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Stochastic semiclassical fluctuations in Minkowski spacetime
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The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of
the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the
background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its
vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled
to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy
tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the
equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric
perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational
fluctuations in stochastic semiclassical gravity have a ‘‘non-perturbative’’ behavior in some characteristic
correlation lengths.

PACS number~s!: 04.62.1v, 05.40.2a
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I. INTRODUCTION

It has been pointed out that the semiclassical theory
gravity @1–5# cannot provide a correct description of the d
namics of the gravitational field in situations where the qu
tum stress-energy fluctuations are important@1,2,4,6–8#. In
such situations, these fluctuations may have relevant b
reaction effects in the form of induced gravitational fluctu
tions @6# which, in a certain regime, are expected to be
scribed as classical stochastic fluctuations. A generaliza
of the semiclassical theory is thus necessary to accoun
these effects. In two previous papers, Refs.@9# and@10#, we
have shown how a stochastic semiclassical theory of gra
can be formulated to improve the description of the grav
tional field when stress-energy fluctuations are relevant.

In Ref. @9#, we adopted an axiomatic approach to co
struct a perturbative generalization of semiclassical gra
which incorporates the back reaction of the lowest or
stress-energy fluctuations in the form of a stochastic cor
tion. We started noting that, for a given solution of semicl
sical gravity, the lowest order matter stress-energy fluct
tions can be associated with a classical stochastic tensor
then sought a consistent equation in which this stocha
tensor was the source of linear perturbations of the semic
sical metric. The equation obtained is the so-called semic
sical Einstein-Langevin equation.

In Ref. @10#, we followed the idea, first proposed by H
@11# in the context of back reaction in semiclassical gravi
of viewing the metric field as the ‘‘system’’ of interest an
the matter fields~modeled in that paper by a single sca
field! as being part of its ‘‘environment.’’ We then showe
that the semiclassical Einstein-Langevin equation introdu
in Ref. @10# can be formally derived by a method based
the influence functional of Feynman and Vernon@12# ~see
also Ref.@13#!. That derivation shed light on the physic
meaning of the semiclassical Langevin-type equati
around specific backgrounds previously obtained with
same functional approach@14–23#, since the stochastic
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source term was shown to be closely linked to the ma
stress-energy fluctuations. We also developed a metho
compute the semiclassical Einstein-Langevin equation us
dimensional regularization, which provides an alternat
and more direct way of computing this equation with resp
to previous calculations.

This paper is intended to be a first application of the f
stochastic semiclassical theory of gravity, where we evalu
the stochastic gravitational fluctuations in a Minkows
background. In order to do so, we first use the method
veloped in Ref.@10# to derive the semiclassical Einstein
Langevin equation around a class of trivial solutions of se
classical gravity consisting of Minkowski spacetime and
linear real scalar field in its vacuum state, which may
considered the ground state of semiclassical gravity.
though the Minkowski vacuum is an eigenstate of the to
four-momentum operator of a field in Minkowski spacetim
it is not an eigenstate of the stress-energy operator. He
even for these solutions of semiclassical gravity, for wh
the expectation value of the stress-energy operator can
ways be chosen to be zero, the fluctuations of this oper
are non-vanishing. This fact leads to consider the stocha
corrections to these solutions described by the semiclas
Einstein-Langevin equation.

We then solve the Einstein-Langevin equation for the l
earized Einstein tensor and compute the associated two-p
correlation functions. Even though, in this case, we expec
have negligibly small values for these correlation functio
at the domain of validity of the theory, i.e., for points sep
rated by lengths larger than the Planck length, there are
eral reasons why we think that it is worth carrying out th
calculation.

On the one hand, these are, to our knowledge, the
solutions obtained to the full semiclassical Einste
Langevin equation. We are only aware of analogous so
tions to a ‘‘reduced’’ version of this equation inspired in
‘‘mini-superspace’’ model@20#. There is also a previous at
tempt to obtain a solution to the Einstein-Langevin equat
in Ref. @17#, but, there, the non-local terms in the Einstei
Langevin equation were neglected.
©2000 The American Physical Society24-1
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ROSARIO MARTÍN AND ENRIC VERDAGUER PHYSICAL REVIEW D61 124024
The Einstein-Langevin equations computed in this pa
are simple enough to be explicitly solved and, at least for
case of a conformal field, the expressions obtained for
correlation functions can be explicitly evaluated in terms
elementary functions. Thus, our calculation can serve a
testing ground for the solutions of the Einstein-Lange
equation in more complex situations of physical interest~for
instance, for a Robertson-Walker background and a field
thermal state!.

On the other hand, the results of this calculation, wh
confirm our expectations that gravitational fluctuations
negligible at length scales larger than the Planck length,
be considered as a first check that stochastic semiclas
gravity predicts reasonable results.

In addition, we can extract conclusions on the possi
qualitative behavior of the solutions to the Einstein-Lange
equation. Thus, it is interesting to note that the correlat
functions are characterized by correlation lengths of the
der of the Planck length; furthermore, such correlat
lengths enter in a non-analytic way in the correlation fun
tions. This kind of non-analytic behavior is actually qui
common in the solutions to Langevin-type equations w
dissipative terms and hints at the possibility that correlat
functions for other solutions to the Einstein-Langevin eq
tion are also non-analytic in their characteristic correlat
lengths.

The plan of the paper is the following. In Sec. II, we giv
a brief overview of the method developed in Ref.@10# to
compute the semiclassical Einstein-Langevin equation.
then consider the background solutions of semiclass
gravity consisting of a Minkowski spacetime and a real s
lar field in the Minkowski vacuum. In Sec. III, we compu
the kernels which appear in the Einstein-Langevin equat
In Sec. IV, we derive the Einstein-Langevin equation
metric perturbations around Minkowski spacetime. As a s
result, we obtain some semiclassical results, which incl
the expectation value of the stress-energy tensor of a sc
field with arbitrary mass and arbitrary coupling parameter
linear order in the metric perturbations, and also some res
concerning the production of particles by metric perturb
tions: the probability of particle creation and the number a
energy of created particles. In Sec. V, we solve this equa
for the components of the linearized Einstein tensor a
compute the corresponding two-point correlation functio
For the case of a conformal field and spacelike separ
points, explicit calculations show that the correlation fun
tions are characterized by correlation lengths of the orde
the Planck length. We conclude in Sec. VI with a discuss
of our results. We also include some Appendixes with te
nical details used in the calculations.

Throughout this paper we use the (111) sign conven-
tions and the abstract index notation of Ref.@24#, and we
work with units in whichc5\51.

II. OVERVIEW

In this section, we give a very brief summary of the ma
results of Refs.@9# and@10# which are relevant for the com
putations in the present paper. One starts with a solutio
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semiclassical gravity consisting of a globally hyperbo
spacetime (M,gab), a linear real scalar field quantized on
and some physically reasonable state for this field~we work
in the Heisenberg picture!. According to the stochastic sem
classical theory of gravity@9,10#, quantum fluctuations in the
stress-energy tensor of matter induce stochastic linear pe
bationshab to the semiclassical metricgab . The dynamics of
these perturbations is described by a stochastic equa
called the semiclassical Einstein-Langevin equation.

Assuming that our semiclassical gravity solution allow
the use of dimensional analytic continuation to define re
larized matrix elements of the stress-energy ‘‘operator,’’
shall write the equations in dimensional regularization, t
is, assuming an arbitrary dimensionn of the spacetime. Us-
ing this regularization method, we use a notation in whic
subindexn is attached to those quantities that have differ
physical dimensions from the corresponding physical qu
tities. The n-dimensional spacetime (M,gab) has to be a
solution of the semiclassical Einstein equation in dime
sional regularization:

1

8pGB
~Gab@g#1LBgab!2S 4

3
aBDab12bBBabD @g#

5m2(n24)^T̂n
ab&@g#, ~2.1!

whereGB , LB , aB andbB are bare coupling constants an
Gab is the Einstein tensor. The tensorsDab and Bab are
obtained by functional derivation with respect to the met
of the action terms corresponding to the Lagrangian dens
RabcdR

abcd2RabR
ab and R2, respectively, whereRabcd is

the Riemann tensor,Rab is the Ricci tensor andR is the
scalar curvature~see Ref.@10# for the explicit expressions fo
the tensorsDab and Bab). In the last equation,T̂n

ab is the
stress-energy ‘‘operator’’ in dimensional regularization a
the expectation value is taken in some state for the sc
field in the n-dimensional spacetime. Writing the bare co
pling constants in Eq.~2.1! as renormalized coupling con
stants plus some counterterms which absorb the ultravi
divergencies of the right hand side, one can take the li
n→4, which leads to the physical semiclassical Einst
equation.

Assuming thatgab is a solution of Eq.~2.1!, the semiclas-
sical Einstein-Langevin equation can be similarly written
dimensional regularization as

1

8pGB
„Gab@g1h#1LB~gab2hab!…

2S 4

3
aBDab12bBBabD @g1h#

5m2(n24)^T̂n
ab&@g1h#12m2(n24)jn

ab , ~2.2!

where hab is a linear stochastic perturbation togab , and
hab[gacgbdhcd . In this last equation,jn

ab is a Gaussian sto
chastic tensor characterized by the correlators

^jn
ab~x!&c50, ^jn

ab~x!jn
cd~y!&c5Nn

abcd~x,y!, ~2.3!
4-2
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STOCHASTIC SEMICLASSICAL FLUCTUATIONS IN . . . PHYSICAL REVIEW D61 124024
where 8Nn
abcd(x,y)[^$ t̂ n

ab(x), t̂ n
cd(y)%&@g#, with t̂ n

ab

[T̂n
ab2^T̂n

ab&; here, ^ &c means statistical average and$ , %
denotes an anticommutator. As we pointed out in Ref.@10#,
the noise kernelNn

abcd(x,y) is free of ultraviolet divergen-
cies in the limit n→4. Therefore, in the semiclassic
Einstein-Langevin equation~2.2!, one can perform exactly
the same renormalization procedure as the one for the s
classical Einstein equation~2.1!, and Eq. ~2.2! yields the
physical semiclassical Einstein-Langevin equation in fo
spacetime dimensions.

In Ref. @10#, we used a method based on the closed ti
path ~CTP! functional technique applied to a system
environment interaction, more specifically, on the influen
action formalism of Feynman and Vernon, to obtain an
plicit expression for the expansion of^T̂n

ab&@g1h# up to first
order in hcd . In this way, we can write the Einstein
Langevin equation~2.2! in a more explicit form. This expan
sion involves the kernel Hn

abcd(x,y)[HSn

abcd(x,y)

1HAn

abcd(x,y), with

HSn

abcd~x,y![
1

4
Im^T* „T̂n

ab~x!T̂n
cd~y!…&@g#,

~2.4!

HAn

abcd~x,y![2
i

8
^@ T̂n

ab~x!,T̂n
cd~y!#&@g#,

where@ , # means a commutator, and we use the symbol*
to denote that we have to time order the field operatorsF̂n
first and then to apply the derivative operators which app
in each term of the productTab(x)Tcd(y), whereTab is the
classical stress-energy tensor; see Ref.@10# for more details.
In Eq. ~2.2!, all the ultraviolet divergencies in the limitn
→4, which shall be removed by renormalization of the co
pling constants, are in some terms containing^F̂n

2(x)& and in
HSn

abcd(x,y), whereas the kernelsNn
abcd(x,y) andHAn

abcd(x,y)

are free of ultraviolet divergencies. These two last kern
can be related to the real and imaginary parts

^ t̂ n
ab(x) t̂ n

cd(y)& by

Nn
abcd~x,y!5

1

4
Rê t̂ n

ab~x! t̂ n
cd~y!&,

~2.5!

HAn

abcd~x,y!5
1

4
Im^ t̂ n

ab~x! t̂ n
cd~y!&.

We now consider the case in which we start with
vacuum stateu0& for the field quantized in spacetim
(M,gab). In this case, it was shown in Ref.@10# that all the
expectation values entering the Einstein-Langevin equa
~2.2! can be written in terms of the Wightman and Feynm
functions, defined as

Gn
1~x,y![^0uF̂n~x!F̂n~y!u0&@g#,

~2.6!
iGFn

~x,y![^0uT„F̂n~x!F̂n~y!…u0&@g#.
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For instance, we can writêF̂n
2(x)&5 iGFn

(x,x)5Gn
1(x,x).

The expressions for the kernels, which shall be used in
calculations, can be found in Appendix A.

Perturbations around Minkowski spacetime

An interesting case to be analyzed in the framework of
semiclassical stochastic theory of gravity is that of
Minkowski spacetime solution of semiclassical gravity. T
flat metrichab in a manifoldM[R4 ~topologically! and the
usual Minkowski vacuum, denoted asu0&, give the class of
simplest solutions to the semiclassical Einstein equa
@note that each possible value of the parameters (m2,j) leads
to a different solution#, the so called trivial solutions of semi
classical gravity@25#. In fact, we can always choose a reno
malization scheme in which the renormalized expectat

value ^0uT̂R
abu0&@h#50. Thus, Minkowski spacetime

(R4,hab) and the vacuum stateu0& are a solution to the semi
classical Einstein equation with renormalized cosmologi
constantL50. The fact that the vacuum expectation val
of the renormalized stress-energy operator in Minkow
spacetime should vanish was originally proposed by W
@2# and it may be understood as a renormalization conven
@3,5#. There are other possible renormalization prescriptio
~see, for instance, Ref.@26#! in which such vacuum expecta
tion value is proportional tohab, and this would determine
the value of the cosmological constantL in the semiclassica
equation. Of course, all these renormalization schemes
physically equivalent results: the total effective cosmologi
constant, i.e., the constant of proportionality in the sum of
the terms proportional to the metric in the semiclassical E
stein and Einstein-Langevin equations, has to be zero.

Although the vacuumu0& is an eigenstate of the total four
momentum operator in Minkowski spacetime, this state
not an eigenstate ofT̂ab

R @h#. Hence, even in these trivia
solutions of semiclassical gravity, there are quantum fluct
tions in the stress-energy tensor of matter and, as a result
noise kernel does not vanish. This fact leads to consider
stochastic corrections to this class of trivial solutions
semiclassical gravity. Since, in this case, the Wightman
Feynman functions~2.6!, their values in the two-point coin
cidence limit, and the products of derivatives of two of su
functions appearing in expressions~A1! and~A3! ~Appendix
A! are known in dimensional regularization, we can comp
the semiclassical Einstein-Langevin equation using
method outlined above.

In order to perform the calculations, it is convenient
work in a global inertial coordinate system$xm% and in the
associated basis, in which the components of the flat me
are simply hmn5diag(21,1, . . . ,1). InMinkowski space-
time, the components of the classical stress-energy te
functional reduce to

Tmn@h,F#5]mF]nF2
1

2
hmn]rF]rF2

1

2
hmnm2F2

1j~hmnh2]m]n!F2, ~2.7!
4-3



o-
u

io

e

re
s
th

th
e
am

-
l
nd
th

tion

een

in-

r
to

ical

alar
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whereh[]m]m, and the formal expression for the comp
nents of the corresponding ‘‘operator’’ in dimensional reg
larization is

T̂n
mn@h#5

1

2
$]mF̂n ,]nF̂n%1D mnF̂n

2 , ~2.8!

where D mn are the differential operators D x
mn

[(j21/4)hmnhx2j]x
m]x

n andF̂n(x) is the field operator in
the Heisenberg picture in ann-dimensional Minkowski
spacetime, which satisfies the Klein-Gordon equat
(h2m2)F̂n50.

Notice, from Eq.~2.8!, that the stress-energy tensor d
pends on the coupling parameterj of the scalar field to the
scalar curvature even in the limit of a flat spacetime. The
fore, that tensor differs in general from the canonical stre
energy tensor in flat spacetime, which corresponds to
value j50. Nevertheless, it is easy to see@10# that the
n-momentum density componentsT̂n

0m
(j)@h# ~we tempo-

rarily use this notation to indicate the dependence on
parameterj) and T̂n

0m
(j50)@h# differ in a space divergenc

and, hence, dropping surface terms, they both yield the s
n-momentum operator:

P̂m[E dn21x:T̂n
0m

(j)@h#ªE dn21x:T̂n
0m

(j50)@h#:,

~2.9!

where the integration is on a hypersurfacex05constant (P̂m

is actually independent of the value ofx0) and we use the
notation for coordinatesxm[(x0,x), i.e.,x are space coordi
nates on each of the hypersurfacesx05constant. The symbo
: : in Eq. ~2.9! means normal ordering of the creation a
annihilation operators on the Fock space built on
Minkowski vacuumu0& ~in n spacetime dimensions!, which
is an eigenstate with zero eigenvalue of the operators~2.9!.

The Wightman and Feynman functions~2.6! in
Minkowski spacetime are well known:

Gn
1~x,y![^0uF̂n~x!F̂n~y!u0&@h#5 iDn

1~x2y!,

GFn
~x,y![2 i ^0uT„F̂n~x!F̂n~y!…u0&@h#

5DFn
~x2y!, ~2.10!

with

Dn
1~x!522p i E dnk

~2p!neikxd~k21m2!u~k0!,

~2.11!

DFn
~x!52E dnk

~2p!n

eikx

k21m22 i e
, e→01,

wherek2[hmnkmkn andkx[hmnkmxn. Note that the deriva-
tives of these functions satisfy]m

x Dn
1(x2y)5]mDn

1(x2y)
and ]m

y Dn
1(x2y)52]mDn

1(x2y), and similarly for the
Feynman propagatorDFn

(x2y).
12402
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To write down the semiclassical Einstein equation~2.1!
for this case, we need to compute the vacuum expecta
value of the stress-energy operator components~2.8!. Since,
from Eq. ~2.10!, we have that ^0uF̂n

2(x)u0&5 iDFn
(0)

5 iDn
1(0), which is a constant~independent ofx), we have

simply

^0uT̂n
mnu0&@h#5

1

2
^0u$]mF̂n ,]nF̂n%u0&@h#

52 i ~]m]nDFn
!~0!

52 i E dnk

~2p!n

kmkn

k21m22 i e

5
hmn

2 S m2

4p D n/2

GS 2
n

2D , ~2.12!

where the integrals in dimensional regularization have b
computed in the standard way~see Appendix B! and where
G(z) is the Euler’s gamma function. The semiclassical E
stein equation~2.1!, which now reduces to

LB

8pGB
hmn5m2(n24)^0uT̂n

mnu0&@h#, ~2.13!

simply sets the value of the bare coupling constantLB /GB .
Note, from Eq.~2.12!, that in order to havê0uT̂R

abu0&@h#
50, the renormalized~and regularized! stress-energy tenso
‘‘operator’’ for a scalar field in Minkowski spacetime has
be defined as

T̂R
ab@h#5m2(n24)T̂n

ab@h#2
hab

2

m4

~4p!2

3S m2

4pm2D (n24)/2

GS 2
n

2D , ~2.14!

which corresponds to a renormalization of the cosmolog
constant

LB

GB
5

L

G
2

2

p

m4

n~n22!
kn1O~n24!, ~2.15!

where

kn[
1

~n24!S egm2

4pm2D (n24)/2

5
1

n24
1

1

2
lnS egm2

4pm2D1O~n24!, ~2.16!

beingg the Euler’s constant. In the case of a massless sc
field, m250, one simply hasLB /GB5L/G. Introducing this
renormalized coupling constant into Eq.~2.13!, we can take
the limit n→4. We find again that, for (R4,hab ,u0&) to sat-
isfy the semiclassical Einstein equation, we must takeL
50.
4-4
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We are now in the position to write down the Einstei
Langevin equations for the componentshmn of the stochastic
metric perturbation in dimensional regularization. In o
case, usinĝ 0uF̂n

2(x)u0&5 iDFn
(0) and the explicit expres

sion for Eq. ~2.2! found in Ref. @10#, we obtain that this
equation reduces to

1

8pGB
FG(1)mn1LBS hmn2

1

2
hmnhD G~x!2

4

3
aBD (1)mn~x!

22bBB(1)mn~x!2jG(1)mn~x!m2(n24)iDFn
~0!

12E dnym2(n24)Hn
mnab~x,y!hab~y!52jmn~x!,

~2.17!

wherejmn are the components of a Gaussian stochastic
sor of zero average and

^jmn~x!jab~y!&c5m22(n24)Nn
mnab~x,y!, ~2.18!

and where indices are raised inhmn with the flat metric and
h[hr

r . We use a superindex~1! to denote the components o
a tensor linearized around the flat metric. In the last exp
sions,Nn

mnab(x,y) and Hn
mnab(x,y) are the components o

the kernels defined above. In Eq.~2.17!, we have made use
of the explicit expression forG(1)mn. This expression and
those forD (1)mn andB(1)mn are given in Appendix E; the las
two can also be written as

D (1)mn~x!5
1

2
~3F x

maF x
nb2F x

mnF x
ab!hab~x!,

~2.19!
B(1)mn~x!52F x

mnF x
abhab~x!,

whereF x
mn is the differential operatorF x

mn[hmnhx2]x
m]x

n .

III. THE KERNELS FOR A MINKOWSKI BACKGROUND

The kernelsNn
mnab(x,y) and Hn

mnab(x,y)5HSn

mnab(x,y)

1HAn

mnab(x,y) can now be computed using Eq.~2.5! and the

expressions~A1! and~A3!. In Ref. @10#, we have shown tha
the kernelHAn

mnab(x,y) plays the role of a dissipation kerne

since it is related to the noise kernel,Nn
mnab(x,y), by a

fluctuation-dissipation relation. From the definitions~2.4!
and the fact that the Minkowski vacuumu0& is an eigenstate
of the operatorP̂m, given by Eq.~2.9!, these kernels satisfy

E dn21xNn
0mab~x,y!5E dn21xHAn

0mab~x,y!50.

~3.1!

A. The noise and dissipation kernels

Since the two kernels~2.5! are free of ultraviolet diver-
gencies in the limitn→4, we can deal directly with
12402
r

n-

s-

Mmnab~x2y![ lim
n→4

m22(n24)^0u t̂ n
mn~x! t̂ n

ab~y!u0&@h#.

~3.2!

The kernels 4Nmnab(x,y)5ReMmnab(x2y) and
4HA

mnab(x,y)5Im Mmnab(x2y) are actually the compo
nents of the ‘‘physical’’ noise and dissipation kernels th
will appear in the Einstein-Langevin equations once
renormalization procedure has been carried out. Note tha
the renormalization scheme in whichT̂R

ab@h# is given by Eq.
~2.14!, we can write

Mmnab~x2y!5^0uT̂R
mn~x!T̂R

ab~y!u0&@h#,

where the limitn→4 is understood. This kernel can be e
pressed in terms of the Wightman function in four spaceti
dimensions,

D1~x!522p i E d4k

~2p!4eikxd~k21m2!u~k0!, ~3.3!

in the following way:

Mmnab~x!522@]m] (aD1~x!]b)]nD1~x!

1D mn
„]aD1~x!]bD1~x!…

1D ab
„]mD1~x!]nD1~x!…

1D mnD ab
„D12~x!…#. ~3.4!

The different terms in Eq.~3.4! can be easily computed usin
the integrals

I ~p![E d4k

~2p!4d~k21m2!u~2k0!

3d@~k2p!21m2#u~k02p0!,

I m1•••mr~p![E d4k

~2p!4km1
•••kmrd~k21m2!u~2k0!

3d@~k2p!21m2#u~k02p0!, ~3.5!

with r 51,2,3,4, given in Appendix B; all of them can b
expressed in terms ofI (p). We obtain expressions~C1!–
~C3!. It is convenient to separateI (p) in its even and odd
parts with respect to the variablespm as

I ~p!5I S~p!1I A~p!, ~3.6!

where I S(2p)5I S(p) and I A(2p)52I A(p). These two
functions are explicitly given by
4-5
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I S~p!5
1

8~2p!3u~2p224m2!A114
m2

p2 ,

I A~p!5
21

8~2p!3sgnp0 u~2p224m2!A114
m2

p2 .

~3.7!

Using the results of Appendix B, we obtain expressio
~C4!–~C6! and, after some calculations, we find

Mmnab~x!5
p2

45
~3F x

m(aF x
b)n2F x

mnF x
ab!E d4p

~2p!4

3e2 ipxS 114
m2

p2 D 2

I ~p!1
8p2

9
F x

mnF x
ab

3E d4p

~2p!4e2 ipxS 3Dj1
m2

p2 D 2

I ~p!, ~3.8!

whereDj[j21/6. The real and imaginary parts of the la
expression, which yield the noise and dissipation kernels,
easily recognized as the terms containingI S(p) and I A(p),
respectively. To write them explicitly, it is useful to intro
duce the new kernels

NA~x;m2![
1

1920pE d4p

~2p!4eipxu~2p224m2!

3A114
m2

p2 S 114
m2

p2 D 2

,

NB~x;m2,Dj![
1

288pE d4p

~2p!4eipxu~2p224m2!

3A114
m2

p2 S 3Dj1
m2

p2 D 2

,

~3.9!

DA~x;m2![
2 i

1920pE d4p

~2p!4eipx sgnp0u~2p224m2!

3A114
m2

p2 S 114
m2

p2 D 2

,

DB~x;m2,Dj![
2 i

288pE d4p

~2p!4eipx sgnp0u~2p224m2!

3A114
m2

p2 S 3Dj1
m2

p2 D 2

,

and we finally get
12402
s

t
re

Nmnab~x,y!5
1

6
~3F x

m(aF x
b)n2F x

mnF x
ab!NA~x2y;m2!

1F x
mnF x

abNB~x2y;m2,Dj!, ~3.10!

HA
mnab~x,y!5

1

6
~3F x

m(aF x
b)n2F x

mnF x
ab!DA~x2y;m2!

1F x
mnF x

abDB~x2y;m2,Dj!.

Notice that the noise and dissipation kernels defined in
~3.9! are actually real because, for the noise kernels, only
cospx terms of the exponentialseipx contribute to the inte-
grals, and, for the dissipation kernels, the only contribut
of such exponentials comes from thei sinpx terms.

We can now evaluate the contribution of the dissipat
kernel componentsHA

mnab(x,y) to the Einstein-Langevin
equations~2.17! @after taking the limitn→4#. From Eq.
~3.10!, integrating by parts, and using Eq.~2.19! and the fact
that, in four spacetime dimensions, D (1)mn(x)
5(3/2)A(1)mn(x) ~the tensorAab is obtained from the deriva
tive with respect to the metric of an action term correspo
ing to the Lagrangian densityCabcdC

abcd, whereCabcd is the
Weyl tensor, see Ref.@10# for details!, it is easy to see that

2E d4y HA
mnab~x,y!hab~y!

5E d4y@DA~x2y;m2!A(1)mn~y!

1DB~x2y;m2,Dj!B(1)mn~y!#. ~3.11!

These non-local terms in the semiclassical Einstein-Lange
equations can actually be identified as being part

^T̂R
mn&@h1h#.

B. The kernel H Sn

µnab
„x,y…

The evaluation of the kernel componentsHSn

mnab(x,y) is a

much more cumbersome task. Since these quantities con
divergencies in the limitn→4, we shall compute them usin
dimensional regularization. Using Eq.~A3!, these compo-
nents can be written in terms of the Feynman propaga
~2.11! as

m2(n24)HSn

mnab~x,y!5
1

4
Im Kmnab~x2y!, ~3.12!

where
4-6
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Kmnab~x![2m2(n24)H 2]m] (aDFn
~x!]b)]nDFn

~x!12D mn
„]aDFn

~x!]bDFn
~x!…

12D ab
„]mDFn

~x!]nDFn
~x!…12D mnD ab

„DFn

2 ~x!…1Fhmn] (aDFn
~x!]b)1hab] (mDFn

~x!]n)

1DFn
~0!~hmnD ab1habD mn!1

1

4
hmnhab

„DFn
~x!h2m2DFn

~0!…Gdn~x!J . ~3.13!

Let us define the integrals

Jn~p![m2(n24)E dnk

~2p!n

1

~k21m22 i e!@~k2p!21m22 i e#
,

~3.14!

Jn
m1•••mr~p![m2(n24)E dnk

~2p!n

km1
•••kmr

~k21m22 i e!@~k2p!21m22 i e#
,

with r 51,2,3,4, and

I 0n
[m2(n24)E dnk

~2p!n

1

~k21m22 i e!
,

~3.15!

I 0n

m1•••mr[m2(n24)E dnk

~2p!n

km1
•••kmr

~k21m22 i e!
,

with r 51,2, where a limite→01 is understood in all these expressions. Then, the different terms in Eq.~3.13! can be
computed using Eqs.~D1!–~D6!. The results for the expansions of the integrals~3.14! and ~3.15! aroundn54 are given in
Appendix B. In fact,I 0n

m 50 and the remaining integrals can be written in terms ofI 0n
andJn(p) given in Eqs.~B1! and~B4!.

Using the results of Appendix B, we obtain Eqs.~D7! and ~D8! and, from Eqs.~D4!–~D6!, we get

m2(n24)@hmn] (aDFn
~x!]b)1hab] (mDFn

~x!]n)#dn~x!52hmnhab
m2

n
I 0n

dn~x!,

~3.16!
m2(n24)

„DFn
~x!h2m2DFn

~0!…dn~x!52I 0n
hdn~x!.

We are now in the position to work out the explicit expression forKmnab(x), defined in Eq.~3.13!. We use Eqs.~3.16!, the
results~D1!, ~D4!, ~D7! and ~D8!, the identitiesdn(x)5(2p)2n*dnpeipx, F x

mn*dnpeipxf (p)52*dnpeipxf (p)p2Pmn and
]x

m]x
n*dnpeipxf (p)52*dnpeipxf (p)pmpn, wheref (p) is an arbitrary function ofpm andPmn is the projector orthogonal topm

defined asp2Pmn[hmnp22pmpn, and the expansions in Eqs.~B1! and ~B4! for Jn(p) and I 0n
. After a rather long but

straightforward calculation, we get, expanding aroundn54,

Kmnab~x!5
i

~4p!2H knF 1

90
~3F x

m(aF x
b)n2F x

mnF x
ab!dn~x!14Dj2F x

mnF x
abdn~x!1

2

3

m2

~n22!
~hmnhabhx2hm(ahb)nhx

1hm(a]x
b)]x

n1hn(a]x
b)]x

m2hmn]x
a]x

b2hab]x
m]x

n!dn~x!1
4m4

n~n22!
~2hm(ahb)n2hmnhab!dn~x!G

1
1

180
~3F x

m(aF x
b)n2F x

mnF x
ab!E dnp

~2p!neipxS 114
m2

p2 D 2

f~p2!1
2

9
F x

mnF x
ab

3E dnp

~2p!n eipxS 3Dj1
m2

p2 D 2

f~p2!2F 4

675
~3F x

m(aF x
b)n2F x

mnF x
ab!1

1

270
~60j211!F x

mnF x
abGdn~x!

2m2F 2

135
~3F x

m(aF x
b)n2F x

mnF x
ab!1

1

27
F x

mnF x
abGDn~x!J 1O~n24!, ~3.17!

wherekn andf(p2) have been defined in Eqs.~2.16! and ~B9!, andDn(x) is given by
124024-7
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Dn~x![E dnp

~2p!n eipx
1

p2 . ~3.18!

The imaginary part of Eq.~3.17! @which, using Eq.~3.12!, gives the kernel componentsm2(n24)HSn

mnab(x,y)# can be easily

obtained multiplying this expression by2 i and retaining only the real part,w(p2), of the functionf(p2). Making use of this
result, it is easy to compute the contribution of these kernel components to the Einstein-Langevin equations~2.17!. Integrating
by parts, using Eqs.~E1!–~E5! and Eq.~2.19!, and taking into account that, from Eqs.~2.12! and ~2.13!,

LB

8pGB
52

1

4p2

m4

n~n22!
kn1O~n24!, ~3.19!

we finally find

2E dnym2(n24)HSn

mnab~x,y!hab~y!52
LB

8pGB
Fhmn2

1

2
hmnhG~x!1

kn

~4p!2F2

3

m2

~n22!
G(1)mn1

1

90
D (1)mn1Dj2B(1)mnG~x!

1
1

2880p2H 2
16

15
D (1)mn~x!1S 1

6
210Dj DB(1)mn~x!1E dnyE dnp

~2p!n eip(x2y)w~p2!

3F S 114
m2

p2 D 2

D (1)mn~y!110S 3Dj1
m2

p2 D 2

B(1)mn~y!G
2

m2

3 E dnyDn~x2y!„8D (1)mn~y!15B(1)mn~y!…J 1O~n24!. ~3.20!

C. Fluctuation-dissipation relation

From expressions~3.10! and~3.9! it is easy to check that there exists a relation between the noise and dissipation k
in the form of a fluctuation-dissipation relation which was derived in Ref.@10# in a more general context. Introducing th
Fourier transforms in the time coordinates of these kernels as

Nmnab~x,y!5E
2`

` dp0

2p
e2 ip0(x02y0)N̄mnab~p0;x,y!, ~3.21!

and similarly for the dissipation kernel, this relation can be written as

H̄A
mnab~p0;x,y!52 i sgnp0N̄mnab~p0;x,y!, ~3.22!

or, equivalently, as

HA
mnab~x0,x;y0,y!52

1

pE2`

`

dz0 PS 1

x02z0DNmnab~z0,x;y0,y!, ~3.23!

where P(1/x0) denotes the principal value distribution.
From Eq.~3.1!, taking the limitn→4, we see that the noise and dissipation kernels must satisfy

E d3xN0mab~x,y!5E d3xHA
0mab~x,y!50. ~3.24!

In order to check the last relations, it is useful to write theF x
mn derivatives in expressions~3.10! using

F x
mn*d4peip(x2y) f (p)52*d4peip(x2y) f (p)p2Pmn, wheref (p) is any function ofpm andPmn is the projector orthogonal to

pm defined above. The identities~3.24! follow by noting thatp2P0052pipi and p2P0i52p0pi , where we use the indexi
51,2,3 to denote the space components, and that*d3x exp(ipix

i)5(2p)3)i51
3 d(pi). It is also easy to check that the noise kern

satisfies]m
x Nmnab(x,y)50 and, hence, the stochastic source in the Einstein-Langevin equations will be conserved up

order in perturbation theory.

IV. THE SEMICLASSICAL EINSTEIN-LANGEVIN EQUATIONS

The results of the previous section are now ready to be introduced into the Einstein-Langevin equations~2.17!. In fact,
substituting expression~3.20! in such equations, and using Eqs.~D4! and ~B1! for the m2(n24)DFn

(0) term, we get
124024-8
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1

8pGB
G(1)mn~x!2

4

3
aBD (1)mn~x!22bBB(1)mn~x!1

kn

~4p!2F24Dj
m2

~n22!
G(1)mn1

1

90
D (1)mn1Dj2B(1)mnG~x!

1
1

2880p2 H 2
16

15
D (1)mn~x!1S 1

6
210Dj DB(1)mn~x!1E dnyE dnp

~2p!n eip(x2y)w~p2!

3F S 114
m2

p2 D 2

D (1)mn~y!110S 3Dj1
m2

p2 D 2

B(1)mn~y!G2
m2

3 E dnyDn~x2y!~8D (1)mn15B(1)mn!~y!J
12E dnym2(n24)HAn

mnab~x,y!hab~y!1O~n24!

52jmn~x!. ~4.1!

Notice that the terms containing the bare cosmological constant have canceled. These equations can now be renorma
is, we can now write the bare coupling constants as renormalized coupling constants plus some suitably chosen cou
and take the limitn→4. In order to carry out such a procedure, it is convenient to distinguish between massive and m
scalar fields. We shall evaluate these two cases in different subsections.

A. Massive field „mÅ0…

In the case of a scalar field with massmÞ0, we can use, as we have done in Eq.~2.15! for the cosmological constant,
renormalization scheme consisting on the subtraction of terms proportional tokn . More specifically, we may introduce th
renormalized coupling constants 1/G, a andb as

1

GB
5

1

G
1

2

p
Dj

m2

~n22!
kn1O~n24!,

aB5a1
1

~4p!2

1

120
kn1O~n24!, ~4.2!

bB5b1
Dj2

32p2 kn1O~n24!.

Note that for conformal coupling,Dj50, one has 1/GB51/G and bB5b, that is, only the coupling constanta and the
cosmological constant need renormalization. Substituting the above expressions into Eq.~4.1!, we can now take the limitn
→4, using Eqs.~3.18!,~3.11! and the fact that, forn54, D (1)mn(x)5(3/2)A(1)mn(x). We obtain the semiclassical Einstein
Langevin equations for the physical stochastic perturbationshmn in the four-dimensional manifoldM[R4. Introducing the
two new kernels

HA~x;m2![
1

1920p2E d4p

~2p!4eipxH S 114
m2

p2 D 2F2 ip sgnp0u~2p224m2!A114
m2

p2 1w~p2!G2
8

3

m2

p2 J ,

~4.3!

HB~x;m2,Dj![
1

288p2E d4p

~2p!4eipxH S 3Dj1
m2

p2 D 2F2 ip sgnp0u~2p224m2!A114
m2

p2 1w~p2!G2
1

6

m2

p2 J ,

wherew(p2) is given by the restriction ton54 of expression~B10!, these Einstein-Langevin equations can be written a

1

8pG
G(1)mn~x!22„aA(1)mn~x!1bB(1)mn~x!…1

1

2880p2 F2
8

5
A(1)mn~x!1S 1

6
210Dj DB(1)mn~x!G

1E d4y@HA~x2y;m2!A(1)mn~y!1HB~x2y;m2,Dj!B(1)mn~y!#52jmn~x!, ~4.4!

wherejmn are the components of a Gaussian stochastic tensor of vanishing mean value and two-point correlation
^jmn(x)jab(y)&c5Nmnab(x,y), given in Eq.~3.10!. Note that the two kernels defined in Eq.~4.3! are real and can be split int
an even part and an odd part with respect to the variablesxm, with the odd terms being the dissipation kernelsDA(x;m2) and
DB(x;m2,Dj) defined in Eq.~3.9!. In spite of appearances, one can show that the Fourier transforms of the even parts o
kernels are finite in the limitp2→0 and, hence, the kernelsHA andHB are well defined distributions.
124024-9
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We should mention that, in a previous work in Ref.@18#, the same Einstein-Langevin equations were calculated using ra
different methods. The way in which the result is written makes difficult a direct comparison with our equations~4.4!. For
instance, it is not obvious that in those previously derived equations there is some analog of the dissipation kernels r
the noise kernels by a fluctuation-dissipation relation of the form~3.22! or ~3.23!.

B. Massless field„mÄ0…

In this subsection, we consider the limitm→0 of equations~4.1!. The renormalization scheme used in the previo
subsection becomes singular in the massless limit because the expressions~4.2! for aB andbB diverge whenm→0. Therefore,
a different renormalization scheme is needed in this case. First, note that we may separatekn in Eq. ~2.16! as kn5k̃n
1 1

2 ln(m2/m2)1O(n24), where

k̃n[
1

~n24!S eg

4p D (n24)/2

5
1

n24
1

1

2
lnS eg

4p D1O~n24!, ~4.5!

and that@see Eq.~B10!#

lim
m2→0

@w~p2!1 ln~m2/m2!#5221 lnUp2

m2U. ~4.6!

Hence, in the massless limit, Eqs.~4.1! reduce to

1

8pGB
G(1)mn~x!2

4

3
aBD (1)mn~x!22bBB(1)mn~x!1

1

~4p!2 ~ k̃n21!F 1

90
D (1)mn1Dj2B(1)mnG~x!

1
1

2880p2 H 2
16

15
D (1)mn~x!1S 1

6
210Dj DB(1)mn~x!1E dnyE dnp

~2p!n eip(x2y)lnUp2

m2U@D (1)mn~y!190Dj2B(1)mn~y!#J
1 lim

m2→0

2E dnym2(n24)HAn

mnab~x,y!hab~y!1O~n24!52jmn~x!. ~4.7!
th

on
in

n

an

is
tion
.

These equations can be renormalized by introducing
renormalized coupling constants 1/G, a andb as

1

GB
5

1

G
, aB5a1

1

~4p!2

1

120
~ k̃n21!1O~n24!,

~4.8!

bB5b1
Dj2

32p2 ~ k̃n21!1O~n24!.

Thus, in the massless limit, the Newtonian gravitational c
stant is not renormalized and, in the conformal coupl
case,Dj50, we have again thatbB5b. Introducing the last
expressions into Eq.~4.7!, we can take the limitn→4. Note
that, by makingm50 in Eq. ~3.9!, the noise and dissipatio
kernels can be written as

NA~x;m250!5N~x!, NB~x;m250,Dj!560Dj2N~x!,
~4.9!

DA~x;m250!5D~x!, DB~x;m250,Dj!560Dj2D~x!,

where

N~x![
1

1920pE d4p

~2p!4eipxu~2p2!, ~4.10!
12402
e

-
g

D~x![
2 i

1920pE d4p

~2p!4eipx sgnp0u~2p2!.

It is now convenient to introduce the new kernel

H~x;m2![
1

1920p2E d4p

~2p!4 eipx

3F lnUp2

m2U2 ip sgnp0u~2p2!G
5

1

1920p2 lim
e→01

E d4p

~2p!4 eipx

3 lnS 2~p01 i e!21pipi

m2 D . ~4.11!

Again, this kernel is real and can be written as the sum of
even part and an odd part in the variablesxm, where the odd
part is the dissipation kernelD(x). The Fourier transforms
~4.10! and~4.11! can actually be computed and, thus, in th
case, we have explicit expressions for the kernels in posi
space. ForN(x) and D(x), we get ~see, for instance, Ref
@27#!
4-10
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N~x!5
1

1920p F 1

p3Pf S 1

~x2!2D1d4~x!G ,
~4.12!

D~x!5
1

1920p3sgnx0
d

d~x2!
d~x2!,

wherePf denotes a distribution generated by the Hadam
finite part of a divergent integral~see Refs.@28# for the defi-
nition of these distributions!. The expression for the kerne
H(x;m2) can be found in Refs.@29,30# and it is given by

H~x;m2!5
1

960p2H Pf S 1

p
u~x0!

d

d~x2!
d~x2!D

1~12g2 ln m!d4~x!J
5

1

960p2 lim
l→01

H 1

p
u~x0!u~ uxu2l!

d

d~x2!
d~x2!

1@12g2 ln~ml!#d4~x!J . ~4.13!

See Ref.@29# for the details on how this last distribution ac
on a test function. Finally, the semiclassical Einste
Langevin equations for the physical stochastic perturbati
hmn in the massless case are

1

8pG
G(1)mn~x!22„aA(1)mn~x!1bB(1)mn~x!…

1
1

2880p2 F2
8

5
A(1)mn~x!1S 1

6
210Dj DB(1)mn~x!G

1E d4y H~x2y;m2!@A(1)mn~y!160Dj2B(1)mn~y!#

52jmn~x!, ~4.14!

where the Gaussian stochastic source componentsjmn have
zero mean value and

^jmn~x!jab~y!&c5 lim
m→0

Nmnab~x,y!

5F1

6
~3F x

m(aF x
b)n2F x

mnF x
ab!

160Dj2F x
mnF x

abGN~x2y!.

~4.15!

It is interesting to consider the conformally coupled sca
field, i.e., the caseDj50, of particular interest because of i
similarities with the electromagnetic field. It was shown
Refs. @9,10# that, for this field, the stochastic source tens
must be ‘‘traceless’’~up to first order in perturbation theor
around semiclassical gravity!, in the sense that the stochas
12402
d

-
s

r

r

variablejm
m[hmnjmn behaves deterministically as a vanis

ing scalar field. This can be easily checked by noticing, fr
Eq. ~4.15!, that, whenDj50, one haŝ jm

m(x)jab(y)&c50,
since F m

m53h and F maF m
b5hF ab. The semiclassica

Einstein-Langevin equations for this particular case@and
generalized to a spatially flat Robertson-Walker~RW! back-
ground# were first obtained in Ref.@17# ~in this reference, the
coupling constantb was set to zero!. In order to compare
with this previous result, it is worth noticing that the descri
tion of the stochastic source in terms of a symmetric a
‘‘traceless’’ tensor, with nine independent componentsjmn,
is equivalent to a description in terms of a Gaussian stoch
tic tensor with the same symmetry properties as the W
tensor, with componentsjc

mnab , defined as jmn5

22]a]bjc
manb ; this tensor is used in Ref.@17#. The symme-

try properties of thejc
mnab ensure that there are also nin

independent components in22]a]bjc
manb . It is easy to

show that, for this combination to satisfy the correlation
lation ~4.15! with Dj50, the relevant correlators for the ne
stochastic tensor must be

^jc
mnab~x!jc

rslu~y!&jc
5TmnabrsluN~x2y!, ~4.16!

where Tmnabrslu is a linear combination of terms like
hmrhnshalhbu in such a way that it has the same symm
tries as the product of two Weyl tensor compone
CmnabCrslu, its explicit expression is given in Ref.@17#.
Thus, after a redefinition of the arbitrary mass scalem in Eq.
~4.14! to absorb the constants of proportionality of the loc
terms with A(1)mn(x), one can see that the resulting equ
tions for the Dj50 case are actually equivalent to tho
found in Ref.@17#.

C. Expectation value of the stress-energy tensor

From the above equations one may extract the expecta
value of the renormalized stress-energy tensor for a sc
field in a spacetime (R4,hab1hab), computed up to first or-
der in perturbation theory around the trivial solution of sem
classical gravity. Such an expectation value can be obta
by identification of Eqs.~4.4! and ~4.14! with the compo-
nents of the physical Einstein-Langevin equation, which
our particular case simply reads

1

8pG
G(1)mn22~aA(1)mn1bB(1)mn!5^T̂R

mn&@h1h#12jmn.

~4.17!

By comparison of Eqs.~4.4! and ~4.14! with the last equa-
tion, we can identify

^T̂R
mn~x!&@h1h#5

1

2880p2 F8

5
A(1)mn~x!2S 1

6
210Dj D

3B(1)mn~x!G2E d4y@HA~x2y;m2!

3A(1)mn~y!1HB~x2y;m2,Dj!

3B(1)mn~y!#1O~h2!, ~4.18!
4-11
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for a massive scalar field,mÞ0, and

^T̂R
mn~x!&@h1h#5

1

2880p2 F8

5
A(1)mn~x!2S 1

6
210Dj D

3B(1)mn~x!G2E d4yH~x2y;m2!

3@A(1)mn~y!160Dj2B(1)mn~y!#

1O~h2!, ~4.19!

for a massless scalar field,m50. Notice that in the massive
case we have chosen, as usual, a renormalization sch
such that the expectation value of the renormalized str
energy tensor does not have local terms proportional to
metric and the Einstein tensor@4#. The result~4.19! agrees
with the general form found by Horowitz@30,31# using an
axiomatic approach and coincides with that given in R
@25#. The particular cases of conformal coupling,Dj50, and
minimal coupling,Dj521/6, are also in agreement with th
results for this cases given in Refs.@30–34# ~modulo local
terms proportional toA(1)mn and B(1)mn due to different
choices of the renormalization scheme!. For the case of a
massive minimally coupled scalar field,Dj521/6, our re-
sult ~4.18! is equivalent to that of Ref.@35#.

As it was pointed out above, in the case of conform
coupling, both for massive and massless scalar fields,
hasbB5b. This means that, in these cases, the terms p
portional to B(1)mn in the above expectation values of th
stress-energy tensor are actually independent of the re
malization scheme chosen. Due to the conformal invaria
of *d4xA2gCcabdC

cabd, the tensorAab is traceless and we
have A(1)

m
m50. Therefore, the terms withB(1)mn are pre-

cisely those which give trace to the expectation value of
stress-energy tensor in Eqs.~4.18! and~4.19!. In the massless
conformally coupled case,m50 andDj50, such terms give
the trace anomaly@4# up to first order inhmn :

^T̂R m
m~x!&@h1h#52

1

2880p2

1

6
B(1)

m
m1O~h2!

5
1

2880p2 hR(1)1O~h2!, ~4.20!

where we have used expression~E3! for B(1)mn.

D. Particle creation

We can also use the result~3.10! for the noise kernel to
evaluate the total probability of particle creation and t
number of created particles for a real scalar field in a spa
time (R4,hab1hab). The metric perturbationhab ~here an
arbitrary perturbation! is assumed to vanish, either in an e
act way or ‘‘asymptotically,’’ in the ‘‘remote past’’ and in
the ‘‘far future,’’ so that the scalar field has well define
‘‘in’’ and ‘‘out’’ many particle states. In that case, the abs
lute value of the logarithm of the vacuum persistence pr
ability u^0,outu0,in&u2, where u0,in& and u0,out& are, respec-
tively, the ‘‘in’’ and ‘‘out’’ vacua in the Heisenberg picture
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gives a measure of the total probability of particle creatio
On the other hand, the number of created particles can
defined as the expectation value in the ‘‘in’’ vacuum of t
number operator for ‘‘out’’ particles. As it was shown in Re
@10#, the total probability of particle creation and one half
the number of created particles coincide to lowest non-triv
order in the metric perturbation, these are

P@h#5E d4x d4y hmn~x!Nmnab~x,y!hab~y!10~h3!,

~4.21!

whereNmnab(x,y) is the noise kernel given in Eq.~3.10!,
which in the massless case reduces to Eq.~4.15!. The above
expression for the total probability of pair creation by met
perturbations about Minkowski spacetime was first deriv
in Ref. @36#. Using Eq.~3.10!, we can writeP@h#5PA@h#
1PB@h#10(h3), where

PA@h#[
1

6E d4x d4y~3F x
maF x

nb2F x
mnF x

ab!

3NA~x2y;m2!hmn~x!hab~y!,

PB@h#[E d4x d4yF x
mnF x

abNB~x2y;m2,Dj!

3hmn~x!hab~y!. ~4.22!

Integrating by parts~we always neglect surface terms!, using
expression~E5! for R(1), which can also be written asR(1)

52F mnhmn , we find

PB@h#5E d4x d4y R(1)~x!NB~x2y;m2,Dj!R(1)~y!.

~4.23!

In order to work outPA@h#, it is useful to take into accoun
that, using the symmetry properties of the Weyl and R
mann tensors and the expression~E6! for R(1)rslt, one can
write

Crslt
(1) ~x!C(1)rslt~y!5Crslt

(1) ~x!R(1)rslt~y!

522C(1)rsltdr
adl

b]s]thab~y!.

~4.24!

Using the last identity, the expression~E7! for C(1)rslt and
integrating by parts the first expression in Eq.~4.22! we get

PA@h#5E d4x d4y Cmnab
(1) ~x!NA~x2y;m2!C(1)mnab~y!.

~4.25!

Thus, PA@h# and PB@h# depend, respectively, on the We
tensor and the scalar curvature to first order in the me
perturbation. The result for the massless case,m50, can be
easily obtained from the above expressions, using Eqs.~4.9!.
If, in addition, we makeDj50, i.e., conformal coupling, we
havePB@h#50. Hence, for a conformal scalar field, partic
4-12
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creation is due to the breaking of conformal flatness in
spacetime, which implies a non-zero Weyl tensor.

In order to compare with previously obtained results, it
useful to introduce the Fourier transform of a fieldf (x) as
f̃ (p)[*d4x e2 ipxf (x). Note that, if f (x) is real, then
f̃ (2p)5 f̃ * (p). Using the expressions~3.9! for the kernels
NA and NB , the above result for the total probability o
particle creation and the number of particles created can
be written as

P@h#5
1

1920pE d4p

~2p!4u~2p224m2!A114
m2

p2

3F C̃mnab
(1) ~p!C̃(1)* mnab~p!S 114

m2

p2 D 2

1
20

3
uR̃(1)~p!u2S 3Dj1

m2

p2 D 2G1O~h3!, ~4.26!

in agreement with the results of Ref.@37# ~except for a sign
in the coefficient of the term withuR̃(1)(p)u2!. It is also easy
to see that the above result is equivalent to that found in R
@38# if we take into account that, for integrals of the formI
[*d4p f̃a1•••ar

(p)G(p2) f̃ * a1•••ar(p), where f a1•••ar
(x) is

any real tensor field in Minkowski spacetime andG(p2) is
any scalar function ofp2, one has that

I 52E d4pu~p0! f̃ a1•••ar
~p!G~p2! f̃ * a1•••ar~p!

52E d4pu~2p0! f̃ a1•••ar
~p!G~p2! f̃ * a1•••ar~p!.

~4.27!

In the massless conformally coupled case,m50 and Dj
50, the result~4.26! reduces to that found in Ref.@39#.

The energy of the created particles,E@h#, defined as the
expectation value of the ‘‘out’’ energy operator in the ‘‘in
vacuum can be computed using the expressions derive
Ref. @10#. We find that this energy is given by an expressi
like Eq. ~4.26!, but with a factor 2p0u(p0) inserted in the
integrand@37,10#. Since the kernelsNA and DA are related
by the fluctuation-dissipation relation~3.22!, and the same
holds for NB and DB , it is easy to see@similarly to Eq.
~4.27!# that

E@h#5 i E d4p

~2p!4p0@C̃mnab
(1) ~p!C̃(1)* mnab~p!D̃A~p!

1uR̃(1)~p!u2D̃B~p!#1O~h3!, ~4.28!

where D̃A(p) and D̃B(p) are the Fourier transforms of th
dissipation kernels defined in Eq.~3.9!. For perturbations of
a spatially flat RW spacetime@i.e., hmn52Da(h)hmn ,
wherex0[h is the conformal time andDa(h) is the pertur-
bation of the scale factor#, this last expression agrees wi
that of Ref.@14#, see also Ref.@40#.
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So far in this subsection the metric perturbations are a
trary. We may also be interested in the particles created
the back reaction on the metric due to the stress-energy
tuations. Then we would have to use the solutions of
Einstein-Langevin equations~4.4! and ~4.14! in the above
results. However, to be consistent, one should look for so
tions whose moments vanish asymptotically in the ‘‘remo
past’’ and in the ‘‘far future.’’ These conditions are genera
too strong, since they would break the time translation
variance in the correlation functions. In fact, the solutio
that we find in the next section do not satisfy these con
tions.

V. CORRELATION FUNCTIONS FOR GRAVITATIONAL
PERTURBATIONS

In this section, we solve the semiclassical Einste
Langevin equations~4.4! and ~4.14! for the components
G(1)mn of the linearized Einstein tensor. In Sec. V A we u
these solutions to compute the corresponding two-point c
relation functions, which give a measure of the gravitatio
fluctuations predicted by the stochastic semiclassical the
of gravity in the present case. Since the linearized Eins
tensor is invariant under gauge transformations of the me
perturbations, these two-point correlation functions are a
gauge invariant. Once we have computed the two-point c
relation functions for the linearized Einstein tensor, we fi
solutions for the metric perturbations in Sec. V C and
show how the associated two-point correlation functions
be computed. This procedure to solve the Einstein-Lange
equations is similar to the one used by Horowitz@30#, see
also Ref.@25#, to analyze the stability of Minkowski space
time in semiclassical gravity.

From expressions~E2! and ~E3! restricted ton54, it is
easy to see thatA(1)mn andB(1)mn can be written in terms of
G(1)mn as

A(1)mn5
2

3
~F mnG(1)

a
a2F a

aG(1)mn!,

B(1)mn52F mnG(1)
a
a , ~5.1!

where we have used that 3h5F a
a . Therefore, the Einstein

Langevin equations~4.4! and ~4.14! can be seen as linea
integro-differential stochastic equations for the compone
G(1)mn. Such equations can be written in both cases,mÞ0
andm50, as

1

8pG
G(1)mn~x!22„āA(1)mn~x!1b̄B(1)mn~x!…

1E d4y@HA~x2y!A(1)mn~y!1HB~x2y!B(1)mn~y!#

52jmn~x!, ~5.2!

where the new constantsā andb̄, and the kernelsHA(x) and
HB(x) can be identified in each case by comparison of t
last equation with Eqs.~4.4! and ~4.14!. For instance,
when m50, we have HA(x)5H(x;m2) and HB(x)
4-13
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560Dj2H(x;m2). In this case, we can use the arbitrarine
of the mass scalem to eliminate one of the parametersā or
b̄.

In order to find solutions to these equations, it is con
nient to Fourier transform them. Introducing Fourier tran
forms as in Sec. IV D, one finds, from Eq.~5.1!,

Ã(1)mn~p!52p2G̃(1)mn~p!2
2

3
p2PmnG̃(1)

a
a~p!,

~5.3!
B̃(1)mn~p!522p2PmnG̃(1)

a
a~p!.

Using these relations, the Fourier transform of Eq.~5.2!
reads

F ab
mn ~p!G̃(1)ab~p!516pGj̃mn~p!, ~5.4!

where

F ab
mn ~p![F1~p!d (a

m db)
n 1F2~p!p2Pmnhab , ~5.5!

with

F1~p![1116pG p2@H̃A~p!22ā#,
~5.6!

F2~p![2
16

3
pG@H̃A~p!13H̃B~p!22ā26b̄#.

In Eq. ~5.4!, j̃mn(p), the Fourier transform ofjmn(x), is a
Gaussian stochastic source of zero average and

^j̃mn~p!j̃ab~p8!&c5~2p!4d4~p1p8!Ñmnab~p!, ~5.7!

where we have introduced the Fourier transform of the no
kernel. The explicit expression forÑmnab(p) is found from
Eqs.~3.10! and ~3.9! to be

Ñmnab~p!5
1

2880p
u~2p224m2!A114

m2

p2 F1

4 S 114
m2

p2 D 2

3~p2!2~3Pm(aPb)n2PmnPab!

110S 3Dj1
m2

p2 D 2

~p2!2PmnPabG , ~5.8!

which in the massless case reduces to

lim
m→0

Ñmnab~p!5
1

1920p
u~2p2!

3F1

6
~p2!2~3Pm(aPb)n2PmnPab!

160Dj2~p2!2PmnPabG . ~5.9!

A. Correlation functions for the linearized Einstein tensor

In general, we can writeG(1)mn5^G(1)mn&c1Gf
(1)mn ,

where Gf
(1)mn is a solution to Eq.~5.2! @or, in the Fourier
12402
s
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e

transformed version, Eq.~5.4!# with zero average. The aver
ageŝ G(1)mn&c must be a solution of the linearized semicla
sical Einstein equations obtained by averaging Eq.~5.2! @or
Eq. ~5.4!#. Solutions to these equations~specially in the
massless case,m50) have been studied by several autho
@30,41,31,42,43,34,25#, particularly in connection with the
issue of the stability of the trivial solutions of semiclassic
gravity. The two-point correlation functions for the linea
ized Einstein tensor are given by

G mnab~x,x8![^G(1)mn~x!G(1)ab~x8!&c

2^G(1)mn~x!&c^G
(1)ab~x8!&c

5^Gf
(1)mn~x!Gf

(1)ab~x8!&c . ~5.10!

Next, we shall seek the family of solutions to th
Einstein-Langevin equations which can be written as a lin
functional of the stochastic source and whose Fourier tra
form, G̃(1)mn(p), depends locally onj̃ab(p). Each of such
solutions is a Gaussian stochastic field and, thus, it can
completely characterized by the averages^G(1)mn&c and the
two-point correlation functions~5.10!. For such a family of
solutions,G̃f

(1)mn(p) is the most general solution to Eq.~5.4!

which is linear, homogeneous and local inj̃ab(p). It can be
written as

G̃f
(1)mn~p!516pG Dmn

ab~p!j̃ab~p!, ~5.11!

whereDmn
ab(p) are the components of a Lorentz invaria

tensor field distribution in Minkowski spacetime~by ‘‘Lor-
entz invariant’’ we mean invariant under the transformatio
of the orthochronous Lorentz subgroup; see Ref.@30# for
more details on the definition and properties of these ten
distributions!, symmetric under the interchangesa↔b and
m↔n, which is the most general solution of

F rs
mn ~p!D ab

rs ~p!5d (a
m db)

n . ~5.12!

In addition, we must impose the conservation condition
the solutions:pnG̃f

(1)mn(p)50, where this zero must be un
derstood as a stochastic variable which behaves determ
tically as a zero vector field. We can writeDmn

ab(p)
5Dp

mn
ab(p)1Dh

mn
ab(p), where Dp

mn
ab(p) is a particular

solution to Eq.~5.12! and Dh
mn

ab(p) is the most genera
solution to the corresponding homogeneous equation. Co
spondingly @see Eq. ~5.11!#, we can write G̃f

(1)mn(p)

5G̃p
(1)mn(p)1G̃h

(1)mn(p). To find the particular solution, we
try an ansatz of the form

Dp
mn

ab~p!5d1~p!d (a
m db)

n 1d2~p!p2Pmnhab . ~5.13!

Substituting this ansatz into Eqs.~5.12!, it is easy to see tha
it solves these equations if we take

d1~p!5F 1

F1~p!G
r

, d2~p!52F F2~p!

F1~p!F3~p!G
r

,

~5.14!
4-14
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with

F3~p![F1~p!13p2F2~p!51248pG p2@H̃B~p!22b̄#,
~5.15!

and where the notation@ # r means that the zeros of the d
nominators are regulated with appropriate prescriptions
such a way thatd1(p) and d2(p) are well defined Lorentz
invariant scalar distributions. This yields a particular soluti
to the Einstein-Langevin equations:

G̃p
(1)mn~p!516pG Dp

mn
ab~p!j̃ab~p!, ~5.16!

which, since the stochastic source is conserved, satisfie
conservation condition. Note that, in the case of a mass
scalar field,m50, the above solution has a functional for
analogous to that of the solutions of linearized semiclass
gravity found in the Appendix of Ref.@25#. Notice also that,
for a massless conformally coupled field,m50 andDj50,
the second term in the right hand side of Eq.~5.13! will not
contribute in the correlation functions~5.10!, since, as we
have pointed out in Sec. IV B, in this case the stocha
source is ‘‘traceless.’’

Next, we can work out the general form forDh
mn

ab(p),
which is a linear combination of terms consisting of a Lo
entz invariant scalar distribution times one of the produ
d (a

m db)
n , p2Pmnhab , hmnhab , hmnp2Pab , d (a

(mp2Pb)
n) and

p2Pmnp2Pab . However, taking into account that the st
chastic source is conserved, we can omit some term
Dh

mn
ab(p) and simply write

G̃h
(1)mn~p!516pG Dh

mn
ab~p!j̃ab~p!, ~5.17!

with

Dh
mn

ab~p!5h1~p!d (a
m db)

n 1h2~p!p2Pmnhab

1h3~p!hmnhab , ~5.18!

whereh1(p), h2(p) and h3(p) are Lorentz invariant scala
distributions. From the fact thatDh

mn
ab(p) must satisfy the

homogeneous equation corresponding to Eq.~5.12!, we find
that h1(p) andh3(p) have support on the set of points$pm%
for which F1(p)50, and thath2(p) has support on the set o
points$pm% for which F1(p)50 or F3(p)50. Moreover, the
conservation condition forG̃h

(1)mn(p) implies that the term
with h3(p) is only allowed in the case of a massless conf
mally coupled field,m50 andDj50. From Eq.~5.7!, we
get
12402
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^G̃h
(1)mn~p!j̃ab~p8!&c

5~2p!416pG d4~p1p8!Dh
mn

rs~p!Ñrsab~p!.

~5.19!

Note, from expressions~5.8! and ~5.9!, that the support of
Ñmnab(p) is on the set of points$pm% for which 2p2>0
when m50, and for which2p224m2.0 whenmÞ0. At
such points, using expressions~5.6!, ~5.15!, ~4.11! and~4.3!,
it is easy to see thatF1(p) is always different from zero, and
that F3(p) is also always different from zero, except fo
some particular values ofDj and b̄:

~a! whenm50, Dj50 andb̄.0;
~b! whenmÞ0, 0,Dj,(1/12) and

b̄5~Dj/32p2!@p/~Gm2!11/36#.

In case~a!, F3(p)50 for the set of points$pm% satisfying
2p251/(96pGb̄); in case~b!, F3(p)50 for $pm% such that
2p25m2/(3Dj). Hence, except for the above cases~a! and
~b!, the intersection of the supports ofÑmnab(p) and
Dhlg

rs (p) is an empty set and, thus, the correlation functi
~5.19! is zero. In cases~a! and ~b!, we can have a contribu
tion to Eq. ~5.19! coming from the term withh2(p)
in Eq. ~5.18! of the form Dh

mn
rs(p)Ñrsab(p)

5H3(p;$C%)p2PmnÑabr
r(p), whereH3(p;$C%) is the most

general Lorentz invariant distribution satisfyin
F3(p)H3(p;$C%)50, which depends on a set of arbitra
parameters represented as$C%. However, from Eq.~5.8!, we
see that Ñ r

abr (p) is proportional to u(2p224m2)(1
14m2/p2)1/2(3Dj1m2/p2)2. Thus, in case~a!, we have
Ñ r

abr (p)50 and, in case~b!, the intersection of the sup

ports ofÑabr
r(p) and ofH3(p;$C%) is an empty set. There

fore, from the above analysis, we conclude thatG̃h
(1)mn(p)

gives no contribution to the correlation functions~5.10!,
since ^G̃h

(1)mn(p) j̃ab(p8)&c50, and we have simply
G mnab(x,x8)5^Gp

(1)mn(x)Gp
(1)ab(x8)&c , whereGp

(1)mn(x) is
the inverse Fourier transform of Eq.~5.16!.

The correlation functions~5.10! can then be computed
from

^G̃p
(1)mn~p!G̃p

(1)ab~p8!&c

564~2p!6G2d4~p1p8!Dp
mn

rs~p!

3Dp
ab

lg~2p!Ñrslg~p!. ~5.20!

It is easy to see from the above analysis that the prescript
@ # r in the factorsDp are irrelevant in the last expression an
thus, they can be suppressed. Taking into account
Fl(2p)5Fl* (p), with l 51,2,3, we get from Eqs.~5.13! and
~5.14!
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^G̃p
(1)mn~p!G̃p

(1)ab~p8!&c564~2p!6G2
d4~p1p8!

uF1~p!u2
F Ñmnab~p!2

F2~p!

F3~p!
p2PmnÑabr

r~p!

2
F2* ~p!

F3* ~p!
p2PabÑmnr

r~p!1
uF2~p!u2

uF3~p!u2
p2Pmnp2PabÑr

r
s

s~p!G . ~5.21!

This last expression is well defined as a bi-distribution and can be easily evaluated using Eq.~5.8!. We find

^G̃p
(1)mn~p!G̃p

(1)ab~p8!&c5
2

45
~2p!5G2

d4~p1p8!

uF1~p!u2
u~2p224m2!A114

m2

p2 F1

4 S 114
m2

p2 D 2

~p2!2~3Pm(aPb)n2PmnPab!

110S 3Dj1
m2

p2 D 2

~p2!2PmnPabU123p2
F2~p!

F3~p!
U2G . ~5.22!
ll

th
he

-
oor-
To derive the correlation functions~5.10!, we have to take
the inverse Fourier transform of the above result. We fina
obtain

G mnab~x,x8!5
p

45
G2F x

mnabGA~x2x8!

1
8p

9
G2F x

mnF x
abGB~x2x8!, ~5.23!

with

G̃A~p![u~2p224m2!A114
m2

p2 S 114
m2

p2 D 2 1

uF1~p!u2 ,

G̃B~p![u~2p224m2!A114
m2

p2 S 3Dj1
m2

p2 D 2

3
1

uF1~p!u2U123p2
F2~p!

F3~p!
U2

, ~5.24!

and F x
mnab[3F x

m(aF x
b)n2F x

mnF x
ab , and whereFl(p), l

51,2,3, are given in Eqs.~5.6! and~5.15!. Notice that, for a
massless field (m50), we have

F1~p!51116pGp2H̃~p;m̄2!,

F2~p!52
16

3
pG@~11180Dj2!H̃~p;m̄2!26Y#,

~5.25!

F3~p!51248pGp2@60Dj2H̃~p;m̄2!22Y#,

with m̄[m exp(1920p2ā) and Y[b̄260Dj2ā, and where
H̃(p;m2) is the Fourier transform ofH(x;m2) given in Eq.
~4.11!.

B. Conformal field case

The above correlation functions become simpler when
scalar field is massless and conformally coupled, i.e., w
12402
y

e
n

m50 and Dj50, since in this caseGB(x)50 and G̃A(p)

reduces toG̃A(p)5u(2p2)uF1(p)u22. Introducing the func-
tion w(x;l)[@12x ln(lx/e)#21p2x2, with x>0 and l
.0, GA(x) can be written as

GA~x!5
~120p!3/2

2p3LP
3

1

uxu E0

`

duquuqusinFA120p

LP
uxuuquG

3E
0

`

dq0 cosFA120p

LP
x0q0G u~2q2!

w~2q2;l!
,

~5.26!

whereLP[AG is the Planck length,l[120pe/(LP
2 m̄2), and

we use the notationxm5(x0,x) andqm5(q0,q). Notice that,
if we assume thatm̄<LP

21 , thenl*103. For those values of
the parameterl ~and also for smaller values!, the function
w(x;l) has a minimum at some value ofx that we denote as
x0(l). This can be found by solving the equationp2x0
5@12x0 ln(lx0 /e)#@11ln(lx0 /e)# numerically@discarding a
solutionxM(l),x0(l), at which the functionw(x;l) has a
maximum#. Since the main contribution to the integral~5.26!
come from the values of2q2 around2q25x0(l), w(x;l)
can be approximately replaced in this integral by

wap~x;l![@12k~l!x#21p2x2

5@k2~l!1p2#x222k~l!x11,

with k(l)[ ln„lx0(l)/e…. For (l/5);1032107, we have
k;10.

Let the spacetime pointsx andx8 be different and space
like separated. In this case, we can choose an inertial c
dinate system for which (x2x8)m5(0,x2x8) and
G mnab(x,x8) will be a function of x2x8 only that can be
written as

G mnab~x2x8!5G 1
mnab~x2x8!1G 2

mnab~x2x8!

1G 3
mnab~x2x8!, ~5.27!

with
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G a
mnab~x![

p

45
G2F ax

mnabI a~x!, ~5.28!

a51,2,3, where I 1(x)[GA(x)uxm5(0,x) , I 2(x)
[(]x

0)2GA(x)uxm5(0,x) , I 3(x)[(]x
0)4GA(x)uxm5(0,x) , and

F ax

mnab are some differential operators. Note that the ter

containing an odd number of]x
0 derivatives are zero

The differential operators F 1x

mnab are given by

F 1
mnab53D m(aD b)n2D mnD ab, with D mn[(hmnd i j

2dm idn j )] i] j . The non-null components of the remainin
operators areF 2

00i j 53] i] j2d i j n, F 2
0i0 j5 1

2 (] i] j13d i j n),
F 3

i jkl 52d i j dkl13d i (kd l ) j , F 2
i jkl 52(d i j dkl23d i (kd l ) j )n

2d i j ]k] l2dkl] i] j13(d i (k] l )] j1d j (k] l )] i), where n
o-

or

an

s

-

12402
s

[dij]i]j is the usual~Euclidean space! Laplace operator.
From the above expressions, we can see thatG 000i(x2x8)
5G 0i jk(x2x8)50, but the remaining correlation function
G mnab(x2x8) are in principle non-null.

With the approximation described above, the integr
I a(x) can be written as

I a~x!.
~21!a11

2p3 S 120p

LP
2 D a11/2 1

uxu E0

`

duqu

3sinFA120p

LP
uxuuquG uquJa~ uqu!, ~5.29!

where
J1~ uqu![E
uqu

`

dq0
1

wap~2q2;l!
, J2~ uqu![E

uqu

`

dq0
~q0!2

wap~2q2;l!
,

~5.30!

J3~ uqu![
2uqu

k2~l!1p2
1E

uqu

`

dq0F ~q0!4

wap~2q2;l!
2

1

@k2~l!1p2#G .

Noting thatwap(2q2;l) has four zeros in the complexq0 plane at6p(uqu), 6p* (uqu), wherep(s) ~we makes[uqu) is the
complex function with

Rep~s!

Im p~s!
J 5FA@~k21p2!s21k#21p26~k21p2!s26k

2~k21p2!
G 1/2

, ~5.31!

we can decompose

1

wap~2q2;l!
5

1

4~k21p2!

1

upu2 Rep
F q012Rep

~q0!212 Rep q01upu2
2

~q022 Rep!

~q0!222 Rep q01upu2
G , ~5.32!
e

and then we can perform the integralsJa(s), a51,2,3. The
results for these integrals can be found in Appendix F.

Next, to carry on with the calculation, we need to intr
duce some suitable approximations for the functionsJa(s) in
the integrals~5.29!. In order to do so, we study the behavi
of these functions for small and large values ofs. For
s J1(s), we find that it can be well approximated by an arct
function. In fact, on the one hand,s J1(s) tends very quickly
to a constant limiting value lims→`s J1(s)5a/4, wherea
[11(2/p)arctan(k/p). On the other hand, for small value
of s, we haves J1(s).@A120pa/(2pb)#s1O(s2), with b
[(4a/p2)@15p(Ak21p22k)#1/2. Hence, we can approxi
mate

s J1~s!.
a

2p
arctanSA120p

b
sD . ~5.33!

Performing the integralI 1(x) @see Eq.~5.29!# with this ap-
proximation, we get, foruxuÞ0,
I 1~x!.
15

p2

a

LP
2

1

uxu2
e2buxu/LP. ~5.34!

The functionJ2(s) behaves asJ2(s).(a/4)s1O(s21 ln s)
for large values ofs, and as J2(s).(a/4)(120p)21/2g
1O(s2), with g[240(k21p2)21/2b21, for small values of
s. This function can be well approximated by

J2~s!.
a

4Fs21
g2

120pG1/2

, ~5.35!

and, substituting the last expression in the integralI 2(x) @see
Eq. ~5.29!#, we obtain, foruxuÞ0,

I 2~x!.
15

p2

a

LP
4

g2

uxu2
K2~guxu/LP!, ~5.36!

where Kn(z) denote the modified Bessel functions of th
second kind. For J3(s), we find that J3(s).(a/4)s3

1O(s ln s) for large values ofs, and that
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J3~s!.~a/4!~120p!23/2d31O~s!,

with

d[4~k21p2!21/2@450p b21~2k2Ak21p2!#1/3,

for s small. With the approximation

J3~s!.
a

4Fs21
d2

120pG3/2

, ~5.37!

we can compute the integralI 3(x) @see Eq.~5.29!# for uxu
Þ0, and we find
12402
I 3~x!.
45

p2

a

LP
5

d3

uxu3
K3~duxu/LP!. ~5.38!

Numerical calculations confirm that the above approxim
tions are reasonable. Fork;10, we havea,b,d;1 andg
;10.

The results~5.34!, ~5.36! and ~5.38! are now ready to be
substituted into Eq.~5.28!, from where we can compute th
different contributions to the correlation functions~5.27!.
Using the relation (d/dz)@z2nKn(z)#52z2nKn11(z), and
definingsb[buxu/LP , sg[guxu/LP , sd[duxu/LP , we get,
after a rather long but straightforward calculation, the f
lowing results for the non-zero components ofG a

mnab(x)
@with uxuÞ0#:
G 1
0000~x!.

2

3p

ab6

LP
4

e2sb

sb
2 F11

4

sb
1

12

sb
2 1

24

sb
3 1

24

sb
4G ,

G 1
00i j ~x!.

1

3p

ab6

LP
4

e2sb

sb
2 Fd i j S 11

5

sb
1

16

sb
2 1

32

sb
3 1

32

sb
4D 2

xixj

uxu2
S 11

7

sb
1

24

sb
2 1

48

sb
3 1

48

sb
4D G ,

G 1
0i0 j~x!52

3

2
G 1

00i j ~x!,

G 1
i jkl ~x!.

1

3p

ab6

LP
4

e2sb

sb
2 F2~d i j dkl23d i (kd l ) j !S 11

6

sb
1

18

sb
2 1

30

sb
3 1

24

sb
4D 110d i (kd l ) j S 1

sb
2 1

5

sb
3 1

8

sb
4D

1
1

uxu2
~d i j xkxl1dklxixj23d i (kxl )xj23d j (kxl )xi !S 11

5

sb
1

6

sb
2 2

18

sb
3 2

48

sb
4D

2
10

uxu2
~d i (kxl )xj1d j (kxl )xi !S 1

sb
1

9

sb
2 1

33

sb
3 1

48

sb
4D 1

2

uxu4
xixjxkxl S 11

14

sb
1

87

sb
2 1

279

sb
3 1

384

sb
4 D G ,

~5.39!

G 2
00i j ~x!.

1

3p

ag6

LP
4

K4~sg!

sg
2 S 3

xixj

uxu2
2d i j D ,

G 2
0i0 j~x!.

1

6p

ag6

LP
4

K4~sg!

sg
2 S xixj

uxu2
13d i j D 2

5

3p

ag6

LP
4

K3~sg!

sg
3 d i j ,

G 2
i jkl ~x!.

1

3p

ag6

LP
4

K4~sg!

sg
2 F2~d i j dkl23d i (kd l ) j !2

1

uxu2
~d i j xkxl1dklxixj23d i (kxl )xj23d j (kxl )xi !G

2
4

3p

ag6

LP
4

K3~sg!

sg
3 ~d i j dkl23d i (kd l ) j !,

G 3
i jkl ~x!.2

1

p

ad6

LP
4

K3~sd!

sd
3 ~d i j dkl23d i (kd l ) j !.
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Note that, fors@1, we have the following asymptotic ex
pansions for the modified Bessel functions in the above
pressions:

K4~s!.A p

2s
e2sF11

63

8

1

s
1OS 1

s2D G , ~5.40!

K3~s!.A p

2s
e2sF11

35

8

1

s
1OS 1

s2D G .
C. Correlation functions for the metric perturbations

Starting from the solutions found for the linearized Ei
stein tensor, which are characterized by the two-point co
lation functions~5.23! @or, in terms of Fourier transforms
Eq. ~5.22!#, we can now solve the equations for the met
perturbations. Working in the harmonic gauge,]nh̄mn50
~this zero must be understood in the same statistical sen
above!, whereh̄mn[hmn2(1/2)hmnh, and using Eqs.~2.19!
and ~E1!, these equations reduce tohh̄mn(x)5

22G(1)mn(x), or, in terms of Fourier transforms,p2h̃̄mn(p)
52G̃(1)mn(p). As above, we can writeh̄mn5^h̄mn&c1h̄f

mn ,

whereh̄f
mn is a solution to these equations with zero avera

and the two-point correlation functions are given by

H mnab~x,x8![^h̄mn~x!h̄ab~x8!&c2^h̄mn~x!&c^h̄
ab~x8!&c

5^h̄f
mn~x!h̄f

ab~x8!&c . ~5.41!

We can now seek solutions of the formh̃̄f
mn(p)

52D(p)G̃f
(1)mn(p), whereD(p) is a Lorentz invariant sca

lar distribution in Minkowski spacetime, which is the mo
general solution ofp2D(p)51. Note that, since the linear
ized Einstein tensor is conserved, solutions of this form
tomatically satisfy the harmonic gauge condition. As abo
we can writeD(p)5@1/p2# r1Dh(p), where Dh(p) is the
most general solution to the associated homogeneous e

tion and, correspondingly, we haveh̃̄f
mn(p)5 h̃̄p

mn(p)

1 h̃̄h
mn(p). However, sinceDh(p) has support on the set o

points for which p250, it is easy to see from Eq.~5.22!

@from the factoru(2p224m2)# that ^ h̃̄h
mn(p)G̃f

(1)ab(p8)&c

50 and, thus, the two-point correlation functions~5.41! can

be computed from̂ h̃̄f
mn(p) h̃̄f

ab(p8)&c5^ h̃̄p
mn(p) h̃̄p

ab(p8)&c .
From Eq.~5.22! and due to the factoru(2p224m2), it is
also easy to see that the prescription@ # r is irrelevant in this
correlation function and we obtain

^ h̃̄p
mn~p! h̃̄p

ab~p8!&c5
4

~p2!2^G̃p
(1)mn~p!G̃p

(1)ab~p8!&c ,

~5.42!

where ^G̃p
(1)mn(p)G̃p

(1)ab(p8)&c is given in Eq.~5.22!. The
right hand side of this equation is a well defined b
distribution, at least formÞ0 ~the u function provides the
suitable cutoff!. In the massless field case, since the no
kernel is obtained as the limitm→0 of the noise kernel for a
12402
x-

e-

as

,

-
,

ua-

e

massive field, it seems that the natural prescription to av
the divergencies on the lightconep250 is a Hadamard finite
part ~see Refs.@28# for its definition!. Taking this prescrip-
tion, we also get a well defined bi-distribution for the mas
less limit of the last expression. Finally, we find the resu

H mnab~x,x8!5
4p

45
G2F x

mnabHA~x2x8!

1
32p

9
G2F x

mnF x
abHB~x2x8!,

~5.43!

where H̃A(p)[@1/(p2)2#G̃A(p) and H̃B(p)
[@1/(p2)2#G̃B(p), with G̃A(p) and G̃B(p) given by Eq.
~5.24!. The two-point correlation functions for the metr
perturbations can be easily obtained usinghmn5h̄mn

2(1/2)hmnh̄a
a .

VI. DISCUSSION

Our main results for the correlation functions are Eq
~5.23! and ~5.43!. In the case of a conformal field, the co
relation functions of the linearized Einstein tensor have b
explicitly evaluated and the results are given in Eq.~5.39!.
From the exponential factorse2s in these results, we see tha
the correlation functions of the linearized Einstein tensor
in this case characterized by correlation lengths of the or
of the Planck length. A similar behavior is expected for t
correlation functions of the metric perturbations. Hence,
expected in this case, the correlation functions are neglig
small for points separated by distances large compared to
Planck length. At such scales, the dynamics of gravitatio
perturbations of Minkowski spacetime can be simply d
scribed by semiclassical gravity@30,41,31,42,43,34,25#. De-
viations from semiclassical gravity are only important f
points separated by Planckian or sub-Planckian scales. H
ever, for such scales, our results~5.39! are not reliable, since
we expect that gravitational fluctuations of genuine quant
nature to be relevant and, thus, the classical descrip
breaks down. It is interesting to note, however, that th
results for correlation functions are non-analytic in th
characteristic correlation lengths. This kind of non-analy
behavior is actually quite typical of the solutions
Langevin-type equations with dissipative terms. An exam
in the context of a reduced version of the semiclass
Einstein-Langevin equation is given in Ref.@20#.

For background solutions of semiclassical gravity w
other scales present apart from the Planck scales~for in-
stance, for matter fields in a thermal state!, stress-energy
fluctuations may be important at larger scales. For s
backgrounds, stochastic semiclassical gravity might pre
correlation functions with characteristic correlation lengt
much larger than the Planck scales, so as to be relevant
reliable on a certain range of scales. It seems quite plaus
nevertheless, that these correlation functions would rem
non-analytic in their characteristic correlation lengths. T
would imply that these correlation functions could not
4-19
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ROSARIO MARTÍN AND ENRIC VERDAGUER PHYSICAL REVIEW D61 124024
obtained from a calculation involving a perturbative expa
sion in the characteristic correlation lengths. In particular
these correlation lengths are proportional to the Planck c
stant\, the gravitational correlation functions could not b
obtained from an expansion in\. Hence, stochastic semicla
sical gravity might predict a behavior for gravitational co
relation functions different from that of the analogous fun
tions in perturbative quantum gravity@44#. This is not
necessarily inconsistent with having neglected action te
of higher order in\ when considering semiclassical gravi
as an effective theory@25#.

We conclude this section with some comments abou
technical point on the obtained solutions of stochastic se
classical gravity. It concerns the issue that the Einste
Langevin equations, as well as the semiclassical Eins
equations, contain derivatives of order higher than two.
cause of this fact, these equations can have some ‘‘patho
cal’’ solutions ~e.g., ‘‘runaway’’ solutions! which are pre-
sumably unphysical@45,43,46,25#. Thus, one needs to appl
some criterion to discern the ‘‘physical’’ from the unphysic
solutions. However, as it is discussed in Ref.@25# ~see also
Refs. @47#!, even in the context of ‘‘pure’’~non-stochastic!
semiclassical gravity, this is still an open problem. Two m
proposals, both based in the works by Simon@45,43,46#,
have been made concerning this issue: the ‘‘perturbative
pandability’’ ~in \) criterion @45,43,46# and the ‘‘reduction
of order’’ procedure@25#.

The first proposal consists in identifying a subclass
‘‘physical’’ solutions which are analytic in the Planck con
stant\. This proposal has been successful in eliminating
instability of Minkowski spacetime found by Horowit
@30,31#. However, on the one hand, this proposal seems to
too restrictive since, as it has been pointed out in Ref.@25#,
one could not describe effects such as the continuous m
loss of a black hole due to Hawking radiation. On the oth
hand, there can be situations in which the formal series
tained when seeking approximate perturbative solutions~to a
finite order in \) does not converge to a solution to th
semiclassical equations@25#. In our case, if we had tried to
find solutions to Eq.~5.2! as a Taylor expansion in\, we
would have obtained a series forG̃mn

(1)(p) which, as the above

solutions, would be linear and local inj̃ab(p), but whose
corresponding two-point correlation functions for the conf
mal field case would not converge to Eq.~5.23!.

The ‘‘reduction of order’’ procedure provides in som
cases a reasonable way to modify the semiclassical equa
in order to eliminate spurious solutions. But, as it has b
emphasized in Ref.@25#, it is not clear at all whether a re
duction of order procedure can always be applied to
semiclassical Einstein equation~and how this procedure
should be applied!. For the Einstein-Langevin equation, th
issue has not been, to our knowledge, properly addresse
naive application of the prescription to Eq.~5.2! seems to
downplay the role of the dissipative terms with respect to
12402
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noise source. In fact, to lowest order, we obtainG(1)mn

516pGjmn, where there is no contribution of the dissipatio
kernel. From this equation, we get the well-known res
^G(1)mn&c50 @25,43#, and also G mnab(x,x8)
5(16p)2LP

4Nmnab(x,x8). For a massless field, using Eq
~3.10!, ~4.9! and ~4.12!, this gives

G mnab~x,x8!5~2/15!~LP
4 /p2!

3@~1/6!F x
mnab160Dj2F x

mnF x
ab#

3@Pf @1/„~x2x8!2
…

2#1p3d4~x2x8!#.

For the two-point correlation functions~5.41!, we get, in the
harmonic gauge,

H mnab~x,x8!5~4p/45!LP
4F x

mnabIA~x2x8!

1~32p/9!LP
4F x

mnF x
abIB~x2x8!,

with

ĨA~p![u~2p224m2!~p2!22

3A114m2/p2~114m2/p2!2

and

ĨB~p![u~2p224m2!~p2!22A114m2/p2~3Dj1m2/p2!2.

Comparing the last results for the massless case with
ones obtained in Sec. V, we note that the main qualita
feature is the absence of the exponential factorse2s, which
make the two-point correlation functions to decay mu
more slowly with the distance, i.e., like a power instead of
exponential law. This fact is due to the lack of dissipati
terms in the reduced order equations. The conclusion is
one should probably implement a more sophisticated vers
of the reduction of order procedure so as to keep some c
tribution of the dissipation kernel in the reduced order eq
tions.

For these reasons, in our work we have not attempted
of these procedures and we have simply sought some s
tions to the full equations~5.2!. Our solutions for the confor-
mal field case have the physically reasonable feature of h
ing negligible two-point functions for points separated
scales larger than the Planck length.
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APPENDIX A: THE KERNELS FOR A VACUUM STATE

The kernels for a vacuum state can be computed in terms of the Wightman and Feynman functions defined in E~2.6!
using
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whereD ab is the differential operator
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APPENDIX B: MOMENTUM INTEGRALS

Some useful expressions for the momentum integrals in dimensional regularization defined in Eqs.~3.14! and ~3.15! are

I 0n
5

i

~4p!2 m2S m2

4pm2D (n24)/2

GS 12
n

2D5
i

~4p!2

4m2

~n22!
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I 0n

m 50, ~B2!

I 0n

mn52m2hmn
I 0n

n
, ~B3!

Jn~p!5
2 i

~4p!2 @2kn1f~p2!1O~n24!#, ~B4!

Jn
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Jn~p!

2
pm, ~B5!

Jn
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Jn~p!
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1
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4
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p2F3pmpnpa1
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wherep2Pmn[hmnp22pmpn, kn is defined in Eq.~2.16!,
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We can also writef(p2) in a more compact way as

f~p2!5221A114
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p2 lnS A114~m22 i e!/p211

A114~m22 i e!/p221
D . ~B11!

Other useful integrals in momentum space defined in Eq.~3.5! are
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APPENDIX C: PRODUCTS OF WIGHTMAN FUNCTIONS

For the products of derivatives of Wightman functions involved in the calculations of Sec. III A, we obtain the follo
expressions:

D12~x!52~2p!2E d4p

~2p!4e2 ipxI ~p!, ~C1!

]mD1~x!]nD1~x!5~2p!2E d4p

~2p!4 e2 ipx@ I m~p!pn2I mn~p!#, ~C2!

]m]nD1~x!]a]bD1~x!52~2p!2E d4p

~2p!4e2 ipx@ I mn~p!papb22I mn(a~p!pb)1I mnab~p!#, ~C3!

with I (p), I m(p), I mn(p), I mna(p) and I mnab(p) given by Eqs.~B12!–~B16!. From these expressions, using the results
Appendix B, we obtain
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APPENDIX D: PRODUCTS OF FEYNMAN FUNCTIONS

For the products of derivatives of Feynman functions that we need for the calculations of Sec. III B, we obtain the fo
results:
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Using the results of Appendix B, we find from the above expressions
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wherePmn is the projector orthogonal topm defined above.

APPENDIX E: LINEARIZED TENSORS AROUND FLAT SPACETIME

Some curvature tensors linearized around flat spacetime are given by the following expressions:
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In four spacetime dimensions, the linearized Weyl tensor is given by
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APPENDIX F: THE INTEGRALS Ja„S…

For the integralsJa(s), a51,2,3, defined in Eq.~5.30!, we find the following results:
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wherep is a function ofs given by expressions~5.31!, which giveupu25†@(k21p2)s21k#21p2
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@28# L. Schwartz,Théorie des Distributions~Hermann, Paris, 1957

and 1959!, Tomes I et II; A. H. Zemanian,Distribution Theory
and Transform Analysis~Dover, New York, 1987!.

@29# A. Campos, R. Martı´n, and E. Verdaguer, Phys. Rev. D52,
4319 ~1995!.

@30# G. T. Horowitz, Phys. Rev. D21, 1445~1980!.
@31# G. T. Horowitz, inQuantum Gravity 2: A Second Oxford Sym

posium, edited by C. J. Isham, R. Penrose, and D. W. Scia
~Clarendon Press, Oxford, 1981!.

@32# G. T. Horowitz and R. M. Wald, Phys. Rev. D21, 1462
~1980!; 25, 3408~1982!; A. A. Starobinsky, Pis’ma Zh. E´ksp.
Teor. Fiz.34, 460 ~1981! @JETP Lett.34, 438 ~1981!#.

@33# A. Campos and E. Verdaguer, Phys. Rev. D49, 1861~1994!.
@34# R. D. Jordan, Phys. Rev. D36, 3593~1987!.
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