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Vacuum domain walls in D dimensions: Local and global space-time structure
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We study local and global gravitational effects of (D22)-brane configurations~domain walls! in the
vacuum ofD-dimensional space-time. We focus on infinitely thin vacuum domain walls with arbitrary cos-
mological constants on either side of the wall. In the comoving frame of the wall we derive a general metric
ansatz, consistent with the homogeneity and isotropy of the space-time intrinsic to the wall, and employ
Israel’s matching conditions at the wall. The space-time, intrinsic to the wall, is that of a (D21)-dimensional
Freedman-Lemaiˆtre-Robertson-Walker universe~with k521,0,1) which has a~local! description as either
anti–de Sitter, Minkowski or de Sitter space-time. For each of these geometries, we provide a systematic
classification of the local and global space-time structure transverse to the walls, for those with both positive
and negative tension; they fall into different classes according to the values of their energy density relative to
that of the extreme~supersymmetric! configurations. We find that in any dimensionD, both local and global
space-time structure for each class of domain walls isuniversal. We also comment on the phenomenological
implications of these walls in the special case ofD55.

PACS number~s!: 04.20.Jb, 11.27.1d, 98.80.Cq
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I. INTRODUCTION

Recent months have witnessed a resurgence in the s
of domain walls with asymptotically anti–de Sitter~AdS!
space-times. This renewed interest is motivated both fr
the point of the view of AdS conformal field theory~CFT!
correspondence, providing new insights into the study
renormalization group equation~RGE! flows ~see, e.g.,
@1–11# and references therein! as well as from the phenom
enological perspective, providing a possible resolution to
erarchy problem in the context of a world on a domain w
in D55 asymptotically AdS space-times~see, e.g.,@12–20#
and references therein!. This is an exiting period when for
mal theoretical developments drive phenomenological im
cations and vice versa.

A prerequisite for addressing physics implications of su
configurations is a detailed understanding of their space-t
structure. Earlier work on the subject concentrated on
domain walls inD54 space-time dimensions, where eith
side of the wall was to be interpreted as that of our fo
dimensional Universe. The first example of static dom
walls between vacua with different cosmological consta
were found is@21# as supersymmetric@Bogomol’nyi-Prasad-
Sommerfield-~BPS!-saturated or extreme# walls interpolat-
ing between supersymmetric vacua ofD54, N51 super-
gravity vacua. In @22# a classification of the possibl
supersymmetric walls has been given, and the global st
ture of the space-times induced by these walls has been
plored in@23,24#. A subsequent systematic investigation@25#
of the space-times of domain walls separating regions
non-positive cosmological constant in Einstein’s theory
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gravitation, revealed a more general class of domain w
configurations.1 ~For a review, see@26#.!

The purpose of the present work is to generalize the
sults of the study of vacuum domain walls inD54 @25# to
(D22)-brane configurations inD dimensions, withD55
being of special interest to the physics implications for t
four-dimensional domain wall world~as well as of theoreti-
cal interest for RGE flows of strongly coupled gauge theor
in four dimensions!.

Following the work of@25# we derive the local and globa
properties of the space-times induced by vacuum dom
walls in D dimensions between vacua of arbitrary cosm
logical constant. We start with theansatzthat the gravita-
tional field inherits the boost symmetry of the source, but
assume nothing about the topology of th
(D21)-dimensional space-times parallel to the surface
the domain wall. The space-time intrinsic to the wall, a
Freedman–Lemaiˆtre-Robertson-Walker~FLRW! universes
describing locally (D21)-dimensional anti–de Sitte
(AdSD21), Minkowski (MD21) or de Sitter (dSD21) space-
time. For each of these space-times internal to the wall,
space-time transverse to the wall can be classified accor
to the values of cosmological constantsL1,2 on either side of
the wall and their relationship to the energy density of t
wall s.

An important result of the analysis is that the space-tim
of domain walls have the same universal structure in allD;
the space-time intrinsic to the wall is that o

1Space-time properties of non-static domain walls inD55 were
recently addressed in@27–34# and references therein. As the resu
of this paper demonstrate, the space-time structure of domain w
in D dimensions~including D54) is completely parallel.
©2000 The American Physical Society20-1
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MIRJAM CVETIČ AND JING WANG PHYSICAL REVIEW D 61 124020
(D21)-dimensional FLRW universe, and the metric coe
cient, specifying the space-time transverse to the wall,
the same form with parameters depending onL i /@(D
21)(D23)#.

The paper is organized as follows. In Sec. II we derive
line-element ansatz, by working in the comoving frame
the wall inD dimensions. In Sec. III we classify the doma
wall solutions according to their energy density and the v
ues of cosmological constants on either side. We presen
discussion of the result in Sec. IV, including the implicatio
for their non-extreme generalizations. In particular, we d
cuss the examples inD55, which have been recently stud
ied intensively.

II. LOCAL PROPERTIES OF DOMAIN WALL
SPACE-TIMES

In this section we present the metric ansatz for vacu
domain walls for Einstein gravity inD dimensions; these
walls, created from a scalar field source, separate vac
space-times of zero, positive, and negative cosmolog
constants. We study in detail only infinitely thin doma
walls, by employing Israel’s formalism@35# of singular hy-
persurfaces.

A. Metric ansatz

We solve D-dimensional Einstein’s gravitational fiel
equations in the co-moving frame of the domain wall,
assuming the following symmetry of the metric ansatz@25#:

The spatial part of the metric intrinsic to the wall isho-
mogeneousand isotropic.

The space-time section transverse to the wall isstatic.
The directions parallel to the wall areboost invariantin

the strong sense.
Homogeneity and isotropy reduce the metric part, intr

sic to the wall, to be the spatial part of a (D21)-dimensional
FLRW metric @36# of the form

~dsi!
25R2@~12kr2!21dr21r 2dVD23

2 #, ~2.1!

where R is independent of the radial coordinater and the
angular coordinatesf i ( i 51, . . . ,D23) specifying the line
elementdVD23

2 of (D23)-sphereSD23. The scalar curva-
ture of this surface is equal to 2k/R2.

The sign ofk determines the wall geometry.k50 defines
a planar wall, in which case the metric~2.1! can be written in
Cartesian coordinates (dsi)

25R2(( i 51
D22dxi

2). k.0 corre-
sponds to a spherical wall—closed bubble—withr andf i ’s
being compact coordinates; through a coordinate transfor
tion r 5k21/2sinu and rescaling ofR, the line element can be
written as (dsi)

25R2(du21sin2udVD23
2 )5R2dVD22

2 . k,0
corresponds to the negative curvature, non-compact Ga
Bólyai-Lobachevski surface; introducingr 5(2k)21/2sinh%,
with %.0, and rescaling R yields (dsi)

25R2(d%2

1sinh2 % dVD23
2 ).

The condition that the two-dimensional space-time (t,z)
transverse to the wall bestatic ~as observed in therest frame
of the wall! implies the following form of the transverse pa
of the metric:
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~ds'!25A~z!~dt22dz2!, ~2.2!

wherez is the spatial direction transverse to the wall,t is the
proper time and A(z).0. With ds2[(ds')22(dsi)

2 the
metric takes the form:

ds25A~z!~dt22dz2!2R~ t,z!2@~12kr2!21dr2

1r 2dVD23
2 #, ~2.3!

in which zP^2`,`&, and the other coordinates are those
the FLRW cosmological model@36#.

A straightforward calculation of the nonzero compone
of the Einstein tensorG n

m 5R n
m 2 1

2 R a
a g n

m yields the re-
sult

G t
t 5

D22

A F2
R9

R
1

HR8

2R G1
~D23!~D22!

2R2 Fk1
Ṙ22R82

A
G

G t
z 5

D22

A
F Ṙ8

R
2

HṘ

2R
G

G z
z 5

D22

A
F R̈

R
2

HR8

2R
G1

~D23!~D22!

2R2 Fk1
Ṙ22R82

A
G

G r
r 5G f i

f i 5
32D

A
FR9

R
2

R̈

R
G2

H8

2A
2

~D23!~D24!

2R2

3Fk1
Ṙ22R82

A
G ~2.4!

where i 51•••D23, Ṙ[] tR(t,z), R8[]zR(t,z) and H
[]zlnA(z).

The symmetry of the matter source~as specified in the
rest frame of the wall! implies that the energy-momentum
tensor is static, withT t

z 50 @no energy flow in the (t,z)
plane# and T m

m 5gm(z) @m5(t,z,r ,f i)#, where gm(z) are
functions of z, only. Then Einstein’s equationsG n

m

5kDT n
m imply the following constraints onR(t,z) and

A(z):2

Ṙ8

R
2

HṘ

2R
50, ~2.5!

R9

R
2

HR8

2R
5 f 2~z!,

R9

R
2

R̈

R
5 f 3~z!,

2kD is defined askD[8pGD , whereGD is Newton’s constant in
D dimensions. We define the Lagrangian density as (1/kD)(2R/2
1Lmatter).
0-2
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k

R2
1

Ṙ22R82

AR2
5 f 4~z!,

where f 1,2,3,4(z) are arbitrary functions ofz.
The static metric ansatzṘ50 automatically satisfies Eqs

~2.5!. For non-static metric, time integration of the first equ
tion in Eqs.~2.5! yields the condition

R85
HR

2
1 f 1~z! ~2.6!

with f 1(z) an arbitrary function ofz. Adding thez derivative
of Eq. ~2.6! to the second equation in Eqs.~2.5! yields a
condition f 1(z)85@2H8/21 f 2(z)#R, which holds for anyt
only if f 1(z)5 f 0 is a constant andf 2(z)5H8/2.

The assumption of boost invariance along the surface
constantz implies that f 050 and, as a consequence, E
~2.6! is solved byR2(r ,t)5A(z)S2(t). @In the static case, i.e
Ṙ50, the same symmetry constraint also impliesR2(z)
}A(z).3#

Therefore, the metric ansatz takes the form

ds25A~z!$dt22dz22S2~ t !@~12kr2!21dr21r 2dVD23
2 #%,

~2.7!

which has a universal form for anyD dimensions, and thus
the same structure as the one obtained inD54 @25#. This
result is due to the fact that in the wall comoving frame t
homogeneity and isotropy of space-time internal to the w
severely restrict the form of the Einstein tensor to be tha
Eq. ~2.4!; the static space-time transverse to the wall and
boost invariance along the wall further fixes the metric to
of the universal,D-independent form~2.7!.

In the following subsection we solve the Einstein equ
tions for A(z) and S(t), which specify the possible space
time structure away from the domain wall. We then emp
the infinitely thin wall approximation@35# in order to deter-
mine the energy density of the wall in terms of the para
eters in the metric.

B. Local space-time solutions

We now solve Einstein’s equations forS(t) andA(z) of
the metric ansatz~2.7!. We consider thin domain walls inter
polating between two maximally symmetric vacua of ze
positive, or negative cosmological constant.4

3Namely, we assume that the gravitational field inherits the sy
metry of the source; the directions parallel to the wall are bo
invariant in the strong sense and thick walls will have the sameS(t)
as found in the thin wall approximation and will asymptotica
approach the thin wall result forA(z). ~See@25# for a more detailed
discussion.!

4Maximally symmetric vacuum solutions are well known@36#;
nevertheless, we summarize the results here for the comoving
ordinate system of the wall. Note also that Israel’s matching con
tions are easily satisfied in this frame.
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Plugging the metric ansatz ~2.7!, i.e. R2(t,z)
5A(z)S2(t), into the Einstein tensor~2.4!, yields the follow-
ing equations forS(t) andA(z):

S̈

S
5q05

Ṡ2

S2
1

k

S2 , ~2.8!

1

4 S A8

A D 2

5q02
L

~D23!~D21!
A, ~2.9!

where we have assumed that away from the wall, the ene
momentum tensor is given byT n

m 5Ld n
m with L the cosmo-

logical constant on either side of the wall.q0 is an integra-
tion constant satisfying the consistency constraintLA(z)
<(D23)(D21)q0.

Since the equation forS(t) is independent of dimension
ality, the space-time intrinsic to the wall is universal. Equ
tion ~2.9! for A(z), i.e. the metric coefficient specifying th
space-time transverse to the wall, is also of the same form
that obtained inD54, except for theD-dependent coeffi-
cient in front of the cosmological constant. We choose
parametrize the cosmological constant as

L[6~D23!~D21!a2[6Da2. ~2.10!

Thus, in terms of the parametera, Eq. ~2.9! has a universal,
D-independent form and thus yields the same solutions as
ones obtained inD54 @25#.

The fact that the domain wall space-time structure is u
versal was anticipated in@26#. Nevertheless, the result is in
triguing; both the local as well as the global space-tim
properties of domain walls [(D-2)-configurations] in divers
(D) dimensions are universal.The study of the local and
global domain wall space-times inD54 @25# can therefore
be extended in a straightforward way to the study ofD
22) configurations inD dimensions.~The special case o
D55 recently attracted much attention due to its pheno
enological implications.!

For the sake of completeness, we shall now write do
the explicit results forS(t) and A(z) @25#. We parametrize
the curvature constant of the space-time internal to the w
~see discussion at the beginning of the previous subsec!
askP$2b2,0,b2%. The solutions ofS(t) from Eq. ~2.8! can
be classified according to the sign ofq0:

q052b2: S25cos~bt ! k52b2, ~2.11!

q050: S05H bt k52b2,

1 k50,
~2.12!

q05b2: S15H sinh~bt ! k52b2,

ebt k50,

cosh~bt ! k5b2,

~2.13!

where the subscripts (2,0,1) refer to the respective sign o

-
t

o-
i-
0-3
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q0. @As a result of the time-translation and time-reversal
variance, the integration constants are adjusted to yield
canonical form forS(t), and without loss of generality,b
>0 is chosen.# The form of the solutionsS2,0,1 @Eqs.
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~2.11!–~2.13!# implies that the space-time intrinsic to th
wall is that of AdSD21, MD21 and dSD21, respectively.

Solutions of Eq.~2.9!, classified according to the sign o
q0, yield the following form ofA(z):
q052b2: A25b2@a cos~bz1q!#22 L52Da2<2Db2, ~2.14!

q050: A05H ~az61!22 L52Da2,

1 L50,
~2.15!

q05b2: A15H b2@asinh~bz2bz8!#22 L52Da2,

e62bz L50,

b2@acosh~bz2bz9!#22 L5Da2<Db2.

~2.16!
s
y

y
-

f
-
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e
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Again, the subscripts (2,0,1) for A(z) refer to the sign of
q0. Without loss of generality we have moved the origin
the z axis to the position of the wall (z050). The three
integration constantsq, z8, and z9 are determined by the
requirement thatA(z050)51 which yields

q656arccos~b/a!, ~2.17!

bz68 5
1

2
lnF11

2b2

a2 6
2b

a2~a21b2!1/2G , ~2.18!

bz69 5
1

2
lnF211

2b2

a2 7
2b

a2~b22a2!1/2G . ~2.19!

The constantsbz8 and bz9 satisfy e2b(z18 1z28 )5e2b(z19 1z29 )

51 and e2bz29 .1.e2bz19 and e2bz28 <1<e2bz18 where, in
the last case, the equality is obtained whenb50—the ex-
treme limit—is taken.@As one can see from Eq.~2.19!, there
is no extreme limit (b→0) in the de Sitter case.#

C. Israel’s matching conditions and surface energy density
of the domain walls

In the thin wall approximation, the energy-momentu
tensor and the Einstein tensor haved-function singularities at
the wall. In Israel’s formalism@35# for singular layers the
metric tensor has a discontinuity in its first order derivativ
in the direction transverse to the wall, and the Lanczos ten
S j

i , which is the surface energy-momentum tensor of
wall located atz0, is related to the discontinuity of the ex
trinsic curvatureK j

i in the following way:

kDS j
i 52@K j

i #21d j
i @K#2. ~2.20!

The square brackets@ #2 are defined as @V#2

[ lime→0@V(z01e)2V(z02e)# and xiP$t,r ,f i% ( i
51, . . . ,D23) are the coordinates parallel to the wall.K j

i

is given by the covariant derivative of the space-like u
normal nm of the wall’s hyper-space-time. In a normalize
f

s
or
e

t

coordinate system wheregẑẑ521, the extrinsic curvature
can be written asKi j 5(2z/2)gi j ,ẑ wherez561 signifies
the inherent sign ambiguity of the unit normalnm. Hence, in
a comoving coordinate frame, where we have chosenA(z0
50)51, the Lanczos tensor can be written as

kDS j
i 52d j

i @zH#z50
2 . ~2.21!

The energy density of the walls[S t
t , which is equal to the

wall’s tensiont[S r
r 5S f i

f i , is given by

kDs52@zH#z50
2 . ~2.22!

Applying Israel’s formalism to the local vacuum solution
specified by Eqs.~2.11!–~2.16!, we find the surface energ
densitys and tensiont5s to be of the form

kDs52z1h1S q02
L1

~D23!~D21! D
1/2

22z2h2S q02
L2

~D23!~D21! D
1/2

, ~2.23!

where the first~second! contribution to the energy densit
comes fromz,0 (z.0) side of the wall. We choose, with
out loss of generality, to orient thez coordinate so that the
vacuum of lowest energy will be placed on thez,0 side~i.e.
L1,L2).

In Eq. ~2.23!, in addition to the ambiguity in the sign o
the unit normalnm (z i561), there is another sign ambigu
ity, hi561, in taking the square root of Eq.~2.9!. A kink-
like solution for the wall, i.e. the scalar interpolating betwe
the extrema of the potential, impliesz15z251. In addition,
we takehi51 if Ai(z) is an increasing function ofz andhi
521 if Ai(z) is decreasing.

The domain wall solutions fall into two categories: tho
with positive energy density~corresponding to the infinitely
thin wall limit of a kink solution, interpolating between th
minimaof the potential! and those with negative energy de
sity which correspond to choosing the reversed values ofhi .
0-4
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Examples of negative tension walls are encountered
gauged supergravity theories~see, e.g.,@10#! as a conse-
quence of a kink solution interpolating betweenmaximaof
the potential.

For a given value ofq0 the walls can be classified accor
ing to the choice ofhi into the following classes@the nota-
tions are chosen to be compatible with earlier classificati
@10,22# of extreme wall (q050) solutions#:

Type I walls: a special case of Type II walls withL2
50, andq050.

Type II walls: positive-tension walls withh152h251.
Type III walls: positive-tension walls withh15h251.
Type III8 walls: negative-tension walls withh15h2

521, ands III 852s III .
Type IV walls: negative-tension walls withh152h2

521, ands IV52s II .
Type V walls: a special case of type IV walls withL2

50, q050, andsV52s I .
The global and local space-times of positive tension w

with q050 ~and S051) as well as q0.0 @and S1

5cosh(bt)] were extensively studied in@25#. In @25#, the
q0,0 @S(t)5cos(bt)# examples were not further studied,
part due to the geodesic incompleteness of the space-
description of the AdS2 space-time transverse to the wa
Nevertheless, these are proper local solutions deserving
ther study~see also@27#!. On the other hand the negativ
tension walls are of interest in the study of AdS-CFT cor
spondence and thus deserve further investigation.

In the following section we provide a systematic class
cation of the~local and global! space-time structure of th
possible domain wall solutions.

III. CLASSIFICATION OF THE DOMAIN WALL
SOLUTIONS

We shall classify the solutions according to the values
the parameterq0. The metric, intrinsic to the wall and spec
fied by S(t), is locally related to standard coordinates
MD21 , AdSD21, or dSD21 space-time forq050, q0,0 or
q0.0, respectively. Within each class we then discuss
space-time structure transverse to the wall as determine
the metric conformal factorA(z); its structure is governed b
the energy density~2.23! and its relationship to the cosmo
logical constants on either side of the wall.

A. Walls with „q0Ä0…: Extreme walls

The q050 solutions, known as extreme domain wa
@23#, exist forL1,2<0. @The cosmological constant is define
asL1,2[2(D23)(D21)a1,2

2 .#
Since the wall is homogeneous, isotropic and boost

variant, the spatial curvature of constantz sections is not
unambiguously defined; there is no preferred frame in
(D21)-dimensional space-time of the wall. The twoS0 so-
lutions ~2.12!—the Milne type solution withS5bt and k
52b2 and the inertial Minkowski solution withS51 and
k50—both describe MD21 space-time. The two solution
are related by a coordinate transformation@37# that does not
involve the transverse coordinatez and therefore describ
12402
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locally equivalent space-times.
The S51 solution is theonly wall which represents a

noncompactplanar (k50) and static wall. These walls
could be realized as supersymmetric bosonic configuratio
Examples of supersymmetric domain walls inD54, N51
supergravity coupled to chiral matter superfields were fi
found and studied in@21#, and recent examples withinD
55 gauged supergravities were given in@10#.

The physically distinct solutions@with S(t)51] corre-
spond to two sets of solutions forA(z) in Eq. ~2.15!, with the
asymptotic AdSD and MD space-times described byhoro-
sphericaland Cartesian coordinates, respectively.

Positive energy solutions can be classified as the follo
ing three types@22#, according to the relationship of the en
ergy density of the walls to a1,2:

Type I: planar walls withkDsext,I52a1, interpolate be-
tween MD and AdSD where on the latter side the metr
conformal factorA(z) decreases and reaches Cauchy horiz
at z→2`. These walls saturate aD-dimensional analogue
of the Coleman-deLuccia@38# bound.

Type II: planar walls withkDsext,II 52(a11a2) interpo-
late between two AdSD regions, in whichA(z) decreases
~repulsive gravity! away from either side of the wall.@The
special case with aZ2 symmetry (a15a2) in D55 gives
rise to the Randall-Sundrum scenario with one positive t
sion brane@13#.# z56` correspond to the Cauchy AdS ho
rizons. The geodesic extensions were studied extensive
@23–25# and bear striking similarities to the global spac
times of extreme charged black holes.

Type III: planar walls withkDsext,III 52(a12a2) inter-
polate between two AdSD spaces with different cosmologica
constants; the conformal factor goes to infinity onz.0 side
of the wall, while decreases on the other side. The singula
in A(z) at a finite value ofz represents the time-like bound
ary of the AdSD space-time. Againz→2` corresponds to
the Cauchy horizon.

On the other hand, the walls with negative energy den
fall into the following classes@10#:

Type III8: planar walls withsext,III 8522(a12a2) have
the space-time structure that is a mirror image of that of ty
III walls; the conformal factor goes to infinity onz,0 side
of the wall, onz.0 side the conformal factor decreases, t
AdS Cauchy horizon is atz→`.

Type IV: planar walls withsext,IV522(a11a2) inter-
polate between two AdSD regions, in whichA(z) increases
on either side of the wall, reaching the AdS boundaries a
finite value ofz on either side.@Those are typical wall solu-
tions encountered in gauged supergravity theories~see, e.g.,
@10#!, and are of interest in the study of RGE flows in th
context of the AdS-CFT correspondence.#

Type V: planar walls withsext,V522a1, interpolating
between MD and AdSD ; on the AdS sideA(z) increases
away from the wall, approaching the boundary of the AdS
a finite value ofz.

The behavior of the conformal factorA(z) for each class
of solutions can be easily seen from specific examples sh
in Fig. 1. Type I–V, type II–IV and type III and III8 can be
0-5
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FIG. 1. The metric coefficientsA(z) are plotted as a function of transverse coordinatez, for dual pairs of extreme (q050) domain walls.
~a! denotes type-I–type-V pairs with the cosmological constant parametersa151 anda250, ~b! shows type-II–type-IV pairs witha1

5a251 and~c! shows type-III–type-III8 pairs witha151 anda251/2.
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viewed as ‘‘dual.’’ Namely, the energy densities of the
walls have opposite signs and the space-time patches o
AdSD are complementary; i.e., AdS Cauchy horizons in o
case are replaced by the boundaries of AdS space-time
another and vice versa. Note that in this sense the extr
type II walls, which provide a realization of the Randa
Sundrum scenario inD55, and type IV walls, which are
generically encountered in the study of the AdS-CFT cor
spondence, provide thecomplementarydomains of the AdS
space-time. We also note that within field-theoretic fram
work, such as gauged supergravity theories, a realizatio
~finite! negative tension domain walls and the issues of th
stability require further study.

B. Walls with q0Ì0

q05b2 solutions with the form ofS1 in Eq. ~2.13! de-
scribe dSD21 parallel to the wall. The topology of dSD21 is
R(time)3SD22(space). dSD21 represents a hyperboloid em
bedded in a flatD-dimensional Minkowski space-time@24#,
and the three possible spatial curvatures (k52b2,0,b2) cor-
respond to three different choices of constant time slices
this hyperboloid. However, only the positive curvature so
tion with S(t)5cosh(bt) yields the complete covering o
dSD21 @24,25#; we will mainly focus on this class of solu
tions, which have a topology of the‘‘expanding bubbles.’’A
possible way to create such expanding bubbles is via ins
tons of Euclidean gravity.

The walls can be classified according to their energy d
sity ~2.23! into the following classes:

Type II walls with

kDsnon,II 52~6a1
21b2!1/212~6a2

21b2!1/2>kDsext,II

~3.1!

are non-extreme; i.e., their energy density is above tha
their extreme counterparts. HereL i[7(D23)(D21)a i

2 .
12402
he
e
in
e

-

-
of
ir

of
-

n-

-

of

Note that the domain walls in this class involve positive, ze
and negative cosmological constants, and the minus sig
front of a i

2 corresponds to apositiveL i . Furthermore, in the
de Sitter case,a i

2<b2 is required. There are 6 possible co
figurations of type II wall interpolating between differen
space-times, which are shown as 6 examples in Fig. 2.

Configurations with geodesically complete space-time
ternal to the wall @S(t)5cosh(bt)# describe expanding
bubbles with two insides@25#. Namely, because the radiusRb
of the curvature of concentric shells at distancez is propor-
tional to A1/2(z)S(t), Rb , at fixed t, decreases asA(z) de-
creases with increasinguzu, and therefore either side of th
wall corresponds to aninside region of the bubble. In addi-
tion, sinceS(t) increases witht, the bubble isexpandingto
an asymptotic observer on either side of the wall.~One pos-
sible origin of a creation of such configurations is via insta
tons of Euclidean gravity-quantum cosmology@39#.!

SinceA(z) decreases with increasinguzu, gravity is repul-
sive on either side of the wall andz→6` corresponds to
~cosmological! horizons. The geodesic extensions are stud
in @25#, and bear striking similarities to non-extreme charg
black holes where time-like singularities are replaced by w
boundaries.

The walls withL1,2<0 are generalizations of the extrem
type II and type I walls withb50 to b.0. The walls with
L1 or L2.0 andL15L250 do not have an extreme limi
(b→0). The latter class ofMD2MD type II domain walls in
D54 @and S(t)5ebt] was studied in@40#. dS-dS type II
walls are unstable, since false vacuum decay walls~dS-dS
Type III walls! are dynamically preferred@41,42#, except for
the case ofL15L2.0.

Type III walls with q0.0 have an energy density lowe
than that of their extreme wall counterparts,

kDsultra,III 52~6a1
21b2!1/222~6a2

21b2!1/2<kDsext,III ,

~3.2!
0-6
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and are referred to as ultra-extreme domain walls. The s
tions with asymptotic dSD space-times requirea i

2<b2, and
consequently they do not have an extreme limit. Spec
examples of 5 possible configurations of the type III wa
are shown in Fig. 3.

Configurations@with S(t)5cosh(bt)] are false vacuum
decay bubbles@43,42#. Namely, the radiusRb}A1/2(z)S(t)
decreases~increases! for z,0 (z.0), and thus correspond
to theinside~outside! region the bubble. The solutions whic
only involve MD or AdSD are more like ordinary bubble
compared with the type II walls because ast increases the
expanding bubble eventually sweeps out the space-time
the z.0 side.
12402
u-

c

on

On the other hand, on the de Sitter side of the wall,
metric function turns around at pointzcrit and decreases be
yond zcrit . Hence, beyondzcrit , the inside of the bubble
becomes an outside.z→` corresponds to cosmological ho
rizons that can be reached by test particles with energy la
thanEcrit . In D54 the non-negative cosmological consta
domain walls of this type were extensively studied
@41,42#.

D54 false vacuum decay bubbles with non-positive c
mological constants were studied in@38,25#. The inside of
the bubble (z<0) has the same space-time structure~with
cosmological horizons atz→2`), just as the type II non-
extreme walls (q0.0). The outside (z>0) of the bubble has
FIG. 2. The metric functionA(z) of type II and type IV walls in the case of (q0.0). There are six configurations.~a! represents a
AdS-AdS wall witha15a251 andb51/2, ~b! represents a AdS-M wall witha151, a250 andb51/2, ~c! represents a M-M wall with
b51/2, ~d! represents a AdS-dS wall witha15a251 andb52, ~e! is a M-dS wall witha150, a251 andb52 and~f! represents a dS-dS
wall with a15a251 andb52.
0-7
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FIG. 2. ~Continued.!
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no horizons and on the MD side of the wallz→` corre-
sponds to the boundary of the space-time, while on the A
side the affine boundary is at some finite value ofz.

Type III8 have the energy density:snon,III 852sultra,III
>s III ,ext , which is above the corresponding extreme (q0
50) counterparts. Their space-time is alsocomplementaryto
that of the type III walls~see Fig. 3!. These are ‘‘false
vacuum decay bubbles’’ with thelarger cosmological con-
stant side (z>0) sweeping out the vacuum with the small
cosmological constant (z<0), in most of the cases, exce
the dS-dS wall as shown in Fig. 3~e!. In the latter case, the
metric functionA(z) becomes a decreasing function ofz for
z,zcrit such that the inside of the bubble becomes an o
side, andz→2` is a cosmological horizon.

These configurations resemble the dynamics of an ‘‘
side down world’’ and an actual realization of such negat
tension configurations within a field theoretical framework
needed.

Type IV walls withsultra,IV52snon,II <sext,IV are ultra-
extreme negative tension ‘‘expanding bubbles with two ou
sides.’’ For non-positive cosmological constants this is t
‘‘apocalypse world’’ where on either side of the wall a
asymptotic observer will be eventually hit by the bubb
Namely, the conformal factorA(z) increases on either sid
of the wall reaching the boundary of the space-time, whic
z56` for MD or a finite value ofz for AdSD; thus either
side corresponds to the outside of the wall. SinceS(t) grows
with t, these are expanding bubbles which always hit
asymptotic observer.

C. Walls with q0Ë0

For the caseq052b2 the solutions exist only for the
negative-cosmological constant vacua that satisfya i

2

52L i /(D21)(D23)>b2. The space-time internal to th
wall is described by a unique solution with Eqs.~2.11! and
~2.14!; the space-time intrinsic to the wall is AdSD21. Note
12402
S

t-

-
e

.
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n

that with S2(t)5cos(bt) @Eq. ~2.11!#, the region2p/(2b)
<t<p/(2b) describes only a patch of the AdSD21 space-
time, andt56p/(2b) corresponds to an apparent coord
nate singularity~see, e.g.,@44#!. Also, since the radius of the
curvature transverse to the wallRb}uS(t)u, the wall is ex-
panding for 2p/(2b)<t<0 and then shrinking for 0<t
<p/(2b).

These walls could be viewed as a generalization of th
extreme counterparts~with q05b50) to q0,0. They can
also be viewed as an analytic continuation of AdS-AdS d
main walls withq05b2.0 to imaginaryb. In this sense the
AdS-AdS walls withq0.0 andq0,0 are ‘‘dual’’ to each
other, and extreme AdS-AdS walls withq050 provide a
dividing line between the two classes of solutions.

The walls withq0,0 can be classified according to the
energy densities relative to their extreme counterparts as

Type II walls are ultra-extreme walls withkDsultra,II

52(a1
22b2)1/212(a2

22b2)1/2<kDsext,II . The space-time
transverse to either side of the wall has repulsive gravity n
the wall; i.e.,A(z) decreases away from the wall until th
critical point bzcrit1q6[0. Beyondzcrit , A(z) increases
with increasinguzu, reaching the affine boundary of the Ad
space atbz1q65p/2. Therefore, these walls exhibit repu
sive gravity only in the region close to the wall. Eventual
geodesics cross into a region of attractive gravity, with o
null geodesics reaching the AdS boundary. Interesting
there are no cosmological horizons.@Note the conformal fac-
tor A(z) has a complementary behavior relative to that
q0.0 dS-dS wall.# The behavior ofA(z) across the wall is
shown in Fig. 4.

Type III walls are non-extreme walls withkDsnon,III

52(a1
22b2)1/222(a2

22b2)1/2>sext,III . On thez,0 side
the gravity is again first attractive and then repulsive,
point bz1q152p/2 corresponding to the AdS boundar
On the other hand, on thez.0 side of the wall, gravity is
attractive with the AdS boundary taking place atbz1q2

5p/2.
0-8
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Type III8 walls are ultra-extreme walls withkDsultra,III 8
522(a1

22b2)1/212(a2
22b2)1/2<kDsext,III 8 . Its space-

time structure in the transverse direction is a mirror image
the type III q0,0 walls.
12402
f

Type IV walls are ultra-extreme walls withkDsnon,IV

522(a1
22b2)1/222(a2

22b2)1/2>kDsext,IV , with attrac-
tive gravity on either-side of the wall untilbz1q6

56p/2, the AdS boundary.
ll

FIG. 3. The metric functionA(z) of type III and type III’ walls in the case of (q0.0). There are five configurations.~a! represents a

AdS-AdS wall witha151, a251/2 andb51/2, ~b! represents a AdS-M wall witha151, a250 andb51/2, ~c! represents a AdS-dS wa
with a151, a251/2 andb51, ~d! is a M-dS wall witha150, a251/2 andb51 and ~e! represents a dS-dS wall witha151/4, a2

51/2 andb51.
0-9



lo-
su

tim
in

l
p

th
e
l
ne
th
o

lu

i
ll

ta

re
o
u

-
tter
-
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It would be very interesting to investigate further the g
bal space-time properties of these configurations, the is
of their dynamic stability, as well as their field theoretic em
bedding.

IV. DISCUSSION

We have provided a systematic analysis of the space-
structure in the background of infinitely thin vacuum doma
walls @(D22) configurations# in D-dimensional genera
relativity. We have shown that the homogeneity and isotro
of the space-time intrinsic to the wall strongly constrains
nature of the space-time~both intrinsic and transverse to th
well! and that this space-time structure is universal for alD
dimensions. The analysis also revealed an inherent con
tion between the global and local space-time structure of
wall and the value of the wall tension relative to the cosm
logical constants on either side of the wall.

The solutions fall into three classes according to the va
of the ‘‘non-extremality parameter’’q0 : q050, q0.0, and
q0,0. Within each class, depending on whether gravity
repulsive or attractive near either side of the wall, the wa
can have positive tension solutions~type I, II, III walls! and
negative tension solutions~type III8, IV, V walls! whose
space-times transverse to the wall display complemen
properties. In this sense type I–V, II–IV and III–III8 walls
can be viewed as dual.~In particular, type II walls provide a
set-up for Randall-Sundrum scenario inD55 with repulsive
gravity on either side of the wall.!

q050 solutions are planar, static configurations. The p
cise tuning of their energy density to cancel the value
cosmological constant is ensured by supersymmetry. S
walls exist only for non-positive cosmological constants.

FIG. 3. ~Continued.!
12402
es
-

e

y
e

c-
e
-

e

s
s

ry

-
f
ch

Solutions with positive non-extremality parameter (q0

5b2.0) are expanding ‘‘bubbles’’ with the space-time in
ternal to the wall corresponding to the expanding de Si
(dSD21) FLRW universe. In particular, type II walls are ex

FIG. 4. The metric functionA(z) of type II–IV and type III–III8
walls in the case of (q0,0). They are both AdS-AdS walls with
parametera151, a251/2 andb51/4.
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VACUUM DOMAIN WALLS IN D DIMENSIONS: LOCAL . . . PHYSICAL REVIEW D 61 124020
panding bubbles withtwo insidesand thus ‘‘safe walls,’’
type III and III8 walls are bubbles withone inside and one
outsideand which sweep out one side of the wall throu
‘‘false-vacuum’’ decay, while type IV walls are expandin
bubbles withtwo outsidesand thus sweep out the vacuum o
either side of the wall. These solutions exist both for posit
and negative values of the cosmological constants.

Solutions with q052b2,0 describe an anti–de Sitte
(AdSD21) FLRW universe internal to the wall. However, th
coordinates describe only a patch of the AdS space-time
the coordinate singularities att56p/(2b). These walls have
solutions only for the negative values of cosmological co
stants, and do not have cosmological horizons in directi
transverse to the wall.~Their energy density is complemen
tary to that of walls withq0.0.! Further investigations o
the geodesics extensions and their global structure is nee

While the work provides a classification of vacuum d
main wall space-times, we did not address in detail the
namic issues such as their stability or the nature of th
creation; nor did we elaborate on a field-theoretic embedd
of such domain walls. Let us mention again that AdS-A
type II walls with q0.0 may be realized via quantum co
mology @39# and that type III walls are Euclidean bounc
solutions of false-vacuum decay bubbles. As for fie
theoretic realization, positive tension extreme walls could
realized as bosonic configurations in supersymmetric th
ries, corresponding to a kink solution interpolating betwe
two supersymmetric minima. However, it is expected t
negative tension walls are unstable due to the appearan
a ghost mode.5 The gauged supergravity solutions tend
provide a framework for negative tension extreme wall so
tions; i.e., the kink solution interpolates betweensupersym-
metric maxima. This issue requires further study and it m
have a resolution in the string theory context~see also, e.g.
@11#!.

The domain wall solutions studied in this paper can
stacked-up in the transversez direction, thus provide a solu
tion for an array of parallel walls. In particular,
D-dimensional space-time has possible vacuum solut
with cosmological constantsL1,2, . . .n , then one can super
impose inz direction different types of domain walls inte
polating between these vacua; this may yield interesting p
sibilities with phenomenological implications. However, t
field-theoretic embedding of such multi-wall setups may
difficult; the multi-kink solutions are supposed to interpola
continuously between~isolated! extrema of the potential an
the desired solution may not exist.

Let us consider specific examples with static~extreme!
walls in D55. Extreme type II walls provide a setup fo
Randall-Sundrum scenario with one positive tension bran
D55 with repulsive gravity on either side of the wall@13#.
The scenario with one positive tension brane and one n

5We would like to thank R. Sundrum for a discussion on th
point.
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tive tension brane@12#, can be realized as a speci
(Z2-symmetric! periodic array of type II and type IV extrem
walls. On the other hand, the realization of such an ar
within field theory may be hard to realize and it shou
clearly involve more than one scalar. The example of@15# is
a superposition of type II and type III walls. It could b
realized with a scalar field that interpolates between two
persymmetric AdS minima with large enough potential b
rier which yields a type II wall (kDs5a11a2), and the
third deeper minimum with a potential barrier insufficient
large yields a type III wall (kDs5a32a2). ~Note, however,
that in spite of its positive energy-density the type III wa
are inherently unstable; for a nonzero extremality param
q0.0 they turn into false vacuum decay bubbles, sweep
out the space on one side of this wall.! Another interesting
possibility is a superposition of the two extreme type I wa
@45#, which can be realized via a single kink and anti-kin
that interpolate between anti–de Sitter and Minkowski sup
symmetric minima.

The non-static type II walls in AdS5 both in the case of
q0.0 andq0,0 are those studied in@27,32–34#. Another
intriguing possibility may be a superposition of these so
tions with q0.0 ~or q0,0), where the conformal factor
can again be matched from one wall to another. Note, h
ever, that the non-static nature of these solutions may
volve pathologies of space-times such as bubbles of f
vacuum decays, and require further investigations.

We would like to conclude with a few remarks regardin
the nature of the non-extremality parameterq05b2.0
within the cosmological context.~For related ideas imple
mented in the context of AdS-CFT correspondence,
@46#.! Extreme domain walls (q050) are static due to the
‘‘miracle of supersymmetry.’’ Thus, in a cosmological co
text, at zero temperature (T50), domain walls between su
persymmetric vacua remain static. On the other hand, a
nite temperatureT.0, supersymmetry is broken, and thu
the domain walls are those with non-zeroq05b2. Namely
temperature corrections to the scalar potentials are}T2, thus
modifying the energy density of the walls5sext1O(T2).
Clearly, since the leading corrections tos are of O(q0
5b2), the result implies thatq0}T2 ~or b}T). In particular,
the static extreme type II@type III# domain wall ~at T50)
becomes a non-extreme type II@type III# solution ~at T.0)
which is the expanding de Sitter FLRW bubble with tw
@one# insides. Thus the positive cosmological constant intr
sic to the wall as well as the rate of expansion of the bub
are proportional tob}T. Thus as the universe cools th
expansion rate and the cosmological constant on the
decrease.
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