirac operator on the
Higgs fields inN=4 theories was recently studied by Bak moduli space,
et al. [13]. The supersymmetric quantum mechanics is still
based on the same BPS monopole moduli space, but is now D=—iy"V,, (1)
supplemented by a supersymmetric potential term which is
constructed from a set of triholomorphic Killing vector fields With covariant derivative on the moduli spade and its
that generate unbroken(l) gauge symmetries. It was no- square gives the supersymmetric sigma-model Hamiltonian:
ticed in Ref.[12] that this potential naturally appears in the
expression for the energy of BPS states, while Balal.
later showed how the same potential occurs in the low-
energy dynamics, albeit with an important multiplicative fac-
With two Higgs fields active, we will argue that the low-
energy dynamics includes a supersymmetric potential term

1
Q2=§D2=H0. 2)
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charge is now given by the Dirac operator twisted by a tri-coupling singularities in the vacuum moduli space, and show
holomorphic vector fieldG. The superalgebra then has the that the results are consistent with those in Sec. IV. We con-

general form clude in Sec. VI.
1 Il. BPS BOUND
Q*=5(D-¥"G,)*=H-Z, ()
The N=2 super-Yang-Mills Lagrangian is given by
whereH is the modified Hamiltonian, ang is a real central 1 1 | U ot 1 o
charge defined by the Lie derivative aloGg L=5tr) —5F,F*+D,¢ D ¢ +eT ¢, ¢°]
Z:_iLG, (4) . 1 L 2
+ixI'*D x—ex[ ¢ xI—iexys[¢x](, (9

and measures a linear combination of electric charges.

The BPS states witlt{=Z preserve not only the super- where ¢', 1=1,2, denote the two real Higgs field,ﬂcﬁ'
chargeQ but, as we will show, all four supercharges. Thisis =g,¢'~ie[A,, '], and x is a Dirac spinor and all fields
consistent with preservation of 1/2 of the spacetime superare in the adjoint representation of the gauge grGughe
symmetry. It is interesting to note that if we flip the signs of classical vacuum moduli space demands fhat, ¢?]=0;
the electric charges so that— — Z, the state will no longer we may choose the asymptotic values of the Higgs fields
be BPS. This should be contrasted with tNe=-4 theory, along the positive axis, say, to be in the Cartan subalgebra,
where BPS states with electric charges of both signs may'=¢'-H, where¢' are vectors of dimension=rank(G).
occur and break a further half of the supersymmetries imThis does not completely fix the gauge transformations as
general. one has the freedom to perform discrete gauge transforma-

We will analyze in some detail the simplest case of3U tions by elements of the Weyl group. These can be fixed by
broken to U(1XU(1) by two adjoint Higgs fields. In par- demanding, for example, thah*- g2=0 for a given set of
ticular we will focus on BPS states with a (1,1) magneticsimple rootsg® of the Lie algebrag of G. We will only
charge. The BPS monopole moduli space for this case isonsider points in the moduli space of vacua where the sym-
given by R®x (RXM)/Z whereM is Taub-Newman-Unti- metry is maximally broken to U(1)

Tamburino(Taub-NUT) space{5,14]. The BPS spectrum is For a given vacuum we can define electric and magnetic
then determined by solving the Dirac equation on the Taubeharge two-vectors
NUT manifold twisted by the triholomorphic Killing vector
field and we will be able to utilize the results of Pope who 2 ic 7 2 in 7
studied precisely the same operatoif 116]. Qe=tr fﬁ dSEi¢, Qm=tr 35 dSBid, ©
An early analysis of the BPS spectrum Nf=2 SU3) -
Yang-Mills theories in the weak-coupling regime was carriedWith i=1,2,3 andp=(¢*,¢?). These can be written as
out in the context of Seiberg-Witten theorigk?] by Fraser Y o
and Hollowood[18]. Acting with semiclassical monodromy Qe=¢-a, Qn=d¢-g @
transformations on purely magnetic states, they argued thgfhere we have introduced the electric and magnetic charge
in a certain part of the vacuum moduli space there shouldectors given by
exist hypermultiplets with magnetic charge (1,1) and electric

charge ,n—1) with arbitrary integem. Since the mono- q=enip?,

dromy cannot alter the supermultiplet structures, all of these

dyons fill out hypermultiplets. By solving the low-energy _Am

dynamics of two distinct monopoles, we will find that these 9= ?nmﬂ; ' ®

are particular cases of more general states with electric

charges (n,1), where integersn and| are such tham>|.  respectively, whergg® are the simple rootsg; are the

The size of supermultiplet of the BPS state grows linearlysimple coroots ofj, nj, are the topological winding num-

with the positive integem—1. bers, anch? are, in the quantum theory, the electric quantum
This paper is organized as follows. Section Il will briefly numbers.

summarize the classical energy bound of the phire?2 By determining the central charges that appear in the su-

Yang-Mills theory. We will show that there are two bounds persymmetry algebra as [i15] we can determine the BPS

on the classical energy and only one of them corresponds teound:

a supersymmetric BPS bound. In Sec. 1l we will present the 1 oo 5

supersymmetric quantum mechanics with potential that M=|Z_=(Qz— Q) +i(Qn+QQ)l. 9

should describe the low-energy dynamics of monopoles ang,e hat if we introduce a complex rescaled Higgs vector

dyons. We analyze the conditions for preserved supersym- =~ . ~.
metry and use this in Sec. IV to analyze the BPS spectrurft — &(¢ +1¢°) and rescale the charge vectors g& g/e

for the case of S(8). In Sec. V, we summarize some of the and g=(e/4m)g, then the BPS condition becomes
previously known results on the spectrum of pure(3U =|A-q+Ap-g| where Ap=(i4m/e?)A which is the form
Seiberg-Witten theory from monodromies as well as strongfamiliar from Seiberg-Witten theorgfor vanishings) [17].
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It is illuminating to rederive the BPS bound using Bi=Dib, (13
Bogomol'nyi's method of rewriting the energy as a sum of
squares plus conserved charges. Indeed we will see that thégd the angler is constrained to be
gives rise to two bounds on the classical energy. Since the 5
bosonic part of th&N=2 Lagrangian differs from thél=4 N Qm+ Qe
theory only in the fact that there are two Higgs fields instead ani Qé'
of six Higgs fields, one can immediately adapt the derivation
of the general BPS bound for tié=4 theory[7,10] to the  In addition, in the gaugé\,= —a all fields are static and
N=2 case. One finds that the most stringent bound on th&auss’ law becomes
mass is given by

(14

D2a—e?[b,[b,a]]=0. (15)
M= V] Qel?+|Qnl?+21Qcl| Qusing Note that the second equation in E43) is the usual BPS
=Max( \/|Qe|2+ |©m|2i2[Qﬁ1Qé_QflﬂQg)]' (10 eqlljr?ttl(e3rnrnf(s)rofljcl tsr:zg\ll(taaci'(;?g,sbfl?tlw% mass bound can then be
where O<¢< is the angle between the two 2-vectdds writen
andQ,,. This is equivalent to M=Max(*a-q+b-g), (16)
M=Max Z.=(Qi+Q2)+i(QL+Q2)|. (11)  and the constraintl4) is replaced with
In N=4 theories,Z.. appear as central charges in the a-g==*b-q. (17)

supersymmetry algebra. If a state saturates the BPS bound . . .
(11), it will preserve 1/4 of the supersymmetry. In cases.It should be emphasized theit and nota,b specify the point

h _ hich hen th e b - in vacuum moduli space where a semiclassical analysis is
whereZ, =Z_, which occurs when the angle betweQa  rgjeyart since the latter depend apq via the anglea.

andQ,, vanishes, the state will preserve 1/2 of the supersym- Note that for gauge group $P), in order that ¢, ¢?]
metry. By contrast, ifN=2 theories there is only one com- =0, 4 must be proportional te?. For finite energy con-

plex central charge that appears in the supersymmetrM urations we then deduce that. is proportional toO... and
algebrat Z_ , giving rise to the BPS boun@®). A state satu- g M is prop @

g . . hence the only bound on the mass is the BPS bound given by
rating this bound will preserve 1/2 of the supersymmetry. AM2> 3324 (B2 as inf15], It i h h ;
classical soliton can only saturate the larger of the twa =(Qe)"+(Qm)” as in[15]. Itis perhaps worth comment-
bounds,|Z..|. Thus, if it so happens thaZ_|<|Z.|, then ing that even for gziuge group(Y there a[e infinite energy
there can be no classical BPS soliton with such charges ifonfigurations withQ, not proportional toQ, [19].
such a vacuum. In particular, suppose that a state of charge
(9,9) saturates the BPS bouhd_|>|Z,|. Then, for a state lll. LOW-ENERGY DYNAMICS OF MONOPOLES
of charge ¢, —q), the BPS boundZ_| will be smaller than AND DYONS
the classical energy bourd . |. In the asymptotic region of . i . , -
vacuum moduli space where a semiclassical analysis is suit- For a single adjoint Higgs field, it is well known that

; . : classical bosonic dyons can be described as monopoles with
able the quantum corrections to the classical soliton mass

will be small and we conclude that that the latter state canno?ome internal momentum excited. The low-energy dynamics

be BPS saturated. This asymmetry with respect to the sign dar deterlmmed Ey a S|gr|1ja modelf whose cIIaSS|::a! orbits ar:e
the electric charge is a generic feature of fie2 dyon geodesics on the moduli space of monopole solutions. In the

spectrum. This feature will be manifest in the low energyCase of maximal symmetry breaking, the moduli space has

; - ;
superalgebra derived in Sec. Il and will be further analyzeaé‘J rgé)thzyrl]g;g;y’oi%?:\ng r]’cnrgmegr:?abzllrgatl;]geectcr)ir;jrc\)/rgjag(l)enc?ric
for the specific example of S8) in Sec. IV. P 9

With this knowledge in mind, let us continue exploring charges.

. . A It was argued if10] that one can similarly analyze solu-
the energy bound further. Defining the linear comblnatlonstions of qus (13)'[(15]) by constructing a ):nodifi)éd low-
of Higgs fields via . '

energy dynamics on monopole moduli spaces. Given a solu-

a=cosapl—sinad?, tion of the BPS equatio=DDb, the other BPS equation
(15) is solved by any gauge-zero mode of the solution. In the
b=sina¢'+ cosad?, (12)  case of widely separated fundamental monopf2&§ with

respect tob, the solution can be thought of as classically
using the arguments df7,10] the mass bound is saturated bound dyongwith respect tob). Using this information, it
when

.=+ .
Ei==Dia, 2This can be further illustrated fd{=4 Yang-Mills theory. To
ensure a duality invariant BPS mass formufé,are invariant while
a,b transform under SL(2) duality because the angle trans-
4 ¢?— — ¢? in Eq. (5), the central charge would k&, . forms.
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was argued that the correct low-energy dynamics is deter- ONF=(Z'—GH) e+ IJOL (/- G")e
mined by the sigma model supplemented with a potential v a
term. The arguments presented @] were in the context of —i €N\ ”J(a)"pl“ﬁv, (23

N=4 theories, but since only two Higgs fields were in-
volved, the arguments can be immediately adapted td\the Wheree, e, are constant one-component Grassmann odd pa-

=2 case. In particular, the bosonic Lagrangian should bgameters. Note that the two-fordG is (1,1) with respect to
given by all complex structures whe@ is triholomorphic. This in turn

implies thatdG is anti-self-dual. The commutator of two
1 .1 different supersymmetry transformations vanishes, while
L= ngz”z”— igWG"G”, (18)  those of like supersymmetry transformations give rise to a
combination of a time translation and the symmetry gener-

ated by the Killing vector fields:
whereg is the metric on the monopole moduli space, &d y g

is a triholomorphic Killing vector field on the moduli space Sz*=KGH,

which is associated with a certain unbrokefi))gauge sym-

metry. More preciselyG is given by ONF=KG* \". (24
G=ea-K, (199  This supersymmetric quantum mechanics thus has all the

features we require and on this basis we will assume that it is
where ther Killing vectors K, are generated by the U(1) in fact the correct description of the low energy dynamics.

unbroken gauge group acting on the moduli space. To Euantlze we first mtroduce a fra@ and definexn”
This low-energy dynamics is a nonrelativistic approxima-:}\”eﬂ which commute with all bosonic variables. The re-
tion, so we always assume slow motion in the moduli spac&haining canonical commutation relations are then given by
of monopoles. A related but independent condition that is " o
needed to justify the above dynamics is that the potential [z%,p,]=15,,
energy contribution be small compared to the rest mass of
the monopoles. In particular, when we realize dyons as
bound states of monopoles, the low-energy approximation i
valid only if the following condition holds:

{NANBL= "B, (25)

We can realize this algebra on spinors on the moduli space
by letting\"=y"//2, wherey” are gamma matrices. Since
the moduli space is hyper-iKéer, an equivalent quantization

is obtained using holomorphic differential forms. The super-

. - ) , . covariant momentum operator defined by
which is satisfied for weak coupling, since the left-hand side

~e while the right-hand side- 1/e. i AB
The above bosonic dynamics must be generalized to in- Tu=Pu™ 7 @unsl N A7], (26)
clude fermions and supersymmetry. Monopoles preserve half

of the N=2 supersymmetry in four dimensions, so the low-wherew? is the spin connection, then becomes the covari-

a-q<b-g, (20

energy dynamics will have exactly four real supercharges. Ijynt derivative acting on spinors,= —iD , . Note that
the absence of the potential tefire., when only one Higgs
field is activg, the dynamics has been derived and takes the [, N]=1T NP,
following form [1]:
1
1 o . [WM’WV]:_ERMVPO')\’))\U' (27
£=§(ng“z”+|gw}\“Dt)\V), (21
The supersymmetry charges take the form

whereD\“=\#+T"* z"\". The addition of the bosonic po- Q=\¥(m,~G,),
tential G%/2 induces a term involving fermions, and the full B
supersymmetric Lagrangian with potential is given by Qa:)\MJELa)V(ﬂ-V_GV)_ (28)

1 C , , . , Introducing the spin charges
L= z(ng”z +ig,, AN“DN"=0g""G,G,—iD ,G \\7). .
22 = vy(a)
(22) S =SNNTE, (29)
Assuming that the target is hyper-Kar and that the Killing tisfvi
vector fieldG is triholomorphic, the action is invariant under satisfying
the following four supersymmetry transformations: [S?,SP]=de,p S (30)
67F=—ieN +iend @ N\, we have
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Q3=[$%,Q], Note that BPS states are only possible if theigenvalue
is non-negative, sincg is non-negativé.From Eq.(19) we
[Q3 SP]= 62PQ + €20°QC. (31) see that this eigenvalue is given by a linear combination of

the electric charges. Since classical bosonic dyonic bound
states should exist for both signs of the electric chargeall

the BPS bound and the mass bound discussed in Sewadl
expect “wrong-sign” non-BPS dyons as quantum bound

The algebra of supercharges is given by

{Q.Q}=2(H~-2), states, unless the potent(@f/2 is too weak. Such states will
solve only the second order Schinger equation,
{QaaQb}:25ab(H_Z)1 (32) HW=EW, (37)
{Q,Q,}=0, and will break all of the supersymmmetries. Because of this,

these states will form longed=2 supermultiplets. For ex-
where the Hamiltoniaf{ and the central chargg are given ~ @mple, the smallest possible non-BPS multiplet has degen-
by eracy 16 arising from the four states coming from the center-
of-mass fermions with an additional factor of 4 arising from
the supercharges acting on the bound states on the relative
1( 1 _ moduli space. This multiplet has highest spin 1. It is identical
H=5 TWM\/EQ’”WVJFG#G”MVVD#GV ; to the N=4 vector multiplet and is a long multiplet with
9 33) respect ta\=2 supersymmetry algebra. In the rest of paper,
we will consider BPS bound states only.

i IV. BPS DYONS IN N=2 SU®3) YANG-MILLS THEORY
Z=G”Tr#—§)\"“)\v(D#G,,). (34 _ _

We now use the supersymmetric monopole dynamics to
analyze the special case of two distinct monopoles in pure
Note that the operatdiZ is the Lie derivativelg acting on  N=2 SU®3) Yang-Mills theory. As we discussed, when two
spinors(see, e.g.[21]), Higgs fields are involved one considers this the monopole

moduli space determined liyand the effects oé are incor-
1 porated via the potential terms. Recall that for the case of a
L=Dg+ z[7*,7'1D,G,. (35)  single Higgs field classical S8) monopoles can be built out
8 of two distinct species of monopoles, known as fundamental
monopoles. The magnetic charges of these fundamental
Although the algebra of supercharges contains a centrahonopoles correspond to the two simple roots of BUie
chargeZ, we see that the states will either preserve all fouralgebra which are defined by the asymptotic behavior of the
supersymmetries of the supersymmetric quantum mechanidsiggs field[20]. When two Higgs fields are involved we use
if H=Z or none. This is entirely consistent with the fact thatthe expectation value df to specify the simple roota, B
the parentN=2 field theory has a complex central charge by demandind- a=0 andb- 8=0. This is illustrated in the
and hence BPS states preserve 1/2 of the eight field theorpot diagram in Fig. 1. We take the normalization such that
supercharges, while generic states preserve none of the sa?#=g?=1 and thusa: = —1/2.
persymmetry(of course the vacuum preserves all of the su- Dyons built on a singlex or a singleg magnetic charge
persymmetry. The BPS bound states satisfyifitg=Z are  are easy to find. The moduli space is flREx S, and one
obtained by finding the normalizable zero modes of the fol-obtains integral electric charges by exciting momentum
lowing Dirac operator on the moduli space: along the internal () angle, which give rise to integral
electric charges parallel to the magnetic charge. The possible

charges §,q) = (ge/4,qgle) are

1 1 —_—
QW= -"=y*(~iV,~G,) W=0. (36) (ana. (BB, -

V2

The BPS states of thd=2 theory are obtained by solv- for integersn and m. The potential term in the quantum
ing this equation on the monopole moduli space specified bj?€chanics is constant and just contributes to the BPS mass.
the Higgs fieldb. The spin content of the supermultiplets will Theé quantization of the free fermions gives a half-
be the tensor product of that of a half-hypermultiplet, (0,0,
+1/2), which comes from the noninteracting center-of-mass
fermions, with the spin of the bound states on the relative 3This can easily be seen by introducing a complex conjugated
moduli space. In the simplest case of a singlet bound statgperatorQ* = y*(+iV,—G,)/+/2. It satisfies the identity@*)2
we get a full hypermultiplet when combined with the corre- =+ 2, so that we have B#=Q?+ (Q*)?, which is clearly non-
sponding states from the antimonopole sector. negative.
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a+p

FIG. 1. The root diagram of SQ) Lie algebra. Considering the
Higgs expectation valub as a vector in the root space defines
and B to be the simple roots.

hypermultiplet with spin content (0,8,1/2) which combines

with the charge conjugate states to form a full hypermultip-

let.
Dyons with magnetic charge+ 8 are more difficult to

analyze since the moduli space is now eight dimensional,

The exact metric is knowfiL4,5] and it factors into a center-
of-mass piece and a relative moduli space. The center-o
mass part is flat, with metric given by

- 1672
A = (p1+ pp)dXP+————d&, (39
€' (p1+ o)

where X is a three-vector that encodes the center-of-mas

position of the two monopoles, arglis an internal phase.

PHYSICAL REVIEW D 61125012

where & are internal W1) angles of the two fundamental
monopoles, respectively, with ea¢hhaving period Zr.

In the special case that;=u,, & becomes periodic by
itself with the range of0,47) and the moduli space gets
simplified a bit,

SEX M1y

_p3
M=R>X 7

(44)

The 7, action shiftsyy and ¢ by 27 simultaneously. The
half-integer-quantized momentum alo&gorresponds to the
overall U1) charge in units ofe(a+ B), while the half-
integer-quantized momentum along corresponds to the
relative U1) charge in units ob(a— B). Because of th&,
action, under which the wave function should be invariant,
the two momenta are correlated such that either both are
integers or both are half integers.

When the second Higgs expectatians turned on, the
low-energy dynamics is twisted by the triholomorphic vector
fields. The moduli space has two triholomorphic isometries
K.'s, generated by/d¢; or, equivalently, generated by dys
anda/9¢. The relevant triholomorphic vector field can be

gecomposed into two orthogonal pieces

ar—+a—

€ TP’ (49

G=ea-K=e

where a; and a are defined as- (a+ B) and a- (a— B),
respectively. The potential associated witl#¢ is a constant
and accounts for an important contribution to the total elec-
tric (or excitation) BPS energy when an electret 8 charge

Here we introduced the masses of the two fundamental eycited. The potential associated withdy is position

monopolesu;=4mb- ale and u,=4mh- Ble.

dependent, and leads to interesting dyonic bound states.

The relative moduli space is more complicated and isrp,s the interaction between the two fundamental mono-

given by the Taub-NUT metric

472let [dy+ V() dip2
_ w(r)-dr]?,
w27l e?r
(40)

2
Bt =
e?r

dS$e|=

)dF2+

wherer is the relative position vector, whilg is an angular
coordinate of period #. The reduced masg is defined as

ol (ui+ ms). The three—vectovT/(F) is the Dirac poten-

tial such thatV x w(r) = —r/r3. The eight-dimensional, total
moduli space is then given by

RIX M1y

—p3
M=R>X T

(41)

where M~y is the Taub-NUT manifold. The identification
mapZ,

ATy
mit o)’

&)=\ &+2m 4+ (42

arises from the relationships

E=61+8&,  U=2(pér— mab) (patmp), (43

poles is dictated by the low energy supersymmetric quantum
mechanics on Taub-NUT space, twisted by the triholomor-
phic vector fieldG=ead/di.

Given this and the results of the previous section, to de-
termine the BPS states with magnetic chame4n(«
+ B)/e we need to find normalizable solutions to the Dirac
equation

y“(—iV,—G,)¥=0, (46)

whereV is a covariant derivative with respect to Taub-NUT
space. This particular problem has been solved by Pope in a
different contex{16] and we can summarize his results as
follows. Let v be the half-integral charge of the stabewith
respect to—i E%. The spectrum is different depending on the

sign of av: for negative or vanishing_w, no normalizable
bound state exists; for positivav, there exists a set ¢2v|

normalizable states, fdw|<(472/e3u)|al, which form an
angular momenturiiw| — 1/2 multiplet?

“The restriction of the BPS spectrum {o|<(4m%e3u)|al is
reminiscent of 1/4 BPS dyon spectrumNh=4 theorieq 8,10].
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TABLE I. The number of states with various eigenvalues) gf

J3 |v] |v|—1/2 |v|—1 —|v|+1/2 =y

Degeneracy 1 2 2 e 2 1

One must consider the full moduli space to construct thevanishing, the monodromy transformations predict additional
actual wave function. The electric charges of the state arbypermultiplets. For the case of &), the vacuum moduli
determined by momenta alongand¢. Taking into account  space splits into two disjoint regions separated by a curve of
the 7, identification in Eq.(44) in the case thatt; = u,, the  marginal stability. In one region there are hypermultiplets

general electric charge is given by with charge vectorsd,q) given by
g=e(k+v)atelk—v)B, (47) (a,na),
where the¢ momentumk is (half-)integer whenevew is (B.NB) (49)

(half-)integer. In other words,

g=e n(a+ B)—2ev B. (48) (at+B,n(a+p)—p),

Although we derived this for the special case when thef_Or any integem. In the second region the states haye iden-
masses of the two fundamental monopoles are equal thfécal charges except that the electric charge of the third set of
form is valid more generally ' " states has the form(a+ 8) + B. Consistency then requires

The center-of-mass part of the moduli space also givellat the states with magnetic charger  decay as they

fise to an additional degeneracy factor. The four free fermiToSS the curve of marginal stability. This is entirely consis-

. > . nt with th rum of hypermultipl hat we found in
onic partners tX and¢ generate a half-hypermultiplet struc- tsee(t: I\} the spectrum of hypermultiplets that we found

tpre of degeneracy 4. Thgs, for each bound St".‘te wave func- The curious asymmetry of the spectrum with respect to
t'(.)n of chf_;\rge .@’k)’ a single BPS supermultiplet of the the sign of the electric charge also manifests itself in the
h|gh_est Sp.'”"" IS for_med._ The degeneracy of these S‘Uper'strong-coupling behavior of Seiberg-Witten vacuum moduli
muItlpIets_ is summarized in Table .l' . . space. For example, the asymmetry shows up in the charges

In particular, the smallest possible multiplet is the half- ¢ e Bpg states that become massless at strong-coupling
hypermultiplet associated with=1/2 (for positivea) or v singularities. The electromagnetic charges of such states in
= —1/2 (for negativea). Combined with charge conjugate pure SU3) have been initially worked out explicitly on a
states, it forms a full hypermultiplet of tHé=2 theory. We  symplectic basi§23] and later in terms of weight vectors
thus find an infinite tower of hypermultiplets with electric [18].

charge given byj=e n(a+ B) ¥ e B, for a positive or nega- Let us make some additional observations concerning the
tive, respectively, as a subset of the more general BPS stat§igularity structure of the S@) theory. Recall that the
with electric charge49). moduli space of vacua can be described in terms of a spectral

curve of genus 2, which can be written in the Weierstrass

In the limit of a=0 it is known that a purely magnetic form as follows[22]:

BPS bound state of one and oneB monopole does not
exist. Indeed such a state corresponds to a holomorphic har- 3
monic form on Taub-NUT space and its existence would 2_ 2_ A6

X . . . = X— i) —A°. 50
have contradicted the=4 S-duality prediction of a unique y |H1 (x= ) 0
anti-self-dual harmonic form. Here we have found that this

feature persists for more general vacua when0. Here theg;’s satisfy the traceless conditidi} ¢; =0 and the
vacuum moduli space is parametrized by the gauge-invariant
V. CONSISTENCY WITH SEIBERG-WITTEN THEORY combINAtONSU= 1o+ habs+ dapy aNdV = haghobs.

The x plane has a set of three square-root branch cuts,
In Sec. IV we found the complete BPS spectrum of dyonswhich, for a small UV cutoffA, are located near the;’s.
for magnetic chargea, B, anda+ B, for values ofb where ~ Some of the six end points of these branch cuts can meet
where thea and 8 monopoles are approximately fundamen- pairwise for special values of thg’s. Along such hypersur-
tal. These states include dyons in hypermultiplets and wéaces, a certain charged state becomes massless and gener-
now comment how this subsector relates to the known resultates a singularity of complex codimension 1 on the moduli
of Seiberg-Witten theory. space. WithA # 0, there are six different ways that this can
The weak-coupling spectrum of pure SU(theory was happen in terms of the; coordinates, and therefore six dif-
studied by Fraser and Hollowood by analyzing monodromyferent charged states that can become massless along such
transformations on the vacuum moduli sp4t8]. Starting  hypersurfaces. The six homology cycles of the Riemann sur-
with the hypermultiplets corresponding to fundamentalface have some mutual intersection numbers, which are re-
monopoles in regions where only a single Higgs field is nondated to the Schwinger products between the corresponding
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dyons. From this one can deduce that the electric and magpure N=2 Yang-Mills gauge theory for general gauge
netic charges of these six dyons are given in a symplectigroups in a systematic manner. For aligned Higgs fields it
basis by[23], has been known for some time that one should study a su-
persymmetric quantum mechanics on the BPS monopole
(1,0;1,0, (1,0;-1,3), moduli space1]. For generic vacua, we have argued that
supersymmetric quantum mechanics is supplemented by a
(0,1,-11), (0,1;0,-1), (61)  potential term constructed from the triholomorphic Killing
vectors on the moduli space. The BPS states correspond to
(1,1;0,2, (1,1,—1,0. normalizable zero modes of a Dirac operator twisted by the
Killing vectors. It would be interesting to derive this dynam-
Here (m;,m;;ny,ny) represents a charge of the fomb; jcs directly by generalizing the arguments[ai.
+myb,+nja; +nya, with a; andb; a charge basis whose  We used the formalism to study the semiclassical BPS
pairwise Schwinger products are such thag2{b;)=4d;  spectrum for the purbl=2 SU®3) gauge theory. The vector
anda;©a,=0=b,;Ob,. This does not fix the electromag- b, defined by the Higgs vacuum expectation val(¢gVs)
netic charges uniquely. First of all, there are monodromiesind by the choice of the Weyl chamber, specifies a basis of
on the moduli space which must be fixed by hand. Furthersimple roots in the algebra. When the magnetic charge is
more, the same intersection matrix shows up regardless @fiven by a simple roow or B, there is a tower of dyons in
the number of flavors in the theory, which implies that therehypermultiplets with parallel electric charges. A more inter-
must be certain ambiguity in translating the symplectic baSi%sting structure emerges for a magnetic Charge givew by
to its counterpart in the weight lattice. Part of the ambiguity + g. First, the electric charge vector is necessarily not paral-
is resolved by noting that near each pair of singularities thafe| to the magnetic charge, and in particular, there is no
extend far out into the asymptotic region, the local physicsyurely magnetic BPS state of this charge. Second, there is a
should resemble that of 3B). Each of the states must thus tower of hypermultiplets with electric charge that are consis-
have a unit magnetic charge that corresponds to one of thregnt with previous results in Seiberg-Witten theory in that
positive rootse, B, a+ B. Finally, when we discuss theo- they are in accordance with semiclassical monodromy and
ries with adjoint matter only, the electric charges must alsastrong-coupling singularities. More generally, the hypermul-
fall onto the root lattice, and this knowledge determines thejplets are a special case of an infinite tower of BPS states
charges up to the monodromies. with electric charge 1), with eitherm>| or m<I, de-
Let us choose the monodromy so that (1,0;1,0) is & pur@ending on the sign of the second Higgswith maximal
monopole with charged,0) and that (0,1;0;1) is a pure  spin|m—1|/2.
monopole with chargeg,0). This is possible because It would be interesting to extend these results to a more
general magnetic charge, but as a result of a lack of under-
(0)0(B,0)=a-0-0-5=0. (52 standing of the relevant S8) monopole moduli spaces, this
Using the above arguments, one then finds the followingPP€ars difficult. A more accessible problem would be to

minimal set of charge vectors on the root lattice: generalize the results of this paper to analyze the BPS spec-
trum for an SUN) gauge group with a magnetic charge

(,0), (a,a), given by (1,1...,1).
The effective Lagrangian in this paper is for the case
(B,—B), (B0, (53)  when hypermultiplets in th&l=2 Yang-Mills theory can be
ignored. If there are light hypermultiplets, one must intro-
(at+B,—p), (at+pa). duce new quantum mechanical degrees of freedom associ-

. o . ated with them. Presumably, there is a way to couple them to
In this set of charges, we again find the prominent feature W, | agrangian while preserving the four real supercharges.

found in the low-energy dynamics, namely, the asymmetry,yever, it goes beyond the scope of this paper, and will be
with respect to the sign of electric charges. Furthermore, aSyorked out elsewhere.

suming that there is no marginal stability domain wall for the
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