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Vacuum domain walls in D dimensions: Local and global space-time structure
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We study local and global gravitational effects dd{ 2)-brane configurationgdomain wallg in the
vacuum ofD-dimensional space-time. We focus on infinitely thin vacuum domain walls with arbitrary cos-
mological constants on either side of the wall. In the comoving frame of the wall we derive a general metric
ansatz consistent with the homogeneity and isotropy of the space-time intrinsic to the wall, and employ
Israel's matching conditions at the wall. The space-time, intrinsic to the wall, is thatf-&l{-dimensional
Freedman-Lemé#ie-Robertson-Walker univerdgvith k=—1,0,1) which has dlocal) description as either
anti—de Sitter, Minkowski or de Sitter space-time. For each of these geometries, we provide a systematic
classification of the local and global space-time structure transverse to the walls, for those with both positive
and negative tension; they fall into different classes according to the values of their energy density relative to
that of the extremésupersymmetricconfigurations. We find that in any dimensién both local and global
space-time structure for each class of domain wallsnisersal We also comment on the phenomenological
implications of these walls in the special caseDof 5.

PACS numbg(s): 04.20.Jb, 11.2d, 98.80.Cq

[. INTRODUCTION gravitation, revealed a more general class of domain wall
configurations. (For a review, se¢26].)

Recent months have withessed a resurgence in the study The purpose of the present work is to generalize the re-
of domain walls with asymptotically anti—de SittéAdS)  sults of the study of vacuum domain walls =4 [25] to
space-times. This renewed interest is motivated both fronD —2)-brane configurations D dimensions, withD=5
the point of the view of AdS conformal field theof£FT)  being of special interest to the physics implications for the
correspondence, providing new insights into the study ofour-dimensional domain wall worléas well as of theoreti-
renormalization group equatiolRGE) flows (see, e.g., calinterest for RGE flows of strongly coupled gauge theories
[1-11] and references thergias well as from the phenom- i four dimensions
enological perspective, providing a possible resolution to hi- Following the work of[25] we derive the local and global
grarchy problem in the context of a _vvorld on a domain Wa"properties of the space-times induced by vacuum domain
in D=5 asymptotically AdS space-tim¢see, €.9.{12-20°  \ya)is in D dimensions between vacua of arbitrary cosmo-
and references therginThis is an exiting period when for- logical constant. We start with thensatzthat the gravita-
mal theoretical developments drive phenomenological impliyi, 5 field inherits the boost symmetry of the source, but we

cations and vice versa. :
- . S assume nothing about the topology of the
A prerequisite for addressing physics implications of such D — 1)-dimensional space-times parallel to the surface of

configurations is a detailed understanding of their space-tlmée domain wall. The space-time intrinsic to the wall, are

structure. Earlier work on the subject concentrated on th . .
domain walls inD=4 space-time dimensions, where either | 'e€dman-Lemae-Robertson-Walker(FLRW) universes
describing locally D-—1)-dimensional anti—de Sitter

side of the wall was to be interpreted as that of our four- ) ) i
dimensional Universe. The first example of static domain(AdSp-1), Minkowski (Mp ;) or de Sitter (d§-,) space-
walls between vacua with different cosmological constantdime. For each of these space-times internal to the wall, the
were found ig21] as supersymmetriBogomol'nyi-Prasad- SPace-time transverse to fthe wall can be cIas_smed _accordlng
Sommerfield-(BPS-saturated or extrenjavalls interpolat- 0 the values of cosmological constarks, on either side of
ing between supersymmetric vacua D=4, N=1 super- the wall and their relationship to the energy density of the
gravity vacua. In[22] a classification of the possible Wall 0. o .
supersymmetric walls has been given, and the global struc- AN important result of the analysis is that the space-times
ture of the space-times induced by these walls has been e®f domain walls have the same universal structure irDall
plored in[23,24. A subsequent systematic investigatj@s]  the space-time intrinsic to the wall is that of
of the space-times of domain walls separating regions of
non-positive cosmological constant in Einstein’s theory of
1Space-time properties of non-static domain wallDir5 were
recently addressed {127—34] and references therein. As the results
*E-mail address: cvetic@cvetic.hep.upenn.edu of this paper demonstrate, the space-time structure of domain walls
TE-mail address: jingw@fnal.gov in D dimensiongincluding D =4) is completely parallel.
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(D—1)-dimensional FLRW universe, and the metric coeffi- (ds,)2=A(z)(dt?—d7), (2.2

cient, specifying the space-time transverse to the wall, has

the same form with parameters depending AR/[(D  wherezis the spatial direction transverse to the walk the

—1)(D-3)]. proper time andA(z)>0. With ds’=(ds, )*—(ds)? the
The paper is organized as follows. In Sec. Il we derive themetric takes the form:

line-element ansatz, by working in the comoving frame of

the wall inD dimensions. In Sec. lll we classify the domain ds’=A(z)(dt?—dZ%) —R(t,2)’[(1—kr?)dr?
wall solutions according to their energy density and the val- 2
ues of cosmological constants on either side. We present the +redQp s, 2.3

discussion of the result in Sec. IV, including the implications _ .
for their non-extreme generalizations. In particular, we dis4n Which ze (—,%2), and the other coordinates are those of
cuss the examples i@ =5, which have been recently stud- the FLRW cosmological mod¢B6].

ied intensively. A straightforward calculation of the nonzero components
of the Einstein tensoG6*,=R* —3R“,g", yields the re-
Il. LOCAL PROPERTIES OF DOMAIN WALL sult
SPACE-TIMES ) .
In this secti t the metri tz f oot = 222 LR AR (B-3)(D-2)),  R-R™
n this section we present the metric ansatz for vacuu =——/|-—=+ + +
P " A | R 2R oR2 A

domain walls for Einstein gravity iD dimensions; these
walls, created from a scalar field source, separate vacuum _
space-times of zero, positive, and negative cosmological , D-2/R" HR

constants. We study in detail only infinitely thin domain G*= A | R 2R
walls, by employing Israel’s formalisif85] of singular hy- -

persurfaces. - s )
o D~2|R_HR (D—3)(D—2)[k+R—R’
A. Metric ansatz Z A |R 2R 2R2 A
We solve D-dimensional Einstein’s gravitational field )
equations in the co-moving frame of the domain wall, by | " 3-D|R” R| H'" (D-3)(D-4)
assuming the following symmetry of the metric and&a]: "~ 4" " A |R R| 2A >R2
The spatial part of the metric intrinsic to the wallhg-
mogeneougsndisotropic R2_R'2

The space-time section transverse to the waditéic X (2.4
The directions parallel to the wall atgost invariantin
the strong sense. .
Homogeneity and isotropy reduce the metric part, intrin-where i=1---D—3, R=4R(t,z), R'=4,R(t,z) and H

sic to the wall, to be the spatial part of B - 1)-dimensional = 92NA(). o
FLRW metric[36] of the form The symmetry of the matter souréas specified in the

rest frame of the wallimplies that the energy-momentum
(ds)?=RI(1-kr®)~dr+r%dQjJ 5], (2D tensor is static, withiT%=0 [no energy flow in the (z)
pland and T#,=9,(2) [u=(t,zr,¢;)], whereg,(z) are
functions of z, only. Then Einstein’s equationsz*,
=kpT#, imply the following constraints orR(t,z) and

where R is independent of the radial coordinateand the
angular coordinates,; (i=1, ... D—3) specifying the line
eIementszD,3 of (D—3)-sphereSP 3. The scalar curva-

. . 5 A(z)?

ture of this surface is equal tokZR~.

The sign ofk determines the wall geometrg=0 defines . :
a planar wall, in which case the met(®.1) can be written in R_ _ ﬂ: 2.5
Cartesian coordinatesd§)?=R?(=;’dx?). k>0 corre- R 2R 7 '
sponds to a spherical wall—closed bubble—writand ¢;’s
being compact coordinates; through a coordinate transforma- R” HR’
tion r =k~ Ysin g and rescaling oR, the line element can be R 2r 2.
written as @s))?=R?(d 6%+ sirfadQf 5)=RedQj ,. k<0
corresponds to the negative curvature, non-compact Gauss- "
Bolyai-Lobachevski surface; introducing= (— k) ~%sinho, RT_R_ f4(2),
with >0, and rescalingR vyields (ds)?=R?*(de? R R

+sinl? 0 dQ3_,).

The condition that the two-dimensional space-timg)(
transverse to the wall b&tatic (as observed in theest frame %xp is defined asco=87Gp , whereGp, is Newton’s constant in
of the wall) implies the following form of the transverse part D dimensions. We define the Lagrangian density ag{l(/— R/2
of the metric: + Lonatted -
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kK R2-R'2 Plugging the metric ansatz(2.7), i.e. R?(t,2)
—+———=142), =A(2)S4(t), into the Einstein tensd@.4), yields the follow-
R AR ing equations foiS(t) andA(2):

wheref, , 3 {z) are arbitrary functions of.

S
The static metric ansa=0 automatically satisfies Egs. 5~ QO=§ tg (2.9
(2.5). For non-static metric, time integration of the first equa-
tion in Egs.(2.5) yields the condition

1(A’)2_ A
2 Al T% " pgo-nn @9

where we have assumed that away from the wall, the energy
with f,(z) an arbitrary function oz Adding thez derivative =~ momentum tensor is given by*,= A §*, with A the cosmo-
of Eq. (2.6) to the second equation in EqR.5) yields a  logical constant on either side of the wall, is an integra-
conditionf,(z)"=[—H'/2+f,(2)]R, which holds for anyt  tion constant satisfying the consistency constraim(z)
only if f1(z)="f, is a constant andl,(z)=H'/2. <(D-3)(D—1)qo.

The assumption of boost invariance along the surfaces of Since the equation foB(t) is independent of dimension-
constantz implies thatf,=0 and, as a consequence, EQ.ality, the space-time intrinsic to the wall is universal. Equa-
(2.6) is solved byR?(r,t) = A(2) SX(t). [In the static case, i.e. tion (2.9) for A(z), i.e. the metric coefficient specifying the
R=0, the same symmetry constraint also implig4(z)  space-time transverse to the wall, is also of the same form as
«A(2).%] that obtained inD =4, except for theD-dependent coeffi-

Therefore, the metric ansatz takes the form cient in front of the cosmological constant. We choose to

parametrize the cosmological constant as

HR
R'=—+1(2) (2.6)

d?=A(2){dt?—dZ2— S2(t)[ (1—kr?) " dr?+r2dQ3_,]},
(2.7 A=*=(D-3)(D—1)a?’=*+Ad> (2.10

which has a universal form for ary dimensions, and thus Thus, in terms of the parameter Eq. (2.9) has a universal,

the same structure as the one obtainedin 4 [25]. This D-independent form and thus yields the same solutions as the
result is due to the fact that in the wall comoving frame the,as obtained iD = 4 [25].

homogeneity and isotropy of space-time internal to the wall - tpe tact that the domain wall space-time structure is uni-

severely restrict the form of the Einstein tensor to be that of os5] was anticipated if26]. Nevertheless, the result is in-
Eq. (2.4); the static space-time transverse to the wall and th?riguing; both the local as well as the global space-time
boost invariance along the wall further fixes the metric to beproperties of domain walls [(D-2)-configurations] in diverse
of the universalD-independent forni2.7). o (D) dimensions are universalThe study of the local and
In the following subsection we solve the Einstein equa-giohal domain wall space-times D=4 [25] can therefore
tions for A(z) and S(t), which specify the possible space- he gytended in a straightforward way to the study bBf (
time structure away from the domain wall. We then employ_z) configurations inD dimensions.(The special case of

the infinitely thin wall approximatiof35] in order to deter- D=5 recently attracted much attention due to its phenom-
mine the energy density of the wall in terms of the param'enological implications.

eters in the metric. For the sake of completeness, we shall now write down
the explicit results forS(t) and A(z) [25]. We parametrize
B. Local space-time solutions the curvature constant of the space-time internal to the wall
We now solve Einstein's equations f&(t) andA(z) of (see discu;ssion2 at the beginning of the previous subsection
the metric ansat¢2.7). We consider thin domain walls inter- @Sk{—8%,0,8%. The solutions of(t) from Eq.(2.8) can
polating between two maximally symmetric vacua of zero,P® classified according to the sign qf:

positive, or negative cosmological constént.
Qo=—pB* S_=cogpt) k=—p7 (2.1

3Namely, we assume that the gravitational field inherits the sym- pt k= _,32:
metry of the source; the directions parallel to the wall are boost Go=0: So= 1 k=0, (212
invariant in the strong sense and thick walls will have the sS(he
as found in the thin wall approximation and will asymptotically

approach the thin wall result f&k(z). (See[25] for a more detailed sin(Bt)  k=—p7,

discussion). _ _ _ q=p8% S,=1 " k=0, (2.13
Maximally symmetric vacuum solutions are well knoW86]; 0

nevertheless, we summarize the results here for the comoving co- coshipt) k=p%,

ordinate system of the wall. Note also that Israel’s matching condi-

tions are easily satisfied in this frame. where the subscripts«(,0,+) refer to the respective sign of
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Jo- [As a result of the time-translation and time-reversal in-(2.1)—(2.13)] implies that the space-time intrinsic to the
variance, the integration constants are adjusted to yield theall is that of AdS,_ 4, Mp_4 and d$ _, respectively.

canonical form forS(t), and without loss of generality3
=0 is chosen. The form of the solutionsS_,, [Egs.

Solutions of Eq(2.9), classified according to the sign of
o, Yield the following form ofA(z):

Uo=—p% A_=pacogfz+9)] ? A=—-Ad’<-Ap? (2.19
s B (az+1)"2 A=-Ad?
0o=0: Ag= 1 A=0, (2.15
Blasinh(Bz—Bz')] 72 A=-Ad?
Q=82 A,={ ek A=0, (2.16

B[acosiBz—BZ")]7? A=Aa’<Ap2.

Again, the subscripts=,0,+) for A(z) refer to the sign of

coordinate system whergy;=—1, the extrinsic curvature

do- Without loss of generality we have moved the origin of can be written ax;; =(—¢/2)g;; ; where {=*1 signifies

the z axis to the position of the wallzg=0). The three
integration constants), z’', andz’ are determined by the

requirement thaf(zy=0)=1 which yields

J.=*arcco$pl a), (2.17
1 2p% 2
BZ'¢=§|” 1+a—ﬁzia—€(a2+,82)1/2}, (2.18
2
/32';:%|n —1+2ai2:i—f(/32—a2)1’2. (2.19

The constantgdz’ and Bz" satisfy e2A(Z: +20) — g2z, +2)
=1 ande?$? >1>e2h%i and e2A?-<1<e?P% where, in
the last case, the equality is obtained whgs 0—the ex-
treme limit—is taken[As one can see from EQ.19, there
is no extreme limit —0) in the de Sitter cask.

C. Israel’s matching conditions and surface energy density
of the domain walls

the inherent sign ambiguity of the unit norm@t. Hence, in
a comoving coordinate frame, where we have chosén,
=0)=1, the Lanczos tensor can be written as

KkpS' = =8 [{H],—,. (2.21)
The energy density of the walt=S",, which is equal to the
wall's tensioanSrrZS‘/’jﬁ_ , is given by

kpo=—[{H],—o. (2.22

Applying Israel's formalism to the local vacuum solutions
specified by Eqgs(2.11)—(2.16), we find the surface energy
densityo and tensionr= o to be of the form
Al 1/2
cor=26t| - =gy
A2 1/2
—2§2h2(q0— —(D—3)(D—1)) ,  (2.23

where the first(second contribution to the energy density

In the thin wall approximation, the energy-momentumcomes fromz<0 (z>0) side of the wall. We choose, with-

tensor and the Einstein tensor had#unction singularities at  out loss of generality, to orient thecoordinate so that the
the wall. In Israel’'s formalisn{35] for singular layers the vacuum of lowest energy will be placed on the 0 side(i.e.
metric tensor has a discontinuity in its first order derivativesA;<A,).
in the direction transverse to the wall, and the Lanczos tensor In Eq. (2.23, in addition to the ambiguity in the sign of
S'j , which is the surface energy-momentum tensor of thehe unit normain* ({;=£1), there is another sign ambigu-
wall located atz, is related to the discontinuity of the ex- ity, hj==1, in taking the square root of E¢.9). A kink-
trinsic curvatureK‘j in the following way: like solution for the wall, i.e. the scalar interpolating between
the extrema of the potential, impligs={,=1. In addition,
we takeh;=1 if A;(2) is an increasing function of andh;
=—1 if Aj(2) is decreasing.

The domain wall solutions fall into two categories: those

(2.20

The square brackets[ |~ are defined as[Q]”
=lim._o[Q(zo+€)—Q(zp—€)] and x'e{tr,¢;} (i  with positive energy densitycorresponding to the infinitely
=1,... D—3) are the coordinates parallel to the Wilﬂ'.j thin wall limit of a kink solution, interpolating between the
is given by the covariant derivative of the space-like unitminimaof the potentigl and those with negative energy den-
normal n# of the wall’s hyper-space-time. In a normalized sity which correspond to choosing the reversed valudg of

kpS' = —[K' 17 +6[K].
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Examples of negative tension walls are encountered ifocally equivalent space-times.

gauged supergravity theorigsee, e.g.[10]) as a conse- The S=1 solution is theonly wall which represents a
quence of a kink solution interpolating betweeaximaof  noncompactplanar (k=0) and static wall. These walls
the potential. could be realized as supersymmetric bosonic configurations.

For a given value OQO the walls can be classified accord- Examp|es of Supersymmetric domain Wa"sﬁh:4, N=1
ing to the choice oh; into the following classefthe nota-  sypergravity coupled to chiral matter superfields were first
tions are chosen to be compatible with earlier classificationg, ,nd and studied if21], and recent examples withib
[10,22 of extreme wall ¢o="0) solutiong: , =5 gauged supergravities were given[ir0].
_OTypedI W_acl)ls. a special case of Type Il walls with, The physically distinct solutiongwith S(t)=1] corre-
B T an I?O_ ”' ) itive-tensi lis with. — — hoe 1 spond to two sets of solutions fé(z) in Eq.(2.15, with the
ype © wa s..posyl\_/e- ension wars wit 1= e asymptotic Ad§ and M, space-times described Hyoro-
Type Il walls: positive-tension walls with,;=h,=1. . . ) .
, ) ) : e sphericaland Cartesian coordinates, respectively.
Type IlII"’ walls: negative-tension walls witth;=h, " . o
_ - Positive energy solutions can be classified as the follow-
=L andoy ==oy . : : ing three type$22], according to the relationship of the en-
Type IV walls: negative-tension walls witth;=—h, ; ' ]
= —1, ando=—oy . ergy density of the walb Fo aj o _
Type V walls: a special case of type IV walls with, Type I planar walls Withkp oext) = 2a, interpolate be-
=0, 9o=0, andoy=— o, . tween My, and AdS$, where on the latter side the metric
The global and local space-times of positive tension walleonformal factor\(z) decreases and reaches Cauchy horizon
with go=0 (and S,=1) as well asq,>0 [and S, atz——x=. These walls.saturate @-dimensional analogue
=cosh(t)] were extensively studied ifi25]. In [25], the  ©f the Coleman-deLuccig88] bound. _
o<0 [S(t) = cos(t)] examples were not further studied, in ~ Type II: planar walls withkp ey, = 2 (a1 + @) interpo-
part due to the geodesic incompleteness of the space-timate between two AdS regions, in whichA(z) decreases
description of the AdS space-time transverse to the wall. (repulsive gravity away from either side of the wallThe
Nevertheless, these are proper local solutions deserving fuspecial case with &, symmetry @,=a,) in D=5 gives
ther study(see alsd27]). On the other hand the negative rise to the Randall-Sundrum scenario with one positive ten-
tension walls are of interest in the study of AdS-CFT corre-sion brang13].] z= =« correspond to the Cauchy AdS ho-
spondence and thus deserve further investigation. rizons. The geodesic extensions were studied extensively in

In the following section we provide a systematic classifi-[23—-25 and bear striking similarities to the global space-
cation of the(local and global space-time structure of the times of extreme charged black holes.

possible domain wall solutions. Type IlI: planar walls Withkp ey =2 (a1 — @) inter-
polate between two Adssspaces with different cosmological
Ill. CLASSIFICATION OF THE DOMAIN WALL constants; the conformal factor goes to infinity o0 side
SOLUTIONS of the wall, while decreases on the other side. The singularity

#'n A(z) at a finite value ofz represents the time-like bound-
ary of the Ad$ space-time. Agairz— —oo corresponds to
the Cauchy horizon.

On the other hand, the walls with negative energy density
fall into the following classe$10]:

We shall classify the solutions according to the values o
the parameteq,. The metric, intrinsic to the wall and speci-
fied by S(t), is locally related to standard coordinates of
Mp_1, AdSy_4, or dS,_; space-time foigy=0, qy<0 or
0o>0, respectively. Within each class we then discuss th - _
space-time structure transverse to the wall as determined bK Type III": planar walls withoeyy) - = —2(a;— @) have
the metric conformal factoh(z); its structure is governed by the space-time structure that is a mirror image of that of type

logical constants on either side of the wall. of the wall, onz>0 side the conformal factor decreases, the

AdS Cauchy horizon is a— .
Type IV: planar walls witho ey v=—2(a;+ ay) inter-
polate between two Adsregions, in whichA(z) increases
The go=0 solutions, known as extreme domain walls on either side of the wall, reaching the AdS boundaries at a
[23], exist forA; ,<0.[The cosmological constant is defined finite value ofz on either side[Those are typical wall solu-
asAlyzz—(D—:%)(D—l)aiz.] tions encountered in gauged supergravity theoseg, e.g.,
Since the wall is homogeneous, isotropic and boost in{10]), and are of interest in the study of RGE flows in the
variant, the spatial curvature of constansections is not context of the AdS-CFT correspondenice.
unambiguously defined; there is no preferred frame in the Type V: planar walls withoeyy=—2a;, interpolating
(D —1)-dimensional space-time of the wall. The t89so- between My, and AdS,; on the AdS sideA(z) increases
lutions (2.12—the Milne type solution withS= gt andk  away from the wall, approaching the boundary of the AdS at
= — 2 and the inertial Minkowski solution witts=1 and  a finite value ofz.
k=0—both describe M_,; space-time. The two solutions  The behavior of the conformal facté«(z) for each class
are related by a coordinate transformatj8i] that does not of solutions can be easily seen from specific examples shown
involve the transverse coordinareand therefore describe in Fig. 1. Type |-V, type lI-1V and type Ill and lllcan be

A. Walls with (gy=0): Extreme walls
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FIG. 1. The metric coefficient&(z) are plotted as a function of transverse coordirzafer dual pairs of extremeqp=0) domain walls.

(a) denotes type-I—type-V pairs with the cosmological constant parameterd and a,=0, (b) shows type-ll-type-IV pairs withy;
=a,=1 and(c) shows type-Ill-type-Ill pairs witha;=1 anda,=1/2.

viewed as “dual.” Namely, the energy densities of theseNote that the domain walls in this class involve positive, zero
walls have opposite signs and the space-time patches of tffd negaztlve cosmological constants, and the minus sign in
AdS, are complementary; i.e., AdS Cauchy horizons in onefont of aj” corresponds to positiveA; . Furthermore, in the
case are replaced by the boundaries of AdS space-times @ Sitter caseg?< 32 is required. There are 6 possible con-
another and vice versa. Note that in this sense the extrenfigurations of type Il wall interpolating between different
type Il walls, which provide a realization of the Randall- space-times, which are shown as 6 examples in Fig. 2.
Sundrum scenario D=5, and type IV walls, which are Configurations with geodesically complete space-time in-
generically encountered in the study of the AdS-CFT correternal to the wall [S(t)=cosh{t)] describe expanding
spondence, provide theomplementarglomains of the AdS bubbles with two insidg®5]. Namely, because the radiRg
space-time. We also note that within field-theoretic frame-of the curvature of concentric shells at distarzds propor-
work, such as gauged supergravity theories, a realization dfonal to AY(2)S(t), Ry, at fixedt, decreases a&(z) de-
(finite) negative tension domain walls and the issues of theicreases with increasing|, and therefore either side of the
stability require further study. wall corresponds to amside region of the bubble. In addi-
tion, sinceS(t) increases with, the bubble isexpandingto
B. Walls with go>0 an asymptotic observer on either side of the w@ine pos-
. . . sible origin of a creation of such configurations is via instan-
90262 solutions with the form ofS, in Eq. (2.13 d_e— tons of Euclidean gravity-quantum cosmold@g].)
scribe dg_éipzarallel to the wall. The topology of @S, is SinceA(z) decreases with increasifg, gravity is repul-
R(tlme)>§S (spa_ce). d.§*1 represents a hyperbplmd €M~ sive on either side of the wall arz— =+ corresponds to
bedded in a flaD-dimensional Minkowski Spice't'f["m]* (cosmological horizons. The geodesic extensions are studied
and the three p035|_ble spatial c_;urvatunes B ,0,_[% ) cor- [25], and bear striking similarities to non-extreme charged
re_spond to thr_ee different choices of constant time slices Ofjack holes where time-like singularities are replaced by wall
this hyperboloid. However, only the positive curvature solu-, - qaries.
tion with S(t)=cosh{3) yields the complete covering of  ype ywais withA, ,<0 are generalizations of the extreme
S, [24,25; we will mainly focus on this class of SOlu- e || and type | walls with3=0 to 8>0. The walls with
tions, which have a topology of thtex_pandmg bub_bles. A 1 0r A,>0 andA;=A,=0 do not have an extreme limit
possible way to create such expanding bubbles is via instal

:  Eucid N V8- 0). The latter class dfl ,— M, type Il domain walls in
ons of Euciidean gravity. | . . D=4 [and S(t)=e""] was studied in[40]. dS-dS type II
The walls can be classified according to their energy den\'/valls are unstable, since false vacuum decay wag-dS
sity (2.23 into the'followmg classes: Type Il walls) are dynamically preferred1,42, except for
Type Il walls with the case Of\,= A ,>0.
KoTnonn = 2(* a§+,82)1’2+ 2(+ a§+,82)1’2> Ko Text! Type Il walls with ;>0 have an energy density lower

than that of their extreme wall counterparts,

(3.9

are non-extreme; i.e., their energy density is above that ofkporyq 1 =2( £ a2+ %) Y2 2(+ a3+ B2 Y2< kpaeyiin »
their extreme counterparts. HeraEI(D—S)(D—l)aiz.

(3.2
124020-6
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and are referred to as ultra-extreme domain walls. The solu- On the other hand, on the de Sitter side of the wall, the

metric function turns around at poimg,;; and decreases be-
consequently they do not have an extreme limit. Specifigjond z.,;; . Hence, beyond,,;;, the inside of the bubble

examples of 5 possible configurations of the type Il wallsbecomes an outside— > corresponds to cosmological ho-

tions with asymptotic d$ space-times require?sﬁz, and

are shown in Fig. 3.

Configurations[with S(t) =cosh@t)] are false vacuum
decay bubble$43,42. Namely, the radiuR,«<AY%(z)S(t)
decreasesincreasesfor z<0 (z>0), and thus corresponds [41,42.
to theinside(outside region the bubble. The solutions which

rizons that can be reached by test particles with energy larger
thanE,;; . In D=4 the non-negative cosmological constant

domain walls of this type were extensively studied in

D =4 false vacuum decay bubbles with non-positive cos-

only involve My or AdS, are more like ordinary bubbles mological constants were studied [i88,25. The inside of

compared with the type Il walls because tamcreases the

the bubble ¢=<0) has the same space-time struct(réth

expanding bubble eventually sweeps out the space-time arbsmological horizons at— — ), just as the type Il non-
extreme walls §o,>0). The outsideZ=0) of the bubble has

the z>0 side.

35

25 [

AQz)

—— Type ll wall
——- Type IV wall

35|

25 |

AQZ)

05

0

—— Type Il wall
——- Type IVwall

-2

(b)

-1

0
z

5

45

35

o L
F 25

—— Type llwall
——- Type IV wall

35|

25 |

Az)

05

0

— Type llwall
——- Type IVwall

-2

(d

-1

0
z

FIG. 2. The metric functiorA(z) of type Il and type IV walls in the case ofj§>0). There are six configuration&) represents a
AdS-AdS wall witha,=a,=1 andB=1/2, (b) represents a AdS-M wall with;=1, @,=0 andB=1/2, (c) represents a M-M wall with
B=1/2,(d) represents a AdS-dS wall wi, = a,=1 andB=2, (e) is a M-dS wall witha; =0, a,=1 andB=2 and(f) represents a dS-dS

wall with a;=a,=1 andB=2.
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FIG. 2. (Continued)

no horizons and on the Mside of the wallz—« corre-

that with S_(t)=cos@t) [Eq. (2.11)], the region— =/(23)

sponds to the boundary of the space-time, while on the AdS<t<m/(28) describes only a patch of the AgS; space-

side the affine boundary is at some finite valuez.of

Type IlII" have the energy densityt,on 11/ = — Tyitrain
=0 ext» Which is above the corresponding extrentg (
=0) counterparts. Their space-time is atsonplementaryo
that of the type Ill walls(see Fig. 3 These are “false
vacuum decay bubbles” with thiarger cosmological con-

time, andt= * 7/(2B) corresponds to an apparent coordi-
nate singularity(see, e.g.[44]). Also, since the radius of the
curvature transverse to the wal,«|S(t)|, the wall is ex-
panding for —7/(2B8)<t<0 and then shrinking for &t
=7/(2B).

These walls could be viewed as a generalization of their

stant side £=0) sweeping out the vacuum with the smaller xtreme counterpartswith go==0) to go<<0. They can

cosmological constantz&0), in most of the cases, except
the dS-dS wall as shown in Fig(e3. In the latter case, the
metric functionA(z) becomes a decreasing functionzdor

z<z.; such that the inside of the bubble becomes an out

side, andz— —o° is a cosmological horizon.

These configurations resemble the dynamics of an “up-
side down world” and an actual realization of such negative
tension configurations within a field theoretical framework is

needed.
Type IV walls withoyjira, v = — Fnon 11 < Text v are ultra-
extreme negative tensionexpanding bubbles with two out-

also be viewed as an analytic continuation of AdS-AdS do-
main walls withgo,=82>0 to imaginaryg. In this sense the
AdS-AdS walls withqy>0 andqy<0 are “dual” to each
other, and extreme AdS-AdS walls witlly=0 provide a
dividing line between the two classes of solutions.
The walls withgy<<O can be classified according to their
energy densities relative to their extreme counterparts as:
Type Il walls are ultra-extreme walls witlkpoyerq
=2(a?— B Y2+ 2(a3— B?)Y’< kpoey ) - The space-time
transverse to either side of the wall has repulsive gravity near
the wall; i.e.,A(z) decreases away from the wall until the

sides” For non-positive cosmological constants this is the critical point Bzc,ii+ .. =0. Beyondz.;, A(z) increases

“apocalypse world” where on either side of the wall an

with increasing z|, reaching the affine boundary of the AdS

asymptotic observer will be eventually hit by the bubble,SPace apz+ .= m/2. Therefore, these walls exhibit repul-
Namely, the conformal factoh(z) increases on either side SIV€ gravity only in the region close to the wall. Eventually,
of the wall reaching the boundary of the space-time, which jgeodesics cross into a region of attractive gravity, with only

z==*o for Mp or a finite value ofz for AdSy; thus either
side corresponds to the outside of the wall. SiS¢tg grows
with t, these are expanding bubbles which always hit a
asymptotic observer.

C. Walls with gy<0

For the caseqo=—° the solutions exist only for the
negative-cosmological constant vacua that satisfﬁ
—A;/(D—1)(D—3)=p? The space-time internal to the
wall is described by a unique solution with Eq2.11) and
(2.14); the space-time intrinsic to the wall is AgS;. Note

null geodesics reaching the AdS boundary. Interestingly,
there are no cosmological horizofblote the conformal fac-

for A(z) has a complementary behavior relative to that of

go>0 dS-dS wall] The behavior ofA(z) across the wall is
shown in Fig. 4.

Type Il walls are non-extreme walls witlpoon i)
=2(af—BAHY2-2(a5— B?) V2= gy - ON thez<O side
the gravity is again first attractive and then repulsive, the
point Bz+ ¥, = — w/2 corresponding to the AdS boundary.
On the other hand, on the>0 side of the wall, gravity is
attractive with the AdS boundary taking place gt+ 9 _
=7/2.

124020-8
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Type llI" walls are ultra-extreme walls witRp o yj¢ra 111 1

Type IV walls are ultra-extreme walls witkpoyon v
=—2(a5— B2 Y2+ 2(as— B Y=< kpoex - Its  space-

=—2(af— BH)YV2—2(a3— B?)Y?= kpoey v, With attrac-
time structure in the transverse direction is a mirror image ofive gravity on either-side of the wall untilBz+ 9
the type Il go<0 walls.

=+/2, the AdS boundary.
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FIG. 3. The metric functiorA(z) of type IIl and type llI’ walls in the case ofg,>0). There are five configuration&) represents a
AdS-AdS wall witha, =1, a,=1/2 andB=1/2, (b) represents a AdS-M wall with; =1, a,=0 andB=1/2,(c) represents a AdS-dS wall

with a;=1, a,=1/2 andB=1, (d) is a M-dS wall witha;=0, a,=1/2 andB=1 and(e) represents a dS-dS wall with,=1/4, a,
=1/2 andB=1.
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FIG. 3. (Continued)

It would be very interesting to investigate further the glo-
bal space-time properties of these configurations, the issues
of their dynamic stability, as well as their field theoretic em-
bedding. .

IV. DISCUSSION

T
|
|
|
|
|
|
|
|
[
|
We have provided a systematic analysis of the space-time :
structure in the background of infinitely thin vacuum domain 3t :
}
[
|
1
|
|
|
!
|
{
\
|

walls [(D—2) configuration$ in D-dimensional general
relativity. We have shown that the homogeneity and isotropy
of the space-time intrinsic to the wall strongly constrains the
nature of the space-tim@oth intrinsic and transverse to the
well) and that this space-time structure is universal foDall
Qimensions. The analysis also revealed an inherent connec- — Type Ill wall
tion between the global and local space-time structure of the ——~- Type I wall
wall and the value of the wall tension relative to the cosmo-
logical constants on either side of the wall.

The solutions fall into three classes according to the value
of the “non-extremality parameterq,: go=0, qo>0, and
0o<0. Within each class, depending on whether gravity is
repulsive or attractive near either side of the wall, the walls
can have positive tension solutioftgpe |, II, 1l walls) and
negative tension solutiongype IIlI’, 1V, V walls) whose
Space-t_lmesl trﬁnsverse to thel‘ V\V/a”” d;f/playd ciﬂm,ﬁllsnl]lemary FIG. 4. The metric functiod\(z) of type 11-IV and type HI-III
properties. In this sense type 1=V, lI-1V and lll-llwalls -, =0 o' ooce ofdy<<0). They are both AdS-AdS walls with
can be viewed as dudlin particular, type Il walls provide a arameterr;— 1, a,—1/2 andB= 1/4
set-up for Randall-Sundrum scenarioln=5 with repulsive " et '
gravity on either side of the wall.

go="0 solutions are planar, static configurations. The pre- Solutions with positive non-extremality paramete (
cise tuning of their energy density to cancel the value of=8%>0) are expanding “bubbles” with the space-time in-
cosmological constant is ensured by supersymmetry. Sudiernal to the wall corresponding to the expanding de Sitter
walls exist only for non-positive cosmological constants.  (dS,_;) FLRW universe. In particular, type Il walls are ex-

Az)

10
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panding bubbles withwo insidesand thus “safe walls,” tive tension brane[12], can be realized as a special
type Il and 1’ walls are bubbles witlone inside and one (Z,-symmetrig periodic array of type Il and type IV extreme
outsideand which sweep out one side of the wall throughwalls. On the other hand, the realization of such an array
“false-vacuum” decay, while type IV walls are expanding within field theory may be hard to realize and it should
bubbles withtwo outsidesand thus sweep out the vacuum on Cl€arly involve more than one scalar. The examplelsi is
either side of the wall. These solutions exist both for positivea superposition of type i and_type Il walls. It could be
and negative values of the cosmological constants. realized with a scalar field that interpolates between two su-

g . S - . ! persymmetric AdS minima with large enough potential bar-
Solutions with qo_——,B _<O describe an anti—de Sitter ior which yields a type Il wall kpo=a;+a,), and the
(AdSp - 1) FLRW universe internal to the wall. However, the third deeper minimum with a potential barrier insufficiently

coordinates describe only a patch of the AdS space-time witfxrge yields a type 11l wall kpo= a3— a,). (Note, however,
the coordinate singularities &t * 7/(23). These walls have that in spite of its positive energy-density the type Il walls
solutions only for the negative values of cosmological con-are inherently unstable; for a nonzero extremality parameter
stants, and do not have cosmological horizons in directiong,>0 they turn into false vacuum decay bubbles, sweeping
transverse to the wallTheir energy density is complemen- out the space on one side of this walnother interesting
tary to that of walls withqy>0.) Further investigations of possibility is a superposition of the two extreme type | walls
the geodesics extensions and their global structure is needdd5], which can be realized via a single kink and anti-kink
While the work provides a classification of vacuum do- that interpolate between anti—de Sitter and Minkowski super-
main wall space-times, we did not address in detail the dySymmetric minima.
namic issues such as their stability or the nature of their The non-static type Il walls in AdSboth in the case of
creation; nor did we elaborate on a field-theoretic embeddin§lo>0 anddo<0 are those studied if27,32-34. Another
of such domain walls. Let us mention again that AdS-Adsintriguing possibility may be a superposition of these solu-
type Il walls with qo>0 may be realized via quantum cos- tions with go>0 (or qo<0), where the conformal factors
mology [39] and that type IIl walls are Euclidean bounce ¢an again be matched from one wall to another. Note, how-
solutions of false-vacuum decay bubbles. As for field-€ver, that the non-static nature of these solutions may in-
theoretic realization, positive tension extreme walls could b&/olve pathologies of space-times such as bubbles of false
realized as bosonic configurations in supersymmetric theo/acuum decays, and require further investigations.
ries, corresponding to a kink solution interpolating between We would like to conclude with a few remarks regarding
two supersymmetric minima. However, it is expected thathe nature of the non-extremality parameigg=5°>0
negative tension walls are unstable due to the appearance Wfthin the cosmological contextFor related ideas imple-
a ghost modé.The gauged supergravity solutions tend tomented in the context of AdS-CFT correspondence, see
provide a framework for negative tension extreme wall solu{46].) Extreme domain wallsd,=0) are static due to the
tions; i.e., the kink solution interpolates betwesipersym- “miracle of supersymmetry.” Thus, in a cosmological con-
metric maxima This issue requires further study and it may text, at zero temperaturd & 0), domain walls between su-
have a resolution in the string theory contésée also, e.g., Persymmetric vacua remain static. On the other hand, at fi-
[11]). nite temperaturel >0, supersymmetry is broken, and thus
The domain wall solutions studied in this paper can bethe domain walls are those with non-zegg= 5°. Namely
stacked-up in the transvergelirection, thus provide a solu- temperature corrections to the scalar potentials<ré thus
tion for an array of parallel walls. In particular, if modifying the energy density of the walt= e+ O(T?).
D-dimensional space-time has possible vacuum solution€learly, since the leading corrections to are of O(qq
with cosmological constantd, . ,, then one can super- =), the result implies thatoxT? (or B=T). In particular,
impose inz direction different types of domain walls inter- the static extreme type [ltype IlI] domain wall(at T=0)
polating between these vacua; this may yield interesting pogsecomes a non-extreme type[type Ill] solution (at T>0)
sibilities with phenomenological implications. However, the which is the expanding de Sitter FLRW bubble with two
field-theoretic embedding of such multi-wall setups may begon€] insides. Thus the positive cosmological constant intrin-
difficult; the multi-kink solutions are supposed to interpolatesic to the wall as well as the rate of expansion of the bubble
continuously betweefisolated extrema of the potential and are proportional toB=T. Thus as the universe cools the
the desired solution may not exist. expansion rate and the cosmological constant on the wall
Let us consider specific examples with stafiextreme  decrease.
walls in D=5. Extreme type Il walls provide a setup for
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