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Exact renormalization group and loop equation

Shinji Hirano*
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

~Received 2 December 1999; published 24 May 2000!

We propose a gauge-invariant formulation of the exact renormalization-group equation for nonsupersym-
metric pure U(N) Yang-Mills theory, based on the construction by Morris. In fact we show that our
renormalization-group equation amounts to a regularized version of the loop equation, thereby providing a
direct relation between the exact renormalization group and the Schwinger-Dyson equations. We also discuss
a possible implication of our formulation to the holographic correspondence of the bulk gravity and the
boundary gauge theory.

PACS number~s!: 11.10.Hi, 11.15.Tk, 11.25.Sq
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I. INTRODUCTION

The discovery of certain limits in string theory andM
theory can probably provide a reasoning for the dualit
between quantum gravity and gauge theory. The celebr
examples are the light like limit@1# of M theory, which at
least literally justifies the matrix conjecture@2#, and the near
horizon limits@3,4# of D branes andM branes@5# that led us
to recent excitement of the anti–de Sitter~AdS! conformal
field theory~CFT! duality @3,6,7#. Both the matrix conjecture
and the AdS–CFT duality intimately originates from the o
s-t channel duality in open string loop amplitudes. It is, ho
ever, quite noteworthy that the discovery of the limits
@1,3,4# elaborated and complemented our intuitive but na
anticipation of a dual description of quantum gravity by
certain gauge theory, which may be based on the abo
mentioned duality of open and closed strings.

The IR-UV relation, pointed out in@8,9#, itself is not sur-
prising from the viewpoint of thes-t channel duality. But a
rather conceptual payoff of this relation in the near horiz
limit seems quite remarkable. In particular, the identificat
of the radial coordinateU in the near horizon geometry wit
the energy or the cutoff scaleL of the gauge theory clarifie
the holographic nature of the AdS-CFT duality, in which it
quite plausibly assumed that the gauge theory contains
one degree of freedom per cell of the cutoff size.1 This pos-
tulate and the resultant holographic property actually fit
the basic idea of the Wilsonian renormalization group~Wil-
sonian RG! @10#.2 The assumption concerning degrees
freedom of the gauge theory is almost assured, if one re
to, for example, a lattice regularization. Once we regard
cutoff L of the boundary gauge theory as the radial dim
sion in the bulk space, degrees of freedom of the bulk gra

*Email address: hirano@itp.ucsb.edu
1There is in fact a subtlety in the relation between the radial

ordinateU and the cutoff scaleL @9#. The existence of two distinc
relations is emphasized there. In both cases, however, there
universal property that the cutoff scaleL increases with the radia
scaleU up to dimension 5 of the boundary gauge theory.

2The scale-invariant theories, of course, do not have a nontr
RG flow. We would, however, like to emphasize this point, supp
that the argument in@8# can be applied to more general nonconfo
mal cases.
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may well be constituted solely from those of the bounda
gauge theory, and the coarsening procedure or the RG tr
formation gives the dynamics in the interior space, wh
will likely be in general more complicated than that on t
boundary. Thus we hope in this respect that the RG flow m
correspond to the holographic mapping of the boundary d

The motivation of this paper is to invent a formulation, o
the gauge theory side, that might be a useful setting for
cussing this hope. Since in the AdS-CFT duality gravi
tional modes in the bulk correspond to the gauge invari
operators on the boundary gauge theory, a gauge inva
formulation, in which the gauge redundancy is eliminate
may be well suited for discussing this sort of duality. In th
regard we would like to respect a technique of collect
field theory developed in@11#, and apply it to a gauge invari
ant formulation of the exact RG equation.

There exist several papers@12#, in which the authors dis-
cussed the RG interpretation of the AdS-CFT duality a
some of them suggested the equivalence of the equatio
motion in the AdS space~and its slight generalization! with
the RG equation.3 We hope that our formulation adds a ne
perspective along the line of their arguments.

II. A GAUGE-INVARIANT FORMULATION OF THE
EXACT RG EQUATION

Recently Tim Morris@14# proposed an exact RG equatio
for the Yang-Mills theory in a manifestly gauge-invaria
way, by constructing it in terms of a gauge-invariant va
able, Wilson loop, just like the philosophy of the collectiv
field method@11#. His formulation is based on an observ
tion inspired from a simple derivation@15# of the exact RG,
that the exact RG equation is related to a particular fi
redefinition of the theory. For example, in scalar field the
ries in D dimensions, the exact RG equation may be writt
in the form

]

]L
e2S5E dDx

d

df~x!
~C@f~x!#e2S!, ~1!

whereC@f(x)# is induced from an infinitesimal change o
the scalar field,f(x)→f(x)1dLC@f(x)#. The exact RG
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3S.-J. Rey also has an idea to develop this line of argument@13#.
©2000 The American Physical Society11-1
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equation@15#, which was employed to prove the renormali
ability of the lf4 theory in four dimensions, is obtained b
choosing the field redefinition as

C@f~x!#5
1

2 E dDyF ĠL~x2y!
dS

df~y!
22~ĠL•GL

21!

3~x2y!f~y!G , ~2!

whereGL(x2y) is the cutoff propagator of a massless sc
lar, defined by

GL~x2y!5E dDp
1

p2 eip•~x2y!K~p2/L2!. ~3!

in which K(p2/L2) is a cutoff function that will take the
value 1 forp2,L2 and vanish rapidly at infinity. AlsoĠL is
the derivative of the propagator with respect to the cutoffL,
i.e., ĠL5(]/]L)GL .
12501
-

In pure Yang-Mills theory inD dimensions we may write
the exact RG equation as

]

]L
e2S5TrE dDx

]

]Am~x!
~Cm@Am~x!#e2S!. ~4!

Here we introduced a standard convention,Am(x)
5TaAa

m(x) andd/dAm(x)5Tad/dAa
m(x). A straightforward

adaptation of the above regularization scheme~2!, however,
spoils the gauge symmetry. One way to avoid it is to look
some other form of the field redefinition~2! which maintains
the gauge invariance. Indeed one such a choice was foun
@14#, in which a trick, the introduction of a pair of Wilson
lines into the field redefinition, seemed to play an essen
role. We make use of this trick, but we propose someho
similar but different formulation of the gauge-invariant exa
RG equation. In fact our formulation can be directly co
nected with the loop equation@16#, as is rather different from
the one proposed in@14#.

Our choice of the field redefinition is
ll.
Cm@Am~x!#52
1

NL3 E dDyE dDpeip•~x2y!FK8~p2/L2!F@Gxy#
dS

dAm~y!
F21@Gxy#

12K8~p2/L2!K21~p2/L2!F@Gxy#
1

2gb
2 DnFnm~y!F21@Gxy#2K8~p2/L2!

d

dAa
m~y!

~F@Gxy#T
aF21@Gxy# !G .

~5!

This corresponds to the Fourier expansion of Eq.~2!. Here F@Gxy# is an advertised Wilson line, and defined byF@Gxy#

5Pei rGxydx8•A(x8), where the contourGxy is a line from x to y. Also K8(x) denotes the derivative ofK(x), i.e., K8(x)
5(d/dx)K(x), andgb is the bare Yang-Mills coupling. In this form it is not clear whether the exact RG equation~4! is gauge
invariant. We will, however, see below that it is indeed the case.

Now we can formally integrate the RG equation~4!, and it takes the form

e2S5eH@A,d/dA;L#e2Sb, ~6!

with the bare actionSb and

HFA,
d

dA
;LG5

1

2N E dDxE dDyE dDp
1

p2 eip•~x2y!
d

dAb
m~x! F2@K~p2/L2!21#Tr~TbF@Gxy#T

aF21@Gxy# !
d

dAa
m~y!

1 ln K~p2/L2!TrS TbF@Gxy#
1

gb
2 DnFnm~y!F21@Gxy# D 2@K~p2/L2!21#

3
d

dAa
m~y!

Tr~TbF@Gxy#T
aF21@Gxy# !G . ~7!

Note that we chose the boundary condition appropriately. In factH@A,d/dA;L#→0 at L→`, sinceK(p2/L2)→1 at L
→`. Also the first functional derivative in the right-hand side~rhs! operates passing through the square brackets as we
1-2
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EXACT RENORMALIZATION GROUP AND LOOP EQUATION PHYSICAL REVIEW D61 125011
Next let us consider the generating functional for Wils
loop correlators, as we are interested only in correlat
functions of the gauge-invariant operators. The genera
functional is given by4

Z@J#5E DAm expS 2S1(
C

J~C!W~C! D , ~8!

with the definition of the Wilson loop W(C)
5(1/N)TrPei rCdx•A(x). Using the integrated expression~6!
of the exact RG equation and performing the integration
parts, we can rewrite it as
-
r
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ult
n

th

h
re
ine
th

12501
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Z@J#5E DAme2Sb~eH̃@W,d/dW;L#e(CJ~C!W~C!!, ~9!

where H̃@W,d/dW;L# is written only in terms of Wilson
loops. This shows the manifestation of gauge invariance
our formulation. We will relegate the detailed calculation

the operatorH̃@W,d/dW;L# to the Appendix. It finally
comes up with a rather suggestive form which looks like
string field Hamiltonian:
H̃FW,
d

dW
;LG5

1

2 E dDp
1

p2 F @K~p2/L2!21#

3H 1

N2 (
C,C8

E
0

2p

dsE
0

2p

ds8„ẋ~s!• ẋ~s8!…eip•„x~s8!2x~s!…W~CM !
d

dW~C8!

d

dW~C!

1(
C

E
0

2p

dsE
0

2p

ds8„ẋ~s!• ẋ~s8!…eip•„x~s8!2x~s!…W~CB!W~CB!
d

dW~C!J
2

1

gb
2N

E dDy ln K~p2/L2!(
C

E
0

2p

seip•„x~s!2y…
d2W~C!

dx~s0!2U
x~s0!5y

d

dW~C!G . ~10!
tur-
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As explained in the Appendix, a loopCM denotes the merg
ing of two loopsC andC8, and is given by a product of fou
line contours asCM5Cx(s)x(s)Gx(s)x(s8)Cx(s8)x(s8)Gx(s8)x(s) .
Also a pair of loopsCB andCB̄ is broken up from a loopC,
and they are expressed asCB5Gx(s8)x(s)Cx(s)x(s8) and CB̄
5Cx(s8)x(s)Gx(s)x(s8) . Here we distinguished a pair of lin
Gxy introduced in the field redefinition~5! from the other
lines Cxy which are parts of loopsC andC8.

We will discuss later a possible implication of this res
in the holographic correspondence of the bulk gravity a
the boundary gauge theory.

III. LOOP EQUATION FROM THE EXACT RG
EQUATION

The Schwinger-Dyson equation is supposed to contain
much information as the exact RG equation, in a sense

4In the standard formulation of the exact RG, the sourceJ for a
local operator is chosen in such a way thatJ(p) is vanishing for
higher momentump2.L2 @15#. But the sourceJ(C) introduced
here is the one for a nonlocal operator, and so it is unclear w
choice is appropriate for the exact RG. We will not make any
strictions on the source at this stage, instead it will be constra
by the consistency of the exact RG equation, as we will see in
next section.
d

as
at,

if we were to solve either of these two equations nonper
batively, we could in principle obtain all the physical info
mation of the quantum field theory. Thus we will be e
pected to have an intrinsic way to translate the Schwing
Dyson equation into the exact RG equation, and vice ve
implicitly or explicitly. Actually we need to check if our
proposed formulation really works, by, say, rederiving
known result obtained from a reliable formulation. In th
respect it turns out interestingly enough that our exact
equation amounts to a regularized version of the loop eq
tion of @16#, while this result is not so surprising and in fa
rather reasonable, as we just mentioned. To see it, let us
that Eq.~9! can be further rewritten into the form

Z@J#5eH̃@d/dJ,J;L#Zb@J#, ~11!

whereZb@J# is the generating functional of the bare form
i.e.,

Zb@J#5E DAm expS 2Sb1(
C

J~C!W~C! D . ~12!

Also in the operatorH̃@d/dJ,J;L# the derivativesd/dJ’s are
ordered on the right side of the sourcesJ’s.

Now the exact RG equation implies

d

dL
Z@J#50. ~13!

This is equivalent to

at
-
d
e
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05E dDp
1

p2 S ]

]L
K~p2/L2! DK21~p2/L!(

C
J~C!E

0

2p

ds

3F 1

N2 (
C8

J~C8!E
0

2p

ds8„ẋ~s!• ẋ~s8!…K~p2/L2!eip•„x~s8!2x~s!…
dZ@J#

dJ~CM !

1E
0

2p

ds8„ẋ~s!• ẋ~s8!…K~p2/L2!eip•„x~s8!2x~s!…
d2Z@J#

dJ~CB!dJ~CB̄!
2

1

gb
2N

E dDyeip•„x~s!2y…
d2

dx~s0!2

dZ@J#

dJ~C!
U

x~s0!5y
G .

~14!

Therefore, we may recognize that the quantity in the square bracket is vanishing, and then integrating over the momp,
we come up to the loop equation with a regularization,

1

gb
2N

d2

dx~s!2

dZ@J#

dJ~C!
5

1

N2 (
C8

J~C8!E
0

2p

ds8„ẋ~s!• ẋ~s8!…E dDpK~p2/L2!eip•„x~s!2x~s!…
dZ@J#

dJ~CM !

1E
0

2p

ds8„ẋ~s!• ẋ~s8!…E dDpK~p2/L2!eip•„x~s8!2x~s!…
d2Z@J#

dJ~CB!dJ~CB̄!
. ~15!
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Note that interestingly the cutoff functionK(p2/L2) enters

in an expected way. In fact*dDpK(p2/L2)eip•„x(s8)2x(s)…

can be thought of as a smearedd function, which is neces-
sary to regularize the loop equation. Also loops are or
narily closed by thisd function, and so the smearing of thed
function might undergo a potential breakdown of the gau
symmetry. It is, however, obvious from our explicit comp
tation that loops are closed in spite of the smearing of thd
function in our formulation, due to a pair of Wilson line
introduced in the field redefinition~5!.

IV. DISCUSSION

As emphasized in the introduction, the cutoff scaleL of
the gauge theory can be regarded as the radial scaleU in the
AdS space, or more generally in the near horizon geome
of Dp branes@9#.5 This simple but significant observation le
us to contemplate the RG interpretation of the bulk-bound
duality, and pursue a gauge-invariant formulation of the
act RG equation for the Yang-Mills theory. In particular,
discuss the AdS-CFT duality, we apparently need to cons
the supersymmetric extension of our formulation. For t
purpose the analysis in@18,19# and a supersymmetric Wilso
loop in @20# are certainly of importance. We would, how
ever, like to discuss a possibility implied by our formulatio
in a rather wider context of the holographic corresponde
between the bulk gravity and the boundary gauge theory

According to the wisdom of the AdS-CFT duality, a di
turbance on the boundary will be responded to by the b
gravity as a gravitational fluctuation, in such a way that

5Again we should be careful with the distinction between ho
graphic andD-brane probes. See a footnote in the introduction.
12501
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K expS E
]M

dDxf0~x!O~x! D L 5exp„2Sgrav@f~x,U !#…,

~16!

where]M is the boundary of the bulk spaceM, andO(x) is
a local operator on the boundary field theory. Alsof(x,U) is
a gravitational mode on the bulk space, and it becom
f0(x) at the boundary. Furthermore, in the gravity acti
Sgrav the gravitational modef(x,U) is subject to the equa
tion of motion, so that the rhs depends only on the bound
valuef(x,`)5f0(x) of a gravitational mode.

If we insist on a stronger conjecture@3# on this duality
that the string theory in the bulk is dual to the finite-N
boundary gauge theory, we may consider the correla
functions of Wilson loopsW(C) instead of local operators
O(x). Then the gravity action might be replaced by t
string field action. From this viewpoint we would like t
recall our result~11! on the generating functional of Wilso
loop correlators:

K expS (
C

J~C!W~C! D L 5Z@J#5expS H̃F d

dJ
,J;LG DZb@J#.

~17!

Now let us set the RG interpretation of the bulk-bounda
duality into this argument. The bulk physics at some scaleU
may be given by the boundary gauge theory in which
grees of freedom at higher momentum modes than the cu
scaleL are integrated out. In this regardZb@J# denotes the
unintegrated form of the generating functional, and so it c
responds to the bulk physics at the IR limit or the bounda
Then the operatorH̃@d/dJ,J;L# gives the RG flow from UV
to IR of the boundary gauge theory, that corresponds t
mapping from the boundary to the interior of the bulk gra
ity. In this sense we would like to regard the RG flow ope

-

1-4
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tor H̃@d/dJ,J;L# as the holographic mapping of the boun
ary data. Moreover, as we discussed in the last section
RG equation implies (d/dL)Z@J#50, which is tantamount
to a regularized version of the loop equation. Thus we mi
interpret the regularized loop equation as the string fi
equation of motion in the bulk space. Remember also that
RG flow operatorH̃@d/dJ,J;L# has a form of the string field
Hamiltonian which consists of the terms that describe
joining and the splitting of strings and the string propagati
These facts fit at least literally in a stronger conjecture on
bulk-boundary duality.

Apart from the RG interpretation of the bulk-bounda
duality, we would like to mention a similarity of our formu
lation with the stochastic quantization of the Yang-Mi
theory. In fact the authors in@21# proposed an interpretatio
of the Fokker-Planck Hamiltonian of the Yang-Mills theo
as the string field Hamiltonian, initially as the one in th
temporal gauge, just as discussed in the noncritical st
theory, and later speculated an alternative interpretation
the fictitious timet of the stochastic quantization can b
thought of as the radial coordinateU of the AdS space.6 Our
formulation is close to their latter speculation. This similar
12501
he

t
d
e

e
.
e

g
at

originates from the fact that the exact RG and the Fokk
Planck equations are quite similar diffusion equations w
the cutoff L and the fictitious timet, respectively, as the
time. It, however, seems hard to give a physical meaning
the finite value of the fictitious timet in the stochastic quan
tization.
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APPENDIX

The computation ofH̃@W,d/dW;L# can be done by mix-
ture of the technique of the collective field method in@11#
and that of@17# presented in a derivation of the loop equ
tion. In terms of the gauge fieldsAm(x), it is expressed as
nected

-
rinsic
s

H̃FW,
d

dW
;LG5

1

2N E dDxE dDyE dDp
1

p2 eip•~x2y!F2@K~p2/L2!21#Tr~TbF@Gxy#T
aF21@Gxy# !

d2

dAa
m~y!dAb

m~x!

2 ln K~p2/L2!TrS TbF@Gxy#
1

gb
2 DnFnm~y!F21@Gxy# D d

dAb
m~x!G . ~A1!

The second derivative term consists of two pieces, the joining and the splitting of strings, due to the chain rule, as in~the first
paper of! @11#. The one that describes the joining of strings is

(
C,C8

Tr~TbF@Gxy#T
aF21@Gxy# !

dW~C!

dAa
m~y!

dW~C8!

dAb
m~x!

d

dW~C8!

d

dW~C!
. ~A2!

Actually the joining property can be easily understood from an explicit calculation.

N2Tr~TbF@Gxy#T
aF21@Gxy# !

dW~C!

dAa
m~y!

dW~C8!

dAb
m~x!

52E
0

2p

dsE
0

2p

ds8„ẋ~s!• ẋ~s8!…dD
„x~s!2y…dD

„x~s8!2x…

3Tr@~Pei *0
sds9ẋ~s9!•A„x~s9!…!F21@Gxy#~Pei *

s8
2p

ds9ẋ~s9!•A„x~s9!…!

3~Pei *0
s8ds9ẋ~s9!•A„x~s9!…!F@Gxy#~Pei *s

2pds9ẋ~s9!•A„x~s9!…!#

52NE
0

2p

dsE
0

2p

ds8„ẋ~s!• ẋ~s8!…dD
„x~s!2y…dD

„x~s8!2x…W~CM !,

~A3!

where a loop CM denotes the merging of two loopsC and C8, and it is composed of four lines, i.e.,CM
5Cx(s)x(s)GyxCx(s8)x(s8)Gxy . Here we define the product of line contours as an oriented contour in which each line is con

6Actually the string field theory in the temporal gauge of noncritical strings was first proposed in@22#, and subsequently it was recon
structed in@23# as a collective field theory of stochastic quantization of matrix models in the double scaling limit. Also the int
equivalence of the Fokker-Planck Hamiltonian and the loop operator was pointed out in@24#. The authors in@21# patched those idea
together, and added a new interpretation in the context of Polyakov’s noncritical strings@25# and also of the Ads-CFT duality.
1-5
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at a common point. Also we used different symbols,Cxy andGxy , for line contours, in order to distinguish a pair of linesGxy
introduced in the field redefinition~5! from the other linesCxy , which are segments of loopsC andC8.

The part corresponding to the splitting of strings is given by

(
C

Tr~TbF@Gxy#T
aF21@Gxy# !

d2W~C!

dAb
m~x!dAa

m~y!

d

dW~C!
. ~A4!

Similarly, it can be rewritten in terms of Wilson loops as

NTr~TbF@Gxy#T
aF21@Gxy# !

d2W~C!

dAb
m~x!dAa

m~y!
52E

0

2p

dsF E
0

s

dsTr$~Pei *0
s8ds9ẋ~s9!•A„x~s9!…!F@Gxy#~Pei *s

2pds9ẋ~s9!•A„x~s9!…!%

3Tr$~Pei *
s8
s

ds9ẋ~s9!•A„x~s9!…!F21@Gxy#%

1E
s

2p

dsTr$~Pei *0
sds9ẋ~s9!•A„x~s9!…!F2@Gxy#~Pei *

s8
2p

ds9ẋ~s9!•A„x~s9!…!%

3Tr$~Pei *s
s8ds9ẋ~s9!•A„x~s9!…!F@Gxy#%G„ẋ~s!• ẋ~s8!…dD

3„x~s!2y…dD
„x~s8!2x…

52N2E
0

2p

dsE
0

2p

ds8„ẋ~s!• ẋ~s8!…dD
„x~s!2y…dD

3„x~s8!2x…W~CB!W~CBW !, ~A5!

where a loopC is broken into two loopsCB and CB , and they are, respectively, given byCB5GxyCx(s)x(s8) and CB̄
5Cx(s8)x(s)Gyx .

Finally, the second term in Eq.~A1! corresponds to the kinetic term of the string field,

(
C

TrS TbF@Gxy#
1

gb
2 DnFnm~y!F21@Gxy# D dW~C!

dAb
m~x!

d

dW~C!
5(

C

i

gb
2N

E
0

2p

dsẋm~s!dD
„x~s!2x…

3Tr$~Pei *0
sds8ẋ~s8!•A„x~s8!…!F@Gxy#D

nFnm~y!F21@Gxy#

3~Pei *s
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where we introduced a local derivative of the loop space@17#,

d2

dx~s!2 5 lim
e→0

E
2e

e

dt
d2

dxm~s1t/2!dxm~s2t/2!
. ~A7!
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