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Stress-energy tensor of neutral massive fields in Reissner-Nordstro¨m spacetime

Jerzy Matyjasek*
Institute of Physics, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

~Received 6 December 1999; published 26 May 2000!

The approximation of the renormalized stress-energy tensor of the quantized massive scalar, spinor, and
vector field in Reissner-Nordstro¨m spacetime is constructed. It is achieved by functional differentiation of the
lowest order of the Schwinger-DeWitt effective action involving the coincidence limit of the Hadamard-
Minakshisundaram-DeWitt-Seely coefficienta3, and restricting the thus obtained general formulas to space-
times with a vanishing curvature scalar. For the massive scalar field with an arbitrary curvature coupling, our
results reproduce those obtained previously by Anderson, Hiscock, and Samuel by means of a sixth-order
WKB approximation.

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

Treating the renormalized stress-energy tensor as
source term of the semiclassical Einstein field equations,
could, in principle, determine the back reaction of the qu
tized fields upon the spacetime geometry of a black h
unless the~unknown! quantum gravity effects become dom
nant. The mathematical difficulties encountered in the
tempts to construct the characteristics of the vacuum po
ization in a concrete spacetime are well known and since
back reaction equations require knowledge of the functio
dependence of the stress-energy tensor of the quantized
^Tn

m& ren , on a wide class of metrics, a purely analytical tre
ment of the problem is impossible. It is natural therefore t
much effort has been concentrated on developing appr
mate methods.

The vacuum polarization effects of the massive fields
the curved background has been studied by a number o
thors@1–18#. It has been shown that for sufficiently massi
fields ~i.e., when the Compton length is much smaller th
the characteristic radius of curvature, where the latter me
any characteristic length scale of the geometry! the
asymptotic expansion of the effective action in powers
m22 may be used. It is because the nonlocal contribution
the total effective action can be neglected, and, conseque
the vacuum polarization part is local and determined by
geometry of the spacetime in question.

In the black hole spacetimes the vacuum polarization
the massive scalar, spinor, and vector fields have been
structed in a series of papers by Frolov and Zel’nikov in
vacuum type-D geometries@1–4#. They used the genera
framework of the Schwinger-DeWitt method@12–18# and
constructed the first order of the effective action, omitti
the terms that do not contribute to a Ricci-flat spaces. Us
a different method, Anderson, Hiscock, and Samuel eva
ated the approximatêTn

m& ren of the massive scalar field with
arbitrary curvature coupling for a general static, spherica
symmetric spacetime and applied obtained formulas to
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Reissner-Nordstro¨m spacetime@8#. Their approximation is
equivalent to the Schwinger-DeWitt expansion; to obtain
lowest ~i.e., m22) terms, one has to use a sixth-order WK
approximation of the mode functions. Numerical calculatio
reported in Ref.@8# indicate that the Schwinger-DeWit
method always provides a good approximation of the ren
malized stress energy tensor of the massive scalar field
arbitrary curvature coupling as long as the mass of the fi
remains sufficiently large.

The aim of this paper is to construct the renormaliz
stress-energy tensor of the massive scalar with arbitrary
vature coupling, spinor, and vector fields in the geometry
the Reissner-Nordstro¨m black hole. To our knowledge th
spinor and vector fields have not been discussed earlier.
achieve this using the standard result of the theory of qu
tized massive fields in the curved background that conn
the coincidence limit of the Hadamard-Minakshisundara
DeWitt-Seely~HDSM! coefficient@a3# with the lowest order
of the one-loop effective action and consequently with
regularized stress-energy tensor@1–4,19–23#. Indeed, func-
tionally differentiating the effective action we obtain a ge
eral and rather complex expression for the renormali
stress-energy tensor that is valid in any spacetime. Then
specialize the thus obtained formulas to the spacetimes
vanishing curvature scalar and apply the result to
Reissner-Nordstro¨m geometry. We show that for the scal
field the resulting^Tn

m& ren is identical with the tensor ob
tained earlier by Anderson, Hiscock, and Samuel, and tha
the limit of vanishing electric charge it reduces to the stre
energy tensor constructed by Frolov and Zel’nikov.

There is another important limit of the general Reissn
Nordström geometry that yields the extremal black hole. E
panding the near-horizon region of such a geometry int
whole manifold one obtains the Bertotti-Robinson spaceti
actively studied recently. We construct the stress-energy
sors in the Bertotti-Robinson spacetime taking appropr
limits in our general formulas and analyze the conditio
under which this geometry is a self-consistent solution of
semiclassical Einstein field equations. Analyses carried
in the Bertotti-Robinson spacetime yield similar results.

The effective action approach that we employ in this p
per requires the metric of the spacetime to be positively
fined. Hence, to obtain the physical stress-energy tensors

,
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has to analytically continue at the final stage of calculatio
their Euclidean counterparts. It should be stressed once a
that the method, when applied to the rapidly varying
strong gravitational fields, breaks down and that its mass
limit is contaminated by nonphysical divergences.

II. THE EFFECTIVE ACTION

We begin with a short description of the method. A mo
detailed presentation may be found in@3,4,21–23#. Our no-
tation corresponds to those of Refs.@21–23#. Consider the
elliptic second-order differential operator of the form

F5gmn¹m¹n1Q2m2, ~1!

acting on the~super!field fA(x), where

Q5QA
B ~2!

is some matrix-valued function playing a role of the pote
tial, ¹m is the appropriate covariant derivative, andm2 is a
matrix satisfying¹mm2 and commuting withQ. It is unnec-
essary at this stage to know the exact form of the affi
connection; all that is needed now is the knowledge of
commutator of the covariant derivatives which defines c
vature according to a rule

@¹m ,¹n#fA5R A
BmnfB. ~3!

The renormalized effective action constructed from
Green function of the differential operator~1! is given by

Wren5
1

32p2E g1/2d4x(
n53

`
~n23!!

~m2!n22
Tr@an#, ~4!

where@an# is the coincidence limit of thenth HDSM coef-
ficient and Tr is the matrix supertrace defined as@24#

Tr5tr12tr-, ~5!

where

tr6 f 5(
A

f AA@16~21!eA#
1

2
, ~6!

andeA is the Grassman parity offA. The coefficientsa0 ,a1,
and a2 contribute to the divergent part of the action,Wdiv ,
which have to be absorbed into the classical gravitatio
action
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Sg5E g1/2d4x~L01l0R1l1R21l2RmnRmn!1l3x,

~7!

where

x5E g1/2d4x~RmmrsRmnrs24RmnRmn1R2!, ~8!

by renormalization of the bare coupling constant. The para
eters lambda should be determined experimentally and
expected to be small, since otherwise they could cause
servable deviations from the predictions of the general re
tivity. Instead of writing out the squared Riemann tensor
used in Eq.~7! the Gauss-Bonnet invariant, which has
zero-functional derivative with respect to the metric tenso

The construction of the coincidence limits of the HDS
coefficients is, except the first two, an extremely laborio
task. The third coefficient,@a2#, that is proportional to the
anomalous trace of the renormalized stress-energy tens
the quantized massless and conformally invariant fields
been calculated by DeWitt@12#. The coincidence limit ofa3
has been obtained by Gilkey@19,20# whereas the coefficien
a4 has been calculated by Avramidi@21–23,25# and by Am-
sterdamskiet al. @26#. Since we are interested in the lowe
order of the effective action~4! we need a simple and gener
expression for@a3#. Here we use@a3# as proposed by Avra-
midi @21–23# but with a different normalization:

@a3#5
1

3! H P31
1

2
$P,Z(2)%1

1

2 S ¹mP1
1

3
JmD

3S ¹mP2
1

3
JmD1

1

10
Z(4)J , ~9!

where

Jm5¹sR s
m , ~10!

P5Q1
1

6
1̂R, ~11!

Z(2)5hQ1
1

2
RmnR mn21̂

3S 1

30
RmnRmn

2
1

30
RmnrsRmnrs2

1

5
hRD , ~12!

and
9-2
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Z(4)5h2Q2
1

2
@Rmn ,@R mn,Q##2

2

3
@Jm,¹mQ#1

2

3
Rmn¹m¹nQ1

1

3
¹mR¹mQ12$Rmn ,¹mJn%1

8

9
JmJm

1
4

3
¹mR rs¹mR rs16RmnR n

rR rm1
10

3
RrsR m

rRms2RmnrsRmnRrs21̂S 2
3

14
h2R2

1

7
Rmn¹m¹nR

1
2

21
RmnhRmn2

4

7
Rr

m
s

n¹r¹sRmn2
4

63
¹mR¹mR1

1

42
¹mRsr¹mRsr1

1

21
¹mRrs¹rRsm2

3

28
¹mRrslt¹

mRrslt

2
2

189
Rm

nRr
mRn

r1
2

63
RrsRmnRr

m
s

n2
2

9
RrsRr

mnlRsmnl1
16

189
Rrs

mnRmn
lgRlg

rs1
88

189
R m n

r s R l g
m n R r s

l g D .

~13!

In the above formulas 1ˆ is the unit matrix,$ % is the anticommutator and we have omitted the field indices.
Inserting Eq.~8! into Eq. ~4! integrating by parts and making use of the elementary properties of the Riemann tens

has

Wren5
1

192p2m2E d4xg1/2TrH P31
1

30
P~RmnabRmnab2RmnRmn1hR!1

1

2
PRmnR mn1

1

2
PhP2

1

10
JmJm

1
1

30
~2R n

m R a
n R m

a 22Rn
mRmaR an1RmnabRmnRab!11̂F2

1

630
RhR1

1

140
RmnhRmn1

1

7560
~264Rn

mRl
nRm

l

148RmnRabR m n
a b 16RmnR abg

m Rnabg117Rmn
abRab

srRsr
mn228R a b

m n R s r
a b R m n

s r !G J . ~14!
n
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This first-order renormalized effective action applies to a
spacetime and to any differential operator of the form~1!. In
what follows we shall confine ourselves to the operators

~2h1jR1m2!f (0)50, ~15!

~gm¹m1m!f (1/2)50, ~16!

~dn
mh2¹n¹m2Rn

m2dn
mm2!f (1)50, ~17!

acting on the scalar, spinor, and vector fields, respectiv
wherej is the coupling constant, andgm are the Dirac ma-
trices obeying standard relationsgagb1gbga521̂gab, and
assume that the fields are neutral. Although neither Eq.~16!
nor Eq.~17! has the form that allows direct application of th
Schwinger-DeWitt technique the procedures described
Refs. @3,24# may be used in this context. Specifically, b
appropriate redefinition of the massive spinor field one
tains

S ¹m¹n2
1

4
R2m2Df (1/2)50, ~18!

whereas the method presented in Ref.@24# shows that the
effective action of the massive vector field is equal to
effective action of the diagonal operator

~dn
mh2Rn

m2dn
mm2!f (1)50, ~19!
12401
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minus the effective action of the massive scalar field with
minimal curvature coupling. The first order of the effectiv
action is, therefore,

Wren
(1) 5

1

32p2m2E g1/2d4xH @a3
(0)#,

2tr@a3
(1/2)#,

tr@a3
(1)#2@a3uj50

(0) #,

~20!

where the definition of the matrix supertrace has been u
For fields obeying Eqs.~15!–~17! the curvature has the

form

Rmn5H 0,

1

4
grgsRrsmn ,

Rr
smn ,

~21!

whereas inspection of Eqs.~15!, ~17!, and ~18! shows that
the potential matrix is

Q5H 2jR,

2
1

4
1̂R,

2Ra
b .

~22!

Inserting Eqs.~21! and ~22! into Eq. ~14! making use of
elementary properties of the Dirac matrices and Riem
tensor, after simple calculations one obtains the first term
the asymptotic expansion of the effective action in the fo
@21,23#
9-3
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Wren
(1) 5

1

192p2m2E d4xg1/2~a1
(s)RhR

1a2
(s)RmnhRmn1a3

(s)R31a4
(s)RRmnRmn

1a5
(s)RRmnrsRmnrs

1a6
(s)Rn

mRr
nRm

r 1a7
(s)RmnRrsR m n

r s

1a8
(s)RmnRlrs

m Rnlrs1a9
(s)Rrs

mnRmn
lgRlg

rs

1a10
(s)R m n

r s R l g
m n R r s

l g !

5
1

192p2m2 (
i 51

10

a i
(s)Wi , ~23!

where the numerical coefficients depending on the spin
the field are given in Table I. Note that because of Eq.~20!
our coefficientsa i

(1/2) for the spinor field are twice these o
Avramidi’s @21#, and to obtain the result for the massiv
neutral spinor field one has to multiplyWren

(1) by the factor
1/2.

III. THE STRESS-ENERGY TENSOR IN RÄ0
GEOMETRIES

The renormalized stress-energy tensor is given by

2

g1/2

d

dgmn
Wren

(1) 5^Tmn& ren , ~24!

and for the massive scalar, spinor, and vector fields may
rewritten in terms of the variational derivatives of the actio
Wi in the form

^Tmn& ren
(s) 5

1

96p2m2

1

g1/2 (
i 51

10

a i
(s) dWi

dgmn
. ~25!
12401
f

e
s

Functionally differentiating the renormalized effective acti
with respect to the metric tensor, performing elementary s
plifications and finally retaining in the result only the term
that are nonzero forR50 geometries, after rather long ca
culations, one has

1

g1/2

d

dgmn
W15~••• !, ~26!

TABLE I. The coefficientsa i
(s) for the massive scalar, spino

and vector field.

s50 s51/2 s51

a1
(s) 1

2
j22

1
5

j1
1
56

2
3

140
2

27
280

a2
(s) 1

140
1
14

9
28

a3
(s) S162jD3

1
432

2
5
72

a4
(s)

2
1

30S 1

6
2j D 2

1
90

31
60

a5
(s) 1

30S 1

6
2j D 2

7
720

2
1
10

a6
(s)

2
8

945
2

25
376

2
52
63

a7
(s) 2

315
47
630

2
19
105

a8
(s) 1

1260
19
630

61
140

a9
(s) 17

7560
29

3780
2

67
2520

a10
(s)

2
1

270
2

1
54

1
18
1

g1/2

d

dgmn
W25¹mRrs¹nRrs1¹mRrs¹sRrm23¹mRrs¹sRrn12¹r¹nhRr

m2h2Rmn2
1

2
¹lRrs¹lRrsgmn

2¹r¹shRrsgmn13¹s¹nRr
mRrs2¹s¹mRr

nRrs2hRr
nRrm23¹s¹mRrsRrn2hRr

mRrn1¹r¹nRrsRsm

1~••• !, ~27!

1

g1/2

d

dgmn
W35~••• !, ~28!

1

g1/2

d

dgmn
W452¹mRrs¹nRrs22¹lRrs¹lRrsgmn12¹n¹mRrsRrs22hRrsRrsgmn2RrsRrsRmn1~••• !, ~29!

1

g1/2

d

dgmn
W552¹mRrslg¹nRrslg22¹tRrslg¹tRrslggmn12¹m¹nRrslgRrslg22hRrslgRrslggmn2RmnRrslgRrslg

1~••• !, ~30!
9-4
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1

g1/2

d

dgmn
W653¹nRrs¹sRrm23¹sRr

m¹sRrn2
3

2
¹lRrs¹sRrlgmn13¹s¹nRr

mRrs2
3

2
¹s¹lRrsRrlgmn13¹s¹nRrsRrm

2
3

2
hRr

nRrm23Rr
sRs

n Rrm2
3

2
hRr

mRrn1
1

2
gmnRrsRl

rRsl, ~31!

1

g1/2

d

dgmn
W75¹sRr

m¹rRsn22¹nRrs¹lRl
rsm12¹lRrs¹nRrlsm22¹lRrs¹lRrmsn12¹lRrs¹gRg

rslgmn2¹s¹rRmnRrs

12¹l¹nRrsl
m Rrs2hRrs

mnRrs2¹s¹gRrslgRrlgmn1
1

2
¹r¹sRr

nRsm1
1

2
¹r¹sRr

mRsn1
1

2
RrsRlgRrlsggmn

12¹l¹nRrsRrlsm23RrsRl
mRrlsn2¹g¹lRrsRrgslgmn2hRrsRrmsn, ~32!

1

g1/2

d

dgmn
W8522¹sRr

m¹lRl
rsn12¹sRr

m¹lRl
nrs1¹nRrslg¹gRrslm2¹gRrsl

m ¹gRrsln1¹sRrslg¹nRrmlg

22¹lRrs¹sRrmln2
1

2
¹rRrslg¹tRt

slggmn1
1

2
¹tRrslg¹lRrsgtgmn22¹l¹rRr s

n mRsl22¹r¹lRrsl
nRsm

1¹g¹nRr sl
m Rrgsl1Rr

mRslg
nRrgsl2

1

2
¹s¹tRrslgRrtlggmn2

1

2
hRr sl

n Rrmsl1¹s¹nRrslgRrmlg

2
1

2
hRr sl

m Rrnsl12RrsRl g
r mRslgn1

1

2
¹t¹

rRrslgRstlggmn2
1

2
RrsRlgt

rRstlggmn22¹r¹lRrsRsmln

12¹l¹sRr
mRrlsn, ~33!

1

g1/2

d

dgmn
W9526¹lRrsl

n¹gRg
mrs26¹gRrsl

n¹lRrsgm23Rrsl
mRgt

lnRrsgt22¹l¹gRrsl
nRrsgm24¹l¹gRrsl

mRrsgn

24¹g¹rRr sl
m Rslgn22¹g¹rRr sl

m Rslgn1
1

2
RrslgRtk

rsRlgtkgmn, ~34!

and

1

g1/2

d

dgmn
W1053¹rRrsl

m¹gRg
lsn13¹gRrsl

n¹sRrmlg13¹rRrslg¹gRsmln13¹rRrslg¹gRsnlm23¹g¹lRr s
m nRrgsl

1¹g¹lRr sl
n Rrgsm12¹g¹lRr sl

m Rrgsn13RrslgRt
sgmRrtln12¹s¹gRrsl

nRrmlg23¹s¹gRrslgRrmln

1¹s¹gRrsl
mRrnlg2

1

2
RrslgRt k

r gRstlkgmn, ~35!
sc
l
-

tro

e
Eq
r o
to

ov

r of
ner-
where the ellipsis denote omitted terms that contain the
lar curvature and its covariant derivatives. For generaR
50 metrics obtained̂Tn

m& ren
(s) must be symmetrized. As ex

pected, the functional derivativesW1 andW3 do not contrib-
ute to the stress-energy tensor in the Reissner-Nords¨m
spacetime. It should be noted that Eqs.~26!–~35! have been
obtained by settingR50 in the general result, which is mor
complex and shall not be presented here. Inspection of
~26!–~35! show that to construct the stress-energy tenso
the massive fields in the Ricci-flat geometry it suffices
12401
a-

s.
f

analyze onlyW5 , W8 , W9 , W10, and, therefore, our̂Tn
m& ren

(s)

generalizes earlier results derived by Frolov and Zel’nik
@1–3#.

IV. ŠTn
µ
‹REN
„S… IN THE REISSNER-NORDSTRÖM

SPACETIME

Now we are ready to construct the stress-energy tenso
the massive quantized fields in the nonextremal Reiss
Nordström geometry described by the line element
9-5
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ds252S 12
2M

r
1

e2

r 2D dt21S 12
2M

r
1

e2

r 2D 21

dr2

1r 2~sin2udf21du2!, ~36!

whereM is the mass ande is a charge of the black hole. Fo
e2,M2 the equationg0050 has two positive roots

r 65M6~M22e2!1/2, ~37!

and the larger root represents the location of the event h
zon whereasr 2 is the inner horizon. In the limite25M2

horizons merge atr 5M , and the the Reissner-Nordstro¨m
solution degenerates to the extremal one with the line
ment given by

ds25S 12
M

r D 2

dt21S 12
M

r D 22

dr21r 2~sin2udf21du2!.

~38!

Although the stress-energy tensor could be evaluate
the nonstatic background~provided the changes of the geom
etry are slow!, we confine ourselves to the exterior regio
where the spacetime is static. We begin with the mass
scalar field extensively studied in the Ref.@8#. Constructing
components of the Riemann tensor, its contractions and
variant derivatives and subsequently inserting them with
propriate coefficientsa i

(0) into Eq. ~25! we have

^Tn
m& ren

(0) 5Cn
m1S j2

1

6DDn
m , ~39!

where

Ct
t52

1

30240p2m2r 12
~1248e62810r 4e21855M2r 4

1202r 2e421878M3r 311152Mr 3e2

12307M2r 2e223084rMe4!, ~40!

Dt
t5

1

720p2m2r 12
~2792M3r 31360M2r 412604M2r 2e2

21008Mr 3e222712rMe41819e61728r 2e4!, ~41!

Cr
r5

1

30240p2m2r 12
~444e621488Mr 3e21162r 4e2

1842r 2e421932rMe41315M2r 4

12127M2r 2e22462M3r 3!, ~42!

Dr
r5

1

720p2m2r 12
~216M3r 32144M2r 42588M2r 2Q2

1366Mr 3Q21504rMQ42208r 2Q42117Q6!,

~43!
12401
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Cu
u52

1

30240p2m2r 12
~3044r 2e422202M3r 3210356rMe4

13066e624884r 3Me219909r 2M2e2

1945M2r 41486r 4e2!, ~44!

and

Du
u5

1

720p2m2r 12
~3276r 2M2e221176r 3Me223408rMe4

11053e621008M3r 31432M2r 41832r 2e4!. ~45!

The obtained result for nonvanishing components of
stress-energy tensor coincides with the^Tn

m& ren constructed
by Anderson, Hiscock and Samuel. This coincidence is,
course, not surprising as there is a one-to-one corresp
dence between the order of the WKB approximation and
order of the Schwinger-DeWitt expansion. To obtain t
m22 terms one has to use a sixth-order WKB approximat
of the mode functions and the results~39-45! are simply a
manifestation of this correspondence.

Having computed functional derivatives ofWi with re-
spect to the metric tensor the construction of the stre
energy tensor of the massive fields of higher spins presen
problems. Indeed, inserting coefficientsa i

(1/2) for the neutral
spinor field into Eq.~25! one obtains

^Tt
t& ren

(1/2)5
1

40320p2m2r 12
~2384M3r 3110544r 2e4

222464r 3Me2121832r 2M2e221080M2r 4

221496rMe414917e615400r 4e2!, ~46!

^Tr
r& ren

(1/2)5
1

40320p2m2r 12
~504M2r 411080r 4e22784M3r 3

26336r 3Me213560r 2e418440r 2M2e2

28680rMe412253e6!, ~47!

and

^Tu
u& ren

(1/2)52
1

40320p2m2r 12
~23536M3r 3112080r 2e4

220016r 3Me2130808r 2M2e211512M2r 4

233984rMe419933e613240r 4e2!. ~48!

Similarly, repeating the steps for the massive vector fi
one gets
9-6
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^Tt
t& ren

(1) 52
1

10080p2m2r 12
~231057e621665M2r 4

241854r 2e4293537r 2e2M21107516rMe4

13666M3r 3169024r 3e2M212150e2r 4!, ~49!

^Tr
r& ren

(1) 5
1

10080p2m2r 12
~1050M3r 32693M2r 4

112907r 2e2M2210448r 3e2M216996rMe4

12430e2r 416442r 2e415365e6!, ~50!

and

^Tu
u& ren

(1) 52
1

10080p2m2r 12
~13979e622079M2r 4

120908r 2e4130881r 2e2M2244068rMe4

14854M3r 3231708r 3e2M17290e2r 4!. ~51!

Simple calculations show that the tensors~46!–~48! and
~49!–~51! are covariantly conserved. Moreover, it could
easily verified that taking the limite50 results, as expected
in the formulas derived by Frolov and Zel’nikov in th
Schwarzschild spacetime~see for example Ref.@5#!. Al-
though there are no numeric calculations of the stress-en
tensor of the massive spinor and vector fields against wh
one could test the results~46!–~51!, we expect that the ap
proximation is reasonable so long as the mass of the fie
sufficiently large.

Since the Schwinger-DeWitt approximation is local a
the geometry at the event horizon is regular, one expects
the stress-energy tensor is also regular there. Indeed, it c
be easily shown that if there are no fluxes of energy
regularity conditions on the event horizon@27,28# require
that the components of the stress-energy tensor and

S 12
2M

r
1

e2

r 2D 21/2

~^Tt
t& ren

(0) 2^Tr
r& ren

(0) ! ~52!

remain finite asr→r 1 . Since the difference between th
time and radial components of the stress-energy tensor
tors, i.e.,

^Tt
t& ren

(s) 2^Tr
r& ren

(s) 5S 12
2M

r
1

e2

r 2D F (s)~r !, ~53!

whereF (s)(r ) for each spin of the field is a simple polyno
mial in 1/r , one can draw a general conclusion that our
proximate stress-energy tensors are regular as one
proaches the event horizon. Analyses carried out in Ref.@8#
indicate that all components of the numerically evalua
stress-energy tensor of the massive scalar field are also
on the event horizon. Repeating calculations in the space
of the extreme Reissner-Nordstro¨m black hole, one obtains
stress-energy tensor that is regular on the event hori
Simple calculations show that
12401
gy
h

is

at
ld

e

c-

-
p-

d
ite
e

n.

~^Tt
t& ren

(s) 2^Tr
r& ren

(s) !S 12
M

r D 22

~54!

is finite at r 5M .
To study the obtained̂Tm

n & ren
(s) further it is useful to intro-

duce the new coordinatex5(r 2r 1)/M and a new param-
eterq5ueu/M . Since for the massive scalar field Anderso
Hiscock, and Samuel have found that form>2/M the
Schwinger-DeWitt approximation is rather good near t
event horizon, we also take this bound in our calculations
the vacuum polarization of the spinor and vector fields. O
results forq50, q50.95, andmM52 are displayed in Figs
1–6. Inspection of the figures shows that forq close to the
extremal value, the radial dependence of the component
the stress-energy tensor of the massive spinor field and
vector counterparts is qualitatively similar. On the oth
hand, for smallq only the radial components exhibits such
similarity. Indeed, on the event horizon^Tt

t& ren
(1) and ^Tt

t& ren
(1/2)

differ in sign. The difference in the sign of the horizon va
ues of the stress-energy tensor occurs also for the tange
components. Moreover, in the vicinity of the event horiz

FIG. 1. This graph shows the radial dependence of the resc
component̂ Tt

t& ren
(1/2) @l5180(8M )4p2# of the renormalized stress

energy tensor of the massive spinor field withm52/M . From top to
bottom the curves are forq50.95 andq50.

FIG. 2. This graph shows the radial dependence of the resc
component̂ Tr

r& ren
(1/2) @l5180(8M )4p2# of the renormalized stress

energy tensor of the massive spinor field withm52/M . From top to
bottom the curves are forq50.95 andq50.
9-7
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the magnitude of the vacuum polarization effects increa
with spin of the quantized field.

Geometries that could be obtained from nonextrem
black holes taking the extremality limit, and expanding t
near-horizon geometry into the whole manifold, recently
ceived much attention. Near the event horizon of the
tremal Reissner-Nordstro¨m black hole the geometry ap
proaches that of the Bertotti-Robinson model@29#:

ds25
M2

r̃ 2
~2dt21dr̃21 r̃ 2du21 r̃ 2 sin2udf2!, ~55!

as could be demonstrated@28# expanding the line elemen
~55! in the power series about the event horizon, and sub
quently making the substitution

r 5M S 11
M

r̃
D . ~56!

The stress-energy tensor of the massive fields in the Bert
Robinson may be easily obtained either by constructing

FIG. 3. This graph shows the radial dependence of the resc
component̂ Tu

u& ren
(1/2) @l5180(8M )4p2# of the renormalized stress

energy tensor of the massive spinor field withm52/M . From top to
bottom the curves are forq50 andq50.95.

FIG. 4. This graph shows the radial dependence of the resc
component^Tt

t& ren
(1) @l590(8M )4p2# of the renormalized stress

energy tensor of the massive vector field withm52/M . From top to
bottom the curves are forq50.95 andq50.
12401
s

l

-
-

e-

ti-
e

curvature terms for the line element~55! and inserting them
into Eq. ~25! or taking theueu5M limit in the ^Tn

m& ren
(s) near

the event horizon. Simple calculations give@30#

^Tn
m& ren

(s) 5
m (s)

2880p2m2M6
diag@1,1,21,21#, ~57!

where

m (s)55
16

21
24S j2

1

6D ,

37

14
,

114

7
.

~58!

Assuming that the renormalized cosmological consta
L ren , is zero in the analog of the gravitational action~7!
with the renormalized bare lambda coefficients, the Berto
Robinson geometry is a self-consistent solution of the se

ed

ed

FIG. 5. This graph shows the radial dependence of the resc
component^Tr

r& ren
(1) @l590(8M )4p2# of the renormalized stress

energy tensor of the massive vector field withm52/M . From top to
bottom the curves are forq50.95 andq50.

FIG. 6. This graph shows the radial dependence of the resc
component̂ Tu

u& ren
(1) @l590(8M )4p2# of the renormalized stress

energy tensor of the massive vector field withm52/M . From top to
bottom the curves are forq50 andq50.95.
9-8
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classical Einstein equations with the source term given
the stress-energy tensor of the massive field in the large m
limit @6# if m (s),0. It is because

Hmn5
1

g1/2

d

dgmn
E d4xg1/2R2, ~59!

and

I mn5
1

g1/2

d

dgmn
E d4xg1/2RmnRmn, ~60!

vanish for the line element~55!. An interesting consequenc
of Eq. ~57! is that a self-consistent solution is possible for t
massive scalar field providedj.5/14, whereas for the mas
sive spinor and vector fields appropriate solutions do
exist. It should be noted however, that the stress-energy
sor of the massive scalar field with the physically most pl
sible values of the coupling constant, namelyj50 and j
51/6, do not yield self-consistent solutions and, therefo
the scalar field is not different than the spinor or vector fi
in this regard.

V. CONCLUDING REMARKS

In this paper we have constructed the renormalized str
energy tensor of the massive scalar, spinor, and vector fi
in the Reissner-Nordstro¨m spacetime. The method employe
here is based on the observation that the first-order effec
action could be expressed in terms of the traced coincide
limit of the coefficienta3. The general̂ Tn

m& ren
(s) , which has

been obtained by functional differentiation of the effecti
action with respect to a metric tensor, consists of over 1
terms, such as the terms cubic in curvature or involv
fourth derivatives. Since even after simplifications, the fi
result is rather complicated, the specific calculations are l
but straightforward.

Applying Eqs.~26!–~35! to the massive scalar field, w
rederived the results of Anderson, Hiscock, and Sam
ev

ev

v

12401
y
ss

t
n-
-

,

s-
ds

ve
ce

0
g
l
g

l.

Their calculations were based on the WKB approximation
the solutions of the scalar field equation and the summa
thus obtained mode functions by means of the Abel-Pl
formula. On the other hand, the method employed here m
be regarded as geometrical and the identity of the result
although expected, impressive. To our knowledge spinor
vector fields have not been discussed earlier.

The results~39!–~51! have also been used to constru
and analyze the stress-energy tensor in the two interes
limiting cases that could be obtained from the Reissn
Nordström solution: the extremal Reissner-Nordstro¨m and
Bertotti-Robinson geometries. Because of the form of
stress-energy tensor and the fact that the variational der
tives of the functionals constructed fromRmnRmnandR2 van-
ish in the Bertotti-Robinson spacetime, this geometry may
a self-consistent solution of the semiclassical Einstein fi
equations. We found that the self-consistent solution is p
sible for the massive scalar field providedj.5/14, whereas
for massive spinor and vector fields such solutions do
exist.

Finally, we remark that it would be interesting to co
struct the next order of the renormalized effective action~4!.
As the functionalWren at that order involves a coincidenc
limit of the a4 coefficient, which is, in turn, given by a ver
complicated formula, one expect that such a calculat
would be a real challenge. Another important direction
investigation is the generalization of the obtained results
the elliptic operators~1! with other physically interesting
matrix potentialsQand curvaturesR A

B , and to analyze the
back reaction of the quantized massive fields on the me
We hope that the results obtained in this paper will be of
in further calculations.

It should be emphasized however, that being local in
nature, the Schwinger-DeWitt expansion does not desc
particle creation, which is a nonperturbative and nonlo
phenomenon. Moreover, in the massless limit the met
breaks down. To address successfully this group of proble
new methods are necessary, for example, the covariant
turbation theory@31#.
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