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Approximate binary-black-hole metric

Kashif Alvi
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 30 December 1999; published 23 May 2000!

An approximate solution to Einstein’s equations representing two widely separated non-rotating black holes
in a circular orbit is constructed by matching a post-Newtonian metric to two perturbed Schwarzschild metrics.
The spacetime metric is presented in a single coordinate system valid up to the apparent horizons of the black
holes. This metric could be useful in numerical simulations of binary black holes. Initial data extracted from
this metric have the advantages of being linked to the early inspiral phase of the binary system, and of not
containing spurious gravitational waves.

PACS number~s!: 04.25.Nx, 04.30.Db, 04.70.2s
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I. INTRODUCTION

One of the outstanding issues in gravitational wave
search is calculating the wave output from the last stage
inspiral of binary black holes. This intermediate binary bla
hole problem has been discussed by Brady, Creighton,
Thorne @1#. The purpose of this paper is to provide an a
proximate four-dimensional binary-black-hole metric fro
which initial data can be extracted and evolved numerica
into and through the intermediate binary black hole regio

The approach I take is based on the work of Manasse@2#
and D’Eath @3,4#. I consider two widely separated non
rotating black holes in a circular orbit. The black holes’ ma
ratio is not restricted—they can have comparable mas
However, the masses are assumed to be much smaller
the distance between them.1 As a result spacetime can b
divided into four regions, each with its own approximatio
scheme to solve Einstein’s equations. There is a stro
gravity region near each of the black holes which is d
scribed by the Schwarzschild solution plus a perturbat
due to the companion’s tidal field. This perturbation is co
strained to satisfy the linearized Einstein equations about
Schwarzschild metric. The companion black hole’s elect
type and magnetic-type tidal fields are both taken into
count in calculating the perturbation.

Outside the strong-gravity regions but within the ne
zone, the metric can be approximated by a post-Newton
expansion. Further out is the radiation zone which conta
outgoing gravitational waves and can be described by a p
Minkowski expansion of the metric.

There are overlap zones in this spacetime where the
gions described above intersect in pairs. In the overlap zo
two different approximation schemes—one from each of
two intersecting regions—are both valid. The perturbat
expansions produced by the two approximation schemes
matched in the overlap zones using the framework
matched asymptotic expansions. The post-Newtonian n
zone metric—taken from @5#—and the radiation-zone
metric—taken from@6#—already match in their overlap re

1Throughout this paper I use geometrized units in whichG5c
51.
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gion. In this paper, the post-Newtonian near-zone metric
matched to a perturbed Schwarzschild metric in the match
or buffer zone surrounding each black hole. This yields
formation on the asymptotic behavior of the Schwarzsch
perturbation at large distances from the horizon, and on
coordinate transformation between the two buffer-zone co
dinate systems.

The Schwarzschild perturbation and coordinate trans
mation are not uniquely determined. However, a differe
choice of transformation—and hence different form
Schwarzschild perturbation—should still represent the sa
physical situation. In other words, different perturbations t
match to the post-Newtonian near-zone metric are expe
to be related via gauge transformations. For the purpose
this paper, it is sufficient to find one transformation and o
Schwarzschild perturbation associated with each black h
that result in a match between the post-Newtonian near-z
metric and the distorted-black-hole metrics.

An approximate spacetime metric is put together by jo
ing the regional metrics at some specific 3-surfaces in
matching zones. The final 4-metric is written in a single c
ordinate system valid up to~but not inside! the apparent
horizons of the black holes. This metric is useful not only
a source of initial data for numerical evolution, but also a
check on the early stages of such an evolution.

It has been suggested that numerical simulation of bin
black holes~BBHs! should be performed in corotating coo
dinates@1#. For this reason the metric in final form is give
in corotating coordinates. The BBH spacetime can be sli
and spatial coordinates chosen in any convenient way w
extracting initial data from the metric.~Asymptotically iner-
tial coordinates can be used, for example.!

Initial data generated by the method presented in this
per have the advantage of being connected to the early
spiral phase of the BBHs. Detailed gravitational wavefor
from this early inspiral phase have already been calcula
using post-Newtonian expansions. These waveforms will
easily linked to the waveforms obtained by evolving initi
data extracted from the metric presented here.

Initial data from this metric have the additional adva
tages of not containing spurious gravitational waves and
reliably describing the physical situation of coalesci
BBHs. The accuracy of this description can be improved
taking the calculation in this paper to higher orders.
©2000 The American Physical Society13-1
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In Sec. II, the near-zone and radiation-zone metrics
written down. In Sec. III, the first black hole’s tidal defo
mation is calculated. In Sec. IV, the buffer-zone coordin
transformations are determined, and the distorted-black-
metrics are written in corotating post-Newtonian coordinat
The full spacetime metric is summarized in Sec. V.

II. NEAR-ZONE AND RADIATION-ZONE METRICS

Blanchet and collaborators~@7# and references therein!
and Will and Wiseman@6# have calculated in detail the nea
zone and radiation-zone gravitational fields of compact
nary systems. The approach taken by Will and Wisema
particularly useful here because they use a single coordi
system—harmonic coordinates—to cover both the near z
and the radiation zone. As a result, expressions for
radiation-zone metric components taken from@6# automati-
cally match~to some finite order! the harmonic-coordinate
post-Newtonian, near-zone metric components calculate
@5#. For this reason I work initially in harmonic coordinate
(t8,x8,y8,z8) with the origin of the spatial coordinate
placed at the binary system’s center of mass. I use only
first post-Newtonian~1PN! metric, not the full 2.5PN metric
given in @5#.2 Consistently with this, I put the black holes o
Newtonian trajectories: they are taken to be in circular orb
with Keplerian orbital angular velocities. Moreover, I use t
post-Newtonian metric for point-like particles; in the ne
zone, I ignore the black holes’ internal structure. The ne
zone gravitational effects of the black holes’ multipole m
ments can in principle be computed by matching out to
near zone the tidally-distorted Schwarzschild metrics
tained in this paper. However, these effects are too sma
be included in this paper; this is discussed further in S
IV B.

A. Binary-system parameters

Label the black holes BH1 and BH2, and letm1 andm2
be their respective masses. Define

m5m11m2 , dm5m12m2 , m5
m1m2

m
. ~2.1!

Denote the harmonic-coordinate trajectories of the bl
holes byxA

j (t8) for A51,2 and j 51,2,3. In other words,
xA

j (t8) are the spatial coordinates at timet8 of the center of
attraction of the gravitational field of black holeA.

In this section, boldface letters are used to denote sp
coordinates. For examplexA5(xA

1 ,xA
2 ,xA

3)5(xA ,yA ,zA).
The notationa•b is used for the quantityd jkajbk, anduau is
by definition (a•a)1/2.

Denote the black holes’ separationux12x2u by b. The
circular, Newtonian trajectories of the black holes are

2Higher order versions of this calculation will presumably u
higher order post-Newtonian metrics.
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x1~ t8!5
m2

m
b~ t8!, x2~ t8!52

m1

m
b~ t8! ~2.2!

where

b~ t8!5x1~ t8!2x2~ t8!5b~cosvt8, sinvt8,0! ~2.3!

and

v5Am

b3 ~2.4!

is the Keplerian orbital angular velocity. Define

e5Am

b
, r 5~x821y821z82!1/2,

r A5ux82xAu, nA5
x82xA

r A
,

~2.5!

vA5
dxA

dt8
, vA5uvAu,

v5v12v25e~2sinvt8, cosvt8,0!,

for A51,2. By assumption,e!1.

B. Demarcation of four regions in the BBH spacetime

Let us first fix precisely four regions in this binary-blac
hole spacetime; each of these regions will receive a me
calculated as an approximate solution to the Einstein eq
tions. With such a partition of spacetime in mind, define t
inner limits r 1

in5Am1b and r 2
in5Am2b. These are just con

venient choices for the inner limits. The important prope
r 1

in has is that bothr 1
in/b→0 andm1 /r 1

in→0 asm1 /b→0.
Similarly r 2

in/b→0 andm2 /r 2
in→0 asm2 /b→0. Also define

the outer limit r out5lc/2p5b/2e where lc5p/v is the
characteristic wavelength of gravitational radiation emitt
by the binary system.

Divide spacetime into four regions that are bounded
the black holes’ apparent horizons and the surfacesr 1

5r 1
in , r 25r 2

in , and r 5r out: ~i! the regionr 1,r 1
in ~but out-

side the apparent horizon of BH1!, labeled region I;~ii ! the
region r 2,r 2

in ~but outside the apparent horizon of BH2!,
labeled region II;~iii ! the subset of the near zone specified
r 1.r 1

in , r 2.r 2
in , andr ,r out, labeled region III; and~iv! the

region r .r out, labeled region IV. The near zone contai
region III and overlaps with regions I and II; the radiatio
zone corresponds to region IV. The buffer zone around bl
hole A containsr A5r A

in and satisfiesmA!r A!b. These re-
gions of spacetime are illustrated in Fig. 1.

C. Near-zone metric in harmonic coordinates

In the near zone, the 1PN harmonic-coordinate me
with two point-like particles representing the black holes
@5#
3-2
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FIG. 1. Schematic illustration of the variou
regions in the binary-black-hole spacetime. R
gions I, II, III, and IV are demarcated by solid
lines; the buffer zones are bounded by dash
lines.
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g08085211
2m1

r 1
1

2m2

r 2
22S m1

r 1
1

m2

r 2
D 2

1
m1

r 1
@4v1

22~n1•v1!2#1
m2

r 2
@4v2

22~n2•v2!2#

22
m1m2

b S 1

r 1
1

1

r 2
D1

m1m2

b3 b•~n12n2!,

g08 i 8524S m1

r 1
v1

i 1
m2

r 2
v2

i D , ~2.6!

gi 8 j 85d i j S 11
2m1

r 1
1

2m2

r 2
D .

This metric presumably differs in the near zone by a sm
amount from an exact solution to the Einstein equations r
resenting binary black holes. I take the neglected terms in
2.5PN metric@5# to be an estimate of the errors in the 1P
metric ~2.6!.

The largest neglected terms ing0808 are of the form
m3/b2r A , m3/brA

2 , mA
3/r A

3 , m3/b3, andem3r 2/b5. ~The last
term represents a radiation reaction potential.! Let us com-
pute the orders of magnitude of these terms at various pl
in region III. If r A*r A

in;be ~here and henceforth ‘‘; ’’
means ‘‘is of the order of’’ anda*b meansa.b and a
;b) for A51 or 2, then the error ing0808 ~denoteddg0808)
is of O(e3) and comes from neglecting a term of the for
12401
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mA
3/r A

3 . If both r 1;b andr 2;b, thendg0808;e6. Finally, if
r &r out;b/e ~so thatr A;b/e for A51 and 2!, then the error
dg0808;e5 arises from neglecting the radiation reaction p
tential. Note that it is reasonable to consider the ‘‘absolut
errorsdgm8n8 in the metric components since the coordina
system being used is asymptotically inertial and the err
are only calculated in regions of weak gravity where dev
tions from a flat metric are small.

A similar analysis forg08 i 8 yields dg08 i 8;e3 if r A*r A
in

for A51 or 2, dg08 i 8;e5 if both r 1;b and r 2;b, and
dg08 i 8;e5 if r &r out. Lastly, dgi 8 j 8;e2 if r A*r A

in for A
51 or 2 ~this comes from neglecting a term of the for
mA

2/r A
2 in gi 8 j 8), dgi 8 j 8;e4 if both r 1;b and r 2;b, and

dgi 8 j 8;e5 if r &r out.

D. Near-zone metric in corotating coordinates

The metric~2.6! is transformed to corotating coordinate
(t,x,y,z) defined by

t85t, x85x cosvt2y sinvt,
~2.7!

y85x sinvt1y cosvt, z85z.

In terms of the new coordinates,

r 5~x21y21z2!1/2. ~2.8!

Putting the expressions~2.2!–~2.5! in Eq. ~2.6! and trans-
forming to corotating coordinates gives
ds25dt2F211
2m1

r 1
1

2m2

r 2
22S m1

r 1
1

m2

r 2
D 2

1
3m

b S m2

r 1
1

m1

r 2
D2

m

b S m2

r 1
3 1

m1

r 2
3 D y222me2S 1

r 1
1

1

r 2
D27me2S 1

r 1
2

1

r 2
D x

b

1v2S 11
2m1

r 1
1

2m2

r 2
D ~x21y2!G12vS 11

2m1

r 1
1

2m2

r 2
Ddt~xdy2ydx!28meS 1

r 1
2

1

r 2
Ddtdy1S 11

2m1

r 1
1

2m2

r 2
D

3~dx21dy21dz2!, ~2.9!

where, in terms of the new coordinates, the quantitiesr A are
3-3
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r 15@~x2m2b/m!21y21z2#1/2,
~2.10!

r 25@~x1m1b/m!21y21z2#1/2.

This is the final form of the metric in region III.~Note, however, that this metric is valid throughout the near zone, wh
includes the buffer zones around the black holes.! It remains to specify the metric in regions I, II, and IV. I postpone until S
II F discussion of the errorsdgmn in the metric components in the new, rotating coordinate system (t,x,y,z).

E. Radiation-zone metric in harmonic coordinates

The radiation-zone metric can be extracted from@6#. In that paper, a potentialhm8n8 is defined by

hm8n85hm8n82~2g8!1/2gm8n8, ~2.11!

wherehm8n85diag(21,1,1,1),gm8n8 is the spacetime metric, andg85det(gm8n8). Equation~5.5! of @6# gives hm8n8 in the
radiation zone in harmonic coordinates (t8,x8,y8,z8) for a system of several bodies. After correcting a typo in that equati3

I specialize to a system of two bodies of massesm1 andm2 in a circular orbit specified by Eqs.~2.2!–~2.5!. This yields4

h0808~ t8,x8,y8,z8!5
4m̃

r
1

7m2

r 2 12F1

r
Qi j ~u8!G

,i j

2
2

3 F1

r
Qi jk~u8!G

,i jk

,

h08 i 8~ t8,x8,y8,z8!522H 1

r
@Q̇i j ~u8!2e i j l Jl~u8!#J

, j

1
2

3 H 1

r
@Q̇i jk~u8!22e iklJl j ~u8!#J

, jk

, ~2.12!

hi 8 j 8~ t8,x8,y8,z8!5
m2

r 2 n8 in8 j1
2

r
Q̈i j ~u8!2

2

3 H 1

r
@Q̈i jk~u8!24e ( i uklJ̇l u j )~u8!#J

,k

,

where

m̃5m~12m/2b!, u85t82r , n85x8/r ~2.13!

and

Qi j 5 (
A51

2

mAxA
i xA

j 5mbibj , Qi jk5 (
A51

2

mAxA
i xA

j xA
k 52m~dm/m!bibjbk,

~2.14!

Ji5 (
A51

2

mAe i lmxA
l vA

m5me i lmblvm, Ji j 5 (
A51

2

mAe i lmxA
l vA

mxA
j 52m~dm/m!e i lmblvmbj .

Putting the expressions~2.14! in Eq. ~2.12! and using Eqs.~2.2!–~2.5! gives

h08085
4m̃

r
1

7m2

r 2 1
2m

r H 2~n8•v!22
2m

b3 ~n8•b!21
6

r
~n8•b!~n8•v!1

1

r 2 @3~n8•b!22b2#J 1
2m

r

dm

m H 7m

b3 ~n8•b!2~n8•v!

22~n8•v!31
1

r
~n8•b!F6m

b3 ~n8•b!2212~n8•v!22
m

b G1
3

r 2 ~n8•v!@b225~n8•b!2#1
1

r 3 ~n8•b!@3b225~n8•b!2#J ,

h08 i 85
4m

r H F ~n8•v!1
1

r
~n8•b!Gv i2

m

b3 ~n8•b!bi J 2
2m

r

dm

m H 2
m

b3 ~n8•b!@3~n8•b!v i14~n8•v!bi #12~n8•v!2v i

1
1

r F6~n8•b!~n8•v!v i2
3m

b3 ~n8•b!2bi1
m

b
bi G1

1

r 2@3~n8•b!22b2#v i J , ~2.15!

hi 8 j 85
m2

r 2 n8 in8 j1
4m

r Fv iv j2
m

b3 bibj G1
2m

r

dm

m H 6m

b3 ~n8•b!v ( ibj )1F ~n8•v!1
1

r
~n8•b!G S m

b3 bibj22v iv j D J ,

3The term 4m/r 8 in the expression forh00 should instead be 4m̃/r 8.
4Note that I have replacedr 8 in Eq. ~5.5! of @6# by r.
124013-4
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wherev andb are evaluated at the retarded timeu85t82r .
The metricgm8n8 can be gotten from Eq.~2.15! as follows: from Eq.~2.11! we have

gm8n85~2g8!21/2~hm8n82hm8n8!. ~2.16!

Take the determinant of both sides of Eq.~2.16!; this yieldsg85det(hm8n82hm8n8). So g8 can be calculated oncehm8n8 is

known, and thengm8n8 can be gotten from Eq.~2.16!. Inverting the matrixgm8n8 gives the spacetime metricgm8n8 .
When performing these calculations, I keep all terms of the formm32p/2b23(12p/2)r 2p for integerp.0. I also keep—at

each order inr—all terms that are of lower order inm/b than this, and throw away terms of higher order inm/b. This means
in particular that no terms ofO(r 25) are kept. This scheme of organizing terms is consistent with the ordering of terms i
~5.5! of @6#.

The result of these calculations is the following radiation-zone metric in harmonic coordinates:

g08085211
2m̃

r
2

2m2

r 2 1
m

r H 2~n8•v!22
2m

b3 ~n8•b!21
6

r
~n8•b!~n8•v!1

1

r 2 @3~n8•b!22b2#J
1

m

r

dm

m H ~n8•v!F7m

b3 ~n8•b!222~n8•v!22
m

b G1
2

r
~n8•b!F3m

b3 ~n8•b!226~n8•v!22
m

b G
1

3

r 2 ~n8•v!@b225~n8•b!2#1
1

r 3 ~n8•b!@3b225~n8•b!2#J ,

g08 i 852
4m

r H F ~n8•v!1
1

r
~n8•b!Gv i2

m

b3 ~n8•b!bi J 1
2m

r

dm

m S H 2~n8•v!22
3m

b3 ~n8•b!21
6

r
~n8•b!~n8•v!

1
1

r 2 @3~n8•b!22b2#J v i1H 2
4m

b3 ~n8•b!~n8•v!1
m

rbF12
3

b2~n8•b!2G J bi D ,

gi 8 j 85d i j S 11
2m̃

r
1

m2

r 2 1
m

r H 2~n8•v!22
2m

b3 ~n8•b!21
6

r
~n8•b!~n8•v!1

1

r 2@3~n8•b!22b2#J
1

m

r

dm

m H ~n8•v!F7m

b3 ~n8•b!222~n8•v!21
m

b G1
6

r
~n8•b!F m

b3 ~n8•b!222~n8•v!2G1
3

r 2 ~n8•v!@b225~n8•b!2#

1
1

r 3~n8•b!@3b225~n8•b!2#J D 1
m2

r 2 n8 in8 j1
4m

r S v iv j2
m

b3 bibj D1
2m

r

dm

m H 6m

b3 ~n8•b!v ( ibj )

1F ~n8•v!1
1

r
~n8•b!G S m

b3 bibj22v iv j D J , ~2.17!

wherev andb are evaluated at the retarded timeu85t82r .
The errorsdgm8n8 in these metric components in region IV can be estimated by computing the orders of magnit

neglected terms, which are of the formm32p/2b23(12p/2)r 2p(m/b)n/2 for integersp.0 and n.0. These terms include
m3/b2r , em2/r 2, m2b/r 3, etc. This givesdgm8n8;e7 for r *r out;b/e, dgm8n8;e8 for r;b/e2@r out, anddgm8n8!e8 for
r @b/e2.

F. Radiation-zone metric in corotating coordinates

Substituting the expressions~2.2!–~2.5! into the metric~2.17! and transforming this metric to corotating coordinat
(t,x,y,z) @defined in Eq.~2.7!# gives
124013-5



KASHIF ALVI PHYSICAL REVIEW D 61 124013
ds25dt2F211
2m

r S 12
m

2bD2
2m2

r 2 1A1
2e2

b
~x cosvr 2y sinvr !B22e~x sinvr 1y cosvr !D1v2~x21y2!E

1
e4

b2 ~x cosvr 2y sinvr !2N1e2~x sinvr 1y cosvr !2S2
12me5

r 2b2

dm

m
~x cosvr 2y sinvr !2~x sinvr 1y cosvr !G

12dtS e@sin~vr !dx1cos~vr !dy#B1b@cos~vr !dx2sin~vr !dy#D1v~xdy2ydx!E1
e3

b
~x cosvr 2y sinvr !

3@sin~vr !dx1cos~vr !dy#N2eb~x sinvr 1y cosvr !@cos~vr !dx2sin~vr !dy#S1
6me4

r 2b

dm

m
~x cosvr 2y sinvr !

3@~x cos 2vr 2y sin 2vr !dx2~x sin 2vr 1y cos 2vr !dy# D1E~dx21dy21dz2!1
m2

r 4 ~xdx1ydy1zdz!2

1e2@sin~vr !dx1cos~vr !dy#2N1b2@cos~vr !dx2sin~vr !dy#2S

1
12me3

r 2

dm

m
~x cosvr 2y sinvr !@cos~vr !dx2sin~vr !dy#@sin~vr !dx1cos~vr !dy# ~2.18!

where

A5
m

r 3 H 2e2@~x sinvr 1y cosvr !22~x cosvr 2y sinvr !2#1
6be

r
~x sinvr 1y cosvr !~x cosvr 2y sinvr !

1
b2

r 2 @3~x cosvr 2y sinvr !22r 2#J 1
m

r 4

dm

m H b3

r 3 ~x cosvr 2y sinvr !@3r 225~x cosvr 2y sinvr !2#1
3b2e

r 2

3~x sinvr 1y cosvr !@r 225~x cosvr 2y sinvr !2#1
2m

r
~x cosvr 2y sinvr !@3~x cosvr 2y sinvr !2

26~x sinvr 1y cosvr !22r 2#1e3~x sinvr 1y cosvr !@7~x cosvr 2y sinvr !222~x sinvr 1y cosvr !22r 2#J ,

B52
4m

r 2 Fe~x sinvr 1y cosvr !1
b

r
~x cosvr 2y sinvr !G1

2m

r 3

dm

m H e2@2~x sinvr 1y cosvr !2

23~x cosvr 2y sinvr !2#1
6be

r
~x sinvr 1y cosvr !~x cosvr 2y sinvr !1

b2

r 2 @3~x cosvr 2y sinvr !22r 2#J ,

D5
2me2

r 2 S 2

b
~x cosvr 2y sinvr !2

1

r

dm

m H 4e

b
~x cosvr 2y sinvr !~x sinvr 1y cosvr !

1
1

r
@3~x cosvr 2y sinvr !22r 2#J D ,

E511
2m

r S 12
m

2bD1
m2

r 2 1A1
2me2

r 2

dm

m Fb

r
~x cosvr 2y sinvr !1e~x sinvr 1y cosvr !G ,

N5
4m

r H 12
dm

m Fer ~x sinvr 1y cosvr !1
b

r 2 ~x cosvr 2y sinvr !G J ,

S5
2me2

rb H 2
2

b
1

1

r

dm

m F e

b
~x sinvr 1y cosvr !1

1

r
~x cosvr 2y sinvr !G J , ~2.19!
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ande5(m/b)1/2, v5(m/b3)1/2. This is the final form of the
metric in region IV.

It is now necessary to evaluate the errorsdgmn in the
metric components in the corotating coordinate syst
(t,x,y,z). Since this coordinate system is not asymptotica
inertial, it no longer makes sense to compute absolute er
The rotation of the coordinates introduces terms ofO(vr )
and O@(vr )2# in g00 and terms ofO(vr ) in g0i . For this
reason, I define the ‘‘normalized’’ errors Dg00
5dg00/(vr )2, Dg0i5dg0i /vr , and Dgi j 5dgi j in region
IV. It follows that Dgmn;e7 for r *r out;b/e, Dgmn;e8 for
r;b/e2@r out, andDgmn!e8 for r @b/e2.

In region III, vr is less than 1~and in the buffer zones
vr !1). So rotation of the coordinates is not important
analyzing errors in the metric~2.9! in region III. I continue to
use absolute errors in that region. The errorsdgmn in the
metric components~2.9! in corotating coordinates in regio
III are the same as the errors in harmonic coordinates~see
Sec. II C!: ~i! dg00;e3, dg0i;e3, and dgi j ;e2 if r A*r A

in

for A51 or 2; ~ii ! dg00;e6, dg0i;e5, anddgi j ;e4 if both
r 1;b and r 2;b; and ~iii ! dgmn;e5 if r &r out.

Since the analysis by Will and Wiseman@6# of compact
binary systems uses a single coordinate chart to cover
the near and radiation zones, the near-zone metric~2.9! au-
tomatically matches~to some finite order; see below! the
radiation-zone metric~2.18! at r 5r out. The match is not per-
fect because I have truncated the relevant perturbative ex
sions at finite order. As a result, there are discontinuities
the metric components atr 5r out. The orders of magnitude
of these discontinuities can be estimated as follows: first
pandr A

21 in powers ofb/r for r .b and substitute this ex
pansion in Eq.~2.9!; then expand Eq.~2.18! in powers ofvr
for r ,r out; finally, compare the two. The result is that th
discontinuities ingmn , denoted@gmn#, are @gmn#;e5 at r
5r out.

III. TIDAL DEFORMATION OF THE FIRST BLACK
HOLE

The metric~2.9! is valid not only in region III but also in
the buffer zones around the black holes. The next step i
match this metric to a tidally distorted black-hole metric
the buffer zone around BH1. There are two coordinate s
tems which overlap in the buffer zone. The first is the co
tating post-Newtonian coordinate system (t,x,y,z) defined in
Eq. ~2.7!. The second—to be called the internal coordin
system—covers the strong-gravity region near the first bl
hole and is valid from the black hole’s apparent horizon
into ~and through! the buffer zone. The internal coordinate
are chosen to be isotropic coordinates (T,X,Y,Z) in which
the unperturbed Schwarzschild metric is

ds252S 12m1/2R

11m1/2RD 2

dT21S 11
m1

2RD 4

~dX21dY21dZ2!,

~3.1!

where

R5~X21Y21Z2!1/2. ~3.2!
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The region these coordinates cover will be called the inter
region; it contains region I in particular.

The first step in matching the near-zone metric~2.9! to the
internal metric@which is the Schwarzschild metric~3.1! plus
tidal perturbations# is to write the metric~2.9! in internal
coordinates. Then the near-zone metric and the internal m
ric are both expanded in positive powers ofm1 /R andR/b in
the buffer zone. Finally, corresponding terms in the tw
asymptotic expansions are equated. The near-zone metri
termines in this way the asymptotic form of the tidal pertu
bations on BH1. These perturbations are further constrai
to solve the linearized Einstein equations about
Schwarzschild metric~3.1! and to be finite at the horizonR
5m1/2.

The asymptotic form of the Schwarzschild perturbatio
in internal coordinates can be determined—independentl
the matching procedure described above—by calculating
electric- and magnetic-type tidal fields of BH2 in the buff
zone surrounding BH1. Once this asymptotic form is know
the matching procedure can be used to constrain the coo
nate transformation taking corotating coordinates (t,x,y,z)
to internal coordinates (T,X,Y,Z). This is the approach to
matching taken in this paper. In the next two sections
calculate the second black hole’s tidal fields and the per
bations they induce on the first black hole.

A. Tidal fields of the companion black hole

Thorne and Hartle@8# have analyzed the motion of a
isolated black hole in an arbitrary surrounding spacetim
They define and discuss the black hole’s local asympt
rest frame~LARF!. In the LARF of BH1, the metric can be
expanded in powers of the black hole’s massm1 as follows:5

g5g(0)1m1g(1)1m1
2g(2)1•••. ~3.3!

Here the metricg(0) represents the external universe witho
BH1; the rest of the terms represent the black hole’s inter
gravitational field and the nonlinear interaction between
ternal and external fields. In this section, I will focus on t
external metricg(0) and use it to constrain internal perturb
tions. Throughout this section and in the rest of this pap
boldface letters denote spacetime tensors of all ranks~includ-
ing 4-vectors!.

In the case of binary black holes, the external metric
simply that of a single black hole; it is the metric of th
companion black hole BH2 of massm2. This metric must be
expressed in LARF coordinates. With this goal in mind, co
sider first a freely-falling observer in a circular, equator
orbit around a Kerr black hole of massm2. ~I will later
specialize to a non-rotating black hole.! The Kerr black hole
represents BH2 while the observer’s local Lorentz fra
~same as proper reference frame! represents the LARF o
BH1.

5This expansion is written in Eq.~2.5! of @8#; I have substituted
m1 for M in that equation.
3-7
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The metric near the observer’s world line is determin
by the Kerr black hole’s electric-type and magnetic-ty
tidal fields as seen in the observer’s local Lorentz fram
These tidal fields can be evaluated by taking component
the Kerr spacetime’s Weyl tensorC in a parallel-propagated
orthonormal tetrad along the observer’s world line. The v
tors in this tetrad form the coordinate basis of the local L
entz frame at the location of the geodesic orbit.

The electric-type tidal field as seen by such an obse
has been calculated by Fishbone@9# and Marck@10#. Marck
has computed a parallel-propagated orthonormal te
(l0 ,l1 ,l2 ,l3) along arbitrary geodesics of the Kerr spac
time, with l0 equal to the 4-velocity of the geodesic. H
obtains the electric-type tidal field by evaluating

R0i0 j5C~l0 ,li ,l0 ,lj !. ~3.4!

I specialize his tetrad to circular, equatorial geodesic
also label the tetrad vectors~and hence coordinate axes! dif-
ferently. Initially ~that is, at proper timeT50), I choosel1
to be radially outward~in Boyer-Lindquist coordinates!; l2
is chosen so that the projections ofl0 andl2 on a constant-
Boyer-Lindquist-time-t surface are parallel; andl3 is then
chosen to give (l1 ,l2 ,l3) positive ~i.e., right-handed! ori-
entation. With this choice of tetrad, I obtain the magnet
type tidal field using Marck’s work by evaluating

R0i jk5C~l0 ,li ,lj ,lk!. ~3.5!

The results of the calculations~3.4! and~3.5! with the above
choice of tetrad are

R01015
m2

d3 F123S 11
W 2

d2 D cos2V̄TG ,
R02025

m2

d3 F123S 11
W 2

d2 D sin2V̄TG ,
R03035

m2

d3 S 11
3W 2

d2 D ,

R01025R020152
3m2

d3 S 11
W 2

d2 D cosV̄T sinV̄T,

R011252R01215R032352R0332

5
3m2W

d4 S 11
W 2

d2 D 1/2

cosV̄T,

R021252R02215R033152R0313

5
3m2W

d4 S 11
W 2

d2 D 1/2

sinV̄T, ~3.6!

and the rest of the Weyl-tensor components are zero. HeT
is proper time along the geodesic,m2 is the mass of the Ker
black hole,d is the Boyer-Lindquist radial coordinate of th
circular, equatorial orbit, and
12401
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V̄5Am2

d3 ~3.7!

is the ~exact! rotation rate of the black hole’s tidal field a
seen in the local Lorentz frame. The quantityW is given by

W
d

5
Am2 /d6a/d

~123m2 /d72aAm2 /d3!1/2
, ~3.8!

wherem2a is the black hole’s angular momentum. The u
per sign in Eq.~3.8! is for a retrograde orbit while the lowe
one is for a direct or prograde orbit.

Notice that for d@m2, the electric- and magnetic-typ
tidal field components atT50 are simply related via a Lor
entz boost with low velocity (m2 /d)1/2. For example,

R0112uT5052~m2 /d!1/2@R01011R1212#T50

52~m2 /d!1/2@2R01011R0202#T50 ~3.9!

to lowest order inm2 /d. This fact will be used later in this
section.

In the local Lorentz frame, the spacetime metric can
written as an expansion in powers of distanceR from the
observer’s geodesic world line@11#. The two types of tidal
field ~3.4! and~3.5! determine the metric up to and includin
terms ofO(R 2). After exploiting some gauge freedom~see
Sec. V A 2 of @12# and Eq.~2.7! of @8#!, the metric can be
written in local coordinates (T,X,Y,Z) as

g005212R0i0 j~T!X iX j1O~R 3!,

g0i52
2

3
R0 j ik~T!X jX k1O~R 3!, ~3.10!

gi j 5d i j @12R0k0m~T!X kX m#1O~R 3!,

where R5(X 21Y 21Z 2)1/2. Substituting the expression
~3.6! in Eq. ~3.10! gives

g005211
m2

d3 F3S 11
W 2

d2 D ~X cosV̄T1Y sinV̄T!22R 2

2
3W 2

d2 Z 2G ,
g0X5

2m2W
d4 S 11

W 2

d2 D 1/2

@~Z 22Y 2!sinV̄T

2XY cosV̄T#,

g0Y5
2m2W

d4 S 11
W 2

d2 D 1/2

@~X 22Z 2!cosV̄T

1XY sinV̄T#,
3-8
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g0Z5
2m2W

d4 S 11
W 2

d2 D 1/2

~Y cosV̄T2X sinV̄T!Z,

gi j 5d i j H 11
m2

d3 F3S 11
W 2

d2 D ~X cosV̄T1Y sinV̄T!2

2R 22
3W 2

d2 Z 2G J ~3.11!

up to and including terms ofO(R 2).
The rotation rateV̄ is only correct for test-particle orbit

and is exact in that case. The correct rotation rateV of the
second black hole’s tidal field—measured in a local iner
frame in the first black hole’s LARF—is actually determine
by the post-Newtonian metric~2.9! and by the requirement
that ~i! this metric match the LARF metric@given in Eq.
~3.24! in Sec. III B below#; and ~ii ! the LARF coordinate
system be non-rotating relative to local inertial frames. T
rotation rateV is calculated in Sec. IV A by transforming th
metric ~2.9! to internal coordinates and requiring a match
the LARF metric~3.24!. There it will be seen that the rota
tion rate is6

V5vF12
m

b
1O~e3!G . ~3.12!

Note that post-Newtonian corrections to the orbital angu
velocity v of O(e2v) have not been included in this pape

The metric~3.11! is valid for all radii d which allow a
circular, equatorial, geodesic orbit. To apply Eq.~3.11! to the
situation of widely-separated, non-rotating, binary bla
holes, I specialize to a Schwarzschild black hole by sett
a50 and take the limit of smallm2 /d, keeping only lowest-
order terms inm2 /d. @In particular, I replaceW/d with

(m2 /d)1/2.# I then replaced with b, V̄ with V, and local
coordinates (T,X,Y,Z) with internal coordinates (T,X,Y,Z)
@which are described above Eq.~3.1!#. The result is

g005211
m2

b3 @3~X cosVT1Y sinVT!22R2#,

g0X5
2m2

b3 Am2

b
@~Z22Y2!sinVT2XYcosVT#,

g0Y5
2m2

b3 Am2

b
@~X22Z2!cosVT1XYsinVT#,

g0Z5
2m2

b3 Am2

b
~Y cosVT2X sinVT!Z,

gi j 5d i j H 11
m2

b3 @3~X cosVT1Y sinVT!22R2#J ,

~3.13!

6This rotation rate can also be calculated by looking at geod
precession of parallel-propagated vectors in the LARF@13#.
12401
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whereR5(X21Y21Z2)1/2 as defined in Eq.~3.2!.
The metric~3.13! is still not applicable to binary black

holes since the observer was taken to be massless@there are
no factors ofm1 in Eq. ~3.13!#. This can be fixed easily. As
mentioned above, the factors of (m2 /b)1/2 in g0i in Eq.
~3.13! arise from a Lorentz boost with low velocit
(m2 /b)1/2. But the correct~Newtonian! relative velocity be-
tween the black holes ise5@(m11m2)/b#1/2. So I replace
the factors of (m2 /b)1/2 in Eq. ~3.13! by (m/b)1/2. The re-
sulting metric includes the second black hole’s tidal fie
but does not include the first black hole’s gravitational fie

g005211
m2

b3 @3~X cosVT1Y sinVT!22R2#,

g0X5
2m2

b3 Am

b
@~Z22Y2!sinVT2XYcosVT#,

g0Y5
2m2

b3 Am

b
@~X22Z2!cosVT1XYsinVT#,

g0Z5
2m2

b3 Am

b
~Y cosVT2X sinVT!Z,

gi j 5d i j H 11
m2

b3 @3~X cosVT1Y sinVT!22R2#J .

~3.14!

In the buffer zone around BH1, this metric provides t
asymptotic form of the perturbation on BH1.

B. Schwarzschild perturbation

The next stage is to solve the linearized Einstein eq
tions ~LEEs! about the Schwarzschild metric for a perturb
tion which is finite at the horizonR5m1/2 and asymptotes to
the form ~3.14! as R/m1→`. For ease in dealing with the
LEEs, I transform to spherical, isotropic, internal coordina
(T,R,u,f) by letting

X5R sinu cosf, Y5R sinu sinf, Z5R cosu.
~3.15!

The unperturbed Schwarzschild metric in these coordina
is

ds252S 12m1/2R

11m1/2RD 2

dT21S 11
m1

2RD 4

@dR21R2

3~du21sin2udf2!#. ~3.16!

The metric~3.14! in these coordinates is
ic
3-9
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ds252dT21dR21R2~du21sin2udf2!

24
m2R3

b3 Am

b
dT@cosu sin~f2VT!du

1sinu cos~2u!cos~f2VT!df#

1
m2R2

b3 @3 sin2u cos2~f2VT!21#@dT21dR2

1R2~du21sin2udf2!#. ~3.17!

The linearity of the LEEs allows me to look separately f
solutions corresponding to the electric-type and magne
type tidal fields. First I look for a perturbationh15g2gs
~wheregs is the unperturbed Schwarzschild metric andg is
the full metric including the perturbation! of BH1 which cor-
responds to the electric-type tidal field of BH2 and is of t
form

h15
m2R2

b3 @3 sin2u cos2~f2VT!21#@ f 1~R!dT2

1 f 2~R!dR21 f 3~R!R2~du21sin2udf2!#, ~3.18!

as suggested by Eq.~3.17!. In this notation,dT, dR, du, and
df are coordinate one-forms anddT2 denotes the tenso
productdT^ dT. The functionsf 1 , f 2, and f 3 are to be de-
termined by solving the LEEs with the following bounda
conditions:~i! f 1(R), f 2(R), and f 3(R) are required to ap-
proach 1 asR/m1→` so that the perturbation~3.18! matches
the electric-type tidal field in Eq.~3.17!; and ~ii ! h1 is re-
quired to be finite atR5m1/2.

Consider solving the LEEs order by order ine
5(m/b)1/2. Time derivatives of the components ofh1 pro-
duce factors ofm1V;e3 in the LEEs and can thus be ne
glected. A solution forh1 can then be found using th
Regge-Wheeler formalism@14# for analysis of stationary
Schwarzschild perturbations. Regge and Wheeler decom
perturbations into even- and odd-parity modes and ana
them in a particular gauge chosen to simplify computatio
In their classificationh1 is a superposition of static7 even-
parity modes with angular numbersl 52 and m522,0,2.
The general solution of the LEEs for static even-par
modes with l>2 is well-known in Schwarzschild coordi
nates and is given in Sec. IV of@15#, for example. A particu-
lar solution withl 52 that is finite at the black hole’s horizo
and contains an arbitrary multiplicative constant is easily
tained from the general solution, and is given in Eqs.~6.5!
and ~6.7! of @3#, for example.8 After transforming this solu-
tion to isotropic coordinates, the multiplicative constant
determined by imposing the boundary condition~i! ~given at

7Time dependence in Eq.~3.18! is to be ignored, as explaine
above.

8The notation in Sec. VI of@3# may be confusing:R there denotes
a dimensionless quantity obtained from the Schwarzschild ra
coordinater s by R5r s /M whereM—in my notationm1—is the
mass of the black hole being perturbed.
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the end of the previous paragraph!. This yields the following
solution for the radial factorsf 1(R), f 2(R), and f 3(R) in
isotropic coordinates:

f 1~R!5S 12
m1

2RD 4

,

f 2~R!5S 12
m1

2RD 2S 11
m1

2RD 6

, ~3.19!

f 3~R!5S 11
m1

2RD 4F S 11
m1

2RD 4

2
2m1

2

R2 G .
Next I look for a perturbationh25g2gs of BH1 corre-

sponding to the magnetic-type tidal field of BH2 and of t
form

h252
4m2

b3 Am

b
R3F~R!dT@cosu sin~f2VT!du

1sinu cos 2u cos~f2VT!df#, ~3.20!

as suggested by Eq.~3.17!. The functionF is to be deter-
mined by solving the LEEs with the following boundary co
ditions: ~i! F(R)→1 as R/m1→` so that the perturbation
~3.20! matches the magnetic-type tidal field in Eq.~3.17!;
and ~ii ! h2 finite at R5m1/2. As was done forh1, time de-
pendence is ignored inh2 since time derivatives produc
higher-order terms. In the Regge-Wheeler classification,h2
is a superposition of stationary odd-parity modes with an
lar numbersl 52 andm521,1. The general solution of th
LEEs for stationary odd-parity modes that are finite at
horizon and havel>2 is given in Schwarzschild coordinate
in Eq. ~38! of @14#. This solution is only determined up to
multiplicative constant. The particular casel 52 is easily ob-
tained from the general solution, and is given in Eq.~6.10! of
@3#, for example.8 After transforming this solution to isotro
pic coordinates, the multiplicative constant is determined
imposing the boundary condition~i! @given below Eq.
~3.20!#. This yields the following solution for the radial fac
tor F(R) in isotropic coordinates:

F~R!5S 12
m1

2RD 2S 11
m1

2RD 4

. ~3.21!

The metric in the internal region near BH1 is now com
plete. It is given by the Schwarzschild metric~3.16! plus the
perturbations~3.18! and ~3.20! with radial factors given in
Eqs. ~3.19! and ~3.21!; in other words,g5gs1h11h2. In
spherical isotropic coordinates (T,R,u,f), this internal met-
ric is

al
3-10
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ds252S 12m1/2R

11m1/2RD 2

dT21S 11
m1

2RD 4

@dR21R2~du21sin2udf2!#2
4m2

b3 Am

b S 12
m1

2RD 2S 11
m1

2RD 4

R3dT

3@cosu sin~f2VT!du1sinu cos~2u!cos~f2VT!df#1
m2R2

b3 @3 sin2u cos2~f2VT!21#H S 12
m1

2RD 4

dT2

1S 12
m1

2RD 2S 11
m1

2RD 6

dR21S 11
m1

2RD 4F S 11
m1

2RD 4

2
2m1

2

R2 GR2~du21sin2udf2!J . ~3.22!

In isotropic coordinates (T,X,Y,Z), this metric is

g0052S 12m1/2R

11m1/2RD 2

1
m2

b3 S 12
m1

2RD 4

@3~X cosVT1Y sinVT!22R2#,

g0X5
2m2

b3 Am

b S 12
m1

2RD 2S 11
m1

2RD 4

@~Z22Y2!sinVT2XYcosVT#,

g0Y5
2m2

b3 Am

b S 12
m1

2RD 2S 11
m1

2RD 4

@~X22Z2!cosVT1XYsinVT#, ~3.23!

g0Z5
2m2

b3 Am

b S 12
m1

2RD 2S 11
m1

2RD 4

~Y cosVT2X sinVT!Z,

gi j 5S 11
m1

2RD 4S d i j 1
m2

b3 @3~X cosVT1Y sinVT!22R2#H F S 11
m1

2RD 4

2
2m1

2

R2 Gd i j

2
2m1

R S 11
m1

2

4R2D XiXj

R2 J D .
st
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Expanding the components~3.23! in positive powers of
m1 /R and R/b in the buffer zonem1!R!b and keeping
only lowest-order terms yields the local-asymptotic-re
frame metric:

g005211
2m1

R
1

m2

b3 @3~X cosVT1Y sinVT!22R2#,

g0X5
2m2

b3 Am

b
@~Z22Y2!sinVT2XYcosVT#,

g0Y5
2m2

b3 Am

b
@~X22Z2!cosVT1XYsinVT#, ~3.24!

g0Z5
2m2

b3 Am

b
~Y cosVT2X sinVT!Z,

gi j 5d i j H 11
2m1

R
1

m2

b3 @3~X cosVT

1Y sinVT!22R2#J .

This metric includes the first black hole’s~weak! gravita-
tional field as well as the second black hole’s tidal fields
12401
-

IV. DISTORTED-BLACK-HOLE METRICS
IN COROTATING COORDINATES

The post-Newtonian metric~2.9!, when expressed in in
ternal coordinates (T,X,Y,Z) in the buffer zone around BH1
must take the form~3.24!. The next step is to find explicitly
the coordinate transformation in the buffer zone taking co
tating post-Newtonian coordinates to these internal coo
nates. Applying the inverse of this transformation to the
ternal metric ~3.23! will put that metric in corotating
coordinates (t,x,y,z). An identical procedure will then be
followed to obtain the metric near BH2 in corotating coord
nates.

A. Buffer-zone coordinate transformation

In this section, a series of coordinate transformations
performed on the metric~2.9! in the buffer zone of BH1 to
bring it to the form~3.24!. Composing these transformation
gives the final transformation from corotating to internal c
ordinates. Throughout this process terms ofO(m2) are
dropped; justification for this will be given at the end of th
section.

Begin with the near-zone metric~2.9! with terms of
O(m2) removed. Restrict attention to the buffer zonem1
!r 1!b since this is where the corotating coordinate syst
and internal coordinate system overlap. Center the coo
3-11
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nate grid on BH1 by shifting the origin to (x,y,z)
5(m2b/m,0,0). This is done by defining a new coordinat

j5x2
m2b

m
. ~4.1!
12401
Next expand the metric in powers of the distance

r 15~j21y21z2!1/2 ~4.2!

to the new origin. The expansion forr 2
21 is
1

r 2
5@~b1j!21y21z2#21/25

1

b
2

j

b2 1
2j22y22z2

2b3 1•••. ~4.3!

Positive powers ofr 1 in the metric components come in the form (r 1 /b)p with integerp.0. Sincer 1!b in the buffer zone,
discard terms ofO@(r 1 /b)3# or higher. This results in the following metric:

ds25dt2@2112m1 /r 11~2m2 /b!~11m2/2m!1~m2 /b3!~2j22y22z2!1~m/b3!~j21y2!#22vydtdj@112m2 /b

12m1 /r 122m2j/b2#12vdtdy$~m2 /m!~b14m112m2!22mb/r 11j~112m1 /r 122m/b!1~m2 /b2!@2m1j2/m

2~11m1 /m!~y21z2!#%1~dj21dy21dz2!@112m1 /r 112m2 /b22m2j/b21~m2 /b3!~2j22y22z2!#. ~4.4!

Now renormalize the time-coordinate by defining

t5 t̀@11~m2 /b!~11m2/2m!#, ~4.5!

and then perform a partial Lorentz transformation by setting

t̀5 t̃ 1~m2v/m!~b14m113m21m2
2/2m!ỹ,

~4.6!
j5 x̃, y5 ỹ, z5 z̃.

In the new coordinates (t̃ ,x̃,ỹ,z̃), the metric~4.4! is

ds25d t̃2@2112m1 / r̃ 1~m2 /b3!~3x̃22 r̃ 2!1~m/b3!~ x̃21 ỹ2!#22vd t̃dx̃$ ỹ@11~m2/2mb!~6m117m2!12m1 / r̃ #

22m2x̃ỹ/b2%12vd t̃dỹ$x̃@11~m2/2mb!~22m113m2!12m1 / r̃ #1~m2 /b2!~3x̃22 ỹ222z̃2!%1~dx̃21dỹ21dz̃2!

3@112m1 / r̃ 12m2 /b22m2x̃/b21~m2 /b3!~3x̃22 r̃ 2!#1~m2 /b!dỹ@~m2 /m12x̃/b!dỹ2~2ỹ/b!dx̃# ~4.7!

where r̃ 5( x̃21 ỹ21 z̃2)1/2 and terms ofO(m2) have been dropped, as is done throughout this section.
Next clean up the spatial part of the metric by putting

t̃ 5 t̂ , x̃5 x̂~12m2 /b!1~m2/2b2!~ x̂21 ŷ22 ẑ2!,
~4.8!

ỹ5 ŷ@12~m2/2mb!~2m113m2!#, z̃5 ẑ~12m2 /b!1~m2 /b2!x̂ẑ.

Transforming the metric~4.7! using Eq.~4.8! results in

ds25d t̂2@2112m1 / r̂ 1~m2 /b3!~3x̂22 r̂ 2!1~m/b3!~ x̂21 ŷ2!#22vd t̂dx̂@ ŷ~11m2 /b12m1 / r̂ !2m2x̂ŷ/b2#

12vd t̂dŷ$x̂@12~m2 /mb!~3m11m2!12m1 / r̂ #1~m2/2b2!~7x̂223ŷ225ẑ2!%12~m2v/b2!ŷẑd t̂dẑ

1~dx̂21dŷ21dẑ2!@112m1 / r̂ 1~m2 /b3!~3x̂22 r̂ 2!# ~4.9!
ta-
the
where r̂ 5( x̂21 ŷ21 ẑ2)1/2.
Focus attention on the terms

2vd t̂$x̂dŷ@12~m2 /mb!~3m11m2!

12m1 / r̂ #2 ŷdx̂~11m2 /b12m1 / r̂ !%
in Eq. ~4.9!. These terms contain information about the ro
tion of the coordinate axes. However, they are not yet in
form of the rotation terms 2V(112m1 / r̂ )d t̂( x̂dŷ2 ŷdx̂)
that result from rotating—at a constant rateV and in an
active sense, i.e., using a pull-back map—the metricds2

5d t̂2(2112m1 / r̂ )1(dx̂21dŷ21dẑ2)(112m1 / r̂ ), which
3-12
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is a fragment of Eq.~4.9!. An additional coordinate transfor
mation is required to bring the former terms into the lat
form. With this goal in mind, look first for a gauge transfo
mation taking the perturbation

g52vd t̂$x̂dŷ@12~m2 /mb!~3m11m2!12m1 / r̂ #

2 ŷdx̂~11m2 /b12m1 / r̂ !% ~4.10!

on a flat background metricds252d t̂21dx̂21dŷ21dẑ2 to
the perturbation

ğ52V~112m1 / r̂ !d t̂~ x̂dŷ2 ŷdx̂!. ~4.11!

In other words, look for a vector fieldh such that

ğ m̂n̂5gm̂n̂22] (m̂hn̂) . ~4.12!

In order to solve Eq.~4.12!, it suffices to considerh with
only one nonzero componenth t̂5h t̂( x̂,ŷ,ẑ). The perturba-
tions ~4.10! and ~4.11! when put in Eq.~4.12! yield

2V ŷ~112m1 / r̂ !5ğ t̂ x̂5g t̂ x̂1]h t̂/] x̂

52v ŷ~11m2 /b12m1 / r̂ !1]h t̂/] x̂,

~4.13!

V x̂~112m1 / r̂ !5ğ t̂ ŷ5g t̂ ŷ1]h t̂/] ŷ

5v x̂@12~m2 /mb!~3m11m2!

12m1 / r̂ #1]h t̂/] ŷ. ~4.14!

These two equations determine the rotation rateV as fol-
lows: the function h t̂( x̂,ŷ,ẑ) must satisfy ]2h t̂/] x̂] ŷ

5]2h t̂/] ŷ] x̂. Taking ]/] ŷ of Eq. ~4.13! and ]/] x̂ of Eq.
~4.14!, equating the mixed partials ofh t̂, and ignoring terms
of O(m2) yields the following equation forV:

V2v@12~m2 /b!~112m1 /m!#5v~11m2 /b!2V,
~4.15!

which has solutionV5v@12m/b1O(e3)#. This is the ro-
tation rate of the second black hole’s tidal field as seen in
first black hole’s local asymptotic rest frame~LARF!; this
value confirms the claim in Sec. III A@see Eq.~3.12!#. With
V in hand, Eqs.~4.13! and ~4.14! now yield

h t̂5~m2v/b!~11m1 /m!x̂ŷ. ~4.16!

Gauge transformations can also be thought of as resu
from infinitesimal coordinate transformations. The coor
12401
r

e

g
-

nate transformation corresponding to the gauge transfor
tion given in Eqs.~4.12! and ~4.16! is

t̂5 ť2~m2v/b!~11m1 /m!x̌y̌,
~4.17!

x̂5 x̌, ŷ5 y̌, ẑ5 ž.

The metric~4.9! expressed in the new coordinates (ť ,x̌,y̌,ž)
is

ds25d ť2@2112m1 / ř 1~m2 /b3!~3x̌22 ř 2!1~m/b3!

3~ x̌21 y̌2!#12V~112m1 / ř !d ť~ x̌dy̌2 y̌dx̌!

1~m2v/b2!d ť@2x̌y̌dx̌1~7x̌223y̌225ž2!dy̌

12y̌ždž#1~dx̌21dy̌21dž2!@112m1 / ř

1~m2 /b3!~3x̌22 ř 2!#, ~4.18!

where ř 5( x̌21 y̌21 ž2)1/2.
The next step is to undo the rotation of the coordin

system. But first some fine-adjustment of coordinates
needed in order to obtain the LARF metric~3.24!. To find
out what is required, the metric~3.24! can be put in coordi-
nates rotating with angular velocityV. It turns out that the
fine-adjustment needed is

ť5 t̄ 1~m2v/2b2!~3x̄22 ȳ22 z̄2!ȳ,
~4.19!

x̌5 x̄, y̌5 ȳ, ž5 z̄.

In the new coordinates (t̄ ,x̄,ȳ,z̄), the metric~4.18! is

ds25d t̄2@2112m1 / r̄ 1~m2 /b3!~3x̄22 r̄ 2!

1~m/b3!~ x̄21 ȳ2!#12V~112m1 / r̄ !d t̄~ x̄dȳ2 ȳdx̄!

14~m2v/b2!d t̄@2 x̄ȳdx̄1~ x̄22 z̄2!dȳ1 ȳz̄dz̄#

1~dx̄21dȳ21dz̄2!@112m1 / r̄ 1~m2 /b3!~3x̄22 r̄ 2!#,

~4.20!

wherer̄ 5( x̄21 ȳ21 z̄2)1/2. Now eliminate the rotation of co-
ordinates by defining

t̄ 5T, x̄5X cosVT1Y sinVT,
~4.21!

ȳ52X sinVT1Y cosVT, z̄5Z.
3-13
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Transforming the metric~4.20! using Eq.~4.21! results in the
LARF metric ~3.24!.

The transformation from corotating post-Newtonian co
dinates (t,x,y,z) to isotropic internal coordinates (T,X,Y,Z)
can now be obtained by composing the transformations~4.1!,
~4.5!, ~4.6!, ~4.8!, ~4.17!, ~4.19!, and ~4.21!. Inverting this
composite map gives the following transformation from
ternal to corotating coordinates:

T5tF12
m2

b S 11
m2

2mD G
2yF m2

Amb
1

m2

b
Am

b S 31
m1

m
1

m2
2

2m2D G
1

m2y

b2 Am

b F S 11
m1

m D j2
1

2b
~3j22y22z2!G ,

X5G cosVT2L sinVT,
~4.22!

Y5G sinVT1L cosVT,

Z5zS 11
m2

b
2

m2j

b2 D ,

where

j5x2
m2b

m
, G5jS 11

m2

b D2
m2

2b2 ~j21y22z2!,

~4.23!

L5yF11
m2

b S 11
m2

2mD G , V5vS 12
m

b D ,

and terms ofO(m2) have been dropped. In terms of th
coordinates (x,y,z),
12401
-

R5~G21L21Z2!1/2 ~4.24!

@cf. Eq. ~3.2!#.
There are two reasons why terms ofO(m2) were dropped

from the metric~2.9! at the beginning of this section. Firs
suppose that such terms were kept and were used to calc
higher-order deformation of the black hole. Since intern
metric components are coupled to each other via the Eins
equations~in particular, the components of a black hole pe
turbation are coupled via the linearized Einstein equation!,
to be fully consistent, terms ofO(m2) would have to be
included in the spatial partgi j of the metric~2.9!. But these
terms are of higher order than first post-Newtonian, and
have not been included in this paper.

Second, black-hole perturbations with asymptotic fo
m2r 1

p/bp12 (p>2) in the buffer zone, which come from
terms ofO(m2) in g00 in Eq. ~2.9!, are actually smaller in the
internal region than the perturbation with asymptotic fo
m2r 1

3/b4 in the buffer zone; the latter perturbation has be
ignored in this paper. Once terms ofO(m2) were dropped in
Eq. ~2.9!, all terms ofO(m2) were consistently discarded i
this section.

B. Internal metric in corotating coordinates

In this section, the transformation~4.22! is applied to the
internal metric~3.23! throughout region I~not just in the
buffer zone!. This puts the internal metric in corotating pos
Newtonian coordinates (t,x,y,z). In order to preserve finite-
ness of the perturbations~3.18!, ~3.19! and ~3.20!, ~3.21! at
the horizon of BH1, all terms must be kept when performi
the transformation. The rotation in Eq.~4.22! can easily be
performed on the metric~3.22! by first defining w5f
2VT and then settingG5R sinu cosw, L5R sinu sinw,
and Z5R cosu. To complete the transformation~4.22!, de-
fine the functionsPab(x,y,z) for a,b50, . . . ,3 to becom-
ponents of the internal metric in coordinates (T,G,L,Z);
write the components as functions of (x,y,z) using Eqs.
~4.22! and ~4.23!. Explicitly, the functionsPab are
P0052S 12m1/2R

11m1/2RD 2

1
m2

b3 S 12
m1

2RD 4

~3G22R2!2
4em2

b3 VGS 12
m1

2RD 2S 11
m1

2RD 4

~2Z22R2!

1V2S 11
m1

2RD 4

~G21L2!H 11
m2

b3 ~3G22R2!F S 11
m1

2RD 4

2
2m1

2

R2 G J , ~4.25!

P015P1052
2em2

b3 S 12
m1

2RD 2S 11
m1

2RD 4

GL2VLS 11
m1

2RD 4H 11
m2

b3 ~3G22R2!F S 11
m1

2RD 4

2
2m1

2

R2 G J ,

P025P205
2em2

b3 S 12
m1

2RD 2S 11
m1

2RD 4

~G22Z2!1VGS 11
m1

2RD 4H 11
m2

b3 ~3G22R2!F S 11
m1

2RD 4

2
2m1

2

R2 G J ,
3-14
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P035P305
2em2

b3 S 12
m1

2RD 2S 11
m1

2RD 4

LZ,

P115S 11
m1

2RD 4H 11
m2

b3 ~3G22R2!F S 11
m1

2RD 4

2
2m1

2

R2 2
2m1

R3 S 11
m1

2

4R2DG2G J ,

P225S 11
m1

2RD 4H 11
m2

b3 ~3G22R2!F S 11
m1

2RD 4

2
2m1

2

R2 2
2m1

R3 S 11
m1

2

4R2DL2G J ,

P335S 11
m1

2RD 4H 11
m2

b3 ~3G22R2!F S 11
m1

2RD 4

2
2m1

2

R2 2
2m1

R3 S 11
m1

2

4R2DZ2G J ,

P125P2152
2m1m2

R3b3 S 11
m1

2RD 4S 11
m1

2

4R2D ~3G22R2!GL,

P135P3152
2m1m2

R3b3 S 11
m1

2RD 4S 11
m1

2

4R2D ~3G22R2!GZ,

P235P3252
2m1m2

R3b3 S 11
m1

2RD 4S 11
m1

2

4R2D ~3G22R2!LZ,

wheree5(m/b)1/2, V5v(12m/b), R5(G21L21Z2)1/2, andG, L, andZ are given in terms of (x,y,z) in Eqs.~4.22! and
~4.23!.

Next define the functionsKr
s(x,y,z) for r,s50, . . . ,3 byKr

05]T/]xr, Kr
15]G/]xr, Kr

25]L/]xr, and Kr
35]Z/]xr,

where (T,G,L,Z) are to be expressed in terms of (t,x,y,z) using Eqs.~4.22! and ~4.23!. Explicitly, the functionsKr
s are

K0
0512

m2

b S 11
m2

2mD , K1
05

em2y

b2 S 11
m1

m
2

3j

b D , ~4.26!

K2
052eFm2

m
1

m2

b S 31
m1

m
1

m2
2

2m2D G1
em2

b2 F S 11
m1

m D j2
1

2b
~3j223y22z2!G ,

K3
05

em2

b3 yz,

K0
150, K1

1511
m2

b
2

m2j

b2 , K2
152

m2y

b2 , K3
15

m2z

b2 ,
124013-15
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K0
250, K1

250, K2
2511

m2

b S 11
m2

2mD , K3
250,

K0
350, K1

352
m2z

b2 , K2
350, K3

3511
m2

b
2

m2j

b2 ,
e
s

o

tio

e

th

ic

m

s
th
a

o
r
r-
.

he
II
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II
I
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on-
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wheree5(m/b)1/2 andj5x2m2b/m.
The metric in region I can now be written in terms of th

functionsPab andKr
s . It is given in corotating coordinate

(t,x,y,z) by

gmn~x,y,z!5 (
a,s50

3

Pas~x,y,z!Km
a~x,y,z!Kn

s~x,y,z!

~4.27!

with Pab andKr
s as defined in Eqs.~4.25! and ~4.26!. Note

that the metric components are explicitly independent
time t. This metric is valid throughout region I~up to the first
black hole’s apparent horizon! and matches~to some finite
order; see below! the post-Newtonian metric~2.9! at r 1

5r 1
in .
Errors in the internal metric~4.27! will only be analyzed

in the weak-gravity buffer zonem1!r 1!b. The largest er-
rors come from inaccuracies in the coordinate transforma
~4.22!. Terms of the form (m2/b2)(r 1 /b)p for integerp>1
have been ignored in Eq.~4.22!. This leads to errorsdgmn

;e4 for r 1&r 1
in .

The match between the internal and post-Newtonian m
rics at r 15r 1

in is not perfect; there are discontinuities@gmn#
in the metric components on that 3-surface. A term of
form m1

3/r 1
3 in the internal metric componentg00 @as given in

Eq. ~4.27!# is not matched in the post-Newtonian metr
componentg00 in Eq. ~2.9!; as a result,@g00#;e3 at r 1

5r 1
in . Similarly, a term of the formm1

2/r 1
2 is not matched in

gi j , so @gi j #;e2. Lastly, a term of the formm1
2/R2 in the

internal-coordinate metric componentg00 in Eq. ~3.23! gives
via a ~partial! Lorentz boost an unmatched term of the for
em1

2/r 1
2 in the internal-metric componentg0i in corotating

coordinates@given in Eq.~4.27!#; so @g0i #;e3.
The internal metric~4.27! contains terms of the form

(m1 /r 1)p(m2r 1
2/b3), p>1, in the buffer zone. These term

represent the first black hole’s multipole moments and
nonlinear interaction of internal and external gravitation
fields. They are ofO(ep14), p>1, in the buffer zone and
have not been matched to the post-Newtonian near-z
metric ~2.9!. At the level of accuracy achieved in this pape
the metric~2.9! need not be modified to include the nea
zone gravitational effects of the black holes’ deformation

C. Metric near the second black hole

An identical procedure can now be followed to obtain t
metric in corotating post-Newtonian coordinates in region
12401
f

n

t-

e

e
l

ne
,

.

However, it is not necessary to repeat all the steps. T
metric can simply be gotten as follows: exchangem1↔m2 in
the internal metric~3.23! and in the transformation~4.22!;
take x→2x and y→2y in Eq. ~4.22!; then transform. In
other words, the metric components in region
@denotedgmn

II (t,x,y,z)# are related to those in region
@gmn

I (t,x,y,z)# by gmn
II (t,x,y,z)5(21)pgmn

I (t,2x,2y,z)
~with m1↔m2), wherep is the number of the indicesm and
n that are equal to 1 or 2.

Define P̄ab to be Pab with m1 and m2 exchanged, and
similarly K̄r

s to be Kr
s with m1↔m2. Then the metric in

region II is given in corotating coordinates (t,x,y,z) by

gmn~x,y,z!5~21!p (
a,s50

3

P̄as~2x,2y,z!

3K̄m
a~2x,2y,z!K̄n

s~2x,2y,z! ~4.28!

wherep is, as above, the number of the indicesm andn that
are equal to 1 or 2. Again, the metric components are exp
itly independent of timet. This metric is valid up to the
second black hole’s apparent horizon and matches~to a finite
order! the post-Newtonian metric~2.9! at r 25r 2

in . Error
analysis for this metric is identical to the analysis above
the metric in region I.

V. RESULTS AND DISCUSSION

The result of this calculation is an approximate solution
Einstein’s equations representing two widely-separated n
rotating black holes in a circular orbit. The metric has be
expressed in a single set of coordinates valid up to the b
holes’ apparent horizons; the coordinate system chose
corotating coordinates (t,x,y,z). In these coordinates, th
metric components are explicitly independent of timet. The
metric is specified in region I by Eq.~4.27!, in region II by
Eq. ~4.28!, in region III by Eq.~2.9!, and in region IV by Eq.
~2.18!. At the boundariesr 15r 1

in , r 25r 2
in , and r 5r out of

these regions, there are discontinuities in the metric com
nents that result from truncation of perturbative expansi
and finite-order matching. The magnitudes of these disco
nuities can be reduced by taking this calculation to hig
orders.

The full 4-metric is summarized below:
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g005

¦

(
m,n50

3

Pmn~x,y,z!K0
m~x,y,z!K0

n~x,y,z! in region I,

(
m,n50

3

P̄mn~2x,2y,z!K̄0
m~2x,2y,z!K̄0

n~2x,2y,z! in region II,

211
2m1

r 1
1

2m2

r 2
22S m1

r 1
1

m2

r 2
D 2

1
3m

b S m2

r 1
1

m1

r 2
D2

m

b S m2

r 1
3 1

m1

r 2
3 D y2

22me2S 1

r 1
1

1

r 2
D27me2S 1

r 1
2

1

r 2
D x

b
1v2S 11

2m1

r 1
1

2m2

r 2
D ~x21y2! in region III,

211
2m

r S 12
m

2bD2
2m2

r 2 1A1
2e2

b
~x cosvr 2y sinvr !B

22e~x sinvr 1y cosvr !D1v2~x21y2!E

1
e4

b2 ~x cosvr 2y sinvr !2N1e2~x sinvr 1y cosvr !2S

2
12me5

r 2b2

dm

m
~x cosvr 2y sinvr !2~x sinvr 1y cosvr ! in region IV,

~5.1!

g0x5

¦

(
m,n50

3

Pmn~x,y,z!K0
m~x,y,z!K1

n~x,y,z! in region I,

2 (
m,n50

3

P̄mn~2x,2y,z!K̄0
m~2x,2y,z!K̄1

n~2x,2y,z! in region II,

2vyS 11
2m1

r 1
1

2m2

r 2
D in region III,

eB sinvr 1bD cosvr 2vEy1
e3

b
~x cosvr 2y sinvr !N sinvr

2eb~x sinvr 1y cosvr !Scosvr

1
6me4

r 2b

dm

m
~x cosvr 2y sinvr !~x cos 2vr 2y sin 2vr ! in region IV,

~5.2!

g0y5

¦

(
m,n50

3

Pmn~x,y,z!K0
m~x,y,z!K2

n~x,y,z! in region I ,

2 (
m,n50

3

P̄mn~2x,2y,z!K̄0
m~2x,2y,z!K̄2

n~2x,2y,z! in region II,

vxS 11
2m1

r 1
1

2m2

r 2
D24meS 1

r 1
2

1

r 2
D in region III,

eB cosvr 2bD sinvr 1vEx1
e3

b
~x cosvr 2y sinvr !N cosvr

1eb~x sinvr 1y cosvr !Ssinvr

2
6me4

r 2b

dm

m
~x cosvr 2y sinvr !~x sin 2vr 1y cos 2vr ! in region IV,

~5.3!

g0z55 (
m,n50

3

Pmn~x,y,z!K0
m~x,y,z!K3

n~x,y,z! in region I,

(
m,n50

3

P̄mn~2x,2y,z!K̄0
m~2x,2y,z!K̄3

n~2x,2y,z! in region II,

0 in regions III and IV,

~5.4!
124013-17
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gxx5

¦

(
m,n50

3

Pmn~x,y,z!K1
m~x,y,z!K1

n~x,y,z! in region I,

(
m,n50

3

P̄mn~2x,2y,z!K̄1
m~2x,2y,z!K̄1

n~2x,2y,z! in region II,

11
2m1

r 1
1

2m2

r 2
in region III,

E1
m2x2

r 4 1e2N sin2vr 1b2Scos2vr 1
6me3

r 2

dm

m
~x cosvr 2y sinvr !sin 2vr in region IV,

~5.5!

gyy5

¦

(
m,n50

3

Pmn~x,y,z!K2
m~x,y,z!K2

n~x,y,z! in region I,

(
m,n50

3

P̄mn~2x,2y,z!K̄2
m~2x,2y,z!K̄2

n~2x,2y,z! in region II,

11
2m1

r 1
1

2m2

r 2
in region III,

E1
m2y2

r 4 1e2N cos2vr 1b2Ssin2vr 2
6me3

r 2

dm

m
~x cosvr 2y sinvr !sin 2vr in region IV,

~5.6!

gzz5

¦

(
m,n50

3

Pmn~x,y,z!K3
m~x,y,z!K3

n~x,y,z! in region I,

(
m,n50

3

P̄mn~2x,2y,z!K̄3
m~2x,2y,z!K̄3

n~2x,2y,z! in region II,

11
2m1

r 1
1

2m2

r 2
in region III,

E1
m2z2

r 4 in region IV,

~5.7!

gxy5

¦

(
m,n50

3

Pmn~x,y,z!K1
m~x,y,z!K2

n~x,y,z! in region I,

(
m,n50

3

P̄mn~2x,2y,z!K̄1
m~2x,2y,z!K̄2

n~2x,2y,z! in region II,

0 in region III,

m2

r 4 xy1
1

2
~e2N2b2S!sin 2vr

1
6me3

r 2

dm

m
~x cosvr 2y sinvr !cos 2vr in region IV,

~5.8!

gxz55
(

m,n50

3

Pmn~x,y,z!K1
m~x,y,z!K3

n~x,y,z! in region I,

2 (
m,n50

3

P̄mn~2x,2y,z!K̄1
m~2x,2y,z!K̄3

n~2x,2y,z! in region II,

0 in region III,

m2

r 4 xz in region IV,

~5.9!
124013-18
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gyz55
(

m,n50

3

Pmn~x,y,z!K2
m~x,y,z!K3

n~x,y,z! in region I,

2 (
m,n50

3

P̄mn~2x,2y,z!K̄2
m~2x,2y,z!K̄3

n~2x,2y,z! in region II,

0 in region III,

m2

r 4 yz in region IV.

~5.10!

In the expressions above,m5m11m2 , m5m1m2 /m, dm5m12m2 , e5(m/b)1/2, v5(m/b3)1/2, r 15@(x2m2b/m)21y2

1z2#1/2, andr 25@(x1m1b/m)21y21z2#1/2. Region I is specified byr 1,(m1b)1/2 and region II byr 2,(m2b)1/2 ~but these
regions do not extend inside the black holes’ apparent horizons!. Region III is specified byr 1.(m1b)1/2, r 2.(m2b)1/2, and
r ,b/2e; and region IV byr .b/2e. The functionsA, B, D, E, N, andS are defined in Eq.~2.19!. The functionsPab andKr

s

are defined in Eqs.~4.25! and~4.26!. The functionsP̄ab andK̄r
s are obtained fromPab andKr

s respectively by exchangingm1

andm2.

The errors and discontinuities in the metric components are summarized in Table I. The discontinuities should be smo
out before initial data are extracted from the metric. In addition, initial data taken should be relaxed numerically to appro
more closely an exact solution of the constraint equations. It is expected that higher-order versions of this calculation
differ by smaller amounts from an exact solution of the Einstein equations.
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TABLE I. Errors and discontinuities in the metric components in corotating coordinates. Numbers denote
orders ine5(m/b)1/2; e.g., 4 denotesO(e4). The last two columns contain normalized errors.

Region I or II disc. at Region III Region IV

r 1&r 1
in r 15r 1

in r 1*r 1
in r 1;b disc. at

or or or and r &r out r 5r out r *r out r;b/e2

r 2&r 2
in r 25r 2

in r 2*r 2
in r 2;b

g00 4 3 3 6 5 5 7 8
g0i 4 3 3 5 5 5 7 8
gi j 4 2 2 4 5 5 7 8
ev
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