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Exact renormalization group and loop equation
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We propose a gauge-invariant formulation of the exact renormalization-group equation for nonsupersym-
metric pure UN) Yang-Mills theory, based on the construction by Morris. In fact we show that our
renormalization-group equation amounts to a regularized version of the loop equation, thereby providing a
direct relation between the exact renormalization group and the Schwinger-Dyson equations. We also discuss
a possible implication of our formulation to the holographic correspondence of the bulk gravity and the
boundary gauge theory.

PACS numbsefs): 11.10.Hi, 11.15.Tk, 11.25.Sq

I. INTRODUCTION may well be constituted solely from those of the boundary
gauge theory, and the coarsening procedure or the RG trans-
The discovery of certain limits in string theory amd  formation gives the dynamics in the interior space, which
theory can probably provide a reasoning for the dualitiegvill likely be in general more complicated than that on the
between quantum gravity and gauge theory. The celebratdgpundary. Thus we hope in this respect that the RG flow may
examples are the light like limit1] of M theory, which at ~correspond to the holographic mapping of the boundary data.
least literally justifies the matrix conjectuf2], and the near The motivation of this paper is to invent a formulation, on
horizon limits[3,4] of D branes andl braneq5] that led us  the gauge theory side, that might be a useful setting for dis-
to recent excitement of the anti—de SittéxdS) conformal ~ cussing this hope. Since in the AdS-CFT duality gravita-
field theory(CFT) duality [3,6,7]. Both the matrix conjecture tional modes in the bulk correspond to the gauge invariant
and the AdS—CFT duality intimately originates from the old Operators on the boundary gauge theory, a gauge invariant
s-tchannel duality in open string loop amplitudes. It is, how-formulation, in which the gauge redundancy is eliminated,
ever, quite noteworthy that the discovery of the limits of may be well suited for diSCUSSing this sort of duallty In this
[1,3,4] elaborated and complemented our intuitive but naive®gard we would like to respect a technique of collective
anticipation of a dual description of quantum gravity by afield theory developed ifl1], and apply it to a gauge invari-
certain gauge theory, which may be based on the aboveint formulation of the exact RG equation.
mentioned dua“ty of open and closed Stringsl There exist several pape[l’SZ], in which the authors dis-
The IR-UV relation, pointed out ifi8,9], itself is not sur- cussed the RG interpretation of the AdS-CFT duality and
prising from the viewpoint of the-t channel duality. But a Some of them suggested the equivalence of the equation of
rather conceptual payoff of this relation in the near horizonMotion in the AdS spacéand its slight generalizatiorwith
limit seems quite remarkable. In particular, the identificationthe RG equatiori.We hope that our formulation adds a new
of the radial coordinat&l in the near horizon geometry with Perspective along the line of their arguments.
the energy or the cutoff scalk of the gauge theory clarifies
the holographic nature of the AdS-CFT duality, in which itis  Il. A GAUGE-INVARIANT FORMULATION OF THE
quite plausibly assumed that the gauge theory contains only EXACT RG EQUATION
one degree of freedom per cell of the cutoff siZEhis pos-
tulate and the resultant holographic property actually fit in
the basic idea of the Wilsonian renormalization gr@Wl-

Recently Tim Morrig 14] proposed an exact RG equation
for the Yang-Mills theory in a manifestly gauge-invariant

sonian RG [10].2 The assumption concerning degrees of VaY: by constructing it in terms of a gauge-invariant vari-

freedom of the gauge theory is almost assured, if one refe ble, Wilson loop, j.USt like thg philosophy of the collective
to, for example, a lattice regularization. Once we regard th leld method[11]. His formulation is based on an observa-

cutoff A of the boundary gauge theory as the radial dimen-tion inspired from a simple derivatidri5] of the exact RG,

sion in the bulk space, degrees of freedom of the bulk gravit);hat t_h_e_ exact RG equation is related _to a parti(_:ular field
redefinition of the theory. For example, in scalar field theo-

ries inD dimensions, the exact RG equation may be written

*Email address: hirano@itp.ucsb.edu in the form

There is in fact a subtlety in the relation between the radial co- P
ordinateU and the cutoff scal@ [9]. The existence of two distinct — e S= f dPx
relations is emphasized there. In both cases, however, there is a N

niversal property that the cutoff scaleincreases with the radial L. .
univ property ! ! b ! where V[ ¢(x)] is induced from an infinitesimal change of

scaleU up to dimension 5 of the boundary gauge theory. .
2The scale-invariant theories, of course, do not have a nontrivia‘he scalar field(x) — ¢(x) + SAW[(x)]. The exact RG

RG flow. We would, however, like to emphasize this point, suppose
that the argument if8] can be applied to more general nonconfor-
mal cases. 35.-J. Rey also has an idea to develop this line of arguiisit
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equation[15], which was employed to prove the renormaliz-  In pure Yang-Mills theory irD dimensions we may write
ability of the X ¢* theory in four dimensions, is obtained by the exact RG equation as
choosing the field redefinition as

J
5S . —e S= Trf d°X o (PHA*(x)]e"®). (4
Wio001=5 [ | 6,0) 50026461 & N
Here we introduced a standard conventiod\*(x)
X (X—y) b(Y) @) =T2AL(x) and &/ SA*(x)=T25/ SAL(X). A straightforward
' adaptation of the above regularization schg®)e however,

spoils the gauge symmetry. One way to avoid it is to look for
whereG,(x—Y) is the cutoff propagator of a massless sca-some other form of the field redefinitid®) which maintains

lar, defined by the gauge invariance. Indeed one such a choice was found in
[14], in which a trick, the introduction of a pair of Wilson

GA(X—Yy)= J' dPp = €'P YK (pZ/A2). (3) lines into the field redefinition, seemed to play an essential

role. We make use of this trick, but we propose somehow a

. . P . . similar but different formulation of the gauge-invariant exact
in which K(p“/A%) is a cutoff function that will take the g oquation. In fact our formulation can be directly con-

value 1 forp?<A? and vanish rapidly at infinity. Als@, is  nected with the loop equatidii6], as is rather different from
the derivative of the propagator with respect to the cutoff  the one proposed if4].

i.e., Gy=(aldN)G, . Our choice of the field redefinition is

1 8S
W LA0)=— 5 | @Py | @Ppec V{K (PINDPLT ] 5 ® (T

1
+ 2K (PPIAP)KH(PPIAZ) D[ Ty ] 262 D'F, ()@ [Ty]—K'(p*/A?) (R[Ty] T2 [Ty ]) |-
b

SAL(Y)
5

This corresponds to the Fourier expansion of B). Here ®[T',] is an advertised Wilson line, and defined T, ]

= Pefrxy® -A) where the contouf, is a line fromx to y. Also K'(x) denotes the derivative df(x), i.e., K'(x)
=(d/dx)K(x), andgy is the bare Yang-Mills coupling. In this form it is not clear whether the exact RG equdtion gauge
invariant. We will, however, see below that it is indeed the case.

Now we can formally integrate the RG equati@h, and it takes the form

e~ S=gHAdIAN =S (6)

with the bare actiors, and

5 1 1 . 5 )
. - ip-(x— _ _ b adg —
H[A, 5A,A} 2Nf def dDyf deEzeN y>5Ag(X) [K(p?/A%) = 1]Tr(TP®[ Iy, ] T2D 1[FXV])5Ag(y)
+In K(p2/A2)Tr( Tb¢>[ny]%D”Fm(y)d)_l[f‘xy]) —[K(p?A?)—1]
b
b agp —1
ngg(y) Tr(TP®[ Ty T2 Ty 1) | (7)

Note that we chose the boundary condition appropriately. In e, 8/ SA;A]—0 at A—, sinceK(p?/A?)—1 atA
—0. Also the first functional derivative in the right-hand si@hs) operates passing through the square brackets as well.
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Next let us consider the generating functional for Wilson ~ _
loop correlators, as we are interested only in correlation Z[J]=f DA#e ™ So(hlW.dloW:Alg=c)CQWIC)) = (9)
functions of the gauge-invariant operators. The generating
functional is given b§

Z[J]=J DA* exp( —S+E J(C)W(C) |, (8) Where7-([W,5/5\N;A] is written only in terms of Wilson
¢ loops. This shows the manifestation of gauge invariance in
with the definition of the Wilson loop W(C) our formulation. We will relegate the detailed calculation of

= (1N)TrP&¥cdxA)  Using the integrated expressi¢l)  the operatorH[W,5/6W;A] to the Appendix. It finally
of the exact RG equation and performing the integration bycomes up with a rather suggestive form which looks like the
parts, we can rewrite it as string field Hamiltonian:

[K(p?/A?)-1]

~w5-A—1del
HWswh|mz) P

x[%E

27 27 . , ) )
dsf ds'(X(s)-x(s"))e' P XS XEW(Cy) =
S o 0 (X(s)-X(s")) ( M)5W(c ) SW(C)

> fzwdsfzwds’(X(s)-X(s’))e‘p'(X(s')‘x“))W(CB)W(CB) i ]
[} 0 0

SW(C)

1 om 52W(C)\ R
— —— | dPyInK(p?%A? f sdP X9y : 10
&N yInK(p ); o &(so)z‘x(so):yav\/(c) (10)

if we were to solve either of these two equations nonpertur-

batively, we could in principle obtain all the physical infor-
As explained in the Appendix, a lodpy denotes the merg- mation of the quantum field theory. Thus we will be ex-
ing of two loopsC andC’, and is given by a product of four pected to have an intrinsic way to translate the Schwinger-
line contours asCy = Cys)x(s)l x(s)x(s")Cx(s"yxs") I 'x(s"yxs) - Dyson equation into the exact RG equation, and vice versa,
Also a pair of loopsCg andCy is broken up from a looi©,  implicitly or explicitly. Actually we need to check if our
and they are expressed &g=1I",(s/)x(s)Cxs)xs’y @d Cg  proposed formulation really works, by, say, rederiving a
=Cys)xs) x9)x(s’y - Here we distinguished a pair of line known result obtained from a reliable formulation. In this
Iy, introduced in the field redefinitiof5) from the other respect it turns out interestingly enough that our exact RG
lines C,y which are parts of loop& andC'. equation amounts to a regularized version of the loop equa-

We will discuss later a possible implication of this result tion of [16], while this result is not so surprising and in fact

in the holographic correspondence of the bulk gravity andather reasonable, as we just mentioned. To see it, let us note

the boundary gauge theory. that Eq.(9) can be further rewritten into the form
lIl. LOOP EQUATION FROM THE EXACT RG Z[J]= Mol MZ, 1], (12)
EQUATION

whereZ,[J] is the generating functional of the bare form,

The Schwinger-Dyson equation is supposed to contain als®-
much information as the exact RG equation, in a sense that,

Zb[J]:f DAMexp(—sb+; JOWC)|. (12

“4In the standard formulation of the exact RG, the soutder a  Also in the operatoﬂ[ 5153,3;A] the derivativess/ 5J’s are
local operator is chosen in such a way thi&p) is vanishing for  ordered on the right side of the sourcks.
higher momentunp?> A2 [15]. But the source)(C) introduced Now the exact RG equation implies
here is the one for a nonlocal operator, and so it is unclear what
choice is appropriate for the exact RG. We will not make any re-

strictions on the source at this stage, instead it will be constrained HZ[J]:O- (13
by the consistency of the exact RG equation, as we will see in the
next section. This is equivalent to
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1( 0
0=J oleag((?A K(p2/A2 ) 2/A)Z J(C)J

1 2r o 8Z[3]
x| 2 CE/‘, J(C") . ds’' (X(s)- X(s"))K(p?/A?)e'P X(sD) X(S))—aJ(cM)
822[J] 1 8 67[J]

+fZ#ds’()'((s)-)'((s’))K(pzlAZ)eip'(X(S')‘X(S)) j dDyeip~(X(S)—y)
0

8J(Cg)8J(Cg) g2N 8X(s0)? 8J(C)

X(sg) 1

(14

Therefore, we may recognize that the quantity in the square bracket is vanishing, and then integrating over the mgmentum
we come up to the loop equation with a regularization,

1 & 6z[3] 1 o oo 5Z[J]
—_——— p-(x(s)=x(s))___="-_
N B 56~ S A [T as 6o s [ dpk(pinde o
2w o 5°Z[J]
+ | ds'(x(s)-X(s’ f dPpK (p?/ A2)e'P XS =X(8) 15
| as 65 [ aPpripian (T i 15
|
Note that interestingly the cutoff functiok(p?/A?) enters 5
in an expected way. In facfd®pK(p?/A?)e'P X(s)=X() exp( JﬁMd Xd’O(X)O(X)) = exp(— Syral ¢(x,U)1),
can be thought of as a smearédunction, which is neces- (16)

sary to regularize the loop equation. Also loops are ordi-
narily closed by thiss function, and so the smearing of the  wheredM is the boundary of the bulk spadé, andO(x) is
function might undergo a potential breakdown of the gaugea local operator on the boundary field theory. Alsp¢,U) is
symmetry. It is, however, obvious from our explicit compu- a gravitational mode on the bulk space, and it becomes
tation that loops are closed in spite of the smearing of&¢he ¢y(x) at the boundary. Furthermore, in the gravity action
function in our formulation, due to a pair of Wilson lines Sy the gravitational modep(x,U) is subject to the equa-
introduced in the field redefinitio(b). tion of motion, so that the rhs depends only on the boundary
value ¢(x,) = ¢o(Xx) of a gravitational mode.
If we insist on a stronger conjectuf&] on this duality
IV. DISCUSSION that the string theory in the bulk is dqal to the finNe-.
boundary gauge theory, we may consider the correlation
As emphasized in the introduction, the cutoff scAlef  functions of Wilson loopsN(C) instead of local operators
the gauge theory can be regarded as the radial &taleghe  O(x). Then the gravity action might be replaced by the
AdS space, or more generally in the near horizon geometriestring field action. From this viewpoint we would like to
of Dp braneg9].° This simple but significant observation led recall our resul{11) on the generating functional of Wilson
us to contemplate the RG interpretation of the bulk-boundaryoop correlators:
duality, and pursue a gauge-invariant formulation of the ex-
act RG equation for the Yang-Mills theory. In particular, to ~| 6
discuss the AdS-CFT duality, we apparently need to conside< exp{ EC: ‘J(C)W(C)> > =Z[J]= ex;{ H[E"];A} ) Zp[J].
the supersymmetric extension of our formulation. For this (17)
purpose the analysis [18,19 and a supersymmetric Wilson
loop in [20] are certainly of importance. We would, how- Now let us set the RG interpretation of the bulk-boundary
ever, like to discuss a possibility implied by our formulation duality into this argument. The bulk physics at some sthle
in a rather wider context of the holographic correspondenceénay be given by the boundary gauge theory in which de-
between the bulk gravity and the boundary gauge theory. grees of freedom at higher momentum modes than the cutoff
According to the wisdom of the AdS-CFT duality, a dis- scaleA are integrated out. In this rega#}[J] denotes the
turbance on the boundary will be responded to by the bullunintegrated form of the generating functional, and so it cor-
gravity as a gravitational fluctuation, in such a way that  responds to the bulk physics at the IR limit or the boundary.
Then the operatdH][ 8/ 5J,J;A] gives the RG flow from UV
to IR of the boundary gauge theory, that corresponds to a

SAgain we should be careful with the distinction between holo-mapping from the boundary to the interior of the bulk grav-
graphic andD-brane probes. See a footnote in the introduction. ity. In this sense we would like to regard the RG flow opera-
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tor H[ 8/83,3; A] as the holographic mapping of the bound- originates from the fact that the exact RG and the Fokker-
ary data. Moreover, as we discussed in the last section, tHgl@nck equations are quite similar diffusion equations with
RG equation impliesd/dA)Z[J]=0, which is tantamount the cutoff A and the fictitious timer, respectively, as the

to a regularized version of the loop equation. Thus we mighfime: It, however, seems hard to give a physical meaning to

interpret the regularized loop equation as the string fielcf_he f_inite value of the fictitious time in the stochastic quan-
equation of motion in the bulk space. Remember also that thiZation.

RG flow operatofH[ 5/ 8J,J;A] has a form of the string field
Hamiltonian which consists of the terms that describe the ACKNOWLEDGMENTS
joining and the splitting of strings and the string propagation.
These facts fit at least literally in a stronger conjecture on th(?(
bulk-boundary duality. €
Apart from the RG interpretation of the bulk-boundary
duality, we would like to mention a similarity of our formu-
lation with the stochastic quantization of the Yang-Mills
theory. In fact the authors if21] proposed an interpretation
of the Fokker-Planck Hamiltonian of the Yang-Mills theory
as the string field Hamiltonian, initially as the one in the APPENDIX
temporal gauge, just as discussed in the noncritical string _
theory, and later speculated an alternative interpretation that The computation o[ W, 6/ 5W;A] can be done by mix-
the fictitious time 7 of the stochastic quantization can be ture of the technique of the collective field method[irl]
thought of as the radial coordinateof the AdS spacB.Our  and that of[17] presented in a derivation of the loop equa-
formulation is close to their latter speculation. This similarity tion. In terms of the gauge fields*(x), it is expressed as
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ntaro Hori, Mitsuhiro Kato, Joe Polchinski, Soo-Jong
Rey, and Rikard von Unge for useful discussions and com-
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52

OAZ(Y) 6AL(X)

~ 1) 1 1 .
. — D D D ip-(x=y)| _ 2/A2\_ b ag—1
H[W, BW’A} ZNJ d xf d yf d ppze [ [K(p/AS) = 1]Tr(T°P[Ty JT® T,y ])

. (A1)

2/A2 b 1 v -1
—In K(p /A )Tr(T CD[FXy]g—gD Fv,u(y)q) [ny]>m

The second derivative term consists of two pieces, the joining and the splitting of strings, due to the chain rytbedsn
paper of [11]. The one that describes the joining of strings is

SW(C) SW(C') & 5

b agp—1
> Tr(TPO[T,, T2 YT, ]) SA(y) SAE(x) SW(C') 6W(C)"

c,c’

(A2)

Actually the joining property can be easily understood from an explicit calculation.

NZTH(TP®[I, ] TP [T ]) pwie) awe )——fzw g

PR ! (x By ’ D _ D o
SAE(y) SAE(R) . ds . ds’ (X(s)-x(s"))5°(x(s)—y)6°(X(s") —x)

H N, 1" 2T "
XTr[(pelfgdd X(s")- A(x(s )))q)—l[l—‘xy](Pelfs, ds"X(s")- A((s"))y

X ( Peifg'ds”x(s”)-A(x(s")))q)[rxy]( Peifﬁ“dd’k(s”).A(x(s”)))]

2 2
=—Nf dSJ ds’ (X(s)-X(s'))8°(x(s) —y) 8P (X(s") = X)W(Cyy),
0 0

(A3)

where a loop C,, denotes the merging of two loop€ and C’, and it is composed of four lines, i.eCy
=Cy9)x(9)l yxCx(s)xs" 'xy - Here we define the product of line contours as an oriented contour in which each line is connected

SActually the string field theory in the temporal gauge of noncritical strings was first propog@@jinand subsequently it was recon-
structed in[23] as a collective field theory of stochastic quantization of matrix models in the double scaling limit. Also the intrinsic
equivalence of the Fokker-Planck Hamiltonian and the loop operator was pointed [®4]irThe authors if21] patched those ideas
together, and added a new interpretation in the context of Polyakov’s noncritical §@bigend also of the Ads-CFT duality.
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at a common point. Also we used different symb@g, andI',,, for line contours, in order to distinguish a pair of linég,
introduced in the field redefinitiot®) from the other line<C,,, which are segments of loogsandC’.
The part corresponding to the splitting of strings is given by
5°W(C) S
SAL(X) SAL(y) SW(C)’

; THTPD[ T, ] T2D [Ty ]) (A4)

Similarly, it can be rewritten in terms of Wilson loops as

5°W(C)

NTr(qu>[rxy]Ta<1>—l[rxy])mz

_ f N ds[ f " ASTH{(PEHS 45X A [T (P fE7d9(E A )}
0 0

i S N ” _
X Tr{(PeledsX()-AXSM -2, 11

2 . T -
+f ”dsTr{(Peif'gug/x(s”)-A(x(s”)))¢—[rxy](peifj a/x(s") A )))

X Tr{(P&/s 8% AR [T, 11 (x(5) - X(s')) 8
X (X(S) —y) 8P (x(s") —x)
2 2
=—N2f dsf ds’(x(s)-x(s")) 8P (x(s) —y)&°
0 0

X (x(s") =x)W(Cg)W(Cpg), (A5)

where a loopC is broken into two loopsCg and Cg, and they are, respectively, given I§g=1",,Cy5xs) and Cg

=C>§(S’)X(S)ryx- , A i fi
Finally, the second term in EgA1) corresponds to the kinetic term of the string field,

b 1, . SWC) & T[T D
%TrTCD[FXy]gﬁD Fo(y)® T, SAEC) M(C)—; N fo ds¥“(s) 52 (X(s) — X)

X TH{(Pe/odsX(s ) AT, JD*F,, (y)® T,y ]

X (PeleTds x5 AX(S D)

oW(C)
_ 1 217d 5D( _ )52W(C) o (AG)
=2 S6”(X(s) —X x(sg) X(SO):y—ﬁw(C),

where we introduced a local derivative of the loop spicd,
52

” (e
= lim f,édt X (S+1/2)ox(5—1/2) "

oX(s)?

(A7)

e—0
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