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Approximate binary-black-hole metric
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An approximate solution to Einstein’s equations representing two widely separated non-rotating black holes
in a circular orbit is constructed by matching a post-Newtonian metric to two perturbed Schwarzschild metrics.
The spacetime metric is presented in a single coordinate system valid up to the apparent horizons of the black
holes. This metric could be useful in numerical simulations of binary black holes. Initial data extracted from
this metric have the advantages of being linked to the early inspiral phase of the binary system, and of not
containing spurious gravitational waves.

PACS numbd(s): 04.25.Nx, 04.30.Db, 04.76s

I. INTRODUCTION gion. In this paper, the post-Newtonian near-zone metric is
matched to a perturbed Schwarzschild metric in the matching
One of the outstanding issues in gravitational wave re-or buffer zone surrounding each black hole. This yields in-
search is calculating the wave output from the last stages dbrmation on the asymptotic behavior of the Schwarzschild
inspiral of binary black holes. This intermediate binary blackperturbation at large distances from the horizon, and on the
hole problem has been discussed by Brady, Creighton, antbordinate transformation between the two buffer-zone coor-
Thorne[1]. The purpose of this paper is to provide an ap-dinate systems.
proximate four-dimensional binary-black-hole metric from The Schwarzschild perturbation and coordinate transfor-
which initial data can be extracted and evolved numericallynation are not uniquely determined. However, a different
into and through the intermediate binary black hole region. choice of transformation—and hence different form of
The approach | take is based on the work of Man&8$e Schvx_/arzs.child. perturbation—shoul_d still represent 'ghe same
and D’Eath[3,4]. | consider two widely separated non- physical situation. In otheryvords, different per_turbauons that
rotating black holes in a circular orbit. The black holes’ masgMatch to the post-Newtonian near-zone metric are expected
ratio is not restricted—they can have comparable massel0 Pe related via gauge transformations. For the purposes of
However, the masses are assumed to be much smaller thaf> PaPer, Itis suff|C|ent_ to find one trans_formatlon and one
the distance between thems a result spacetime can be chwarzsc_hlld perturbation associated with ea(_:h black hole
divided into four regions, each with its own approximation that _result ina m_atch between the post-Newtoman near-zone
metric and the distorted-black-hole metrics.

scheme to solve Einstein’s equations. There is a strong- . . L -
. : L An approximate spacetime metric is put together by join-
gravity region near each of the black holes which is de- PP P b 9 yJ

. . : ~Ing the regional metrics at some specific 3-surfaces in the
scribed by the Schwarzschild solution plus a perturbationy,»ching zones. The final 4-metric is written in a single co-

due_to the companion’_s tida_\l field._ This_ perturb_ation IS CON-gdinate system valid up tébut not inside the apparent
strained to satisfy the linearized Einstein equations about thgi7ons of the black holes. This metric is useful not only as
Schwarzschild metric. The companion black hole’s electric-

X - : X a source of initial data for numerical evolution, but also as a
type and magnetic-type tidal fields are both taken into aCtheck on the early stages of such an evolution.
count in calculating the perturbation.

. . X L It has been suggested that numerical simulation of binary
Outside the strong-gravity regions but within the neary ek holesBBHs) should be performed in corotating coor-
zone, the metric can be approximated by a post-Newtoniaginateq[1]. For this reason the metric in final form is given

expansion. Further out is the radiation zone which containg, ¢qrotating coordinates. The BBH spacetime can be sliced
outgoing gravitational waves and can be described by a poskyg spatial coordinates chosen in any convenient way when

Minkowski expansion of the metric. _ extracting initial data from the metri¢Asymptotically iner-
There are overlap zones in this spacetime where the ;5 coordinates can be used. for example.

gions described above intersect in pairs. In the overlap zones, |hitial data generated by the method presented in this pa-

two different approximation schemes—one from each of théye have the advantage of being connected to the early in-
two intersecting regions—are both valid. The perturbativegyira| hhase of the BBHs. Detailed gravitational waveforms
expansions produced by the two approximation schemes age,m this early inspiral phase have already been calculated
maiched in the overlap zones using the framework Ofsing post-Newtonian expansions. These waveforms will be
matched asymptotic expansions. The post-Newtonian neagygily jinked to the waveforms obtained by evolving initial
zone metric—taken from[5}—and the radiation-zone a4 extracted from the metric presented here.
metric—taken from6]—already match in their overlap re- |itia| data from this metric have the additional advan-

tages of not containing spurious gravitational waves and of

reliably describing the physical situation of coalescing

Throughout this paper | use geometrized units in whizhk c BBHs. The accuracy of this description can be improved by

=1. taking the calculation in this paper to higher orders.
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In Sec. Il, the near-zone and radiation-zone metrics are m, m,
written down. In Sec. Ill, the first black hole’s tidal defor- X1 (1) =——b(t"), Xa(t')=———b(t) 2.2
mation is calculated. In Sec. IV, the buffer-zone coordinate
transformations are determined, and the distorted-black-holgare
metrics are written in corotating post-Newtonian coordinates.
The full spacetime metric is summarized in Sec. V. b(t")=xX,(t")—xo(t")=b(coswt’, sinwt’,0) (2.3

and
II. NEAR-ZONE AND RADIATION-ZONE METRICS

Blanchet and collaborator§7] and references thergin 0= \/Eg (2.4)
and Will and Wisemai6] have calculated in detail the near- b

zone and radiation-zone gravitational fields of compact bi- ) ) . )

nary systems. The approach taken by Will and Wiseman i& the Keplerian orbital angular velocity. Define
particularly useful here because they use a single coordinate

system—harmonic coordinates—to cover both the near zone = \/: F=(x'2+y'2+2'2)12

and the radiation zone. As a result, expressions for the b’ '
radiation-zone metric components taken frp@h automati-

cally match(to some finite ordgrthe harmonic-coordinate, .

post-Newtonian, near-zone metric components calculated in FA= X =Xal,  Ma= fh

[5]. For this reason | work initially in harmonic coordinates 2.5
(t',x",y",z") with the origin of the spatial coordinates

’
_X _XA

placed at the binary system’s center of mass. | use only the VA:%, va=|Val,

first post-Newtoniar{1PN) metric, not the full 2.5PN metric dt’

given in[5].2 Consistently with this, | put the black holes on

Newtonian trajectories: they are taken to be in circular orbits V=V;—V,=¢€(—sinwt’, coswt’,0),

with Keplerian orbital angular velocities. Moreover, | use the .

post-Newtonian metric for point-like particles; in the nearfor A=1,2. By assumptione<1.

zone, | ignore the black holes’ internal structure. The near-

zone gravitational effects of the black holes’ multipole mo- B. Demarcation of four regions in the BBH spacetime
ments can in principle be computed by matching out to the L : . R
near zone the tidally-distorted Schwarzschild metrics ob- Let us first fix precisely four regions in this binary-black-

tained in this paper. However, these effects are too small tgde spacetime; each Of. these regions will receive a metric
Calculated as an approximate solution to the Einstein equa-

R?Eincluded in this paper; this is discussed further in Se‘Cfions. With such a partition of spacetime in mind, define the

' inner limitsr!"=\/m;b andr}'= \/m,b. These are just con-

venient choices for the inner limits. The important property

A. Binary-system parameters r!" has is that bottr I1n/b—>Q andm, /r{"—0 asm;/b—0.

Label the black holes BH1 and BH2, and le{ andm, Similarlyr'2“./b'—>8u?ndm2/r'2“40 asmy/b—0. Also .define
be their respective masses. Define the outer limitr®"=h/2w=b/2e where A.=m/w is the
characteristic wavelength of gravitational radiation emitted
by the binary system.

2.9 Divide spacetime into four regions that are bounded by
the black holes’ apparent horizons and the surfaces
=r, ro=ry, andr=r°"% (i) the regionr,<r'" (but out-

Denote the harmonic-coordinate trajectories of the blackside the apparent horizon of Bijllabeled region Ifii) the

holes byxh(t') for A=1,2 andj=1,2,3. In other words, regionr,<rz' (but outside the apparent horizon of B2

xh(t') are the spatial coordinates at tirtieof the center of ~labeled region lifiii) the subset of the near zone specified by
attraction of the gravitational field of black hake >y, r;>r3', andr <r°, labeled region IlI; andiv) the
In this section, boldface letters are used to denote spati&egion r>r°“, labeled region IV. The near zone contains

coordinates. For examplea=(X%,X2,X3)=(Xa,Ya,za). egion lll and overlaps with regions | and II; the radiation
The notationa- b is used for the quantity;a'b¥, and|a| is ~ ZOne corresponds to region IV. The buffer zone around black

by definition @-a)2. hole A containg ,=r} and satisfiesna<r,<b. These re-
Denote the black holes’ separatior, —x,| by b. The  gions of spacetime are illustrated in Fig. 1.
circular, Newtonian trajectories of the black holes are

m;m,
m=m;+m,, mM=mi—m,, u= .

C. Near-zone metric in harmonic coordinates

In the near zone, the 1PN harmonic-coordinate metric
%Higher order versions of this calculation will presumably usewith two point-like particles representing the black holes is
higher order post-Newtonian metrics. [5]
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Region IV

Region IIT

FIG. 1. Schematic illustration of the various
regions in the binary-black-hole spacetime. Re-

gions |, Il, 1ll, and IV are demarcated by solid
lines; the buffer zones are bounded by dashed
lines.
2m; 2m, (m; m,\? m3/rs. If bothr,~b andr,~b, thendgy o~ €. Finally, if
Joro' = 1+—1 T oAn T, r<r°U~b/e (so thatr ,~b/e for A=1 and 2, then the error

89010~ €° arises from neglecting the radiation reaction po-
tential. Note that it is reasonable to consider the “absolute”
errorség,,s, in the metric components since the coordinate
system being used is asymptotically inertial and the errors
mmy(1 1 MM are only calculated in regions of weak gravity where devia-
b \r; r, + b3 (Mm=ny), tions from a flat metric are small. .
A similar analysis forgy;. yields 8ggi:~ € if ra=r\

m; . i for A=1 or 2, 8gq/i:~e€° if both r;~b and r,~b, and
Yorir=—4 Hvl“LEUZ ’ (2.6 8o~ € if r=r°UL Lastly, 8g;/; ~€? if ra=ry for A
=1 or 2 (this comes from neglecting a term of the form

my m;
+H[“U%_(nl'Vl)z]‘FE[“Ug_(nz'Vz)z]

-2

2m1 2m2 mi/ri in gi/j/), 5gi'j’~64 if both I‘1~b and r2~b, and
gi’j’zéij 1+T+? . 5gi/j/~€5 if rerUt.
This metric presumably differs in the near zone by a small D. Near-zone metric in corotating coordinates

amount from an exact solution to the Einstein equations rep- The meric(2.6) is transformed to corotating coordinates
resenting binary black holes. | take the neglected terms in th& x,y,2) defined by

2.5PN metric[5] to be an estimate of the errors in the 1PN

metric (2.6). t'=t, x'=xcoswt—ysinwt,
The largest neglected terms iy are of the form 2.7
m3/b?r,, m3/bra, ma/r3, m®/b3 andem®r?/b%. (The last y'=xsinwt+ycosot, z'=z

term represents a radiation reaction potentiagt us com- )

pute the orders of magnitude of these terms at various placé8 erms of the new coordinates,

in region_ . If ra=r\~be (here and henceforth ~” r=(x2+y2+22)2 2.9
means “is of the order of” anda=b meansa>b and a

~b) for A=1 or 2, then the error igy/ o (denoteddgy o) Putting the expression®.2—(2.5) in Eq. (2.6) and trans-
is of O(€% and comes from neglecting a term of the form forming to corotating coordinates gives

Zml 2m2 ml mz 2 3,U, m2 ml M m2 ml 1 1 1 1 X
2| 2 L, 2 el e _~ 2_ ol — 4 T 2l -\ 2
ds? dt[ 1+ > + > 2(r1+ > b \r, 77, b Tf+7§ y2—2ue Irl+r2 Tuwe T nlb
) 2my 2mp| o, 2m;  2m, 1 1 2m; 2m,
+to| 1+ —+—|(X*+y°) |+ 20| 1+ —+ —|dt(xdy—ydx) —8ue| — —|dtdy+| 1+ —+——
51 ] ry Iz r{ o s )
X (dx?+dy?+dz?), (2.9

where, in terms of the new coordinates, the quantitieare
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ri=[(x—myb/m)2+y?+ 2722
ro=[(x+mib/m)2+y?+ 2722 (2.10

This is the final form of the metric in region ll{Note, however, that this metric is valid throughout the near zone, which
includes the buffer zones around the black hglegsemains to specify the metric in regions I, Il, and IV. | postpone until Sec.
Il F discussion of the errorég,,, in the metric components in the new, rotating coordinate systexgy(z).

E. Radiation-zone metric in harmonic coordinates
The radiation-zone metric can be extracted fri@h In that paper, a potentizhi"'”' is defined by
he'v =g — (=g Vi, (213
where 17”'”'=diag(—1,1,1,1),gM,V, is the spacetime metric, argl =det(g,,/). Equation(5.5 of [6] gives h#'*" in the

radiation zone in harmonic coordinatas,k’,y’,z’) for a system of several bodies. After correcting a typo in that eqution,
| specialize to a system of two bodies of massgsandm, in a circular orbit specified by Eq$2.2—(2.5). This yield$

0’0’ 4m 7Tm* 1 2[1 .
ho 2t Xy 2 ) =——+ 7 +2| Q") | — 5| -Q™ ()|
)i Jijk
1. . 2(1 .. ol
ho" (t’,x’,y’,Z’)=—2{;[Q”(U’)—e”'J'(U’)] +3 ;[Q”k(U’)—26'k'J”(U’)]J , (212
J

ik

. m: 2. 2(1 .. Lo

hi'l (t,,X,,y’,Z')I = nr|n/J+FQ|J(ur)_§ ?[Qljk(u/)_46(||kIJI\J)(u/)]
K

where
m=m(1—u/2b), u'=t'—r, n'=x'Ir (2.13
and
2 2
Q=2 maxpxh=pub'bl, QU= muxiyxhxi=—u(sm/m)b'bibk,
A=1 A=1
2 2 (214)
J=2 mue™xol=pwemblo™  Ji= mue'mxhoTxh=— u(Sm/m)e'™b'v™bl.
A=1 A=1

Putting the expression®.14) in Eq. (2.12 and using Eqs(2.2—(2.5) gives

., Am Tm? 2 2m 6 1 2u Sm(7m
o'0" _ - w2 (n'. 24 ’. ’. - ’. 2_ K2 AR N ’. 2(n'.
h**~ = ; +_r2 + ; 2(n"-v) ba(n b) +r(n b)(n v)+r2[3(n b)c—b]{ + . b3(n b)<(n’-v)
’ 3 1 ’ 6m ’ 2 ’ 2 m 3 l 2 ’ 2 1 ’ 2 ’ 2
—2(n"-v) +F(n -b) F(n -b)c=12(n’-v) Y +r—2(n -V)[b==5(n"-b) ]+r—3(n -b)[3b“—=5(n"-b)"]},
o'i’ 4'“ ’ 1 ’ i m ’ i 2'“ om m ’ ' i ’ i ’ 2.0
h = (n ~v)+F(n ‘b)|v —F(n -b)b i —?(n -b)[3(n"-b)v'+4(n"-v)b']+2(n"-v)“v
1 . 3m .om . 1 .
+o 6(n’~b)(n’-v)v'—F(n’-b)zb'+Bb' +r—2[3(n’-b)2—b2]v' , (2.15
i1 iy i M ] 26 Om O by ib | (0 v ~(n'-b) || 2 bibi— 2010
r2 r b3 r m|b3 r b3 ’

3The term 4n/r’ in the expression foh® should instead bem/r’.
“Note that | have replaced in Eq. (5.5) of [6] by r.
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wherev andb are evaluated at the retarded time=t'—r.
The metricg,,,,» can be gotten from Eq2.15 as follows: from Eq(2.11) we have

g/ﬂv'=(_gl)7l/2(7],u'v'_hﬂ'v'). (216)

Take the determinant of both sides of E8.16); this yieldsg’ =det(»**'—h*'*"). Sog’ can be calculated onde*'”’ is
known, and therg“ * can be gotten from Ed2.16). Inverting the matrixg“ " gives the spacetime metrig, . .

When performing these calculations, | keep all terms of the fortnP?b =31~ P2 =P for integerp>0. | also keep—at
each order im—all terms that are of lower order im/b than this, and throw away terms of higher ordemnifb. This means
in particular that no terms dd(r ~°) are kept. This scheme of organizing terms is consistent with the ordering of terms in Eq.
(5.5 of [6].

The result of these calculations is the following radiation-zone metric in harmonic coordinates:

2m  2m? ©
:

2(n’-v)%— i—T(n’ -b)2+ ?(n’-b)(n’ V) + %[3(n’ : b)2—b2]]

om
L mom
rm

m

7m/b22/ 2
77 (0'-b)2=2(n" V)2~ ¢

(n"-v)

2 ’ 3m ’ 2 ’ 2 m
+F(n -b) F(n -b)c—6(n’-v) —E

+ r3—2(n' V)[b?=5(n"-b)?]+ r%(n’ -b)[3b?—5(n’- b)z]],

1
(n"-v)+ F(n“b)

i_m ’. i
v'= p3(n’-b)b

4p
Jorir ==

1
+2[3(n"-b)?—b?]

21 dm 3m 6
+ TMFUZ(W v)2— F(n’-b)“r F(n’-b)(n’ V)

m

4m
—Hg(n’-b)(n’-v)+—

i
+
v rb

3 .
1—b7(n’~b)2Hb'),

m? 2m 6 1
girjr=5ij 1+T+T2-+T 2(n’-v)2—E3—(n’~b)2+F(n’-b)(n’~v)+r—z[3(n’-b)2—b2]

/J’Csm ’ 7m /b2 2 ’ 2 m 6 rb m /b2 2 ’ 2 3 ’ b2 5 Ib2
| (V)53 (n-D)7=2(n"-v)%+ =+ —(n"-b) 15 (n"-D)"=2(n"- V)% |+ (n"-v)[b"=5(n"-b)]

1 m> - 4w/  m .\ 2uém(6m .

—(n’. 2_ 1. h)2  Alintia T i Khihi -l (n. (in)
+r3(n b)[3bs—5(n"-b)“]{ | + r2n n'l+ v b3bb + ; m[bg(n b)v'b

1 m . . o

+ (n’-v)+r(n’-b) (Fb'bj—Zv'vJ)], (2.17)

wherev andb are evaluated at the retarded time=t" —r.

The errorsdg,,,» in these metric components in region IV can be estimated by computing the orders of magnitude of
neglected terms, which are of the form® P?b~3(1=P2r =P(m/b)"2 for integersp>0 andn>0. These terms include
m®/b?r, em?/r?, m?b/r3, etc. This givessy,,, ~e€’ for r=r°"~b/e, 59, ~€® for r~b/e*>r°", and 8g,,, <e® for
r>b/ €.

F. Radiation-zone metric in corotating coordinates

Substituting the expression®.2—(2.5 into the metric(2.17 and transforming this metric to corotating coordinates
(t,x,y,z) [defined in Eq(2.7)] gives
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b

4 5
€ ) 5 o ) 12u€e> 6m ) o
+F(xc03wr—ysmwr) N+ e“(X Sinwr +Yy coswr) S—Wﬁ(xcosm—ysmwr) (xsinwr +y coswr)

M) 2m? 2€?

2m
d52=dt2[—1+ T( 1-op| =~z +A+ (X coswr —y sinwr)B—2e(x sinwr +Yy cosor)D + w?(x?+y?)E

3

+2dt| e[ sin(wr)dx+coq wr)dy]B+b[ cog wr)dx—sin(wr)dy]D + o(xdy—ydx) E+ %(x Coswr —Yy sSinwr)

6ue* 6m
X[sin(wr)dx+cog wr)dy]N—eb(X sinwr +Yy coswr)[ cof wr)dx—sin(wr)dy]S+ % F(X COoSwr —YySinwr)

m2
X[ (X €Os 2wr —y sin 2wr )dx— (X sin 2wr +y cos 2vr)dy] | + E(dx?+dy?+dZ?) + —7 (xdx+ydy+ zd2)?

+ €[ sin(wr )dx+ cog wr)dy]?N+b?[ cog wr )dx—sin(wr )dy]?S

12ue® 5m _ _ .
+ 7 W(X coswr —Yy sinwr)[coq or)dx—sin(wr)dy][sin(wr)dx+cog wr)dy] (2.18

where

6be
A= :L—g 2€7[(x sinwr +Yy coswr )?— (X coswr —y sinwr)?]+ T(X Sinwr 4y coswr ) (X coswr —y Sinwr)

2

. s o w ém (b3 b%e
+r—2[3(x005wr—y3|nwr) —re]t+ =

R r—g(X coswr —y sinwr)[3r?—5(x coswr —y sinwr)?]+ 7

+

2m
X (X sinwr +y coswr)[r2—5(x coswr —y sinwr)?]+ ——(xcosor —y sinwr)[3(x coswr —y sinwr)?

—6(X Sinwr +y coswr)?—r?]+ e(x sinwr +y coswr)[ 7(X cosor —y sinwr )2 —2(x sinwr+yc05wr)2—r2]],

b

4
e(Xsinwr+Yy coswr)+ F(X COSwr —Yy Sinwr)

§
B=——»
r2

2n 6m
+ r—‘; F[ €’[2(x sinwr +y coswr)?

6be 2
—3(x coswr —y sinwr)?]+ T(X Sinwr +Yy coswr ) (X coOSwr —y sinwr )+ r—2[3(x COSwr—ysinwr)z—rz]],

2ue’ (2 _ 1 6m(4e _ _
D=r—2 E(xcosm—ysmwr)—rﬁ F(xcosm—ysmwr)(xsmwr+y003wr)

1 .
+ ~[3(x cosor —ysmwr)z—rz]J )

2m i 2ue® Smlb _ _
E=1+—|1- 5|+ =5 tA+ —— — | =(XcoSwr —y sinwr) + e(x Sinwr +y coswr) |,
r 2b r r m|r
4u omie b .
N:T 1—? F(xsmwr+ycos<ur)+r—z(xcosw—ysmwr) ,

€ 1
B(X Sinwr +Yy coswr) + F(X COSwr —Yy Sinwr)

2ue’( 2 16m
rb b r

], (2.19
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ande=(m/b)*?, w=(m/b% 2 This is the final form of the The region these coordinates cover will be called the internal
metric in region V. region; it contains region | in particular.

It is now necessary to evaluate the errdig,, in the The first step in matching the near-zone met@i®) to the
metric components in the corotating coordinate systeninternal metridwhich is the Schwarzschild metri8.2) plus
(t,x,y,2). Since this coordinate system is not asymptoticallytidal perturbationkis to write the metric(2.9) in internal
inertial, it no longer makes sense to compute absolute errorsoordinates. Then the near-zone metric and the internal met-
The rotation of the coordinates introduces termsOdfor) ric are both expanded in positive powersnef/R andR/b in
and O[ (wr)?] in ggo and terms ofO(wr) in go;. For this  the buffer zone. Finally, corresponding terms in the two
reason, | define the “normalized” errorsAg,, asymptotic expansions are equated. The near-zone metric de-
= 89oo/ (wr)?, Agoi=69ei/wr, and Ag;;=8g;; in region termines in this way the asymptotic form of the tidal pertur-
IV. It follows thatAg,,,~ €’ forr=r°"'~b/e, Ag,,~€®for  bations on BH1. These perturbations are further constrained
r~ble’>rev, andAg,,,< €2 for r>b/ €. to solve the linearized Einstein equations about the

In region llI, wr is less than Xand in the buffer zones, Schwarzschild metri¢3.1) and to be finite at the horizoR
wr<1). So rotation of the coordinates is not important in =my/2.
analyzing errors in the metri@.9) in region IlI. | continue to The asymptotic form of the Schwarzschild perturbations
use absolute errors in that region. The errégg,, in the in internal coordinates can be determined—independently of
metric component$2.9) in corotating coordinates in region the matching procedure described above—by calculating the
Il are the same as the errors in harmonic coordinéges electric- and magnetic-type tidal fields of BH2 in the buffer
Sec. 10: (i) 89go~€®, 8ggi~ €, and 5gij~62 if rAzriA” zone surrounding BH1. Once this asymptotic form is known,
for A=1 or 2;(ii) 8gos~ €®, 5go;~ €°, and 5g”~64 if both  the matching pro_cedure_ can be usgd to con_strain the coordi-
r;~b andr,~b; and(iii) 8g,,~ €5 if r=rout nate transformation taking corotating coordinatex,fy/,z)

Since the analysis by Will and Wisem#6] of compact t0 internal coordinatesTX,Y,Z). This is the approach to
binary systems uses a single coordinate chart to cover bofatching taken in this paper. In the next two sections, |
the near and radiation zones, the near-zone mér® au-  calculate the second black hole’s tidal fields and the pertur-
tomatically matchegto some finite order; see belpvthe  bations they induce on the first black hole.
radiation-zone metri€2.18 atr =r°", The match is not per-
fect because | have truncated the relevant perturbative expan-
sions at finite order. As a result, there are discontinuities in
the metric components at=r°"!, The orders of magnitude Thorne and Hartld8] have analyzed the motion of an
of these discontinuities can be estimated as follows: first exisolated black hole in an arbitrary surrounding spacetime.
pandr,* in powers ofb/r for r>b and substitute this ex- They define and discuss the black hole’s local asymptotic
pansion in Eq(2.9); then expand Eq2.18) in powers ofwr rest frame(LARF). In the LARF of BH1, the metric can be
for r<r°Ut finally, compare the two. The result is that the €xpanded in powers of the black hole’s massas follows?

A. Tidal fields of the companion black hole

discontinuities ing,,, denoted[g,,], are[g,,]~€> atr
_ out G [90] [9,.0] g=99+mg®P+mig@+.... (3.3
lll. TIDAL DEFORMATION OF THE FIRST BLACK Here the metrig(®) represents the external universe without
HOLE BH1; the rest of the terms represent the black hole’s internal

gravitational field and the nonlinear interaction between in-

The metric(2.9) is valid not only in region Il but also in ) ) . )
the buffer zones around the black holes. The next step is t mal and ex'terrcl)al fields. In this section, I will focus on the
match this metric to a tidally distorted black-hole metric in thernal metrigg‘® ar}d use .'t to congtraln internal pgrturba-
tions. Throughout this section and in the rest of this paper,

the buffer zone around BH1. There are two coordinate sys- . .
4 boldface letters denote spacetime tensors of all rénktid-

tems which overlap in the buffer zone. The first is the coro-;
tating post-Newtonian coordinate systetyx(y,z) defined in ing 4-vectors. . L
Eq. (2.7). The second—to be called the internal coordinate . In the case of binary black holes, the external metric is

system—covers the strong-gravity region near the first blacl§Irnply that of a single black hole; it is the metric of the

hole and is valid from the black hole’s apparent horizon upcompanion black hole BH2 of mass,. This metric must be

into (and through the buffer zone. The internal coordinates expressed in LARF coordinates. With this goal in mind, con-

are chosen to be isotropic coordinatd@sX,Y,Z) in which sider first a freely-falling observer in a circular, equatorial
the unperturbed Schwarzschild metric is orbit around a Kerr black hole of mass,. (I will later

specialize to a non-rotating black hgl@he Kerr black hole

1-my/2R\? my | 4 represents BH2 while the observer's local Lorentz frame
ds’=— m) T2+(1+ﬁ (dX?+dY?+dZ?), (same as proper reference frantepresents the LARF of
My BH1.
(3.0
where

SThis expansion is written in Eq2.5) of [8]; | have substituted
R=(X2+Y2+27?)12 (3.2 my for M in that equation.
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The metric near the observer’s world line is determined

by the Kerr black hole’s electric-type and magnetic-type
tidal fields as seen in the observer’'s local Lorentz frame

These tidal fields can be evaluated by taking components q

the Kerr spacetime’s Weyl tens@ in a parallel-propagated
orthonormal tetrad along the observer’s world line. The vec

PHYSICAL REVIEW D 61 124013

mo
N
f

IS the (exac} rotation rate of the black hole’s tidal field as
seen in the local Lorentz frame. The quaniityis given by

Q (3.7

tors in this tetrad form the coordinate basis of the local Lor-

entz frame at the location of the geodesic orbit.

The electric-type tidal field as seen by such an observer

has been calculated by Fishbdréd and Marck[10]. Marck

w vm,/d+ald

d (1-3m,/dF2aym,/d%) 2’

(3.8

has computed a parallel-propagated orthonormal tetra@heremza is the black hole’s angular momentum. The up-

(No,N1,N,N3) along arbitrary geodesics of the Kerr space-

time, with Ay equal to the 4-velocity of the geodesic. He

obtains the electric-type tidal field by evaluating
ROin:C(AO!)\i ,ho,)\j). (34)

| specialize his tetrad to circular, equatorial geodesics;

also label the tetrad vectotand hence coordinate ayedif-

ferently. Initially (that is, at proper timg=0), | choose\;

to be radially outwardin Boyer-Lindquist coordinates A\,

is chosen so that the projectionsXyf and\, on a constant-

Boyer-Lindquist-timet surface are parallel; anN; is then

chosen to give X1,\y,\3) positive (i.e., right-handeyori-

entation. With this choice of tetrad, | obtain the magnetic-

type tidal field using Marck’s work by evaluating

(3.9

The results of the calculatior{8.4) and(3.5) with the above
choice of tetrad are

ROijk: C(AO 1Ai 1AJ vhk)'

m, 2 _
ROlOlz? 1-3( 1+ ? CO§Q y

m 2 _
ROZOZZEg[l_g 1+ dT) ssz s

m, 3?2
Rosof? 1+ a7 )

3m, 2 -

Ro10= Roz01= — F 1+ r cosO)7sinQ7,
Ro117= —Ro121= Roz2s= — Rosao

3m,W 2\12

= " 1+ ?> cosO) 7,

Ro217= — Ro221= Rosz1= — Rosis

2

7]

12

3m2W .
= sinQ 7,

d4

1+ —5

g (3.6)

and the rest of the Weyl-tensor components are zero. Here
is proper time along the geodesin; is the mass of the Kerr
black hole,d is the Boyer-Lindquist radial coordinate of the
circular, equatorial orbit, and

per sign in Eq(3.8) is for a retrograde orbit while the lower
one is for a direct or prograde orbit.

Notice that ford>m,, the electric- and magnetic-type
tidal field components af=0 are simply related via a Lor-
entz boost with low velocity i, /d)¥%. For example,

I
ROllé 7=0" (m2 /d)llz[ R0101+ R1212-|T=O

— (M, /d)Y4 2Rp101+ Rozoal 70

(3.9

to lowest order irm,/d. This fact will be used later in this
section.

In the local Lorentz frame, the spacetime metric can be
written as an expansion in powers of distariRefrom the
observer's geodesic world lind1]. The two types of tidal
field (3.4) and(3.5 determine the metric up to and including
terms of O(R 2). After exploiting some gauge freedofsee
Sec. VA2 of[12] and Eg.(2.7) of [8]), the metric can be
written in local coordinates® X,), Z) as

Joo= — 1= Rpioj( DX X1+ O(R3),

2 )
90i:_§ROjik(T)X'Xk+O(R3), (3.10

0ij = 8ij[ 1~ Rokom( D XX ™+ O(R 3),

where R=(X?+ Y%+ 2?)2 Substituting the expressions
(3.6) in Eqg. (3.10 gives

2

1+ —

1422/ 3
e d

Joo

)(Xcos(_lTersin(_n)z—Rz

3W?
dZ

-

2mWw w?

Qo/v:T(lﬁLF

172 .
) [(2%2—-Y?)sinQT

—Xycosﬁﬂ,

(W
1+

2m,W 2

d4

oy=

12 .
F) [(XZ—ZZ)COSQT

+)cysin57],
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12 B o whereR=(X?+Y?+Z7?)? as defined in Eq(3.2).

Joz= —4<1+ ?) (YcosQYT— XsinQ7) Z, The metric(3.13 is still not applicable to binary black
d holes since the observer was taken to be masfilesee are

no factors ofm; in Eq. (3.13]. This can be fixed easily. As

2 R . .
14 m2{3(1+ w )(XcosQT+yS|nQ7)2 mentioned above, the factors ofg/b)¥? in gy in Eq.

B (3.13 arise from a Lorentz boost with low velocity
) (m,/b)Y2. But the correctNewtonian relative velocity be-
_R2_ 31/\2/ Z2 3.1n  tween the black holes is=[(m,+ m,)/b]*2. So | replace
d the factors of (n,/b)*? in Eq. (3.13 by (m/b)¥? The re-

sulting metric includes the second black hole’s tidal fields

. . 2
up to and including terms dD(R ). but does not include the first black hole’s gravitational field:

The rotation rate is only correct for test-particle orbits
and is exact in that case. The correct rotation fatef the
second black hole’s tidal field—measured in a local inertial
frame in the first black hole’s LARF—is actually determined
by the post-Newtonian metri@.9) and by the requirements
that (i) this metric match the LARF metriggiven in Eq.
(3.29) in Sec. lll B below; and (ii) the LARF coordinate 2m2 N
system be non-rotating relative to local inertial frames. The [(Z —Y9)sinQT—XYcosQT],
rotation rate() is calculated in Sec. IV A by transforming the
metric (2.9) to internal coordinates and requiring a match to

mo .
Joo=—1+ T3 [3(X cosQT+YsinQT)?—R?],

the LARF metric(3.24). There it will be seen that the rota- 2m, m ., )
tion rate i$ Jov= 3\ pL(X*~Z%)cosT+XYsinQT],
_ M 3
Q=w|1--+0(e)|. (3.12
b 2m2

\[(Y cosQT—XsinQT)Z,

Note that post-Newtonian corrections to the orbital angular
velocity  of O(e?w) have not been included in this paper.
The metric(3.11) is valid for all radii d which allow a

circular, equatorial, geodesic orbit. To apply E8.11) to the gij=35;{ 1+ m_g[g(x cosQT+Y sinQT)2—R?]}.
situation of widely-separated, non-rotating, binary black b
holes, | specialize to a Schwarzschild black hole by setting (3.19

a=0 and take the limit of smalh,/d, keeping only lowest-

order terms inm,/d. [In particular, | replaceV/d with  |n the buffer zone around BH1, this metric provides the
(m,/d)¥2] I then replaced with b, Q with Q, and local asymptotic form of the perturbation on BH1.

coordinates 7, X, ), Z) with internal coordinatesT,X,Y,Z)

[which are described above E@®.1)]. The result is B. Schwarzschild perturbation

The next stage is to solve the linearized Einstein equa-
tions (LEEs) about the Schwarzschild metric for a perturba-
tion which is finite at the horizoR=m,/2 and asymptotes to

m; .
Joo= — 1+ 3 [3(X cosQT+Y sinQT)?—R?],

2my fmp the form (3.14 as R/m;—. For ease in dealing with the
Gox= 3\ (7~ Y)sinQT—XYcosQT], LEEs, | transform to spherical, isotropic, internal coordinates
(T,R,6,¢) by letting
Jov= 2_r22 E[(Xz—zz)cosQTJr XYsinQT] X=Rsindcos¢, Y=Rsinfsingy, Z=Rcosé.
b b ' (3.19
2m, /m, ) . - .
Joz="p3 F(Y cosQT—XsinQT)Z, The unperturbed Schwarzschild metric in these coordinates
is
gi' 5 [1"’ b3 [3(XCOSQT+YSIHQT RZ] 1_m1/2R 2 , 4 5 ,
ds?=—|———=| dT?+| 1+ [dR?+R
(3.13 1+my/2R
X (d 6%+ sirfod ¢?)]. (3.1
5This rotation rate can also be calculated by looking at geodetic
precession of parallel-propagated vectors in the LARS]. The metric(3.14) in these coordinates is
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the end of the previous paragrapfihis yields the following
solution for the radial factors$,(R), f,(R), and f3(R) in

ds?’= —dT?+ dR?+ R?(d6?+ sirf 0d ¢?)

3

m-R3 /m ; . ; i
4 ;3 \/%dT[cosesin(d)—QT)de isotropic coordinates:
+sin# cog26)cog p—QT)d m;\4
g26)cos ¢~ QT)dg] =1 M)
m,R? 2R
2 ; 2 2
+— (3 sirfg cof(¢—QT)—1][dT?>+dR
204 P21 i 2 my |2 m, |8
+R2(d6?+sirod 42 . (3.17) fz(R):(l_z_Fz) (1+ z_é) | (3.19
The linearity of the LEEs allows me to look separately for
solutions corresponding to the electric-type and magnetic-
type tidal fields. First | look for a perturbation;=g—gg m,\ 4 m;\* 2m§
(whereg; is the unperturbed Schwarzschild metric anis fa(R)={1+50] || 1+ 58] ~ R

the full metric including the perturbatipf BH1 which cor-
responds to the electric-type tidal field of BH2 and is of the

form Next | look for a perturbatiorh,=g—gs of BH1 corre-
MR sponding to the magnetic-type tidal field of BH2 and of the
h,= ;3 [3sirf6co(d—QT)—1][f,(R)dT? form

+f,(R)dR?+ f3(R)R?(d 6%+ sirfad ¢?)], (3.18 4m2\ﬁ
_ 3 :

as suggested by E(.17). In this notationdT, dR, d#, and 2 b® bR F(R)dTLcosfsin(¢—{2T)dd
d¢ are coordinate one-forms ardiT?> denotes the tensor
productd T®dT. The functionsf,, f,, andf; are to be de-
termined by solving the LEEs with the following boundary
conditions: (i) f1(R), f»(R), andf;(R) are required to ap-
proach 1 afk/m;— o so that the perturbatiof3.18 matches
the electric-type tidal field in Eq(3.17); and (ii) hy is re-
quired to be finite aR=m/2.

Consider solving the LEEs order by order ia

+sin#cos 20 cog p—OT)dg], (3.20

as suggested by E@3.17). The functionF is to be deter-
mined by solving the LEEs with the following boundary con-
ditions: (i) F(R)—1 asR/m;—~ so that the perturbation
(3.20 matches the magnetic-type tidal field in E&.17);

B Vo - ol and (ii) h, finite atR=m,/2. As was done foh;, time de-
=(m/b)™. Time derlvastlyes of the components bf pro-  hendence is ignored ih, since time derivatives produce
duce factors ofn; {1~ ¢ in the LEEs and can thus be ne- higher-order terms. In the Regge-Wheeler classificatipn,
glected. A solution forh, can then be found using the 53 superposition of stationary odd-parity modes with angu-
Regge-Wheeler formalisni14] for analysis of stationary |ar nymberd =2 andm=—1,1. The general solution of the
Schwarzschild perturbations. Regge and Wheeler decompos$ggs for stationary odd-parity modes that are finite at the
perturbations into even- and odd-parity modes and analyzgqizon and havé=2 is given in Schwarzschild coordinates
them in a particular gauge chosen to simplify computations;, Eq. (39) of [14]. This solution is only determined up to a
In their classificationh, is a superposition of staficeven- multiplicative constant. The particular cdse? is easily ob-
parity modes with angular numbets=2 andm=—-2,0,2.  (5ined from the general solution, and is given in E&y10 of
The general solution of the LEEs for static even-parity[3] for examplé® After transforming this solution to isotro-
modes with|=2 is well-known in Schwarzschild coordi- pic coordinates, the multiplicative constant is determined by
nates and is given in Sec. IV pt5], for example. A particu-  jmposing the boundary conditiorti) [given below Eq.

lar solution withl =2 that is finite at the black hole’s horizon (3 20)]. This yields the following solution for the radial fac-
and contains an arbitrary multiplicative constant is easily obyo; F(R) in isotropic coordinates:

tained from the general solution, and is given in E@s5)
and(6.7) of [3], for examplé® After transforming this solu-
tion to isotropic coordinates, the multiplicative constant is
determined by imposing the boundary condition(given at

(g e
FRI=|1- 52 |1+ 58] - (3.20

Time dependence in Eq3.18 is to be ignored, as explained
above.
8The notation in Sec. VI of3] may be confusingR there denotes

The metric in the internal region near BH1 is now com-
plete. It is given by the Schwarzschild metf® 16 plus the
perturbations(3.18 and (3.20 with radial factors given in

a dimensionless quantity obtained from the Schwarzschild radiaEQs. (3.19 and (3.21); in other words,g=gs+h;+h,. In

coordinaterg by R=r /M where M—in my notationm;—is the
mass of the black hole being perturbed.

spherical isotropic coordinate3 (R, 6, ¢), this internal met-
ric is
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m1 ml)
b\™ 2R

[3sirfdcos(p—OT)— 1]{ ( 1- —) dT?

1-m,/2R
1+my/2R

my
+ —
! 2R

dszz_( ) dT2+ 1+— [dR2+R2(d02+smzt9d¢2)]— Rng

2
X [cos@sin(¢—QT)do+sind cog26)cog p—QT)dp]+ m;?

m; 2 m\® 4 my\4 2m? I ,
+ l_ﬁ 1+ﬁ dR°+ 1+ﬁ 1+ SRl T RZ R(d6 +S|n20d¢) ) - (3.22
In isotropic coordinatesT,X,Y,Z), this metric is
__(AomiR)E m 1- M) 13X cosT+Y sinT)2— R?
900=~| T5mzr) T B3| 17 2R/ [30Xc0s sinfT)"= Rl
2m2\/ﬁlm121m422Y2_mXY QT
9ox=p7 Vp| 1 3R/ |11 3R] [(Z7=Y)sinQT—XYcosQT],
_2mp [mf, _m)® 14 ' X2—72)cosQT+XYsinQT 3.2
9v=57 Vpl1 3R 5r) L )cos sinQT], (3.23
—szz My M) 14 ‘ Y cosQT—XsinQT)Z,
Joz= b b1 3R +2R (Yco sinQT)
1) m, : 9 =2 m\4 2mj
gij: 1+ﬁ +Eg[3(XCOSQT+YS|nQT) —R] 1+ﬁ —ﬁz— 5”

2m, . m3 | XX
"R\ R )

Expanding the component8.23 in positive powers of
m, /R and R/b in the buffer zonem;<R<b and keeping
only lowest-order terms yields the local-asymptotic-rest-

frame metric:

mq

mo .
Joo= —1+ =+ {3[3(X cosQT+Y sinQT)?—R?],

2m2
[(Z2 Y?)sinQT—XY cosQT],

2m,

Joy= T\[[(xz 72)cosQT+XYsinQT],  (3.24

2m2

\[(Y cosQT—XsinQT)Z,

2m; m,
1+ —+ F[S(X cosQT

gij = Gij R

+YsinQT)?— RZ]].

This metric includes the first black hole{sveak gravita-

tional field as well as the second black hole’s tidal fields.

IV. DISTORTED-BLACK-HOLE METRICS
IN COROTATING COORDINATES

The post-Newtonian metri€2.9), when expressed in in-
ternal coordinatesT(,X,Y,Z) in the buffer zone around BH1,
must take the forni3.24). The next step is to find explicitly
the coordinate transformation in the buffer zone taking coro-
tating post-Newtonian coordinates to these internal coordi-
nates. Applying the inverse of this transformation to the in-
ternal metric (3.23 will put that metric in corotating
coordinates t,x,y,z). An identical procedure will then be
followed to obtain the metric near BH2 in corotating coordi-
nates.

A. Buffer-zone coordinate transformation

In this section, a series of coordinate transformations are
performed on the metri€2.9) in the buffer zone of BH1 to
bring it to the form(3.24). Composing these transformations
gives the final transformation from corotating to internal co-
ordinates. Throughout this process terms @fm?) are
dropped; justification for this will be given at the end of the
section.

Begin with the near-zone metri€2.9) with terms of
O(m?) removed. Restrict attention to the buffer zomg
<r,<b since this is where the corotating coordinate system
and internal coordinate system overlap. Center the coordi-
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nate grid on BH1 by shifting the origin tox(y,z) Next expand the metric in powers of the distance
=(m,b/m,0,0). This is done by defining a new coordinate

ri=(&2+y?+z%)¥? 4.2
E=x— meb 4.7
m ' to the new origin. The expansion fog‘1 is
|
1 1 & 282-y?-7?
E:[(b+§)2+y2+22] 1/226_?4_ 2—b3 + .. (4.3

Positive powers of ; in the metric components come in the form (b)® with integerp>0. Sincer,<b in the buffer zone,
discard terms oD[(r,/b)?] or higher. This results in the following metric:

ds?=dt’[ —1+2m;/r;+(2m,/b)(1+my/2m)+(m,/b%)(2£2—y?—722) + (m/b®) (£2+y?) ] — 2wy dtdé[ 1+ 2m, /b
+2m, /11— 2myé/b?]+ 2wdtdy{(m,/m) (b+4m; +2m,) — 2 ub/r+ E(1+2my /11— 2u/b) + (M, /b?)[ 2m, £2/m
—(1+my/m)(y2+2?) ]} + (d&2+dy?+dZ2)[1+2m, /1 1+ 2m, /b — 2m,£/b%+ (M, /b3) (262 —y2— 22)]. (4.9
Now renormalize the time-coordinate by defining
t=t[1+(m,/b)(1+m,/2m)], (4.5
and then perform a partial Lorentz transformation by setting

t=1+(myw/m)(b+4m;+3m,+ms/2m)y,
(4.6

E=x, y=y, z=z
In the new coordinatest(x,y,z), the metric(4.4) is
ds?=dt?[ — 1+ 2m, /1 +(m,/b3)(3x2=T2) + (m/b3) (X*+y?) ] — 2wd tdX{y[ 1+ (m,/2mb)(6m; + 7m,) +2m, /1]
—2myxy/b?} + 2wdtdy{X[ 1+ (my/2mb)(— 2m, +3m,) +2m; /r ]+ (M, /b?) (3x2—y2— 2Z22)} + (dX?+ dy?+ d )
X[1+2my [t +2m,/b—2myx/b%+ (m,/b3)(3x?—T2) ]+ (m,/b)dy[ (m,/m+ 2x/b)dy— (2y/b)dx] 4.7

wherer = (X2+y2+7%) 2 and terms 0fO(m?) have been dropped, as is done throughout this section.
Next clean up the spatial part of the metric by putting

T=t, X=X(1—m,/b)+(my/2b?)(x?+y?—7%),

- . . o (4.8
y=y[1—(my/2mb)(2m;+3my,)], z=2z(1—my/b)+(m,/b?)xz.
Transforming the metri€4.7) using Eq.(4.8) results in
ds?=dtq — 1+2m, /1 +(m,/b3)(3x2—r12) + (m/b3)(X2+y?)]— 2wdtd X[ y(1+m,/b+2m, /) — m,Xy/b?]
+2wdtdy{X[ 1— (M, /mb)(3m;+m,) +2my /1 ]+ (my/2b?) (7x?— 3y?— 57%)} + 2(M,w/b?)yzdtdz
+(dX%+dy?+dZ2)[1+2my /1 +(m,/b3)(3X?—?)] (4.9
|
wherer = (X2+y2+27%)12 in Eq. (4.9. These terms contain information about the rota-
Focus attention on the terms tion of the coordinate axes. However, they are not yet in the
form of the rotation terms Q(1+2m;,/r)dt(xdy—ydX)
2wdi{§<d§/[1—(mzlmb)(3m1+m2) that result from rotating—at a constant rdfe and in an
active sense, i.e., using a pull-back map—the metisé
+2m, /r]—ydx(1+m,/b+2m, /1)} =dt3(—1+2my /1) + (dX?+dy?+dZ?) (1+2m, /r), which
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is a fragment of Eq(4.9). An additional coordinate transfor- nate transformation corresponding to the gauge transforma-
mation is required to bring the former terms into the lattertion given in Eqs.(4.12 and (4.16 is
form. With this goal in mind, look first for a gauge transfor-

mation taking the perturbation

y=2wdt{xdy[1—(m,/mb)(3m;+m,)+2m, /r]
(4.10

on a flat background metrig¢s?= — dt?+dx?+ dy?+d7? to
the perturbation

—ydx(1+my/b+2m, /r)}

y=2Q(1+2m, /1)dt(xdy—ydX). (4.12)
In other words, look for a vector fielgy such that
Vi = Yin— 2075 - (4.12

In order to solve Eq(4.12), it suffices to consider with

only one nonzero component = 7'(x,y,z). The perturba-
tions (4.10 and(4.11) when put in Eq(4.12) yield

—QY(1+2my I7) = yis= yirt+ an'la%
= — wY(1+my/b+2m, /1) + a7 ox,
(4.13

QX(1+2my /)= yig=vig+ an'lay
= wX[1—(m,/mb)(3m;+m,)

(4.14

These two equations determine the rotation iQteas fol-
lows: the function 7'(x,y,z) must satisfy 925'/9xdy
= ?n'layox. Taking a/dy of Eq. (4.13 and d/dx of Eq.
(4.14), equating the mixed partials oft, and ignoring terms
of O(m?) yields the following equation fof):

+2m, IT]+ a7y,

Q—w[l-(My/b)(1+2m;/m)]=w(1+m,/b)—Q,
(4.15

which has solutiof)=w[1— u/b+ O(€%)]. This is the ro-

tation rate of the second black hole’s tidal field as seen in the

first black hole’s local asymptotic rest franieARF); this
value confirms the claim in Sec. Il fsee Eq(3.12)]. With
Q in hand, Egs(4.13 and(4.14) now yield

7t=(Myw/b)(1+m, /m)Xy. (4.1

t=t— (myw/b)(1+m,/m)xy,
(4.17

X=X, Y=Yy, z=z.

The metric(4.9) expressed in the new coordinatésx(y,z)
is

ds?=dtq —1+2m, /r+(m,/b3)(3x?—r2)+(m/b?)
X (X2+y?)]+2Q(1+2m, /r)dt(xdy—ydXx)
+ (Myw/b?)dt[ 2xydXx+ (7X%— 3y?—57%)dy
+2yzdZz]+ (dx?+dy?+dZ?)[1+2m, It

+(m,/b3)(3x2—r?)], (4.18

wherer = (x2+y2+7%) 12,

The next step is to undo the rotation of the coordinate
system. But first some fine-adjustment of coordinates is
needed in order to obtain the LARF met(i8.24). To find
out what is required, the metri@.24) can be put in coordi-
nates rotating with angular veloci. It turns out that the
fine-adjustment needed is

t=t+(m,w/2b?)(3x2—y2— 22y,
(4.19

In the new coordinatest (x,y,z), the metric(4.18 is

ds?=dt?[—1+2m, /r +(m,/b3)(3x2—r?)
+(m/b3)(x2+y?)]+20(1+2m, /r)dt(xdy—ydx)
+4(myw/b?)dt] —xydx+ (x2—z2)dy+yzdz]
+(dE+dy?+dZ2)[1+2m; /1 +(m,/b%)(3x2—r2?)],
(4.20

wherer = (x2+y2+z2) 2 Now eliminate the rotation of co-
ordinates by defining

t=T, x=XcosQT+YsinQT,

(4.21)

Gauge transformations can also be thought of as resulting

from infinitesimal coordinate transformations. The coordi-

V= —XsinQT+Y cosQT, z=Z.
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Transforming the metri¢4.20 using Eq.(4.21) results in the
LARF metric (3.24).

The transformation from corotating post-Newtonian coor-
dinates {,x,y,z) to isotropic internal coordinate§ (X,Y,Z)
can now be obtained by composing the transformatidris,
(4.5, (4.6), (4.9, (4.17), (4.19, and (4.2]). Inverting this
composite map gives the following transformation from in-
ternal to corotating coordinates:

il M2l M
T—t[l b(1+2m”

2
y ,/mer b b(3+ m+2m2)
@\ﬁ M), Lo 2
+ ™ b[(ler) 2b(3§ y“—2°%)

X=I"cosQT—AsinQT,

(4.22
Y=IsinQT+ A cosQT,
my, Myé
Z—Z(l"l‘F——bf),
where
—X_m_zb 1"—%‘ 1+%_m2(§2+ 2 ZZ)
m' b 2b? y :
(4.23
. my mp B M
A=y 1+b 1+2m , Q—w(l b)’

and terms ofO(m?) have been dropped. In terms of the
coordinates X,y,z),

PHYSICAL REVIEW D 61 124013

R=(I?+A%+2%)1? (4.24

[cf. Eq.(3.2)].

There are two reasons why terms@¢m?) were dropped
from the metric(2.9) at the beginning of this section. First,
suppose that such terms were kept and were used to calculate
higher-order deformation of the black hole. Since internal
metric components are coupled to each other via the Einstein
equationgiin particular, the components of a black hole per-
turbation are coupled via the linearized Einstein equajions
to be fully consistent, terms o®(m?) would have to be
included in the spatial pag;; of the metric(2.9). But these
terms are of higher order than first post-Newtonian, and so
have not been included in this paper.

Second, black-hole perturbations with asymptotic form

2rP/bP*2 (p=2) in the buffer zone, which come from
terms ofO(m?) in gooin Eq.(2.9), are actually smaller in the
internal region than the perturbation with asymptotic form
m,r3/b* in the buffer zone; the latter perturbation has been
ignored in this paper. Once terms©{m?) were dropped in
Eq. (2.9), all terms ofO(m?) were consistently discarded in
this section.

B. Internal metric in corotating coordinates

In this section, the transformatiqd.22 is applied to the
internal metric(3.23 throughout region I(not just in the
buffer zong. This puts the internal metric in corotating post-
Newtonian coordinates (x,y,z). In order to preserve finite-
ness of the perturbation8.18), (3.19 and(3.20), (3.21) at
the horizon of BH1, all terms must be kept when performing
the transformation. The rotation in E@.22) can easily be
performed on the metrid3.22 by first defining ¢=¢
— QT and then settind"=Rsinfcose, A=Rsinfsine,
and Z=Rcos6. To complete the transformatiq@.22), de-
fine the functionsP ,4(x,y,2) for @,8=0, ... ,3 to becom-
ponents of the internal metric in coordinate§,I,A,Z);
write the components as functions of,y,z) using Egs.
(4.22 and(4.23. Explicitly, the functionsP .z are

1-m/2R\? m, 2 o2 m m, |2 -
POO——(—1+m1/2R) + 57| 1 5m (3r _Re)- 2 M0y R 1+ﬁ (22 ~R?)
4 m my\4 2m?
+02 1+ 2| (T2+A2){ 1+ = (3M2-R?)|| 1+ == | — —=5|{, (4.29
b 2R/ ~ R
PormPiom— 2521 ™ M s a1 ™) e M2 e gy 10 M) 2T
0=Pi=~ 55| 1-3r] |1+ 38 +3r) |1 CU-RY)| [+ ) - =2 ||
2em, m; 2 L m 4 m, m;\4 2m?
Poz=Pa0=—3 ( “5R 1+ﬁ (F2 Z2)+Qr|1 +5R 1+F(3F2—R2) 1+ = === ||
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m;
Pos= P3o:—br 1

2€

4

my
2R

m;

4
ol Az

IS

4

- my M2 a2 R2 my
Pu=|1+ 55| | 1+ 3 (3T~ R?)| | 1+ 52
4 [ 4
_ My My 2_p2 my
Pyo=| 1+ 55| | 1+ 43 (3T*-R )_(1+ ZR)
4 [ 4
M1 M2 ar2_R2 M)
Pas=| 1+ 55| | 1+ 13 (3T*-R )_(1+ ZR)
2m;m, my\* i
P12~ P~ Rap3 (1 R 1R
4 2
m;m; 1 my
P1o=Pa™~ Rap3 (1 R 1R
m;m; my\* my
Pas=Pa= ~ Tpape |11 5r) (11 3r2
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2mi  2m,;
R R
2mi  2m,;
R? R?
2mi  2m,;
R? R®

)(3F2—R2)FA,
)(3F2—R2)FZ,

)(3F2—R2)AZ,

2
my
*W)”H’

2
my
*W)AZH’

2
Tl

wheree=(m/b)¥2, Q= w(1— u/b), R=(I'">+A?+Z%)2 andT', A, andZ are given in terms ofx,y,z) in Egs.(4.22 and

(4.23.

Next define the function&((x,y,z) for p,a=0,...,3 byK3=dT/dx?, K)=al'/ox¢, K2=Alox?, and K>=dZ/ox",
where (T,I",A,Z) are to be expressed in terms ofx,y,z) using Eqs(4.22 and(4.23. Explicitly, the functionsK are

K8=1—% 1+;1—r:], KS:HS—zzy(l ﬂ—%>,
ng—e%-l-% 3+%+% +%n72

K§=€b—n;2yz,

K3=0, K1=1+%—%§, %:_%zzz’ K§=%223.
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m; 2
K3=0, KZ2=0, K§=1+F 1+ 5], K3=0,
m,z m, m
K3=0, K3=-—5, K3=o0, K§=1+—2——2§,
b b b
|
wheree=(m/b)*2 and £&=x—m,b/m. However, it is not necessary to repeat all the steps. This

The metric in region | can now be written in terms of the metric can simply be gotten as follows: exchamgg—m, in
functionsP,; andKy . It is given in corotating coordinates the internal metriq3.23 and in the transformatio.22);
(t,x,y,2) by take x——x andy— —y in Eq. (4.22; then transform. In
other words, the metric components in region |l
[denotecg'llv(t,x,y,z)] are related to those in region |
QMV(X,Y-Z):‘Y;:O P (XY, 2)KL(X,y,2)KT(X,Y,2) [0,,,(t.x.y.2)] by g,,(t.xy,2)=(—1)g),(t,—x,~Y,2)

’ (4.27) (with m;<>m,), wherep is the number of the indices and
v that are equal to 1 or 2.

with P,z andK ¢ as defined in Eqg4.25 and(4.26). Note Define P,z to be P,z with m; andm, exchanged, and
that the metric components are explicitly independent osimilarly K to be KJ with my<>m,. Then the metric in
timet. This metric is valid throughout region(lip to the first  region Il is given in corotating coordinates,X,y,z) by
black hole’s apparent horizprand matchegto some finite

order; see beloythe post-Newtonian metri¢2.9) at r,

3

=ry.
Errors in the internal metri¢4.27) will only be analyzed S
in the weak-gravity buffer zone,<r,<b. The largest er- gw(x,y,z)z(—l)pa;O Paoc(=X,~Y,2)
rors come from inaccuracies in the coordinate transformation '
(4.22). Terms of the form ?/b?)(r,/b)P for integerp=1 xffj(—x,—y,z)?‘v’(—x,—y,z) (4.29

have been ignored in Eq4.22. This leads to errorgg,,,
~e*forry=rl".

The match between the internal and post-Newtonian metyherep is, as above, the number of the indigesand v that
rics atr,;=rj' is not perfect; there are discontinuities,,]  are equal to 1 or 2. Again, the metric components are explic-
in the metric components on that 3-surface. A term of thetly independent of timet. This metric is valid up to the
form mf/rf in the internal metric componegh, [as givenin  second black hole’s apparent horizon and matcteea finite
Eq. (4.27] is not matched in the post-Newtonian metric ordey the post-Newtonian metri¢2.9) at r,=r'. Error
componentgy, in Eqg. (2.9); as a result[ge]~€® at ry  analysis for this metric is identical to the analysis above for
=r!". Similarly, a term of the formm3/r? is not matched in  the metric in region I.
gij, so[gij]~ €. Lastly, a term of the fornm{/R? in the

internal-coordinate metric componegy, in Eq. (3.23 gives V. RESULTS AND DISCUSSION

via a (partia) Lorentz boost an unmatched term of the form

emi/rf in the internal-metric componeny,; in corotating The result of this calculation is an approximate solution to
coordinateggiven in Eq.(4.27)]; so[goi]~ €. Einstein’s equations representing two widely-separated non-

The internal metric(4.27) contains terms of the form rotating black holes in a circular orbit. The metric has been
(my/r1)P(myr2/b3), p=1, in the buffer zone. These terms €xPressed in a single set of coordinates valid up to the black

represent the first black hole’s multipole moments and th&°les’ apparent horizons; the coordinate system chosen is
nonlinear interaction of internal and external gravitationalcorotating coordinatest(x,y,z). In these coordinates, the
fields. They are 0D(eP*%), p=1, in the buffer zone and metric components are e_pr|C|tIy mdepenqent of_ tim&he
have not been matched to the post-Newtonian near-zor@elric is specified in region | by Eq4.27), in region Il by
metric (2.9). At the level of accuracy achieved in this paper, £9: (428, in region Il by Eq.(2.9), and in region IV by Eq.

the metric(2.9) need not be modified to include the near- (2-18. At the boundaries ,=r7", ro=r3', andr=r°" of

zone gravitational effects of the black holes’ deformation. these regions, there are discontinuities in the metric compo-
nents that result from truncation of perturbative expansions

and finite-order matching. The magnitudes of these disconti-

nuities can be reduced by taking this calculation to higher
An identical procedure can now be followed to obtain theorders.

metric in corotating post-Newtonian coordinates in region Il.  The full 4-metric is summarized below:

C. Metric near the second black hole
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( 3
w,v=0
3
P (=X, ~Y.2)KE(—X,~y,2)Kg(—X,—Y,2) in region I,
w,v=0
2m; 2m m my\? 3u/m, m m, m
_1+_1+_2_2(_1+_2) _'u<_2+_l)_ﬁ _32 _;‘ y2
ri ry r{ fry blr, 1y b\ry 13
1 1 1 1)\x 2m;  2m, ) )
—2u€| —+ —|—Tpe?| —— — |+ w?| 1+ —+ —= | (X?+Vy? in region Il1,
Joo= ZMG I I 7M6 (rl Mo b w1 My Mo (X y) g (51)
L 2m L 2m? A 2€° _ 5
+— b r—2+ +T(xc05wr ysinwr)
—2e(xsinwr +ycosor)D+ w?(x2+y?)E
4
€
+Ez(xcosm—ysinwr)zN+ez(xsinwr+ycosw)28
12u€® sm o N
- Wﬁ(x Coswr —Y sinwr)?(X sinwr +Yy coswr) in region 1V,
3
E P,uv(xiyiz)Kg(X!yIZ)KI(X’yIZ) in region |’
w,v=0
3
- E PW(_X:_Y’Z)K&(_X,_Y:Z)KZ(_Xa_yyz) in region ”'
w,v=0
(1+ 2m1+ 2m2> in region Il
gOX:< @y r lo 9 ' (52)
3
€
eBsinwr +bD cosor —wEy+ E(XCOSwr—ySinwr)N sinwr
—eb(Xsinwr +y coswr)Scoswr
6ue* om , , . :
k + WF(X COSwI —Y Sinwr ) (X CoS 2wl — Y Sin 2wr) in region IV,
3
> P (XY, DKE(X,Y,2)K5(X,Y,2) in region |,
w,v=0
3
— X Pul—x,—Yy,2KE(—x,~y,2)K5(—Xx,~Y,2) in region II,
w,v=0
1+_2m1+_2m2 4 1t 1 in region Il
gOy:< X r{ I Ky, T, 9 ’ (5.3
3
€
eB coswr —bD sinwr + wEx+ F(xcosm—ysinwr)N COSwr
+ eb(X sinwr +Yy coswr)Ssinwr
6uet om _ _ . .
K ~ % F(X CoSwr —y sinwr ) (X sin 2wr +Y cos 2wr) in region IV,
r 3
2 Pulxy.KE (Y. DK5(xy.2) in region |,
3
Joz={ _ _ _ . . (5.9
” > P, (—x—y.2)KE(—x,~y,2)K\(—x,~y,z) inregionll,
w,v=0
L O in regions Il and 1V,
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3
> PGy, 2KE(XY, 2K (XY, 2) in region |,
wm,v=0
3 —_—
P (=% =Y, 2K{(—X,—y,2)KI(—X,~Y,2) in region Il,
Go= (5.5
2m;  2m, . .
1+—+— in region I,
r )

RSP ) 6ues 6m , _ . .
Et+—7+e N sirfor +b?Scogwr + 7~ - (xcoswr —y sinwr)sin 2er  in region v,

3
> PL(xY.2KE(XY,2)K5(X,Y,2) in region I,
w,v=0
3
Pu(=X% =Y, 2)KE(=X,—y,2)K3(=X,~Y,2) in region I,
mv=
Oyy= (5.6
7 2m;  2m, . .
1+ —+— in region I,
s )
2y? 6ue om

E+ rZ + €N cowr +b?Ssirfor — —7 5y (Xcoser —y sinwr)sin 2or in region 1V,

N 0

wﬁMw

EW( —X, —y,Z)E’é( —X,— y,z)@( -x,—y,z) inregionll,
0

Oz~ . (5.7
2m;  2m, . .
4+ —+ — in region I,
r )
m?z?
E+—3 in region IV,
3
2 PLXY.2DKE(XY.2)K5(X,Y,2) inregion |,
w,v=0
3
2 Pu(—%—y.2KE(—x,~y,2)K5(—x,~y,z) inregionll,
w,v=0
Oxy=\0 in region Il (5.9
m?2

1 .
Xyt z(ezN —b?S)sin 2wr

6ue’ sm ) . )

2 H(xcosm—ysmwr)cosZwr in region 1V,
f 3

S PLOWYDKEY,2KE(X,Y,2) in region |,
wn,v=0

3
_ D (_y — KB —y — KY—x — in region I,
Gum{ 2o Pr XY IR X,y 2K (- X, my.2) e (59

in region I,

— Xz in region 1V,
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r 3
> PL.(X%Y,2)K5(X,y,2)K5(X,Y,2) in region |,
wm,v=0
3
— EV —X,—V,2)KE(—x,—Vy,2)KX(—x,—y,z) inregionll,
gyz=< M;:O wl Y, 2Kz ( Y, Z)K3( y.2) (5.10
0 in region 111,
m2
TEYz in region 1V.
\

In the expressions above)=m;+m,, u=mm,/m, dm=m;—m,, e=(m/b)*2 w=(m/b%? r;=[(x—m,b/m)?+y?
+2%1Y2 andr,=[ (x+m;b/m)?+y?+ z2]*2. Region | is specified by, <(m;b)*? and region Il byr ,<(m,b)'? (but these
regions do not extend inside the black holes’ apparent horiz&egion Il is specified by ;> (m;b)*? r,>(m,b)*? and
r <b/2e; and region IV byr >b/2e. The functionsA, B, D, E, N, andSare defined in Eq2.19. The functionsP ,; andK?

are defined in Eq€4.25 and(4.26. The functionsP,,; andK? are obtained fronP,; andK respectively by exchanging,
andm,.

TABLE I. Errors and discontinuities in the metric components in corotating coordinates. Numbers denote

orders ine=(m/b)Y?% e.g., 4 denote®(e*). The last two columns contain normalized errors.

Region | or Il disc. at Region Il Region IV
ry=rin ro=r™  ry=r"  ri~b disc. at
or or or and  r=sroUt  r=rout  yz=rout  rp/e
r,=ri r=r  r=rll r,~b
Jdoo 4 3 3 6 5 5 7 8
Joi 4 3 3 5 5 5 7 8
g 4 2 2 4 5 5 7 8

The errors and discontinuities in the metric components are summarized in Table I. The discontinuities should be smoothed
out before initial data are extracted from the metric. In addition, initial data taken should be relaxed numerically to approach
more closely an exact solution of the constraint equations. It is expected that higher-order versions of this calculation will
differ by smaller amounts from an exact solution of the Einstein equations.
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