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Stochastic semiclassical fluctuations in Minkowski spacetime
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The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of
the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the
background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its
vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled
to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy
tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the
equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric
perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational
fluctuations in stochastic semiclassical gravity have a ‘“non-perturbative” behavior in some characteristic
correlation lengths.

PACS numbegs): 04.62+v, 05.40—a

[. INTRODUCTION source term was shown to be closely linked to the matter
It has been pointed out that the semiclassical theory o$tress-energy fluctuations. We also developed a method to
gravity [1-5] cannot provide a correct description of the dy- compute the semiclassical Einstein-Langevin equation using
namics of the gravitational field in situations where the quandimensional regularization, which provides an alternative
tum stress-energy fluctuations are importgh®,4,6—8. In  and more direct way of computing this equation with respect
such situations, these fluctuations may have relevant backe previous calculations.
reaction effects in the form of induced gravitational fluctua- This paper is intended to be a first application of the full
tions [6] which, in a certain regime, are expected to be destochastic semiclassical theory of gravity, where we evaluate
scribed as classical stochastic fluctuations. A generalizatiothe stochastic gravitational fluctuations in a Minkowski
of the semiclassical theory is thus necessary to account fdsackground. In order to do so, we first use the method de-
these effects. In two previous papers, Ré®.and[10], we  veloped in Ref.[10] to derive the semiclassical Einstein-
have shown how a stochastic semiclassical theory of gravitfangevin equation around a class of trivial solutions of semi-
can be formulated to improve the description of the gravitaclassical gravity consisting of Minkowski spacetime and a
tional field when stress-energy fluctuations are relevant. linear real scalar field in its vacuum state, which may be
In Ref. [9], we adopted an axiomatic approach to con-considered the ground state of semiclassical gravity. Al-
struct a perturbative generalization of semiclassical gravitthough the Minkowski vacuum is an eigenstate of the total
which incorporates the back reaction of the lowest ordefour-momentum operator of a field in Minkowski spacetime,
stress-energy fluctuations in the form of a stochastic corredt is not an eigenstate of the stress-energy operator. Hence,
tion. We started noting that, for a given solution of semiclas-even for these solutions of semiclassical gravity, for which
sical gravity, the lowest order matter stress-energy fluctuathe expectation value of the stress-energy operator can al-
tions can be associated with a classical stochastic tensor. Weays be chosen to be zero, the fluctuations of this operator
then sought a consistent equation in which this stochastiare non-vanishing. This fact leads to consider the stochastic
tensor was the source of linear perturbations of the semiclagorrections to these solutions described by the semiclassical
sical metric. The equation obtained is the so-called semiclasinstein-Langevin equation.
sical Einstein-Langevin equation. We then solve the Einstein-Langevin equation for the lin-
In Ref. [10], we followed the idea, first proposed by Hu earized Einstein tensor and compute the associated two-point
[11] in the context of back reaction in semiclassical gravity,correlation functions. Even though, in this case, we expect to
of viewing the metric field as the “system” of interest and have negligibly small values for these correlation functions
the matter fielddmodeled in that paper by a single scalar at the domain of validity of the theory, i.e., for points sepa-
field) as being part of its “environment.” We then showed rated by lengths larger than the Planck length, there are sev-
that the semiclassical Einstein-Langevin equation introducedral reasons why we think that it is worth carrying out this
in Ref.[10] can be formally derived by a method based oncalculation.
the influence functional of Feynman and Vernd®] (see On the one hand, these are, to our knowledge, the first
also Ref.[13]). That derivation shed light on the physical solutions obtained to the full semiclassical Einstein-
meaning of the semiclassical Langevin-type equationgangevin equation. We are only aware of analogous solu-
around specific backgrounds previously obtained with theions to a “reduced” version of this equation inspired in a
same functional approachl4—23, since the stochastic ‘“mini-superspace” mode[20]. There is also a previous at-
tempt to obtain a solution to the Einstein-Langevin equation
in Ref.[17], but, there, the non-local terms in the Einstein-
*Also at Institut de Rica d’Altes Energie$IFAE). Langevin equation were neglected.
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The Einstein-Langevin equations computed in this papesemiclassical gravity consisting of a globally hyperbolic
are simple enough to be explicitly solved and, at least for thespacetime {M,g,), a linear real scalar field quantized on it
case of a conformal field, the expressions obtained for thand some physically reasonable state for this fiald work
correlation functions can be explicitly evaluated in terms ofin the Heisenberg pictureAccording to the stochastic semi-
elementary functions. Thus, our calculation can serve as elassical theory of gravitj,10], quantum fluctuations in the
testing ground for the solutions of the Einstein-Langevinstress-energy tensor of matter induce stochastic linear pertur-
equation in more complex situations of physical intefést  bationsh,, to the semiclassical metrg,,. The dynamics of
instance, for a Robertson-Walker background and a field in ¢ghese perturbations is described by a stochastic equation
thermal state called the semiclassical Einstein-Langevin equation.

On the other hand, the results of this calculation, which Assuming that our semiclassical gravity solution allows
confirm our expectations that gravitational fluctuations arehe use of dimensional analytic continuation to define regu-
negligible at length scales larger than the Planck length, calarized matrix elements of the stress-energy “operator,” we
be considered as a first check that stochastic semiclassicsthall write the equations in dimensional regularization, that
gravity predicts reasonable results. is, assuming an arbitrary dimensiorof the spacetime. Us-

In addition, we can extract conclusions on the possibléng this regularization method, we use a notation in which a
qualitative behavior of the solutions to the Einstein-Langevinsubindexn is attached to those quantities that have different
equation. Thus, it is interesting to note that the correlatiorphysical dimensions from the corresponding physical quan-
functions are characterized by correlation lengths of the ortities. The n-dimensional spacetimeM(,g,,) has to be a
der of the Planck length; furthermore, such correlationsolution of the semiclassical Einstein equation in dimen-
lengths enter in a non-analytic way in the correlation func-sional regularization:
tions. This kind of non-analytic behavior is actually quite
common in the solutions to Langevin-type equations with 1 ab a4 ab ab
dissipative terms and hints at the possibility that correlation 87TGB(G [9]+Aeg™) — §aBD +2psB% (0]
functions for other solutions to the Einstein-Langevin equa-
tion are also non-analytic in their characteristic correlation =~ (T g7, (2.2
lengths.

The plan of the paper is the following. In Sec. II, we give whereGg, Ag, ag andSg are bare coupling constants and
a brief overview of the method developed in RE0] to G,y is the Einstein tensor. The tensos® and B3 are
compute the semiclassical Einstein-Langevin equation. Webtained by functional derivation with respect to the metric
then consider the background solutions of semiclassicadf the action terms corresponding to the Lagrangian densities
gravity consisting of a Minkowski spacetime and a real scaRapcdR*"°%— R4pR? and R?, respectively, whereRypcq is
lar field in the Minkowski vacuum. In Sec. Ill, we compute the Riemann tensofR,, is the Ricci tensor anR is the
the kernels which appear in the Einstein-Langevin equationscalar curvaturésee Ref[10] for the explicit expressions for
In Sec. IV, we derive the Einstein-Langevin equation forthe tensorsD?® and B2). In the last equationi’ﬁb is the

metric perturbations around Minkowski spacetime. As a sidetress-energy “operator” in dimensional regularization and
reSUlt, we obtain some semiclassical resultS, which inClUdg‘]e expectation value is taken in some state for the scalar
the expectation value of the stress-energy tensor of a scalgeld in the n-dimensional spacetime. Writing the bare cou-
field with arbitrary mass and arbitrary COUpling parameter t%“ng constants in Eq(zl) as renormalized Coup”ng con-
linear order in the metric perturbations, and also some resuligtants plus some counterterms which absorb the ultraviolet
concerning the production of particles by metric perturba-ivergencies of the right hand side, one can take the limit
tions: the probability of particle creation and the number anch 4, which leads to the physical semiclassical Einstein
energy of created particles. In Sec. V, we solve this equatiogquation.

for the components of the linearized Einstein tensor and 'Assuming thaty,y, is a solution of Eq(2.1), the semiclas-

compute the corresponding two-point correlation functionssijcal Einstein-Langevin equation can be similarly written in
For the case of a conformal field and spacelike separategimensional regularization as

points, explicit calculations show that the correlation func-

tions are characterized by correlation lengths of the order of 1 ab ab vab
the Planck length. We conclude in Sec. VI with a discussion m(e [g+h]+Ag(g*"—h?))
of our results. We also include some Appendixes with tech-

nical details used in the calculations.

Throughout this paper we use the ¢ +) sign conven- - §aBDab+ZBBBab [g+h]
tions and the abstract index notation of Rg#4], and we
work with units in whichc=%=1. =u T g+ h]+ 2, (NP (2.

where h,;, is a linear stochastic perturbation tp,, and

hab=gacgPdh ;. In this last equations2” is a Gaussian sto-
In this section, we give a very brief summary of the mainchastic tensor characterized by the correlators

results of Refs[9] and[10] which are relevant for the com- ab ab cd abed

putations in the present paper. One starts with a solution of ~ {&n (X))c=0, (&°(X) & (Y))e=N"(xy), (2.3

Il. OVERVIEW
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where  &NR"°9x,y)=({t3°(x),t5%y)})lg],  with 13> For instance, we can writeb3(x))=iGg (x,x)=G, (x,X).
=T3P (T3 here,( ). means statistical average afid}  The expressions for the kernels, which shall be used in our
denotes an anticommutator. As we pointed out in RE®],  calculations, can be found in Appendix A.

the noise kerneN3°°“(x,y) is free of ultraviolet divergen-

cies in the limit n—4. Therefore, in the semiclassical

Einstein-Langevin equatiof2.2), one can perform exactly Perturbations around Minkowski spacetime

the same renormalization procedure as the one for the semi- 5, interesting case to be analyzed in the framework of the

classical Einstein equatio(2.]), and Eq.(2.2) yields the semiclassical stochastic theory of gravity is that of a

physmgl ser_mclasglcal Einstein-Langevin equation in fourMinkowski spacetime solution of semiclassical gravity. The
spacetime dimensions.

. - . — 4 .
In Ref.[10], we used a method based on the closed timéclat Metric 75, in @ manifold M=R" (topologically and the

path (CTP) functional technique applied to a system- usual Minkowski vacuum, denoted &), give the class of

environment interaction, more specifically, on the influence>MPlest solutions to the semiclassical Einstein equation
action formalism of Feynman and Vernon, to obtain an ex/note that each possible value of the parameters§) leads

- . . ~ab ' to a different solutiofy the so called trivial solutions of semi-
plicit expression for the expansion ¢f;°)[g+h] up to first . .

: . , ; . classical gravityf25]. In fact, we can always choose a renor-
order in heg. In this way, we can write the Einstein- malization scheme in which the renormalized expectation
Langevin equatiori2.2) in a more explicit form. This expan- b i ] P .
sion involves  the  kemel H3**{(x,y)=H2*/x,y) value (O[TR|0)[#]=0. Thus, Minkowski spacetime
+ yabed . (R* 7.,) and the vacuum stat) are a solution to the semi-

A A(X,y), with g . ; : : . .
n classical Einstein equation with renormalized cosmological
1 constantA =0. The fact that the vacuum expectation value
HaS:Cd(x'y)E—|m<T* (T32(x)T<%y)))[ g], of the renormalized stress-energy operator in Minkowski
4 spacetime should vanish was originally proposed by Wald
(2.4 [2] and it may be understood as a renormalization convention
[3,5]. There are other possible renormalization prescriptions
(see, for instance, Ref26]) in which such vacuum expecta-
tion value is proportional ta;?", and this would determine
where[ , ] means a commutator, and we use the symbol T the value of the cosmological constantin the semiclassical
to denote that we have to time order the field operadogs equation. Of course, all these renormalization schemes give
first and then to apply the derivative operators which appeaphysically equivalent results: the total effective cosmological
in each term of the produdt®®(x) T¢%(y), where T2 is the  constant, i.e., the constant of proportionality in the sum of all
classical stress-energy tensor; see RE] for more details.  the terms proportional to the metric in the semiclassical Ein-
In Eq. (2.2), all the ultraviolet divergencies in the limit  stein and Einstein-Langevin equations, has to be zero.
—4, which shall be removed by renormallz:’:ltlon of the cou- A|th0ugh the Vacuunl'O) is an eigenstate of the total four-
pling constants, are in some terms contairﬂﬂﬁ(x)) andin  momentum operator in Minkowski spacetime, this state is

ngk]md(x,y), whereas the kerneN"°(x,y) andHf\t;Cd(x,y) not an eigenstate ot z]. Hence, even in these trivial

are free of ultraviolet divergencies. These two last kernelsolutions of semiclassical gravity, there are quantum fluctua-

can be related to the real and imaginary parts oftions in the stress-energy tensor of matter and, as a result, the

<Egb(x)fgd(y)> by noise ke_rnel does_not vamsh_. This fact Iea_d;s to con§|der the
stochastic corrections to this class of trivial solutions of

HE Y y) == 5 (72000, Ty D a],

1 . R semiclassical gravity. Since, in this case, the Wightman and
NaPeq x vy =—Re(t3%(x)t%y)), Feynman function$2.6), their values in the two-point coin-
4 cidence limit, and the products of derivatives of two of such
(29 functions appearing in expressiof#sl) and(A3) (Appendix
szcd(x,y):Elm&ﬁb(x)fﬁd(y»_ A) are knpwn in dimension_al regularization, we can compute
4 the semiclassical Einstein-Langevin equation using the
method outlined above.

We now consider the case in which we start with a In order to perform the calculations, it is convenient to
vacuum state|0) for the field quantized in spacetime work in a global inertial coordinate systefm“} and in the
(M,gap)- In this case, it was shown in R¢fL0] that all the  associated basis, in which the components of the flat metric
expectation values entering the Einstein-Langevin equatioare simply n.,=diag(-1,1,...,1). InMinkowski space-
(2.2) can be written in terms of the Wightman and Feynmantime, the components of the classical stress-energy tensor
functions, defined as functional reduce to

+ =(0|d 0 1 1
Gn (X,Y)—<0|q)n(x)q)n(Y)|0>[g]: (26) T,U.V[ n,(D]:ﬁMq)avq)_En,uvapq)&pq)_inp.vaqDZ
iGFn(X,Y)E<0|T((i)n(x)(i)n(y))|0>[g]- + (O — 9497 ) D2, 2.7
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where[J=4,0*, and the formal expression for the compo-  To write down the semiclassical Einstein equati@nl)
nents of the corresponding “operator” in dimensional regu-for this case, we need to compute the vacuum expectation
larization is value of the stress-energy operator componéh®. Since,

from Eq. (210, we have that(0|$3(x)[0)=iAr (0)

=iA.(0), which is a constantindependent ok), we have

- 1 . R
Th'Tn]=5{04 Py, " Do} + DHDF,
simply

(2.9

where D#*” are the differential operators D"
=(&-UA)p*'Oy— Loy and® ,(x) is the field operator in
the Heisenberg picture in am-dimensional Minkowski
spacetime, which satisfies the Klein-Gordon equation = —i(a“a”AFn)(O)
(O-m?)d,=0.

Notice, from Eq.(2.8), that the stress-energy tensor de-
pends on the coupling parameteof the scalar field to the
scalar curvature even in the limit of a flat spacetime. There-
fore, that tensor differs in general from the canonical stress-

A 1 - -
(O[TR"|0)[ 7] =5 (0 a" Py, 3" D} 0) 7]

f d"k kHk”
=—i
2m)" K+ mP—ie

n
5 (2.12

77,1/.1/ m2 n/2
energy tensor in flat spacetime, which corresponds to the - (E)

value £=0. Nevertheless, it is easy to s¢&0] that the
n-momentum density componenfE,?“(g)[n] (we tempo-

where the integrals in dimensional regularization have been

rarily use this notation to indicate the dependence on théomputed in the standard wagee Appendix Band where
parametert) and -1-2#(§=0)[ 7] differ in a space divergence F(z) is the 'Euler’s gamma function. The semiclassical Ein-
and, hence, dropping surface terms, they both yield the sanfi€in equation2.1), which now reduces to

n-momentum operator:

ﬁﬂzf d“*lx:?ﬂ”(g)[ﬂ]==f A" TR ol 7],
2.9

where the integration is on a hypersurface= constant (5“

is actually independent of the value xt) and we use the
notation for coordinates*=(x°,x), i.e.,x are space coordi-
nates on each of the hypersurfag8s- constant. The symbol

: in EqQ. (2.9 means normal ordering of the creation and
annihilation operators on the Fock space built on the

Minkowski vacuum|0) (in n spacetime dimensiopswhich
is an eigenstate with zero eigenvalue of the operd@.

The Wightman and Feynman function$2.6) in
Minkowski spacetime are well known:

G, (x,y)=(0|® () D (y)|O)[ 7]=iA} (x—Y),

Ge, (%Y)=—i(0|T(®n(x)®4(y))|0)[ 7]

= Ap (X=y), (210

with
n

(zwljneikxé(szr m?) 0(k°),

A;(x)z—zwif
(2.1

dnk eikX
Ar, (0= f (2m)" K24+ m2—ie’

e—0",

wherek?= 7, k*k” andkx= 7, k*x". Note that the deriva-
tives of these functions satisf§; A (x—y)=d,A; (x—Y)
and @A, (x—y)=—d,A, (x—y), and similarly for the
Feynman propagataxpn(x—y).

Ag R
uv— ,—(n—-4) M
87Gg " M (O|TH"10) 71,

(2.13

simply sets the value of the bare coupling constapiGg .
Note, from Eq.(2.12, that in order to havé0|Ta°0)[ 7]
=0, the renormalizedand regularizedstress-energy tensor
“operator” for a scalar field in Minkowski spacetime has to
be defined as

nab m4

Tab — ,,—(n—4)Fab _ 4

(n—4)/zr n
E L}

which corresponds to a renormalization of the cosmological
constant

(2.19

m2
X
4aru?

Ag A 2 m

G—B—a—;mxﬁom—@, (2.19
where
1 e¥m?2\ (n—4)12
1 1 [em?
:eriln W)+O(n—4), (2.1

being y the Euler’s constant. In the case of a massless scalar
field, m®=0, one simply had\ 5 /Gg=A/G. Introducing this
renormalized coupling constant into EQ.13, we can take

the limit n—4. We find again that, fork*, 7,5,/0)) to sat-

isfy the semiclassical Einstein equation, we must take
=0.
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We are now in the position to write down the Einstein- M#AvaB(x—y)=lim M—Z(n—4)<0|’f,u,V(X)’t‘aﬁ(y)|0>[77].
Langevin equations for the componehts, of the stochastic N4 " "
metric perturbation in dimensional regularization. In our (3.2

case, usinqo|ﬁ>ﬁ(x)|0>=iAFn(O) and the explicit expres-

vaf — vaB(y
sion for Eq.(2.2) found in Ref.[10], we obtain that this Th‘imﬁ kernels NV”;B (x,y)=ReM*"*"(x—y)  and
equation reduces to 4HRYP(x,y)=Im M#"*F(x—y) are actually the compo-

nents of the “physical” noise and dissipation kernels that

1 4 will appear in the Einstein-Langevin equations once the
8G GOrr4 Ag| h#r— Enwh) (X)—gaBD(l)’”(X) renormalization procedure has been carried out. Note that, in
T8 the renormalization scheme in whi@i’[ 7] is given by Eq.
—2BBWH () = EGMH () ™ " YiAE (0) (2.14), we can write

+2 f dyu” (TOHET (X, y)h,ay) = 2E47(X),

2.1
219 where the limith—4 is understood. This kernel can be ex-
where£“” are the components of a Gaussian stochastic terRressed in terms of the Wightman function in four spacetime

M#raB(x—y)=(0| TE"(X) TEA(y)|0) 7],

sor of zero average and dimensions,
(E 0 EP(Y))e=p 2O INE"P(xy),  (2.18 ”
o o . AT (x)= —27Tif 2€"8(k2+m?) 0(k%), (3.3
and where indices are raisedlin, with the flat metric and (2m)
h=h?. We use a superindg) to denote the components of ) _
a tensor linearized around the flat metric. In the last expres! the following way:
sions, N“**A(x,y) and H“**#(x,y) are the components of
the kernels defined above. In E®.17), we have made use wvap s o(an + ) v p +
of the explicit expression fo6(1)#”. This expression and M#EP(X) = = 2[# AT (x) 97 9"A T (X)
those forD (x> andB(l)’“’ are given in Appendix E; the last +DEY(GA (x)9PA (X))
two can also be written as
+DBIHAT(X) 9" AT (X))
1
DM () =5 (BF L F = Fi' FiP)hp(x), +DH'DPAT2(x))]. (3.4
(2.19  The different terms in Eq3.4) can be easily computed using
BMEY(x) = 2F L F2Ph p(X), the integrals

whereF£" is the differential operataF %"= »*"0,— d dy .

4
I(p)Ef dk S8(k?+m?)6(—k°)

IIl. THE KERNELS FOR A MINKOWSKI BACKGROUND (277)4

The kernelsN“**#(x,y) and H~"*F(x,y) = H‘S‘n”“ﬁ(x,y) X 8l (k—p)?+m?]6(k°—p?),

+ H’Afn”“ﬁ(x,y) can now be computed using E@.5 and the
expressiongAl) and(A3). In Ref.[10], we have shown that

4
the kernelH4"*#(x,y) plays the role of a dissipation kernel, |l’«1"'l’«r(p)zj d k4ku1. -kt (K2 +m?) 6(—kO)
. s n . vapB (277)

since it is related to the noise kerndl;"*"(x,y), by a

fluctuation-dissipation relation. From the definitio(.4) X 8 (k—p)2+m?]o(k°—p®), (3.5

and the fact that the Minkowski vacuuj@) is an eigenstate

of the operatoP”, given by Eq.(2.9), these kernels satisfy Wwith r=1,2,3,4, given in Appendix B; all of them can be
expressed in terms df(p). We obtain expression€C1)—

0 10 (C3). It is convenient to separal€p) in its even and odd
f d" XNn””ﬁ(X,Y)=f d""IxHRAP(x,y) =0. parts with respect to the variablp¢ as
(3.1
I(p)=I +1 , 3.6
A. The noise and dissipation kernels (P)=1s(P)+1a(P) 3.6
Since the two kernel§2.5) are free of ultraviolet diver- where Ig(—p)=Ig(p) and [a(—p)=—14(p). These two
gencies in the limih—4, we can deal directly with functions are explicitly given by

124024-5
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1 2
Is(p)= me(— p?—4m?) 1+4F’

(P)= =t ssgp® (P dm?) | 14+ 4T
A(P)= ggm3sanp 0(— p=—4m’) e

3.7
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1
NEreB(x,y) = o(BFLF D = FLYFRPINAX—yim?)

+ FUrFEPNg(x—y;m?,A€), (3.10

1

Using the results of Appendix B, we obtain expressions Hﬁvaﬂ(x,y)=—(3]-';‘(‘(“]-'5)”—f;‘(”}')‘:‘ﬁ)DA(X—y;m2)

(C4)—(C6) and, after some calculations, we find

vap s (a=B)v v aB d4p
M#P(X) = JeBF T = T )f(ZT)A

. m?\ 2 872
X e~ !Px 1+4F |(p)+ T}-f]/]:zﬁ
dp m2\ 2
—ipx
XJ(ZW)“E (3A§+ 02 I(p), (3.8

6
+ FErFePDg(x—y;m?,A¢€).

Notice that the noise and dissipation kernels defined in Eq.
(3.9 are actually real because, for the noise kernels, only the
cospx terms of the exponentialsP* contribute to the inte-
grals, and, for the dissipation kernels, the only contribution
of such exponentials comes from thsinpx terms.

We can now evaluate the contribution of the dissipation
kernel componentH4"“#(x,y) to the Einstein-Langevin
equations(2.17) [after taking the limitn—4]. From Eq.

whereA é=¢—1/6. The real and imaginary parts of the last (3.10, integrating by parts, and using E@.19 and the fact

expression, which yield the noise and dissipation kernels, arg 4~ in ~ four

easily recognized as the terms containir@p) and | A(p),

respectively. To write them explicitly, it is useful to intro-

duce the new kernels

2 1 d4p ipx 2 2
Na( M) = 1950, Wep 6(—p“—4m°)

m2
X 1+4—
p

) 1 d*p
Ng(x;m*,A¢)= _28&J 2

X \/1+4m (3A§+ m
p p*

2\ 2
14+4—|
pz)

2€P*0(—p?—4m?)

2

(3.9
Da(x;m? i P e'P*sgnp6(— p?—4m?)
A 19207 ) (2m)*
\/7mz 2\2
XA/ 1+4—| 1+4—] |
p? pz)
—i d*p
De(X;m*Aé)= 5oo— | ——2€*sgnp®d(—p®—4m?)

288 ) (2m)*

/ m? m?
X 1+432'(3A§+32'

and we finally get

2

spacetime  dimensions, D(#¥(x)

= (3/2)AM~7(x) (the tensor?® is obtained from the deriva-
tive with respect to the metric of an action term correspond-
ing to the Lagrangian density,,.{C2°% whereC,,qis the
Weyl tensor, see Ref10] for detally, it is easy to see that

ZJ d4y meﬁ(an)haﬁ(Y)

= f d*y[Da(x—y;m*) A=Y (y)

+Dg(x—y;m?,A§BWH(y)]. (311

These non-local terms in the semiclassical Einstein-Langevin
equations can actually be identified as being part of

(TE" [ n+h].

B. The kernel H“%"“ﬁ(x,y)

The evaluation of the kernel componehtgn”"ﬁ(x,y) is a

much more cumbersome task. Since these quantities contain
divergencies in the limih— 4, we shall compute them using
dimensional regularization. Using E¢A3), these compo-
nents can be written in terms of the Feynman propagator
(2.11) as

1
pTOHE P (xy) = ZImMKE A (x-y), (312

where
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KereB(x)=—u~ D0 2040 @A (x)9P9"Ag (X)+2D#"(9°Ag (X)IPAE (X))

+2D*P(9*Ag (X)3"Ag (x))+2D*'D “B(A,Z:n(x))+ A (X)) + p*PdHAg (x)5”

1
+Ap (O) (D Pt gD+ L P (Ap ()T~ MPAg (0)) 5“(x>} . (3.13
Let us define the integrals
I(p)= 7(n74)J d"k 1
n(P)=p 2m)" (kK2+m?—ie)[(k—p)°+m°—ie]’
(3.19
n r
3B ()= (1) d"k KM 1. . KM |
n 2m)" (k2+m2—ie)[(k—p)2+mP—ie]
with r=1,2,3,4, and
d"k 1
=, —(n—4)
o, = 2 (+mP—ie)’
(3.195
- o d'k  KML...KMr
|gl MrEM (n—4) > - 5 S ’
n (2m)" (K2+m?—ie)

with r=1,2, where a limite—0" is understood in all these expressions. Then, the different terms if3EP can be
computed using Eq$D1)—(D6). The results for the expansions of the integ@d4) and (3.15 aroundn=4 are given in
Appendix B. In fact| 6‘”:0 and the remaining integrals can be written in terms;0fandJ,(p) given in Egs(B1) and(B4).

Using the results of Appendix B, we obtain E@B.7) and(D8) and, from Eqs(D4)—(D6), we get

2
m
OO A ()34 PR ()9716°(X) =27 71 5(X),

(3.16
I (0D =mAg (0)87(X) = ~1g [18"(X).

We are now in the position to work out the explicit expressionk6t*4(x), defined in Eq(3.13. We use Eqs(3.16), the
results(D1), (D4), (D7) and (D8), the identitiess"(x)=(2) "fd"p€ePX, FL[d"peP*f(p)=— [d"peP*f(p)p?P*” and
a4 fd"peP*f(p)=— [d"peP*f(p)p*p”, wheref(p) is an arbitrary function op* andP*” is the projector orthogonal fo*
defined asp?P*'= »*"p?—p#p”, and the expansions in Eqé81) and (B4) for J,(p) and lo,. After a rather long but
straightforward calculation, we get, expanding around4,

2

1 2
g SFK TR FL D SO0 T ANEFLFL 00+ 3 (0 PO e,

3(n—2)

K= s 4;)2( Kn
4

4m
Qo Yo = R m P ) 800 + L= (2 = ) 8°(x)

1 2
180 [

180( 1+4

+

n
d F;neipx

? 2 2 nv -af
an $(p?)+ gF LT

arperpr-rr) |

’ 2¢(p2)_ i 3fﬂ(afﬁ)V_f#Vfaﬁ)+ i
675( x x x T X 270

dnp ipx vraf
XJ (277)“ep (3A§+F (60— 11) FLVFF|8"(x)

+0(n—4), (3.19

2 2 u(a =B)v wv o 1 wv o
-m ES(SJ:X FV=FEFY )—|—2—77'-‘X FPAn(X)
wherek, and ¢(p?) have been defined in Eq€.16 and(B9), andA,(x) is given by
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An(x)= f e 3.1
n(X)= (27T)n € az ( . a
The imaginary part of Eq(3.17) [which, using Eq(3.12), gives the kernel componen,ts‘(”‘4)H§”“5(x,y)] can be easily

obtained multiplying this expression byi and retaining only the real pakt(p?), of the functiong(p?). Making use of this
result, it is easy to compute the contribution of these kernel components to the Einstein-Langevin e(@dfforiategrating
by parts, using EqSE1)—(E5) and Eq.(2.19, and taking into account that, from Eq2.12 and (2.13,

Ag 1 m*
87G, 42 n(n—2) < ON"4) 519
we finally find
Ag 1 ky [2 m? 1
ny,, —(n—4)yuvap — wv_ Z ouv n Lpv (D 2g(L)ur
2[ d Yy HSn (X!y)haﬁ(y) 8’7TGB h 2 Y h ( ) ( ) 3 (n 2) — G + 90D +A§ B (X)

+ ! 16D(1)MV(X) E—lOAf B(l)MV(X)+J dnyf ePx Y p(p?)
288072 15 6 (2m"°
2 2 m2 2
1+4p—) D(l)’“’(y)+10(3A§+ rd B<1W(y)}
mero (1) (1)
—?fd YAn(X=y) (8D ¥ (y) + 5B ¥ (y)) [ + O(n—4). (3.20

C. Fluctuation-dissipation relation
From expression§3.10 and(3.9) it is easy to check that there exists a relation between the noise and dissipation kernels
in the form of a fluctuation-dissipation relation which was derived in RE®] in a more general context. Introducing the
Fourier transforms in the time coordinates of these kernels as
o dpo

e POk y), (321

N8 x,y) =

and similarly for the dissipation kernel, this relation can be written as
HA*P(p%x,y) = — i sgnp’N“"*#(p%x,y), (3.22

or, equivalently, as

1 (= 1
HA"P(x°,xy0y) = — ;J d2 P( Xo_zo) N#B(20,x:y0,y), (3.23
where P(1x°) denotes the principal value distribution.
From Eq.(3.1), taking the limitn—4, we see that the noise and dissipation kernels must satisfy

f d3xN0””‘B(x,y)=f d3xH%**A(x,y)=0. (3.24

In order to check the last relations, it is useful to write the("” derivatives in expressiong3.10 using
FErd*pePf(p)=— [d*peP*Vi(p)p?PH*, wheref(p) is any function ofp” andP*” is the projector orthogonal to

p* defined above. The identiti&8.24) follow by noting thatp?P%= —p'p; and p?P% = —p°', where we use the indeix

=1,2,3 to denote the space components, and/tti& exp{p;x)= (27r)3H 16(p) It is also easy to check that the noise kernel
satlsﬁesaMN’“’“B(x,y) 0 and, hence, the stochastic source in the Einstein-Langevin equations will be conserved up to first
order in perturbation theory.

IV. THE SEMICLASSICAL EINSTEIN-LANGEVIN EQUATIONS

The results of the previous section are now ready to be introduced into the Einstein-Langevin ed@ation$n fact,
substituting expressio(8.20 in such equations, and using E4P4) and (B1) for the ,u*(”*“)AFn(O) term, we get
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2

4 [ m 1
(Durviy)y— — (Dur B(Luv cWury — p@uv 2p(L)ur
8’7TGBG (x) 398 D (x)—2pBgB (X)+ (4 ) [ 4A§(n_2)o + 90D +A&B (x)
+—2,1 ——6D(1)’”(x)+ E—10A§ B<1W(x)+f d“yf dp eP Y p(p?)
2880 15 6 (2m)"

m2 2 m2
8¢+ F) B“My)}—— f d'yA(x— y><8D<1W+SB<W><y>J

2 2
(1+4p—) DMrr(y)+10

+2 f d"yu” (TIHR (X, y) N, p(y) + O(N—4)

= 2¢M7(X). 4.1

Notice that the terms containing the bare cosmological constant have canceled. These equations can now be renormalized, tha
is, we can now write the bare coupling constants as renormalized coupling constants plus some suitably chosen counterterms
and take the limih—4. In order to carry out such a procedure, it is convenient to distinguish between massive and massless
scalar fields. We shall evaluate these two cases in different subsections.

A. Massive field (m#0)

In the case of a scalar field with mass#0, we can use, as we have done in Ej15 for the cosmological constant, a
renormalization scheme consisting on the subtraction of terms proportiorgl. tMore specifically, we may introduce the
renormalized coupling constantsGl/« and 8 as

11 2A m? o4
Gs G witm—g o

t ! O(n—4 4.2
apg= (4 )2 120Kn+ (n ) ( . )

52
Bg=pB+ WKnJ’_ O(n—4).

Note that for conformal couplingdé=0, one has 15g=1/G and Bg= 8, that is, only the coupling constamat and the
cosmological constant need renormalization. Substituting the above expressions ifdolEqve can now take the limih
—4, using Eqs(3.18,(3.11) and the fact that, fon=4, DM~¥(x)=(3/2)AM*?(x). We obtain the semiclassical Einstein-
Langevin equations for the physical stochastic perturbatignsin the four-dimensional manifoldM=R*. Introducing the
two new kernels

e\ — 1 d4p i m?\ 2 0 2 2 m? 2 8 m’
Ha(X;m*)= 192072 (277)4e 1+4F) —imsgnp 0(—p —4m-) 1+4F+go(p )}—gy),
(4.3
1 d4p ipx m_2 ? i Op/_n2__ 2 2 1m2
Hp(x;m? A¢)= 288772f P [ 30&+ 7| | ~imsgnple(—p?—4m?) 1+4IO 7+ e(P)|~ 5 pz],

where ¢(p?) is given by the restriction ta=4 of expressior(B10), these Einstein-Langevin equations can be written as

%G“W(x) —2(aAMHY(x) + /BB(l)W(x))JrW[ - gA(l)’“’(x) + % - 1OA§) BMrr(x)
+f dy[HA(X—y;m?)AWR(y) + Hg(x—y;m?, A& BWH(y)]=2£4"(x), 4.9

where é#¥ are the components of a Gaussian stochastic tensor of vanishing mean value and two-point correlation function
(EM7(x) €7P(y)).=NH"2B(x,y), given in EQ.(3.10. Note that the two kernels defined in Eg.3) are real and can be split into

an even part and an odd part with respect to the variatilewith the odd terms being the dissipation kernlg(x;m?) and
Dg(x;m?,A¢) defined in Eq(3.9). In spite of appearances, one can show that the Fourier transforms of the even parts of these
kernels are finite in the limip?>—0 and, hence, the kernelts, andHg are well defined distributions.
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We should mention that, in a previous work in Réfg], the same Einstein-Langevin equations were calculated using rather
different methods. The way in which the result is written makes difficult a direct comparison with our equét@®nsgor
instance, it is not obvious that in those previously derived equations there is some analog of the dissipation kernels related to
the noise kernels by a fluctuation-dissipation relation of the f(8r82 or (3.23.

B. Massless field m=0)
In this subsection, we consider the linmi—0 of equations(4.1). The renormalization scheme used in the previous
subsection becomes singular in the massless limit because the expréésoits oy and 8z diverge wherm— 0. Therefore,

a different renormalization scheme is needed in this case. First, note that we may sepairateq. (2.16 as x,= «;,
+ % In(m?/ u?)+O(n—4), where

_ 1 +1|
“n= “na 2"

B 1 g7\ (n—4)2
(n—4)(ﬂ)

eV
E)+O(n—4), (4.5

and thaf{see Eq.(B10)]

2

lim [(p?) +In(m?/ u?)]=—2+In % .

(4.9

m2—0

Hence, in the massless limit, Eqg..1) reduce to

4 1 . 1
Dpviy)— — (Dpviyy— (Lpv - _ — p@pr 2p(1)ur
g7, O 00— 3aeD () ~2B5BH (0 + o (i 1)[90D +A£BOR|(x)
1 16 1 dp . 2
+W{—ED(1W(x)+ 5—10A§) B<1>/”(x)+J d”yJ (Zﬂgnem(*y)ln %’[D(l)w(y)Jr9OA§ZB(1)“”(y)]
+ lim 2 f dy ™ T IHA B (X, )N ap(y) + O(N—4) =2£47(X). 4.7)
m2—0
|

These equations can be renormalized by introducing the —j ‘o o )
renormalized coupling constantsG/« and 8 as DX)= 1920, (277)4e'px sgnp”6(—p<).

1 1 1 1 . i i .

G- o aB=a+W l—zo(Kn—1)+O(n—4), It is now convenient to introduce the new kernel

B
(4.9
Ag H(X',LLZ)E—1 . elPx
ﬁB:ﬂ+m(Kn_l)+o(n_4)- ’ 19207%) (2m)*
2
Thus, in the massless limit, the Newtonian gravitational con- X|In F —imsgnp®6(— Pz)}
stant is not renormalized and, in the conformal coupling
case A¢=0, we have again th@8z= 8. Introducing the last 1 i d*p ox
expressions into Eq4.7), we can take the limih—4. Note = To20,2 IMm f 2m?°¢ P
that, by makingm=0 in Eq.(3.9), the noise and dissipation 0"
kernels can be written as —(P°+ie)2+pip:
xIn (p MZ) P p'). (4.11)

NA(X;m?=0)=N(x), Ng(x;m?=0,A¢)=60A&>N(x),
(4.9

DA(X:M2=0)=D(x), Dg(x;m2=0A¢)=60A£2D(X), Again, this kernel is real and can be written as the sum of an

even part and an odd part in the variabiés where the odd
part is the dissipation kern®(x). The Fourier transforms
(4.10 and(4.11) can actually be computed and, thus, in this
case, we have explicit expressions for the kernels in position
4.10 space. FoN(x) and D(x), we get(see, for instance, Ref.

[27])

where

N 1 d*p
= 15207 ) 2m)?

eian( - pz)!
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1 variable &} =7,,£*" behaves deterministically as a vanish-
N(x) = m[;ﬂ’f o +8%(x)|, ing scalar field. This can be easily checked by noticing, from
412 FEQ (4.19, that, whenAé=0, one hag &k(x)£*A(y)).=0,
d since F},=30 and ]—'““]-'ﬁ=D]—"“B. The semiclassical
D(x)= 1920773,sgnx° 5 8(x?), Einstein-Langevin equations for this particular cdsad
d(x%) generalized to a spatially flat Robertson-WalkigW) back-

round were first obtained in Ref17] (in this reference, the
oupling constaniB was set to zero In order to compare
with this previous result, it is worth noticing that the descrip-
tion of the stochastic source in terms of a symmetric and
“traceless” tensor, with nine independent componegits,

is equivalent to a description in terms of a Gaussian stochas-
5()(2)) tic tensor with the same symmetry properties as the Weyl

tensor, with componentsg{:‘”“ﬁ, defined as &=

—2aaaﬁ§g”ﬁ; this tensor is used in Reff17]. The symme-
+(1—y—In M)54(X)] f[ry properties of thegé”“ﬁ ensure that tgere are also nine

independent components i 2d,dz58“"". It is easy to

wherePf denotes a distribution generated by the Hadamar(g
finite part of a divergent integrébee Refs[28] for the defi-
nition of these distributions The expression for the kernel
H(x; x?) can be found in Refg29,30 and it is given by

) 1
H(x; u ):W

73f(i 0(x°)
7 d(xd)

show that, for this combination to satisfy the correlation re-

1 1 lation (4.15 with A¢=0, the relevant correlators for the new
- - 0 _ 2 . ’
a 960772%“11[ - 0 )6(IX| =) d(x?) (%) stochastic tensor must be
<§é‘mﬁ(x)§€gw(y)>gc=T”V“B’"’MN(X—Y), (4.19
+H[1—y—In(N)]6%X) | (4.13
where T#*Brord is g linear combination of terms like

vo . aN

P 8% in such a way that it has the same symme-
See Ref[29] for the details on how this last distribution acts ':r]iesn a;] tr:?e product of t\)//vo Weyl tensor compz)nents

on a test function. Finally, the semiclassical Einstein-~uvapcrone jig explicit expression is given in Ref17]
Langevin equations for the physical stochastic perturbation§hus, after a redefinition of the arbitrary mass sqalie Eq.

h,., in the massless case are (4.14) to absorb the constants of proportionality of the local

1 terms with AM#?(x), one can see that the resulting equa-
—— GO (x) = 2(aADH¥(x) + BB (x)) tions for the Aé=0 case are actually equivalent to those
8mG found in Ref.[17].

S N
2880m°| 5

1
5 10A§) BMrr(x)

C. Expectation value of the stress-energy tensor

From the above equations one may extract the expectation
+J dy H(x—y: u®)[ AW (y) + 60A 2BDA7(y) ] value of the renormalized stress-energy tensor for a scalar
field in a spacetimeK*, 7,5+ hap,), computed up to first or-
= 2£87(x) (4.14 der in perturbation theory around the trivial solution of semi-

' ' classical gravity. Such an expectation value can be obtained
where the Gaussian stochastic source compongfithave ~ PY identification of Eqs(4.4) and (4.14 with the compo-
zero mean value and nents of the physical Einstein-Langevin equation, which in

our particular case simply reads

(E"7(x)E7P(y))c= lim NE72B(x,y)

1 .
o g O —2(aAWir s BB = (TR") [+ h]+ 264
1
=|gBFUF P = FLFP) (4.17
By comparison of Eqs(4.4) and (4.14 with the last equa-
+6OA§2}-QV}-3,3 N(X—y). tion, we can identify

(4.15 TrY +h]= ! §A(1)’”’ )— 1—10A
: (TR 7m ]—W 5 (x 6 I3

It is interesting to consider the conformally coupled scalar
field, i.e., the cas@& £=0, of particular interest because of its x BM#r(x)
similarities with the electromagnetic field. It was shown in
Refs.[9,10] that, for this field, the stochastic source tensor x ADEY(y) + Hyg(x—y:m2, A &)
must be “traceless’(up to first order in perturbation theory Y
around semiclassical gravjtyin the sense that the stochastic x BM#r(y) ]+ 0(h?), (4.18

- f d*y[Ha(x—y;m?)
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for a massive scalar fielan+0, and gives a measure of the total probability of particle creation.
On the other hand, the number of created particles can be
A 1 defined as the expectation value in the “in” vacuum of the
v _ N A% |- —
(Tk (X)>[’7+h]_2380ﬂ?[5A #(x) (6 10A§) number operator for “out” particles. As it was shown in Ref.
[10], the total probability of particle creation and one half of
the number of created particles coincide to lowest non-trivial

(D)uv _ 4 2
XBEE(X) f dyH(x=y;u%) order in the metric perturbation, these are

X[AME(y)+60A 2B (y)]

P[h]=f d*x d*y h,,(X)N“"*A(x,y)h,4(y) +0(h?),
+0(h?), (4.19

(4.21

for a massless scalar fieloh=0. Notice that in the massive where N“"*A(x,y) is the noise kemel given in Eq3.10),

case we have chosen, as usual, a renormalization SChe%ich in the massless case reduces to (Bd5. The above
such that the expectation value of the renormalized stresgs, ression for the total probability of pair creation by metric

energy tensor does not have local terms proportional o thge,rhations about Minkowski spacetime was first derived
metric and the Einstein tensp4]. The result(4.19 agrees in Ref. [36]. Using Eq.(3.10, we can writeP[h]=PL[h]
with the general form found by Horowit30,31 using an +Pg[h]+0(h3), where ’

axiomatic approach and coincides with that given in Ref.

[25]. The particular cases of conformal couplidgi=0, and 1

minimal coupling,A é= —1/6, are also in agreement with the P h]= Ef d*x d*y(3FL*FLP— FrvFek)
results for this cases given in Ref80—34 (modulo local

terms proportional toA®M*” and B~ due to different X Na(X—y;m2)h () hgs(Y),

choices of the renormalization scheme€&or the case of a

massive minimally coupled scalar field,é=—1/6, our re-
sult (4.18 is equivalent to that of Ref35]. PB[h]Ef d*x dYy FLY FEPNg(x—y;m?,A €)
As it was pointed out above, in the case of conformal
coupling, both for massive and massless scalar fields, one Xh,,(X)he(Y). (4.22

has Bg= B. This means that, in these cases, the terms pro-
portional to B4 in the above expectation values of the Integrating by partéwe always neglect surface termasing
stress-energy tensor are actually independent of the renoexpressionES) for R™, which can also be written &R
malization scheme chosen. Due to the conformal invariance= — ##"h ,,, we find

of fd*x\—gCeapdC?PY the tensod? is traceless and we
have A 4=0. Therefore, the terms witB")*" are pre-
cisely those which give trace to the expectation value of the

uvo

Pa[h]=f d*x d*y RB(x)Ng(x—y;m?, A& RE(y).

stress-energy tensor in Eq4.18 and(4.19. In the massless (4.23
conformally coupled casey=0 andA£=0, such terms give o )
the trace anomalf4] up to first order inh,,, In order to work outP [ h], it is useful to take into account

that, using the symmetry properties of the Weyl and Rie-

. 1 1 mann tensors and the expressi@®) for R(Y?7 7 one can
(TR n+h]=— 288072 gB(l)ﬁ+ O(h?) write
Chan (0T (y) =CLL (RMPM(y)

1
= ORM+0(h?), (4.2
2880r° ("), .20 =—2CWP 759500, h oY)

where we have used expressid@8) for B(V»”, (4.29

. ) Using the last identity, the expressi¢i7) for C(1?7 " and
D. Particle creation integrating by parts the first expression in E4.22 we get

We can also use the resyR.10 for the noise kernel to
evaluate the total probability of particle creation and the B 4y b, ~(1) o2 ~(Dpvap
number of created particles for a real scalar field in a space- PA[h]‘f d™x d%y Cap(¥INa(X—y;m")C (y).
time (R* 74+ hay). The metric perturbatiom,, (here an (4.25
arbitrary perturbationis assumed to vanish, either in an ex-
act way or “asymptotically,” in the “remote past” and in Thus, P,[h] and Pg[h] depend, respectively, on the Weyl
the “far future,” so that the scalar field has well defined tensor and the scalar curvature to first order in the metric
“in” and “out” many particle states. In that case, the abso- perturbation. The result for the massless case,0, can be
lute value of the logarithm of the vacuum persistence probeasily obtained from the above expressions, using &9.
ability |(0,0ut0,in)|?, where|0,in) and|0,oub are, respec- If, in addition, we make\ ¢=0, i.e., conformal coupling, we
tively, the “in” and “out” vacua in the Heisenberg picture, havePg[h]=0. Hence, for a conformal scalar field, particle
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creation is due to the breaking of conformal flathess in the So far in this subsection the metric perturbations are arbi-
spacetime, which implies a non-zero Weyl tensor. trary. We may also be interested in the particles created by
In order to compare with previously obtained results, it isthe back reaction on the metric due to the stress-energy fluc-
useful to introduce the Fourier transform of a fidlgk) as  tuations. Then we would have to use the solutions of the
F(p)=/d* e P*f(x). Note that, if f(x) is real, then Einstein-Langevin equation§t.4) and (4.14 in the above
F(—p)=F*(p). Using the expression@.9) for the kernels results. However, to be consistent, one should Iookjor solu-
N, and Ng, the above result for the total probability of tions whose moments vanish asymptotically in the “remote

particle creation and the number of particles created can als%aSt and in t.he far future.” These COﬂdIt!OHS are gen_eral!y
be written as too strong, since they would break the time translation in-

variance in the correlation functions. In fact, the solutions

1 d*p 2 that we find in the next section do not satisfy these condi-
=— | ——9(—p?—4am? — tions.
P[h] 192077J (277)40( p°—4m°) 1+4pz
_ _ m?2\ 2 V. CORRELATION FUNCTIONS FOR GRAVITATIONAL
X Cilﬁag(p)C(l’*“”“ﬁ(p)( L+4y PERTURBATIONS

In this section, we solve the semiclassical Einstein-
+0(h%), (4.26 Langevin equationd4.4) and (4.14 for the components

' G~ of the linearized Einstein tensor. In Sec. V A we use

these solutions to compute the corresponding two-point cor-

in agreement with the results of R¢B7] (except for a sign  relation functions, which give a measure of the gravitational
in the coefficient of the term wittﬁ(l)(p)|2). It is also easy fluctuations predicted by the stochastic semiclassical theory
to see that the above result is equivalent to that found in ReRf gravity in the present case. Since the linearized Einstein
[38] if we take into account that, for integrals of the fotm tensor is invariant under gauge transformations of the metric
— (dARF 2\F*ay--a ; perturbations, these two-point correlation functions are also
=Jdpla,.a (PIG(PIF™ (p), where fq, ..o (x) is gauge invariant. Once we have computed the two-point cor-

relation functions for the linearized Einstein tensor, we find
solutions for the metric perturbations in Sec. VC and we
show how the associated two-point correlation functions can
|:zf d*pa(pOT. .. . (p)G(pA)F*arar(p) be computed. This procedure to solve the Einstein-Langevin

A equations is similar to the one used by Horowidd], see
also Ref.[25], to analyze the stability of Minkowski space-
=2f d4p9(—p°)7al_,,ar(p)G(p2)7*al"'ar(p). time in semiclassical gravity. . N
From expressions$E2) and (EJ) restricted ton=4, it is
(4.27  easy to see thaaM*” andBM*” can be written in terms of
G(l)l“’ as

2\ 2

20 _ m
T 1r) 2 _
+ 5 R (p)] (3A§+ 2

any real tensor field in Minkowski spacetime a@dp?) is
any scalar function op?, one has that

In the massless conformally coupled cases=0 and A¢
=0, the result4.26 reduces to that found in Ref39]. A(l)ﬂ”zz(}'/”G(l)”‘—J—'“G(l)/“’)

The energy of the created particlég,h], defined as the 3 a T '
expectation value of the “out” energy operator in the “in”
vacuum can be computed using the expressions derived in BMur=p FrrgMe (5.2
Ref.[10]. We find that this energy is given by an expression
like Eq. (4.26), but with a factor »°6(p°) inserted in the Where we have used that B= 77, . Therefore, the Einstein-
integrand[37,10. Since the kernel®, andD, are related Langevin equationg4.4) and (4.14 can be seen as linear
by the fluctuation-dissipation relatio8.22, and the same integro-differential stochastic equations for the components
holds for Ng and Dg, it is easy to sedsimilarly to Eq. G™**. Such equations can be written in both cases;0

(4.27] that andm=0, as
[ dP ~ - L @y o A@Er(y) 1+ BRMA
E[h]=i f P TCLp(PITO e (p)Bu(p) grGe ()T 2aATHI0+ BBTH))
+|RW(p)|2Dg(p)]+0O(h3), (4.28 + f d*Y[Ha(x—y)ADEY(y) + Hg(x—y)BMH¥(y)]
where D A(p) and Dg(p) are the Fourier transforms of the =2&M7(X), (5.2)

dissipation kernels defined in E(.9). For perturbations of L

a spatially flat RW spacetimgi.e., h,,=2Aa(7n)7n,,, where the new constangsand 3, and the kernelbl 5(x) and
wherex’= 7 is the conformal time anda(7) is the pertur- Hg(x) can be identified in each case by comparison of this
bation of the scale factdrthis last expression agrees with last equation with Eqs(4.4) and (4.14. For instance,
that of Ref.[14], see also Ref.40]. when m=0, we have Ha(X)=H(x;x?) and Hg(x)
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=60A £2H(x; «?). In this case, we can use the arbitrarinesstransformed version, E@5.4)] with zero average. The aver-

of the mass scalg. to eliminate one of the parametessor ~ ages(GY*). must be a solution of the linearized semiclas-
B. sical Einstein equations obtained by averaging &) [or
In order to find solutions to these equations, it is conve

Eq. (5.4)]. Solutions to these equatiorispecially in the
nient to Fourier transform them. Introducing Fourier trans-T2ssless casen=0) have been studied by several authors
forms as in Sec. IV D, one finds, from E(b.1),

[30,41,31,42,43,34,35 particularly in connection with the

issue of the stability of the trivial solutions of semiclassical
~ _ 2 - gravity. The two-point correlation functions for the linear-
AMrr(p)=2p2GHr(p) — §p2P’”G(l) a(P), ized Einstein tensor are given by

(5.9 GrreB(x,x")=(GWH(x)GMB(x")),

BMe(p)=—2p?P+GW(p).
- <G(1)MV(X)>C<G(1)Q'B(X/ ))e

Using these relations, the Fourier transform of KE§.2)

reads =(GM* (x) G (x')). (5.10
F”Vaﬁ(p)é(l)“ﬂ(p)=1677GE‘”(p), (5.4) _ Nex_t, we sh_all seel§ the fgmily of soll_Jtions to _the
Einstein-Langevin equations which can be written as a linear
where functional of the stochastic source and whose Fourier trans-

form, G#¥(p), depends locally oF*#(p). Each of such
4 = 4 2 v 1 ]

F*ap(P)=F1(P) 8(u ) + F2(P)P"P* 705, (5.9 solutions is a Gaussian stochastic field and, thus, it can be
completely characterized by the averag@€V*"), and the
two-point correlation function$5.10. For such a family of

Fi(p)=1+167wG pz[ﬁA(p)—ZZ], solutions,é%l)’”(p) is the most general solution to EG.4)

(5.6)  which is linear, homogeneous and local&tf(p). It can be
written as

with

16 ~ ~ -
Fa(p)=— 7 7G[Ha(p)+3Hg(p) —2a—65].

- G{V*"(p)=16mG D*’,4(p)E(P), (51D
In Eq. (5.4), &*"(p), the Fourier transform of*"(x), is a
Gaussian stochastic source of zero average and whereD*? ,5(p) are the components of a Lorentz invariant
_ _ _ tensor field distribution in Minkowski spacetimby “Lor-
(E"(p)E*B(p"))c=(2m)*8*(p+p )N***A(p), (5.7  entz invariant” we mean invariant under the transformations
) _ _ of the orthochronous Lorentz subgroup; see R8&0] for
where we have introduced the Fourier transform of the nois,sre details on the definition and properties of these tensor
kernel. The explicit expression foi“"*#(p) is found from  distributiong, symmetric under the interchanges- g and

Egs.(3.10 and(3.9) to be m<— v, which is the most general solution of
~ 1 m< 1 l’n2 2 wv po _ v

wraB(p) = ——g(—p2— Am? L AL F* (P)DP7 4(p) = 81,55 . (5.12
N (p) 588 O(—p —4m)\/1+4 2L(1+4p2) P B (a©B)

In addition, we must impose the conservation condition to
the solutionsp,G{"*"(p)=0, where this zero must be un-
derstood as a stochastic variable which behaves determinis-
p? ' (5.8 tically as a zero vector field. We can writB*",(p)

o zDg_”aB(p)+Dﬁ”a5(p), where D'p”aﬁ(p) is a particular
which in the massless case reduces to solution to Eq.(5.12 and D{;”,,4(p) is the most general
solution to the corresponding homogeneous equation. Corre-
spondingly [see Eg. (5.1D], we can write G{"**(p)
=G{V#(p)+G{P#"(p). To find the particular solution, we

try an ansatz of the form

X (p?)2(3PHaphr— prrpab)
m2

+10 3A &+

2
) (pZ)ZP,u,vPaﬁ

lim N#»@8(p) =

m—0

- _Rn2
192070 P7)

1
X| 5 (P)2(3PHPAT—PrIPeP)
D4” wp(P)=d1(p) 8,8+ d2(P)PP* 7,5. (5.13
+ 60A £2(p?)2PH PP, (5.9  Substituting this ansatz into Eq&.12), it is easy to see that
it solves these equations if we take
A. Correlation functions for the linearized Einstein tensor Fa(p) }
. di(p)=|——| . do(p)=—|—2 '
In general, we can writeGMW# =(GMrY) +GMHY, 1(P) Fi(p)], 2(P) F1(p)F3(p)],
where G{M*" is a solution to Eq(5.2) [or, in the Fourier (5.14
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with (B EA(p))e
=(2m)*16mG 5*(p+p’)DE’,o(p)NPT*A(p).

Fa(p)=F1(p)+3p?F2(p)=1-487G p’[Hg(p) — 28], (5.19
(5.15
Note, from expression&.8) and (5.9), that the support of

and where the notatioh ], means that the zeros of the de- N#+f(p) is on the set of poizntip“% for which —p?=0
nominators are regulated with appropriate prescriptions ifvhenm=0, and for which—p“—4m“>0 whenm=+#0. At
such a way thatl,(p) andd,(p) are well defined Lorentz Such points, using expressio(&6), (5.15, (4.1) and(4.3),
invariant scalar distributions. This yields a particular solutionit iS €asy to see thdt,(p) is always different from zero, and
to the Einstein-Langevin equations: that F5(p) is also always dlffeEnt from zero, except for
some particular values & ¢ and B:

(& whenm=0, A¢=0 andB>0;
~1 ~ (b) whenm#0, 0<A£<(1/12) and
G{“(p)=167G D" ,p(p)E¥(p),  (5.16

which, since the stochastic source is conserved, satisfies the B=(A&3272) [ 7wl (GmP) + 1/36).
conservation condition. Note that, in the case of a massless
scalar fieldm=0, the above solution has a functional form . L L
analogous to that of the solutions of linearized semiclassical " €as€@), F3(p) =0 for the set of point¢p} satisfying
gravity found in the Appendix of Ref25]. Notice also that, —P>=1/(967Gp); in case(b), F3(p)=0 for {p*} such that
for a massless conformally coupled field=0 andAé=0,  —P°=m?/(3A¢). Hence, except for the above casasand
the second term in the right hand side of Eg.13 will not (b), the intersection of the supports di#**#(p) and
contribute in the correlation function®.10, since, as we Df{ (p) is an empty set and, thus, the correlation function
have pointed out in Sec. IV B, in this case the stochasti¢5.19 is zero. In caseéa) and(b), we can have a contribu-
source is “traceless.” tion to Eq. (5.19 coming from the term withh,(p)
Next, we can work out the general form for;",4(P),  in Eq. (5.18 of the form DﬁVpU(p)NP"“B(p)
which is a linear combination of terms consisting of a Lor- _

_ . 2puprNjaBp . P
entz invariant scalar distribution times one of the products Hs(p:{CHP"P*"N®,(p), whereHs(p;{C}) is the most

” ) N Y N eneral Lorentz invariant  distribution  satisfyin
5M“53,2’2p2w Nap> 1" Nap 77& pZP“ﬁ’ 5EZDZPB)) and Ig:3(p)H3(p;{C})=O, which depends on a set of arbgar%
P"P""p%P, 5. However, taking into account that the sto- .Rarameters represented{&}. However, from Eq(5.8), we
chastic source is conserved, we can omit some terms i S app . . o o
DE” .5(p) and simply write see ;hag l}l/2 »(P) |sé pzr(;portlonal_ to 0(—p°—4m7)(1

+4m</p?)“A3A&+me/pc). Thus, in case(@), we have
N*# (p)=0 and, in caseb), the intersection of the sup-
GiP#¥(p)=16mG DE” p(p)E*A(p), (5.17  ports ofN*A* (p) and ofH3(p;{C}) is an empty set. There-
fore, from the above analysis, we conclude tB4P**(p)
gives no contribution to the correlation functioi(s.10),
since (G{M*"(p)€é*#(p')).=0, and we have simply
GHreB(x,x") = (G () GEIP(x')), whereG{#*(x) is
the inverse Fourier transform of E(b.16).
Dﬁ”aﬁ(p)=h1(p)5f‘a5;)+hz(p)szf“’naﬁ The correlation functiong5.10 can then be computed

from
+h3(p) 7]MV77a,Ba (518)

with

(G ()G (p))c
whereh;(p), h,(p) andhg(p) are Lorentz invariant scalar
distributions. From the fact thdd” ,4(p) must satisfy the =64(2m)°G*5*(p+p')DL” ,o(P)
homogeneous equation corresponding to Ggl2, we find N ~ o
thath,(p) andh(p) have support on the set of poirfis“} XDgP (= P)NPM(p). (5.20
for which F1(p) =0, and that,(p) has support on the set of
points{p*} for whichF1(p) =0 orF3(p)=0. Moreover, the |t is easy to see from the above analysis that the prescriptions
conservation condition fo6{"**(p) implies that the term [ ], in the factorsD , are irrelevant in the last expression and,
with h;(p) is only allowed in the case of a massless confor-thus, they can be suppressed. Taking into account that
mally coupled fieldm=0 andA¢=0. From Eq.(5.7), we  F|(—p)=F;(p), with1=1,2,3, we get from Eqg5.13 and
get (5.14
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= v ~(Da ' 64(p+p,) Niuva F (p) N
(@GP () BHA(p >>c=64<2w>ﬁezm wrab( >—%p2pﬂ N#,(p)
2(p) )| .
F2 )P PN () :FiE):zpzp*‘”pzpaﬁNpp“(,(p) . (520

This last expression is well defined as a bi-distribution and can be easily evaluated usiBgBE§Ve find

2\ 2

54(p+p’) 1_'_4%) (p2)2(3p,u(ap,3)1/_pp-vpaﬂ)

~ ~ 2
(G ()N (p)) o= gz(2m)°G?

2—4Am? 14ml
0(—p—m) +FZ

|F1(p)|2
+10 3A +m2)2 2y2purpas| — g2 2P } 5.2
13 02 (p°) Fa(p) (5.22

To derive the correlation function®.10, we have to take m=0 andA£=0, since in this cas€g(x)=0 and GA(p)

':)hbet;rnverse Fourier transform of the above result. We finally reduces t@a(p) = 0( 0?)|F, (p)| 2, Introducing the func-

tion o(x;N)=[1—xIn(\x/e)] +772X2 with y=0 and X\
>0, Ga(x) can be written as

(120m)%2 1 V1207
0= s ] dallalsif 7 o

|

G eB(x,x )— G2 F 4" PGa(x—=X")

ar
+—G2FEFeBGa(x—x"), (5.23

9
j do® coa{ x%q° =)
with Le ¢(—g%N)’
~ m? m?\? 1 (5.26
Ga(P)=0(—p°—4m*) \/1+4— 1+4—z) : _
P p*/ IFu(p)l wherel p= /G is the Planck length, =120me/(L2x?), and
- we use the notatior*=(x°,x) andg*=(q°,q). Notice that,

if we assume thaﬁsL;l, then\ = 10°. For those values of
the parametei (and also for smaller valugsthe function
¢(x;\) has a minimum at some value pfthat we denote as
Fap)| (5.249  xo(\). This can be found by solving the equatiarfy,
3 =[1— xoIn(Axp/€)][1+In(\xp/€)] numerically[discarding a
va aB)v o lution xy(N) < xo(N\), at which the functionp(x;\) has a
and FrreB=3FmMarhlr_ prvreB and whereF (p), | S0 tONXm{A)=XolM), & he :
—1,2,3, are given in Eqgs. 6) and(5 15. Notice thgtp)for a maximum. Since the main contribution to the integt&l26

. - come from the values of g2 around—g2= xo(\), @(x;\)
massless fieldrg=0), we have can be approximately replaced in this integral by

Ca(p)=6(—p?—4m?) 1+4%( 3AE+ %

1

F1(p)=1+16aGp?H(p; u?), Gag XN =[1— k(\) X2+ m2x2
=[k*N)+7?]x*=2k(N)x+1,

16 -~ -
Fz(D)Z—3wG[(1+1SOA§2)H(p;M2)—6Y],
with k(A\)=In(\ xo(\)/€). For (\/5)~10°—10’, we have
(529 xk~10

Let the spacetime pointsandx’ be different and space-
like separated. In this case, we can choose an inertial coor-
= — — — dinate system for which x—x')*=(0x—x') and
with =y exp(1926r*a) and Y =4—60A¢%a, and where G#veB(x,x") will be a function ofx—x’ only that can be
H(p;n?) is the Fourier transform ofi(x;«?) given in Eq.  written as

(4.17).

Fa(p)=1—487GpZ60A£2H (p; u?) —2Y],

GHraB(x—x")=GH"*B(x—x")+ G4 *F(x—X")

B. Conformal field case +gl3”/aﬁ(x_x,), (5.27)

The above correlation functions become simpler when the
scalar field is massless and conformally coupled, i.e., whewith
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=4 dd, is the usual(Euclidean spagelaplace operator.

o
QQLWB(X)E4—5G27§XMB|a(X). (528  From the above expressions, we can see ¢f&f (x—x’)
=@GY%k(x—x')=0, but the remaining correlation functions

a=1.23, where  1;(X)= gA(x)|x# (0x) + 1,(x) G#v*B(x—x") are in principle non-null.
_((;x)ng(X”Xﬂ o, 13(0)= ((9)() AGAX) | g ©ox, and With the approximation described above, the integrals
FH “”‘B are some differential operators. Note that the termda(X) can be written as
contammg an odd number oﬂo derivatives are zero. (—1)att 12077 at12 9
The differential operators FEraB e given by laX)=———| —=— d|q|

1 27 X Jo

FhreP=3pHepAr—Dprrpeh - with  DH'=(y*"5

—5”'5”1)63 The non-null components of the remaining ) O
operators aré‘-‘OQJ—Ba A=A, FIU=1(5d+3811), xsin ———Ix|[d[ ||alJa([a])., (5.29
]_-I]kl 6|j§k|+35|(k6|)] ]_-I]kl 2(5|]5kl 5|(k5I)J)A
—5”&"3'—5k'a‘ai+3(5‘(ka')ai+5i(ka'>ai), where A where
|
o 1 o (q0)2
Jlah=| do’——F—, z(lql)— P
lal " paf —a%N) ol —AZN)
o (5.30
—Iq Jw (9°) 1
J =————+| dd° - )
a(lab K2\ + w2 g k @ad —a%N) [K*(\)+ 7]

Noting thate,—q?%\) has four zeros in the comple® plane at=p(|q|), = p*(|al), wherep(s) (we makes=|q]) is the
complex function with

Rep(s)] B V[ (k%4 72) %+ k]?+ w2+ (k2 + w2) P+ & v (530
Im p(s) 2(k%+ ) , -
we can decompose

1 1 1 q°+2Rep (9°—2 Rep) (5.32

= 2 2 - ) -
¢ad —a%N) A& T) [p|?Rep| (°)?+2 Rep o°+|p|*  (q%)*~2 Rep o°+|p|?
|
and then we can perform the integrdlgs), a=1,2,3. The 15 a 1
results for these integrals can be found in Appendix F. I1(X)= L_ x |2e bix|/Lp. (5.39
o

Next, to carry on with the calculation, we need to intro-
duce some suitable approximations for the functidf(s) in
the integralg5.29. In order to do so, we study the behavior
of these functions for small and large values %f For
s Ji(s), we find that it can be well approximated by an arctan
function. In fact, on the one hang,J;(s) tends very quickly
to a constant limiting value lig,..s J;(s)=a/4, wherea

The functionJ,(s) behaves ad,(s)=(a/4)s+O(s Ins)
for large values ofs, and asJ,(s)=(a/4)(120m) Y2y
+0(s?), with y=240(x*+ 7%) "%~ 1, for small values of
s. This function can be well approximated by

2 112
=1+ (2/m)arctang/#). On the other hand, for small values Jo(s)= 2 2+ L4 , (5.39
of s, we haves J(s)=[ V120ma/(27b)]s+ O(s?), with b 4 120m

= (4a/ 7?)[ 157 (k2 + 72— k) ]Y2 Hence, we can approxi-

mate and, substituting the last expression in the intety@t) [see

Eg. (5.29], we obtain, for|x|#0,

15 a 9?2
a V1207 - Y
s Ji(s)= %arctar( b s) . (5.33 lo(x)= w2 LA 1|2 Ka(yIxl/Lp), (5.39

where K,(z) denote the modified Bessel functions of the
Performing the integral,(x) [see Eq.(5.29] with this ap- second kind. ForJs(s), we find that Js(s)=(a/4)s®
proximation, we get, fofx|#0, +0O(sIny) for large values of, and that
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J3(s)=(al4)(120m) 328%+O(s),
with
S=4(k%+ 7% "M 450m b~ 12k — i+ 7)1,

for s small. With the approximation

3/2

; (5.37)

52

1207

J (s)zg s?+
3 4

we can compute the integréb(x) [see Eq.(5.29] for |x|
#0, and we find

PHYSICAL REVIEW D61 124024

45 a &°

I3(X)=— —5
3() 772LE|;|X|

Numerical calculations confirm that the above approxima-
tions are reasonable. Fa~ 10, we havea,b,6~1 and vy
~10.

The resultg5.34), (5.36) and(5.38 are now ready to be
substituted into Eq(5.28), from where we can compute the
different contributions to the correlation functioris.27).
Using the relation ¢/d2)[z" 'K (2)]=—-2z""K,1(2), and
definingo,=b[x|/Lp, o,=v|X|/Lp, 05=5|x|/Lp, we get,
after a rather long but straightforward calculation, the fol-
lowing results for the non-zero components @f"*#(x)
[with |x|#0]:

oog 2 ab®e™” '1+ 4 12 24 24
=3y Lp o |7 op b op
;oo 1 ab®e sif. 2, 16,32 32 x'x! 7,24 48 48
X)=— —F —— _— —_— —_— —_— = — e —_— —_— —_—
1 37 Lp ol o, of op op |x|? oy of op ap|
G900 =- 367" (x),
1 ab®e , 6 18 30 24 . 8
gy"'(x)~3—L—4—2 —(818-380M)| 1+ —+ 5+ —5+ | +108 M| 5+ —+
P O Op Op ‘Tb Oy b % Op
1 . 5 6 18 48
+— (8% + 84%Ix) = 36 xx) 38 xx) 1+—+———3——4
|X| 0, Oy Oy
10 . " 1 9 33 48, 2 14 87 279 384
= —(8®I+ 8D —+ —+ 5+ |+ = XX 1+ —+ S+ —+ — ||,
|X| Op O'b (Tb O'b |X| (o) O'b O'b O'b
(5.39
" 1 ay® Ky(o,) y
00ij ~ Y ]
G2~ 0= 37 L4 0'5, ||2 o

(8IxKx + 8MIxix] — 35 (kxDx] — 351y x)

Lt o2
. 1 ay 4(0',/) 1
G4 00= 72—~ 26 6438 ka0 — —

37 Lp y |x|?

3477 a& - ((,U (159-3550),
Y
g4 =—£aL—i6K3((;’5)(5”5k'—35i(k5'>1)
P 3
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Note that, foro>1, we have the following asymptotic ex- massive field, it seems that the natural prescription to avoid

pansions for the modified Bessel functions in the above exthe divergencies on the lightcopé=0 is a Hadamard finite

pressions: part (see Refs[28] for its definition. Taking this prescrip-
tion, we also get a well defined bi-distribution for the mass-

T 631 1 imi i i i
K(o)=\/ e 14 == 10| S]], (540 less limit of the last expression. Finally, we find the result

20 8 o a?

HHrB(x x')=4—”62;f“”“/’% (x—x")

T 351 1 ’ 45~ 7 x A

|<3(0')z %e "1+§;+O ;2'
32 )
+—— GPF L F P Hp(x—X),

. . . . 9
C. Correlation functions for the metric perturbations

(5.43

Starting from the solutions found for the linearized Ein-
stein tensor, which are characterized by the two-point corre- ~ B o9 ~
lation functions(5.23 [or, in terms of Fourier transforms, Where - NHA(p)=[1/(|c~)) 19a(P) andl He(p)
Eq. (5.22], we can now solve the equations for the metric=[1/(p°)“]1Gs(p), with Ga(p) and Gg(p) given by Eq.
perturbations. Working in the harmonic gaugf;ﬁ“”zo (5.24). The two-point correlation functions for the Lnetric
(this zero must be understood in the same statistical sense Bgrturbations can be easily obtained usitg,=h,,
above, whereh,,,=h,,—(1/2)7,,h, and using Eqs2.19 ~ —(1/2)7,,h;.
and (E1), these equations reduce td1h*"(x)=

—2GMrr(x), or, in terms of Fourier transformg2h®”(p) V1. DISCUSSION

=2GM®#7(p). As above, we can writ@#*”=(h*") +h#", Our main results for the correlation functions are Egs.
whereh#” is a solution to these equations with zero average(5-23 and(5.43. In the case of a conformal field, the cor-
and the two-point correlation functions are given by relation functions of the linearized Einstein tensor have been
explicitly evaluated and the results are given in E§39.
HMVCVB(X')(’)E<F,U«V(X)Faﬁ(x’)>c_<FMV(X)>C<Faﬁ(X’)>C From the exponential factoes “ in these results, we see that
. . the correlation functions of the linearized Einstein tensor are
=(h#"(x)h&B(x")),. (5.41) in this case characterized by correlation lengths of the order

_ of the Planck length. A similar behavior is expected for the

We can now seek solutions of the fornh/*(p) correlation functions of the metric perturbations. Hence, as

expected in this case, the correlation functions are negligibly
lar distribution in Minkowski spacetime, which is the most small for points separated by distances Iarge Compar_ed _to the

Planck length. At such scales, the dynamics of gravitational

general solution op°D(p)=1. Note that, since the linear- erturbations of Minkowski spacetime can be simply de-
ized Einstein tensor is conserved, solutions of this form auP P Ply

tomatically satisfy the harmonic gauge condition. As abovesf:”.bed by semlclqssmal_ graV|[<,30_,41,31,42,43334,25De-
we can writeD(p)=[ 1/p2], + Dp(p), whereDp(p) is the Viations from semiclassical gravity are only important for
r 1

most general solution to the associated homogeneous eqL%Qmts separated by Planckian or sub-PIanckla_n scale_s. How-
ever, for such scales, our resul&39 are not reliable, since

tion and, correspondingly, we havér{"(p)=hg"(p)  we expect that gravitational fluctuations of genuine quantum

+Fﬁ”(p). However, sinceDy,(p) has support on the set of hature to be relevant and, thus, the classical description
points for whichp2=0, it is easy to see from Eq5.22 breaks down. It is interesting to note, however, that these

PR Its f lation functi _analytic in thei
[from the factora(—p2—4m2)] that(hﬁv(p)G§l)aﬂ(p/)>c results for correlation functions are non-analytic In their

- h h . lation funct characteristic correlation lengths. This kind of non-analytic
=0 and, thus, the two-point correlation functiof®s4l) can  onavior is actually quite typical of the solutions of

be computed fron(hf”(p)h?ﬂ(p’))cz(hg”(p)hgﬁ(p’))C. Langevin-type equations with dissipative terms. An example
From Eq.(5.22 and due to the factof(—p?—4m?), itis  in the context of a reduced version of the semiclassical
also easy to see that the prescriptiof) is irrelevant in this  Einstein-Langevin equation is given in RE20].
correlation function and we obtain For background solutions of semiclassical gravity with
other scales present apart from the Planck scétasin-
(GO () BWB(p1Y) stance, for matter fields in a thermal Satetress-energy
P P ¢ fluctuations may be important at larger scales. For such
(5.42 backgrounds, stochastic semiclassical gravity might predict
_ _ correlation functions with characteristic correlation lengths
where (G{P*"(p)G{V*P(p")). is given in Eq.(5.22. The  much larger than the Planck scales, so as to be relevant and
right hand side of this equation is a well defined bi-reliable on a certain range of scales. It seems quite plausible,
distribution, at least fom# 0 (the # function provides the nevertheless, that these correlation functions would remain
suitable cutoff. In the massless field case, since the noisenon-analytic in their characteristic correlation lengths. This
kernel is obtained as the limib— O of the noise kernel fora would imply that these correlation functions could not be

=2D(p)GM**(p), whereD(p) is a Lorentz invariant sca-

4
(p%)?

(NE"(P)NEA(p')) o=

124024-19



ROSARIO MARTIN AND ENRIC VERDAGUER PHYSICAL REVIEW D61 124024

obtained from a calculation involving a perturbative expan-noise source. In fact, to lowest order, we obt&ii"*”
sion in the characteristic correlation lengths. In particular, if=167G&*?, where there is no contribution of the dissipation
these correlation lengths are proportional to the Planck corkernel. From this equation, we get the well-known result
stantfi, the gravitational correlation functions could not be (GMW#") =0  [25,43, and also GH*"*F(x,x")
obtained from an expansion fn Hence, stochastic semiclas- = (16m)°L5N“"*5(x,x’). For a massless field, using Egs.
sical gravity might predict a behavior for gravitational cor- (3.10), (4.9) and(4.12, this gives

relation functions different from that of the analogous func-

tions in perturbative quantum gravitj44]. This is not

necessarily inconsistent with having neglected action terms g“”"ﬁ(x,x’)=(2/15)(L‘,§/7r2)

of higher order ini when considering semiclassical gravity

as an effective theor|25]. X[(1/6)F 5P+ 60AE2F L FF]

We conclude this section with some comments about a 1\2)2 3 /
technical point on the obtained solutions of stochastic semi- X[PHAx=xX)%)]+ w64 (x=x")].
classica}l gravity. It concerns the issue t.hat the Einsteinpor the two-point correlation functior(s.41), we get, in the
Langevin equations, as well as the semiclassical Einsteifzrmonic gauge,
equations, contain derivatives of order higher than two. Be-
cause of this fact, these equations can have some “pathologi- 3 #vaf(x x')= (477/45)Léf';‘(’«VaBIA(X_X’)
cal” solutions (e.g., “runaway” solution$ which are pre-
sumably unphysicdl45,43,46,2% Thus, one needs to apply +(32m/9 L FLr FEPTo(x—X"),
some criterion to discern the “physical” from the unphysical
solutions. However, as it is discussed in R@5] (see also  With
Refs.[47]), even in the context of “pure’(non-stochastic

semiclassical gravity, this is still an open problem. Two main Ta(p)=6(—p?—4m?)(p?) 2
proposals, both based in the works by Simdb,43,44,
have been made concerning this issue: the “perturbative ex- X 1+4m?/p*(1+4m?/p?)?

pandability” (in %) criterion [45,43,46 and the “reduction
of order” procedurd 25].

The first proposal consists in identifying a subclass of. B ) o o2 > 2 22
“physical” solutions which are analytic in the Planck con- Z8(P)=6(—p“—4m%)(p%) ~“y1+4m?/p(3A&+m/p)*.
stantf. This proposal has been successful in eliminating th
instability of Minkowski spacetime found by Horowitz

[30,31]. However, on the one hand, this proposal seems to b . . i ;
too restrictive since, as it has been pointed out in F2], eature is the absence of the exponential fac&rs, which

one could not describe effects such as the continuous magngake the two-point correlation functions to decay much

loss of a black hole due to Hawking radiation. On the other"'0'€ slowly with the distance, i.e., like a power instead of an

hand, there can be situations in which the formal series Ongponentlal law. This fact is due to the lack of dissipative

tained when seeking approximate perturbative solutitma termshln tl?:ie reguct:)?d_ordler EQL:atIOI”IS. The ﬁprt\.cluts,lgn IS t_hat
finite order in#) does not converge to a solution to the one should probably impiement a more sophisticated version

semiclassical equatiod&5]. In our case, if we had tried to ?fbthte_ red;u;';:ondpf P“’t?r pLocedtJ_re tsho asdto kedep Zome con-

find solutions to Eq(5.2) as a Taylor expansion if, we tircl)nuslon ot the dissipation kernelin the reduced order equa-

would have obtained a series 6£.)(p) which, as the above For these reasons, in our work we have not attempted any

solutions, would be linear and local if,z(p), but whose of these procedures and we have simply sought some solu-

corresponding two-point correlation functions for the confor-tions to the full equation£s.2). Our solutions for the confor-

mal field case would not converge to H§.23). mal field case have the physically reasonable feature of hav-
The “reduction of order” procedure provides in some ing negligible two-point functions for points separated by

cases a reasonable way to modify the semiclassical equatiogsales larger than the Planck length.

in order to eliminate spurious solutions. But, as it has been

emphasized in Ref25], it is not clear at all whether a re- ACKNOWLEDGMENTS
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and

eComparing the last results for the massless case with the
nes obtained in Sec. V, we note that the main qualitative

APPENDIX A: THE KERNELS FOR A VACUUM STATE

The kernels for a vacuum state can be computed in terms of the Wightman and Feynman functions definéd.@ Eqg.
using
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(0[T°00 R (y)]0) = 4N x,y) +THRUX,¥)) = VIV (G, (X Y) VRV G, (x.Y) + VEVIG, (x,y) VRV G, (X.y)

+2D (VG (%) VIGH (X)) +2D UV iG, (x,Y) VG, (x,¥))+ 2D "DSUG 4(x,y)), (A1)

whereD?2® is the differential operator
Di"E(&— %)gab(X)Dﬁ ERP(X) = VEVY), (A2)
and
HE*x,y) =~ %Im VaViGe (X,Y) V3V yGe (X,y)+ VEVIGE (X,Y)VRVSGE (X,Y) +2D 3 (V{Gr (X,Y) VyGe (X,y))

1
+2DJUVGE (%) V3G, (X)) + 2D DN GE (x.¥))+ 519700 (V{Gr, (X.y) Vy+ ViGE (X.Y) V)

+g°UY) (VG (XY) Vit VG (X, y)va)]—fg;(y)) +(gab(x>D°d+g°d<y>Dab)(—( g_()f)) Fn(x,y>)
3"(x—y)
ab cd )G (D R(x )— (A3)
49 ()g°UY) G, (X,y) (=M = £R(X) -y

APPENDIX B: MOMENTUM INTEGRALS

Some useful expressions for the momentum integrals in dimensional regularization defined (8. Ejsnd (3.15 are

i ) m2 (n—4)/2 n i 4m2
'Onzwm(m) ( _E) (am? (n_2)<ntOMN—4), (B
14 =0, (B2)
lo
|6"V:_m27]'uv_n, (B3)
n n
3n(P)= gyl 20t (pD)+O(M=4)], (B4)
I (p)= n(p)p ’ (B5)
n( ) m?\ p2P#¥ Io 1 2pur
=" prp? —(1 4z )(pn D2 pf PP p sl (B6)
o n<p> M2 D2 paane par
I (p)= pHp'pe— ( Iy )(n_l)(P“ p*+PHp”+ PP
+Iﬁ L 3prprpes P* PAYpY 4 prapy 4 parph (B7)
2 7 SRR oy (PP p p*) |,
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J m2 2
I P(p)= —”1((? ! prprpepi- ( 1+4F) (nri 1) (P pepP+PreptpPs PrPptps Prep’pl+ PLOp*p®+ PPptp!)
m?\2 (p?)? lo, 1 12 m? 4 m?
| = (pruvpaB napvp nppra _n= - |p*p'p*pB+| —— — — —
+ 1+4p2) (nz—l)(P PP+ praprF+ pLEP )+8 pz[( N p2)ppppnt —1 npz)

1 4(2n—1) m?
XPZ(P”VP“DEJFPV“P“DB+PVBI0”D“+P““D”DB+P”BDVP“+P“’Bp”py)—( Sl )

n’-1 n(n?’-1) p?

X(p?)? (P PP+ prap iy prApre) |, (B8)
wherep?P#"= p#"p?—p*p”, K, is defined in Eq(2.16),
2 ! p2 H H 2 2 m2 2
d(p )EJ dalin| 1+ Eza(l—a)—ls =—imf(—p°—4m?) 1+432-+qo(p ), (B9)
0
with e—07", and
1 p?
(p(pz)EJ daln|l+ —a(l-a)
0 m
m2
= 1+4F+1 . —
=-2+\/1+45In| —————| 0| 1+4— | +2 1-4—
p m? p p
1+4—-1
p
m? m?
X arccota —1-4—1]6| —1-4—]. (B10)
p p
We can also writep(p?) in a more compact way as
m? [ J1+4(m°—ie)/p*+1
d(pP)=—2+ \/1+4—2In YL+ _E) P : (B11)
P\ Vi+4(m?—ie)/p?—1
Other useful integrals in momentum space defined in(B&) are
|—1¢9092421+4m2 B12
(p)—mg (=p")0(—p°—4m") ra (B12)
1(p)
1%(p)=——p*, (B13)
I(p) m?| p’P*”
124 = — HpV— —7
1(p) m?\ p?
1#74(p) = —g| P“P"P*~ 1+4FZ 3 (P*'p+ PHp "+ PpH) (B15)
1(p) m?| p?
1#r9P(p) =g | P*P'PPP—| 144 7 |5 (PHppP+ PrptpPs Pripp® PHeppP PHPpTp+ PApip”)
m2 2 12\2
+ 1+4F) (p5) (P“VP“/’+P““P”E+P“BPV“)] (B16)
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APPENDIX C: PRODUCTS OF WIGHTMAN FUNCTIONS

For the products of derivatives of Wightman functions involved in the calculations of Sec. Il A, we obtain the following
expressions:

d* .
AT3(x) == (2m)? f (2;48,.%@, (CY

+ + 2 d4p —ipx
AT (X)F"AT(X) = (2m) f(27)4e PO#p)p =1*(p)], (€2

4

p e,ipx[lﬁy(p)papﬁ_2|,uv(a(p)pﬁ)+|,twaﬁ(p)], (C3

ﬁ“&”A*(x)&“aﬁA*(x):—(Zw)zf 2m°

with 1(p), 1#(p), 1*¥(p), 1**(p) and1#"*A(p) given by Egs.(B12)—(B16). From these expressions, using the results of
Appendix B, we obtain

dp 2 dp m?
07'U’A+(X)07VA+(X):_7T2(9iLa;J (2,”_)4eilpx|(p)_?]:f(tyf (277)467”))( l+4?)l(p)a (C4)
2 d*p :
AT (X)) g AT (x) = —Ta/;a;a;‘aff 2 e '"PI(p) (CH

T ivsa gy b [ 9P iox m T vy o e B
— p(FlI o+ Ty aXaX)J(ZW)4e P 1+452 |(p) = oo F& P 27 (e F )
4 2\ 2
xfd—péle—mx 1+412) I(p). (C6)
(2m) p

APPENDIX D: PRODUCTS OF FEYNMAN FUNCTIONS

For the products of derivatives of Feynman functions that we need for the calculations of Sec. 11l B, we obtain the following
results:

dp .
00 0= | e Oy
dp .
P8 08 0= [ 3 P 02

n

p= NG (097 A, (X) = f D P37 (p)peph— 236" (p) p)+ 3 H(p)], (D)

(2m)"
Mf(n%)AFn(O):_'on, (D4)
—(n—4) 1N v §h — ”p ipx | & p¥— | ~Y D5
M d Fn(X){? (X) (27T)ne ( Onp On)! ( )
n
M*("*“Apn(x)m”(x):f (Zw)neim(p2|on+2p#|gn+|gnu). (D6)

Using the results of Appendix B, we find from the above expressions

2

1 m
1+435 Jn(p)

dnp ipx mv dnp ipx
@mre NP | e

—(n=4) yu v 1 w v
® *Ag (X)d AFH(X):Zax‘?x

=
2

dp p“p? 1 i 1
<2w>“e'px['°n(?+§'w = @mz o(P oM P

+0O(n—4), (D7)
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NG AL (x)0P)"A (x)=iaﬂa " &Bf p P (p)+i(.7-'””c7“ﬁﬁ+]-"“’3(7“&”)f ﬂeipx 1+4m2
Fn Fn 16°x (2m)" n 48"\ x 9x% x OxOx (2m)" 52'

2
1+4
[

2

‘]n(p)_ g

X Jn(p) + 5 (FLrF by 2 F1laF v f 2 el

240(

2
f Ipx |0 l+ 12m p,up p pﬁ+ _(p,uv pﬁ+ paBpMpV)
(2 e | p* p?

1
+ — _2( PMVp pB.'. Paﬁp/’-p +2PM(ap,B)pV+ 2PV(apB)p/-’-)+ J—

2+2—8m2
n

2+6m?)(P#p*pP+PPprp’)

|
X(PHrrpaPy ZPM(“P'B)”)}— Gy

o (2(P?)+ 20MPp?+ 45 (PRI 2PHpP) | £ O(n—4),  (DB)

i
47?225

whereP*” is the projector orthogonal tp# defined above.

APPENDIX E: LINEARIZED TENSORS AROUND FLAT SPACETIME

Some curvature tensors linearized around flat spacetime are given by the following expressions:

GLur=RL)ur_ % n#VR(l), (ED
1
DWuv= gryrR(L) + E’r)’“’DR(l)—lBDR(l)“V, (E2)
B(l)ﬂvzz(af"“ayR(l)_ e R(l)), (E3)
with
1
R =2 (9,040 + 30" = 04— 345, (E4)
RM= 5, ,RM*F=529Ph,,—Oh, (E5)
and
1
RUIal=(a1Phe+ 379 B — g P — " 9Phie). (E6)

In four spacetime dimensions, the linearized Weyl tensor is given by

1
C(l),umB:l_Z[G( n”pna”al‘&ﬁ-f- 7;"’“”773"5”(9“— ”Vpnﬁo(;uaa_ 77”"7;“‘719"&'8) +3( 7;”““7}”"(9”05
+ pHapvp ,BO'D_ y1ne Vpaﬁal)’_ o Bo’avap+ vB PO G G 4 vB . up o]
TN /i nn nen nenttn
—n" 7]'“‘0(9“(9"— 7]1’,37]0105#(910_ 7" 7]‘0('(9“07[3— e nﬁ”D + 9@ 77#P5ﬁ5”+ 7]1/!17’/30(9#59
— P79 9 = Py g O+ P Pa% a7+ Pyt 9vP) + 2( iy P — " P (0P8 — 9P D) ]h
(E7)
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APPENDIX F: THE INTEGRALS J.(S)
For the integralsl,(s), a=1,2,3, defined in Eq5.30, we find the following results:

s 1 1 s2—2 Rep s+|p|? 1 s+Rep s—Rep -
108 = 42T 7Pl | 2Rep | 24 2 Rep s+|p|2] Imp moartan ) et e P
1 [ 1 s2+2 Rep s+|p|? 1 s+Rep s—Rep
JZ(S)_4(K2+ m?)| 2 Rep s Reps+|p[2] Imp -arctan ) are Imp ’ (F2)
18) 1 hot 1 [3(Rep):— (Im p)2]l s?+2 Rep s+|p|?
S)=——5——1 —4S+ —— ep)?—(Im n
* 4(k"+m°) 2 Rep P P s?—2 Rep s+|p|?
1 Rep)2— 3] ) s+Rep s—Rep F3
+m[( ep) (Im p)“]| =— arctal imp arcta Imp , (F3

wherep is a function ofs given by expression€.31), which give|p|?=[[ (k*+ 7?)s?+ ]2+ w21 (k*+ 7?).
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