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Stress-energy tensor of neutral massive fields in Reissner-Nordstrospacetime
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The approximation of the renormalized stress-energy tensor of the quantized massive scalar, spinor, and
vector field in Reissner-Nordstmspacetime is constructed. It is achieved by functional differentiation of the
lowest order of the Schwinger-DeWitt effective action involving the coincidence limit of the Hadamard-
Minakshisundaram-DeWitt-Seely coefficiem, and restricting the thus obtained general formulas to space-
times with a vanishing curvature scalar. For the massive scalar field with an arbitrary curvature coupling, our
results reproduce those obtained previously by Anderson, Hiscock, and Samuel by means of a sixth-order
WKB approximation.

PACS numbd(s): 04.70.Dy, 04.62+v

[. INTRODUCTION Reissner-Nordstra spacetime8]. Their approximation is
equivalent to the Schwinger-DeWitt expansion; to obtain the
Treating the renormalized stress-energy tensor as thiewest(i.e., m~?) terms, one has to use a sixth-order WKB
source term of the semiclassical Einstein field equations, onapproximation of the mode functions. Numerical calculations
could, in principle, determine the back reaction of the quan+teported in Ref.[8] indicate that the Schwinger-DeWitt
tized fields upon the spacetime geometry of a black holénethod always provides a good approximation of the renor-
unless thgunknown quantum gravity effects become domi- malized stress energy tensor of the massive scalar field with
nant. The mathematical difficulties encountered in the atarbitrary curvature coupling as long as the mass of the field
tempts to construct the characteristics of the vacuum polaf@mains sufficiently large. _
ization in a concrete spacetime are well known and since the The aim of this paper is to construct the renormalized
back reaction equations require knowledge of the functionaftr€SS-€nergy tensor of the massive scalar with arbitrary cur-

dependence of the stress-energy tensor of the quantized fiel ’tulr:ee _coupling, sg[ggr,b?ndkvr?cltor_?elds inkthe g:l;egmetérhy of
(T ren, ON a wide class of metrics, a purely analytical treat- € Reissher-voras ack hole. 10 our knowledge the

o . . inor and vector fields have not been discussed earlier. We
ment of the problem is impossible. It is natural therefore tha P

h effort has b d develoni chieve this using the standard result of the theory of quan-
m:tce rr?etohr;dsas een concentrated on developing approxfj;q4 massive fields in the curved background that connects

o ) ) _ the coincidence limit of the Hadamard-Minakshisundaram-
The vacuum polarization effects of the massive fields inpe\yitt-Seely(HDSM) coefficient] as] with the lowest order
the curved background has been studied by a number of agf the one-loop effective action and consequently with the

thors[1-18. It has been shown that for sufficiently massive regularized stress-energy tengar4,19—23 Indeed, func-
fields (i.e., when the Compton length is much smaller thantionally differentiating the effective action we obtain a gen-
the characteristic radius of curvature, where the latter meansral and rather complex expression for the renormalized
any characteristic length scale of the geometthe  stress-energy tensor that is valid in any spacetime. Then we
asymptotic expansion of the effective action in powers ofspecialize the thus obtained formulas to the spacetimes with
m~2 may be used. It is because the nonlocal contribution tawanishing curvature scalar and apply the result to the
the total effective action can be neglected, and, consequentlReissner-Nordstrm geometry. We show that for the scalar
the vacuum polarization part is local and determined by theield the resulting(T#),,, is identical with the tensor ob-
geometry of the spacetime in question. tained earlier by Anderson, Hiscock, and Samuel, and that in
In the black hole spacetimes the vacuum polarization othe limit of vanishing electric charge it reduces to the stress-
the massive scalar, spinor, and vector fields have been coenergy tensor constructed by Frolov and Zel'nikov.
structed in a series of papers by Frolov and Zel'nikov in the = There is another important limit of the general Reissner-
vacuum type-D geometriekl—4]. They used the general Nordstran geometry that yields the extremal black hole. Ex-
framework of the Schwinger-DeWitt methdd2—18 and  panding the near-horizon region of such a geometry into a
constructed the first order of the effective action, omittingwhole manifold one obtains the Bertotti-Robinson spacetime
the terms that do not contribute to a Ricci-flat spaces. Usingctively studied recently. We construct the stress-energy ten-
a different method, Anderson, Hiscock, and Samuel evalusors in the Bertotti-Robinson spacetime taking appropriate
ated the approximat€l’),., of the massive scalar field with limits in our general formulas and analyze the conditions
arbitrary curvature coupling for a general static, sphericallyunder which this geometry is a self-consistent solution of the
symmetric spacetime and applied obtained formulas to theemiclassical Einstein field equations. Analyses carried out
in the Bertotti-Robinson spacetime yield similar results.
The effective action approach that we employ in this pa-
*Electronic address: matyjase @tytan.umcs.lublin.pl,per requires the metric of the spacetime to be positively de-
jurek@iris.umcs.lublin.pl fined. Hence, to obtain the physical stress-energy tensors one
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has to analytically continue at the final stage of calculations

their Euclidean counterparts. It should be stressed once again Sg= f gM2d*x(A g+ NoR+N1RZ+N,R#'R,,,) + N3y,
that the method, when applied to the rapidly varying or 7
strong gravitational fields, breaks down and that its massless

limit is contaminated by nonphysical divergences.
y phy 9 where

Il. THE EFFECTIVE ACTION

We begin with a short description of the method. A more X:f 9" X(Ry, o R*"?7 = 4R, R +R?),  (8)
detailed presentation may be found[B14,21—-23. Our no-
tation corresponds to those of Ref21-23. Consider the

elliptic second-order differential operator of the form by renormalization of the bare coupling constant. The param-

eters lambda should be determined experimentally and are
expected to be small, since otherwise they could cause ob-
F=g*'V,V,+Q—m? (1) servable deviations from the predictions of the general rela-
mo ’ tivity. Instead of writing out the squared Riemann tensor we
used in Eq.(7) the Gauss-Bonnet invariant, which has a
zero-functional derivative with respect to the metric tensor.
The construction of the coincidence limits of the HDSM
coefficients is, except the first two, an extremely laborious
0=0%, 7 task. The third coefficient,a,], that is proportional to the
anomalous trace of the renormalized stress-energy tensor of
the quantized massless and conformally invariant fields has
been calculated by DeWiftL2]. The coincidence limit of;
matrix satisfyingVMmz and commuting withQ. It is unnec- has been obtained by Gilkd$9,20 whereas the coefficient
essary at this stage to know the exact form of the affiné has been calculated by Avram[d]_l—23,23 and by Am-
connection; all that is needed now is the knowledge of thesterdamsket al. [2.6]' Sln_ce we are mtere_sted in the lowest
commutator of the covariant derivatives which defines cur-Order of.the effective actio) we need a simple and general
vature according to a rule expression fo[ag]..Here we us¢as] as prop_osed by Avra-
midi [21-23 but with a different normalization:

acting on the(supeifield ¢*(x), where

is some matrix-valued function playing a role of the poten-
tial, V, is the appropriate covariant derivative, amd is a

[V,u 1VV]¢A=RABMV¢B' (3)
1 3 1 1 1
[az]= a P°+ E{P,Z(z)}'f' E VMP'F §‘]M
The renormalized effective action constructed from the
Green function of the differential operattt) is given by 1 1
X| VAP — = J# +—Z(4) ) 9
3 10
1 Z (n—=3)!
Wien= ZJ 91/2d4X ( > )2Tl‘[an], (4)
327 n=3 (m°)"~ where

where[a,] is the coincidence limit of theth HDSM coef- ] =V R (10)
ficient and Tr is the matrix supertrace defined 24| wo Tt e

Tr=tr,—tr, (5) P=Q+ giR, (11
where

1 ~
Z»=0Q+ §RMVRW_ 1
1
tre f=2 fald 1% (- 1)) 3, (6) L
X 30w

ande, is the Grassman parity @”. The coefficients,,a;, - 3—RWMR””P"— EDR , (12

anda, contribute to the divergent part of the actioi;, ,
which have to be absorbed into the classical gravitational
action and
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1 2 2 1 8
Zgy= 02Q- E[R’“’ ,[R‘“’,Q]]—§[J“,VMQ]+ §R’“’VMV,,Q+§V“RV#Q+2{RM ,VEIT + §J#J”

4 10 . 3 1
3VuR poVFRITHER,, R YR+ T RIRY R,y = RPR,, Ry~ 1 = 1,0°R- RV, VR

+3M

4

MRPONT
7 V#R

4 1 1 3
R?,%,V,V, R~ —V, RVFR+ VR, VFR+ -V R, VR~

2
1R R 63 22 21" wlor 28" #Roons

21

—iR "R “R "+£R RUVRP O —ER RP R"”“+1—6R MR MR P”+§RP 7 RH VRN
189 i 14 v 63 po Mmoo 9 po JTA2N 189 po y73% Ny 189 MoV Ny p of"

(13

In the above formulas is the unit matrix{ } is the anticommutator and we have omitted the field indices.
Inserting Eq.(8) into Eq.(4) integrating by parts and making use of the elementary properties of the Riemann tensor one
has

1

W —_
N 19272m?

P3+£P(R ReveB—R R’“’+DR)+£P’R R’“’+EPDP—iJ J#
30 mvaf 124 2 mv

4 1/2
Jd XgreTr 5 10k

1 A 1 1 1
7 v a M av wvaf _ Y% _ LDV PN
+ 35 (2R RS R = 2RER (R ™+ R PR, R yp) + 1| — o RORT 0R, ORH 4 o~ BARURIR),

+48R*'R,sR* P, +6R, R* 5 R*“PY+1TR PR PR, +'—28R* "R PR P )

} . (14

This first-order renormalized effective action applies to anyminus the effective action of the massive scalar field with the
spacetime and to any differential operator of the fgfn In minimal curvature coupling. The first order of the effective
what follows we shall confine ourselves to the operators action is, therefore,

2y 4(0 [af]
(—O+&R+m?) 0 =0, (15) 1 s b
Wa=——— f g“2d%x{ —trfaf"?], (20)
327°m
(Y*V ,+m) =0, (16) 4 tfai]—[af)_l,
W P sty (1) where the definition of the matrix supertrace has been used.
(6,0-V,V =R, —&,m%) ¢ 0. 17) For fields obeying Eqs(15—(17) the curvature has the
form
acting on the scalar, spinor, and vector fields, respectively,
where¢ is the coupling constant, angl* are the Dirac ma- 0,
trices obeying standard relation& y#+ y#y*=21g*#, and s
assume that the fields are neutral. Although neither(Eg). Ruv= 277 Rpouv: (21
nor Eq.(17) has the form that allows direct application of the )
Schwinger-DeWitt technique the procedures described in R v

Refs.[3,24] may be used in this context. Specifically, by whereas inspection of Eqél5), (17), and (18) shows that
appropriate redefinition of the massive spinor field one obthe potential matrix is

tains
— gR,

(V#V”— %R— mz) pHP=0, (18) Q=4 - %‘m, (22

—R%;.

whereas the method presented in 4] shows that the _ _ g _
effective action of the massive vector field is equal to thelnserting Egs.(21) and (22) into Eq. (14) making use of

effective action of the diagonal operator elementary properties of the Dirac matrices and Riemann

tensor, after simple calculations one obtains the first term of

(801 —R:— 5‘;m2)¢>(1)=0, (19) Egi ggymptotm expansion of the effective action in the form
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TABLE I. The coefficientsa® for the massive scalar, spinor,

1
wt) = —f d*xg"¥ «{¥ROR and vector field.
ren 1927T2m2 g 1
s=0 s=1/2 s=1
+aPR,,OR“ + aPR3+ aPRR, R
© a(ls) 1,1 N 1 3 27
vpo —&°— — —_— _ — — —
+aRR,,,,R*"” 28 58" 5 140 280
S pLprpe (s) p o (s) 1 1 9
+aPRERIRD + aPRHR R 1, a$ 0 o =
A
+ofR,,RE RN+ aPR #'R, MR, P o ( 1 —6)3 1 s
5 il 2
+ a,(l%) RPM(TVR,U-)\ VyRKPYU) 432 72
ML o 1 (}_ ) 1 31
- S afw, @3 36 % %
1927°m? i=1
. L _ _ ) 1/1 7 1
Wher_e the nur_nerlc_al coefficients depending on the spin of‘® 30 5*5 ~750 10
the field are given in Table I. Note that because of &)
our coefficientsa{"’? for the spinor field are twice these of o _8 _ _52
Avramidi’s [21], and to obtain the result for the massive 945 376 63
neutral spinor field one has to multip/(%) by the factor  &{ 2 A7 19
1/2. 315 630 105
) 1 19 61
lll. THE STRESS-ENERGY TENSOR IN R=0 1260 630 140
GEOMETRIES ags) 17 29 _ 67
. L 7560 3780 2520
The renormalized stress-energy tensor is given by © 1 1 1
o - - i
s s 0 270 54 18
12 Wsé%:<Tﬂy>renv (24 . ) o . ) )
g 9pv Functionally differentiating the renormalized effective action

with respect to the metric tensor, performing elementary sim-

and for the massive scalar, spinor, and vector fields may bgjifications and finally retaining in the result only the terms
rewritten in terms of the variational derivatives of the actionsthat are nonzero foR=0 geometries, after rather long cal-

W; in the form culations, one has
1 10

SW
_ (s) 25
96m2m? 1’22‘1 * 09,y @9

1 9
g1/2 5gMV

<T/_LV>(S) —

ren”

Wi=(---), (26)

1

1
G g, o=V Ry ROV VR, VIR - 3VAR, Y R4 27V IRy [PRM = SV,\R,, VR gH

—V/VIOR,,g*"+ 3V, V'RIR =V ,V*RR"" =R R"*=3VV¥R ,R** = ORIRP"+ VPV'R ,R7#

1 ¢ War -
9% 59,,, 3=(), (28)
1 g vpRpPo A TN MY v T TNMY o v
gT,Z@szVMRWV RP7—2V,R,, VRI7gH" + 2V V4R R~ 200R ,RP7gH" —R ,RFRE+(---), (29
L0 W= 2VAR, VIR 2T R VRIVGE L 2VATIR,  RIAT-20IR,  RIIGE - RER RO
g128G,, ° poky Npony 9 poNy poNy g pohy

+(...), (30)
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1 3 3
577 B, Ve =3V "Ry, VR BV REVIR =5 VR, VIRAGH + 3V, V'RIRY — VIV, R, RAgH+ BVV 'R, R
3 VRpU o’Vp,u3 ,U.pvl,u,v PRON
— 5ORIR#—3RIRIR — SORER + 5 9#'R,  RER™, (31)
1

1)
— av v N T VRPAO, A ov (2N v A wYelod
gT/Z@W7—VURgV"R —2V'R,,V'R7#+ 2V, R, V'RAH— 2V, R,V RPET"+ 2V, R, VIR g’ — V ¥ RERP

1 1 1
+2VMVIR R = ORGRI = VIV IR RO + S VOV RIRT 4 S VPT RER™ + 5 R Ry R TG

poNy 2 po
+2V, V'R, R4~ 3R, RERATV =V _V,R,,R7 gt~ R, R, (32
L0 W= 2V, REVARIT 2V, REVIRIPH VIR, VIRIM Y RE TIRINLTIR PR
g1/2 59#]) 8 a'p A o' tp A poNy Y Ypok poNy
C2V,R, VIRPM - SRR, VRIGE L ST R VARIGE -2V, VIR Y AR 2VAVAR TR
Ao 2 poNy T g 2T poNy g A p o poN
FYLTIR LRIV ER MR, RO - SYOY R RIS OR Y R LTITIR, RO
Y p O\ P oNy 2 T XpoNy g 2 p O\ poNy
ZOR LRI 2R Ry FRIT ST IR, RIVGE - SR, R, PRIVIGE 2TV R RT
2 p O\ poi Ny 2 T poNy g 2 po\yT g AN Yo
+2V,V,R IR, (33
L0 o= —6TR,,, VIR H—6Y R, VORISR PR VRV 2VMY R, PRI AV R FRITY
91/2 5g,u,y 9™ poN y Y ‘pok poN YT Y Ypok Y YpoN
rp M aNyv rp M aNyv 1 PORNYTK MYV
—4v. Vv R”mR -2V, v R”mR +ERPU)‘7RTK R a*’, (34
and
iiW =3V’R “V'RM"+3V R _ "VIRPHAY+3VFR VYRI#M 4 3VPR VYR -3V V,R * "RPY7N
10— poN y Y Ypok poNy poNy YyYA R o

g1/2 59}“’

+V, VAR, \RPYE42V VIR # [ RPY7V 43R, R, 7RI 4 2VIV R ) RPN —BVIVIR ) RIENY

poNYy

FVIVR L ARIVY-IR
Y tpoh 2

RT‘OK‘)/RG'T)\Kg;u;7 (35)

poNy

where the ellipsis denote omitted terms that contain the scaanalyze onlyWs, Wg, Wy, W,q, and, therefore, ou(rT’j)ﬁse)n
lar curvature and its covariant derivatives. For genétal generalizes earlier results derived by Frolov and Zel'nikov
=0 metrics obtainedT*){$) must be symmetrized. As ex- [1-3].
pected, the functional derivativé; andW; do not contrib-

ute to the stress-energy tensor in the Reissner-Normstro
spacetime. It should be noted that E{&5)—(35) have been
obtained by settingR= 0 in the general result, which is more
complex and shall not be presented here. Inspection of Egs. Now we are ready to construct the stress-energy tensor of
(26)—(35) show that to construct the stress-energy tensor ofhe massive quantized fields in the nonextremal Reissner-
the massive fields in the Ricci-flat geometry it suffices toNordstran geometry described by the line element

IV. (THE, IN THE REISSNER-NORDSTROM
SPACETIME
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2M €2 oM e?| * 1
ds?=—|1- —+— |dt?+| 1- —+—| dr? Cl=— —————(30442%e*—220M 33— 10356 Me*
roor? roor? 302407°m?r?
+r2(sirfod¢p?+de?), (36) + 306625 — 4884 3M e?+ 9909 °M 2e?
whereM is the mass and is a charge of the black hole. For +948V°r*+ 486r‘e?), (44)

e?<M? the equatiorg,=0 has two positive roots

ro=M=(M2-e?)2 @7 2

and the larger root represents the location of the event hori-

zon whereag _ is the inner horizon. In the limie?=M? Df= 5153276 °M%e’— 1176 *Me*— 3408 Me*
horizons merge at=M, and the the Reissner-Nordatno 720m"mer
solution degenerates to the extremal one with the line ele- +105%5— 1008133+ 432M2r 4+ 832r 2e). (45)

ment given by

M 2
dSZZ(l—T> dt?+

M -2
1—7) dr2+r?(sirfod¢?+de?).
(38

The obtained result for nonvanishing components of the
stress-energy tensor coincides with ¢%),., constructed

by Anderson, Hiscock and Samuel. This coincidence is, of
course, not surprising as there is a one-to-one correspon-

Although the stress-energy tensor could be evaluated idence between the order of the WKB approximation and the
the nonstatic backgrour{grovided the changes of the geom- order of the Schwinger-DeWitt expansion. To obtain the
etry are slow, we confine ourselves to the exterior region m~2 terms one has to use a sixth-order WKB approximation

where the spacetime is static. We begin with the massivef the mode functions and the resu(@9-45 are simply a
scalar field extensively studied in the RE8]. Constructing manifestation of this correspondence.
components of the Riemann tensor, its contractions and co- Having computed functional derivatives ¥, with re-

variant derivatives and subsequently inserting them with apspect to the metric tensor the construction of the stress-

propriate coefficients(®) into Eq. (25) we have

<TM>(O) —CHt+ ( - E) D& (39
v/ren 14 6 v

- W(lm&ﬁ— 810r%e?+855M%r*
m-r

+202r2e*— 1878V %r3+ 115Mr 3e?

+230M?r2e?—3084Me?), (40)
Di=———5—(—792M3r3+ 360M?r*+ 2604 2r 2e?
720m°m?r1?
—1008Virde?—2712Me*+81%5+ 728 2%e%), (41)
1
Cl=———5——;(444°— 148aMr%e?+ 162 “e?
30240m°m?r12
+842r%e*—~1932Me*+315M%r*
+212M?r2e?—462M3r3), (42)
Df (216M°3r3—144M?r*—588M2r2Q?

- 720m2m?r12
+366Mr3Q?%+ 504 MQ*— 208 %Q*—117Q°),
(43

energy tensor of the massive fields of higher spins present no
problems. Indeed, inserting coefficients”? for the neutral
spinor field into Eq(25) one obtains

1
t\ (1/2) _ 3,3 2,4
(Toren = 05002z 12238 P+ 10544 %
—224643Me?+218322M2e%—1080M ?r*
—21496Me*+ 491 7%5+ 5400 *e?), (46)
1
r\(1/2) _ 2.4 4.2 3,3
(ThHUa PSRN 2m2r12(504M r4+1080 *e?—784M°r

— 6336 3Me?+ 3560 2e* + 8440 2M %e?

—8680Me*+225%°), (47
and
1
@2y - 3.3 2 4
(Todren' = 1050022y~ 3538M 4 12080 %

—200163Me?+ 30808 2M 2e2+ 1512M 2r*
—33984Me*+9933°%+ 3240 %€?). (48)

Similarly, repeating the steps for the massive vector field
one gets
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1 7\,<Ttt>ch
Tleh=— ———5—,(—3105%°—166M*r*
{Toren 10080m2m?2r 12 30
—418542%e*—93537%2e°M?+ 107516Me*
+3668M 33+ 69024 %M — 1215@%r?), (49) 2
(THE =1 (1050M?r*— 69aM?r 0
e 10080m2m?r 12
+129072e2M2— 10448 *e’M — 16996 M e* X
02 0.4 6 038 1
+2430%r*+ 6442 2e*+536%°), (50)
and FIG. 1. This graph shows the radial dependence of the rescaled
componeni{TH /2 [\ = 180(8M)*#?] of the renormalized stress-
(1) 1 6 >4 energy tensor of the massive spinor field witk-2/M. From top to
(To)ren=— m(l%?@ —207M“r bottom the curves are fay=0.95 andq=0.

+20908 %e*+ 30881 %e’M % — 44068 M e*

M -2
(Tofen— <T£>E2’n>( 1- 7) (54
+4854M3%r3— 31708 3%e’M + 729(=?r4). (51)

Simple calculations show that the tensaw6)—(48) and is finite atr =M.

(49)—(51) are covariantly conserved. Moreover, it could be To study the Obta'.nedTDE?n further it is useful to intro-
easily verified that taking the lim&=0 results, as expected, duce the new coordinate=(r—r.)/M and a new param-

in the formulas derived by Frolov and Zelnikov in the et_erq=|e|/M. Since for the massive scalar field Anderson,
Schwarzschild spacetimésee for example Ref[5)). Al-  Hiscock, and Samuel have found that for=2/M the
though there are no numeric calculations of the stress—energé‘hw'”ge_r'DeW'tt approximation is rather good near the
tensor of the massive spinor and vector fields against whicf V€Nt horizon, we also take this bound in our calculations of
one could test the resultd6)—(51), we expect that the ap- the vacuum polarization of the spinor and vector fields. Our

proximation is reasonable so long as the mass of the field iE€SUlts forq=0, q=0.95, andnM=2 are displayed in Figs.
sufficiently large. 1-6. Inspection of the figures shows that tpclose to the

Since the Schwinger-DeWitt approximation is local and®xtremal value, the radial dependence of the components of
the geometry at the event horizon is regular, one expects thii€ Stress-energy tensor of the massive spinor field and their
the stress-energy tensor is also regular there. Indeed, it couffCtor counterparts is qualitatively similar. On the other
be easily shown that if there are no fluxes of energy thehand, for smalg only the radial components exhibits such a

regularity conditions on the event horizg@7,28 require  Similarity. Indeed, on the event horizdi){c), and(Tp) (7
that the components of the stress-energy tensor and differ in sign. The difference in the sign of the horizon val-
ues of the stress-energy tensor occurs also for the tangential
2m  e?|\ T © ) components. Moreover, in the vicinity of the event horizon
(1_T+r_2 (<Tt>ren_<Tr>ren (52)
7\'<Trr>Ren

remain finite asr—r, . Since the difference between the
time and radial components of the stress-energy tensor fac 30

tors, i.e.,
25

2M  €?
<T{>$Z)n—<T£>$2’n=<1—7+—2 FOM, 3
r

15

whereF®)(r) for each spin of the field is a simple polyno-

mial in 1k, one can draw a general conclusion that our ap-
proximate stress-energy tensors are regular as one af s
proaches the event horizon. Analyses carried out in F3f.
indicate that all components of the numerically evaluated X
stress-energy tensor of the massive scalar field are also finite 02 04 06 08 !

on the event horizon. Repeating calculations in the spacetime F|G. 2. This graph shows the radial dependence of the rescaled
of the extreme Reissner-Nordsincblack hole, one obtains a componentT!){¥? [\ =180(8M)*#?] of the renormalized stress-
stress-energy tensor that is regular on the event horizomnergy tensor of the massive spinor field witk= 2/M . From top to
Simple calculations show that bottom the curves are far=0.95 andq=0.
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A< T96> Ren A<T>Ren

120

0.4 0.6 03 1 100

80

- 20

- 25 X

0.2 0.4 0.6 0.8 1

FIG. 3. ThJS( lQ;Zr)euoh shows the4 razdial dependence of the rescaled F|G. 5. This graph shows the radial dependence of the rescaled
componentTy)ren” [A=180(8M)"7<] of the renormalized stress-  component(T')2) [\ =90(8M)*#?] of the renormalized stress-

. . . . ren
energy tensor of the massive spinor field with=2/M. Fromtop to  energy tensor of the massive vector field witk= 2/M . From top to
bottom the curves are faj=0 andq=0.95.

bottom the curves are fay=0.95 andq=0.

the magnitude of the vacuum polarization effects increasegurvature terms for the line elemef®5) and inserting them

with spin of the quantized field. into Eq. (25) or taking the|e|=M limit in the (T*){9 near
Geometries that could be obtained from nonextremathe event horizon. Simple calculations gifg9]

black holes taking the extremality limit, and expanding the

near-horizon geometry into the whole manifold, recently re- (s)

ceived much attention. Near the event horizon of the ex- (T = 'uz s—diad1,1,-1,-1], (57
tremal Reissner-Nordstno black hole the geometry ap- 2880m“m"M
proaches that of the Bertotti-Robinson mof29]:
where
M2 ~o ~5 (16 1
dsz=;(—dt2+dr2+r2d62+r25|n26d¢2), (55) 4l
r 21 6/’
as could be demonstraté@8] expanding the line element w®= 3_7 (59)
(55) in the power series about the event horizon, and subse- 14
qguently making the substitution 114
7
\

M
1+ =
r

r=M . (56)

Assuming that the renormalized cosmological constant,
Aen, is zero in the analog of the gravitational action
The stress-energy tensor of the massive fields in the Bertottwith the renormalized bare lambda coefficients, the Bertotti-
Robinson may be easily obtained either by constructing th&obinson geometry is a self-consistent solution of the semi-

A< Ttt>Ren A< T99>Ren
125 X
0.6 0.8 1
100 o
75
- 20
50
25 - 30
X
02 0.4 0.8 1 - 40

- 25

- 50

FIG. 4. This graph shows the radial dependence of the rescaled FIG. 6. This graph shows the radial dependence of the rescaled
component(TH (L) [x=90(8M)*#?] of the renormalized stress- component(T4){1) [A=90(8M)*#?] of the renormalized stress-
energy tensor of the massive vector field with-2/M. From topto  energy tensor of the massive vector field witk-2/M. From top to

bottom the curves are fay=0.95 andq=0. bottom the curves are fa7=0 andq=0.95.
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classical Einstein equations with the source term given bylheir calculations were based on the WKB approximation of
the stress-energy tensor of the massive field in the large masise solutions of the scalar field equation and the summation
limit [6] if u(9<O0. It is because thus obtained mode functions by means of the Abel-Plana
formula. On the other hand, the method employed here may
be regarded as geometrical and the identity of the results is,
although expected, impressive. To our knowledge spinor and

vector fields have not been discussed earlier.

and The results(39)—(51) have also been used to construct
and analyze the stress-energy tensor in the two interesting

L, é a1 , Iimiting"cases that could be obtained from thg Reissner-

1 =—1 gJ’ d™xg R, R*", (60) Nordstran solution: the extremal Reissner-Nordstraand
9 r Bertotti-Robinson geometries. Because of the form of the

vanish for the line elemer(65). An interesting consequence ;tress—energy te_nsor and the fact that the variatioznal deriva-
of Eq. (57) is that a self-consistent solution is possible for thetives of the functionals constructed frdR),,R*"andR® van-
massive scalar field providegt>5/14, whereas for the mas- ish in the Bertotti-Robinson spacetime, this geometry may be
sive spinor and vector fields appropriate solutions do nof self-consistent solution of the semiclassical Einstein field
exist. It should be noted however, that the stress-energy teigquations. We found that the self-consistent solution is pos-
sor of the massive scalar field with the physically most plau-Sible for the massive scalar field providéz-5/14, whereas
sible values of the coupling constant, namely0 and¢  for massive spinor and vector fields such solutions do not
=1/6, do not yield self-consistent solutions and, therefore€XISt.

the scalar field is not different than the spinor or vector field Finally, we remark that it would be interesting to con-
in this regard. struct the next order of the renormalized effective actin

As the functionalW,.,, at that order involves a coincidence
V. CONCLUDING REMARKS limit 01_‘ the a, coefficient, which is, in turn, given by a very
complicated formula, one expect that such a calculation
In this paper we have constructed the renormalized stressvould be a real challenge. Another important direction of
energy tensor of the massive scalar, spinor, and vector fieldavestigation is the generalization of the obtained results to
in the Reissner-Nordstno spacetime. The method employed the elliptic operators(1) with other physically interesting
here is based on the observation that the first-order effectivmatrix potentialsQand curvatureR “g, and to analyze the
action could be expressed in terms of the traced coincidendsack reaction of the quantized massive fields on the metric.
limit of the coefficientas. The general T#)(3) , which has  We hope that the results obtained in this paper will be of use
been obtained by functional differentiation of the effectivein further calculations.
action with respect to a metric tensor, consists of over 100 It should be emphasized however, that being local in its
terms, such as the terms cubic in curvature or involvingnature, the Schwinger-DeWitt expansion does not describe
fourth derivatives. Since even after simplifications, the finalparticle creation, which is a nonperturbative and nonlocal
result is rather complicated, the specific calculations are longhenomenon. Moreover, in the massless limit the method
but straightforward. breaks down. To address successfully this group of problems
Applying Egs.(26)—(35) to the massive scalar field, we new methods are necessary, for example, the covariant per-
rederived the results of Anderson, Hiscock, and Samueturbation theory31].

1 5
H#Y=— —— f d*xg"?R?, (59)
gll2 59/“/
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