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Thermodynamics of largeN noncommutative super Yang-Mills theory
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We study the thermodynamics of the largeN noncommutative super Yang-Mills theory in the strong ’t Hooft
coupling limit in the spirit of the AdS-CFT correspondence. It has already been noticed that some thermody-
namic quantities of near-extremal D3-branes with NSB fields, which are dual gravity configurations of the
noncommutativeN54 super Yang-Mills theory, are the same as those withoutB fields. In this paper,~1! we
examine thea83R4 corrections to the free energy and find that the part of the tree-level contribution remains
unchanged, but the one-loop and the nonperturbative D-instanton corrections are suppressed, compared to the
ordinary case.~2! We consider the thermodynamics of a bound state probe consisting of D3-branes and
D-strings in the near-extremal D3-brane background withB fields, and find that the thermodynamics of the
probe is the same as that of a D3-brane probe in the D3-brane background withoutB fields. ~3! The stress-
energy tensor of the noncommutative super Yang-Mills theory is calculated via the AdS-CFT correspondence.
It is found that the tensor is not isotropic and its trace does not vanish, which confirms that the super
Yang-Mills theory is not conformal even in four dimensions due to the noncommutative nature of space. Our
results render further evidence for the argument that the largeN noncommutative and ordinary super Yang-
Mills theories are equivalent not only in the weak coupling limit, but also in the strong coupling limit.

PACS number~s!: 04.70.Dy, 11.15.Pg, 11.27.1d
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I. INTRODUCTION

The super Yang-Mills~SYM! theory on noncommutative
spaces is a natural generalization of the SYM theory on
dinary commutative spaces. Such a noncommutative S
theory has been found to arise naturally in a certain limit
string theory with Neveu-Schwarz~NS! B fields @1–6#. The
spirit of the AdS conformal field theory~CFT! correspon-
dence@7–10# leads one to try to find out the supergravi
dual of the noncommutative SYM theory. Recently Has
imoto and Itzhaki@11# and Maldacena and Russo@12# con-
structed independently the supergravity dual configurati
of the noncommutative SYM theories, which are the dec
pling limits of D-brane solutions with NSB fields. Some of
the latter have been also constructed in@13–15# before.1 The
supergravity dual of the noncommutative SYM theory c
also be constructed by using the relationship between
open string moduli and closed string moduli@17#. In this
construction, the only input is a simple form of the runni
string tension as a function of energy.

In the AdS-CFT correspondence, of particular interes
the D3-brane solution. Its decoupling limit has the struct
AdS53S5, and the type IIB string theory on this backgroun
is supposed to be dual to the four-dimensionalN54 SYM
theory in the largeN and strong ’t Hooft coupling limit. At
finite temperature the theory is described by the ne
extremal D3-brane configuration@7,18#. According to the
AdS-CFT correspondence, the decoupling limit of D3-bra
solutions withB fields is supposed to be the dual grav
description of the noncommutative SYM theory in four d

*Email address: cai@het.phys.sci.osaka-u.ac.jp
†Email address: ohta@phys.sci.osaka-u.ac.jp
1These and more general solutions are also discussed in@16# in

type IIA, type IIB andd511 supergravities.
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mensions@11,12#. An interesting question then arises: A
the total numbers of degrees of freedom the same for
noncommutative and ordinary SYM theories at any giv
scale? On the weak ’t Hooft coupling side, according to
analysis of planar diagrams@19#, the largeN noncommuta-
tive and ordinary SYM theories are equivalent; the plan
diagrams depends on the noncommutativity parameter o
through the external momenta and noncommutative effe
can be seen in the nonplanar diagrams. Explicit perturba
calculations@20# provide evidence to this assertion. On th
strong ’t Hooft coupling side, Maldacena and Russo@12#
have discussed the thermodynamics of near-extremal
branes withB fields and found that the entropy and oth
thermodynamic quantities are the same as those of the
responding D3-branes withoutB fields.2 On this basis, they
argued that the total number of physical degrees of freed
of the noncommutative SYM theory at any given scale co
cides with the ordinary case.

In the present paper we would like to investigate furth
aspects of thermodynamics of the noncommutative SY
theory from the supergravity side and to compare them w
the ordinary SYM cases. In Sec. II, we introduce the bla
D3-brane solutions with NSB fields and calculate some o
their thermodynamic quantities. Most of the results a
known, but these are needed for our discussions. This
serves to establish our notation. In Sec. III we calculate
corrections from the higher derivative terms (a83R4) to the
free energy of the noncommutative SYM theory. To comp
the results with the ordinary case, we use aT-duality trans-
formation to transform the D3-brane solution withB fields
and a varying dilaton to that with constant dilaton andB

2This conclusion also holds for other D-branes withB fields. For
related discussions see Refs.@21–23#.
©2000 The American Physical Society12-1
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fields. In the latter configuration, we find that the contrib
tion coming from the tree-level term remains the same
that in the ordinary case, but the contributions from the o
loop and nonperturbative D-instanton terms are suppres
This result is consistent with that in the weak coupling lim
@19#.

In Sec. IV we consider the thermodynamics of a sta
bound state probe consisting of D3-branes and D-string
the background produced by near-extremal D3-branes wiB
fields. According to the interpretation of the D-brane actio
the supergravity interaction potential between the probe
the source D-branes can be interpreted as the contributio
massive states to the free energy of SYM theory when
SYM theory is in the Higgs phase, and the distance betw
the probe and the source can be regarded as a mass sc
the SYM theory. We find that the thermodynamics of t
bound state probe again remains the same as that of a
brane probe in the near-extremal D3-brane background w
out B fields. In Sec. V, we compute the stress-energy ten
of the noncommutative SYM theory on the supergravity si
As is already known, the thermal excitations of D3-bran
without B fields are of the form of an ideal gas in four d
mensions. The entropy of near-extremal D3-branes can
accounted for by the ideal gas model@24#; its stress-energy
tensor is isotropic and its trace vanishes@25#, which confirms
that the SYM theory is conformally invariant in four dimen
sions. Our result shows that the stress-energy tensor o
noncommutative SYM theory is not isotropic and its tra
does not vanish, which reflects the fact that the noncom
tative SYM theory is not conformal even in four dimension
Section VI is devoted to a summary of our results and
discussion.

II. BLACK D3-BRANE SOLUTION WITH B FIELDS
AND ITS THERMODYNAMICS

The supergravity solution corresponding to D3-bran
with a nonvanishing NSB field has been constructed in@13#
and@15#. The simplest way to get the solution is to start w
a D3-brane solution withoutB fields. First makeT duality
alongx3 ~the world-volume coordinates arex0 , x1 , x2, and
x3), which gives a D2-brane solution with a smeared co
dinatex3, perform a rotation with an angleu in the x2-x3
plane, and thenT-dualize back onx3. This procedure yields
the desired solution with a nonvanishingB field along thex2
andx3 directions@12#. The prescription is also applicable t
the black D3-brane solutions. The black D3-brane solut
with B fields along thex2 andx3 directions can be written in
the string metric as

ds25H21/2@2 f dx0
21dx1

21h~dx2
21dx3

2!#

1H1/2@ f 21dr21r 2dV5
2#, ~2.1!

where

H511
r 0

4 sinh2a

r 4
, f 512

r 0
4

r 4
, h215H21sin2u1cos2u,
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B23
(1)5

sinu

cosu
H21h, e2f5g2h,

B01
(2)5~12H21!sinucotha/g, ~2.2!

C01235~12H21!h cosucotha/g.

The D3-brane charge satisfiesR84 cosu54pga82N3. Here
R845r 0

4 sinha cosha, N3 is the number of coincident D3
branes, andg5g` is the asymptotic value of the couplin
constant. The solution interpolates between the bl
D-string solution (u5p/2) with the smeared coordinatesx2
andx3 and the black D3-brane solution withoutB fields (u
50). In fact the solution describes a nonthreshold bou
state consisting of D3-branes and D-strings due to the p
ence of the nonzeroB field @15#.

Taking the decoupling limit@12#

a8→0: tanu5
b̃

a8
, x0,15 x̃0,1, x2,35

a8

b̃
x̃2,3,

r 5a8R2u, r 05a8R2u0 , g5a8g̃, ~2.3!

whereb̃, u, u0 , g̃, and x̃m are kept fixed, the solution~2.1!
becomes

ds25a8R2Fu2~2 f̃ dx̃0
21dx̃1

2!1u2h̃~dx̃2
21dx̃3

2!

1
du2

u2 f̃
1dV5

2G , ~2.4!

where

f̃ 512u0
4/u4, h̃21511a4u4, a25b̃R2,

e2f5ĝ2h̃, B̃235
a8

b̃

a4u4

11a4u4
, ~2.5!

ĝ5g̃b̃ is the value of the string coupling in the IR, andR4

54pĝN352gYM
2 N3[l is the ’t Hooft coupling constant o

gauge theory.
Let us first discuss the extremal casef̃ 51 in the solution

~2.4!. The solution ~2.4! reduces to the familiar produc
spacetime AdS53S5 for a50, while it deviates from the
anti–de Sitter space foraÞ0. Thus, in the spirit of the AdS-
CFT correspondence the solution~2.4! is proposed to be the
gravity dual of the noncommutative SYM theory and t
parametera reflects the noncommutative nature of spa
When u→0, the solution~2.4! approaches the AdS53S5,
which corresponds to the IR regime of the gauge theory. T
is in agreement with the expectation that the noncommu
tive SYM theory reduces to the ordinary SYM theory at lo
distances.

Next, for nonextremal solution~2.4!, just like the pure
black D3-brane case, the thermodynamics of the nonex
mal solution~2.4! should be equivalent to that of the non
2-2
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THERMODYNAMICS OF LARGEN NONCOMMUTATIVE . . . PHYSICAL REVIEW D 61 124012
commutative SYM theory in the largeN and strong ’t Hooft
coupling limit. However, the solution~2.4! is neither asymp-
totically flat nor asymptotically anti–de Sitter. Hence it
difficult to calculate the energy excitation of the noncomm
tative SYM theory directly from the solution~2.4!. To dis-
cuss the thermodynamics of the noncommutative theory,
rather start with the black D3-brane solution~2.1!. For our
purposes, it is convenient to rewrite the solution in the E
stein frame, which has the following form:

dsE
25h21/4H21/2@2 f dx0

21dx1
21h~dx2

21dx3
2!#

1h21/4H1/2@ f 21dr21r 2dV5
2#. ~2.6!

We can further make compactification of the D3-brane wo
volume and then go to the Einstein frame. From the resul
metric, we can easily obtain the Arnowitt-Deser-Misn
~ADM ! massM, Hawking temperatureT, and entropyS of
the solution, which are found to be

M5
5p2r 0

4V3

16g2G10
S 11

4

5
sinh2a D ,

T5
1

pr 0 cosha
,

S5
V3p3

4g2G10

r 0
5 cosha, ~2.7!

whereG10523p6a84 is the gravitational constant in ten d
mensions andV3 is the spatial volume of the world volum
of the D3-brane. We are interested in comparing these t
modynamic quantities with those of black D3-branes with
B fields. We have just found that these quantities are in
pendent of the parameteru. Thus they are exactly the sam
as those withoutB fields @26#.3 Furthermore, it is worth
pointing out that it is independent of the parameteru so that
these thermodynamic quantities~2.7! are also those of the
black D-string solution with two smeared coordinates. F
later use, let us note the relation between the number
D3-branes and D-strings in the solution~2.1!. The charge
density of D3-branes is

Q35
p2r 0

4

4gG10
cosu sinha cosha, ~2.8!

while the charge density of D-strings is

Q15
p2r 0

4V2

4gG10
sinu sinha cosha, ~2.9!

whereV2 is the area of the rectangular torus spanned by
two smeared coordinatesx2 andx3. Using the charge quan

3The results in@26# are for rotating D3-branes. For a compariso
take l 50 in the corresponding quantities in@26#.
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tization rule we obtain the following relation between th
numberN3 of D-branes and the numberN1 of D-strings:

N1

N3
5

V2

~2p!2a8
tanu. ~2.10!

In the decoupling limit, the relation~2.10! becomes

N1

N3
5

Ṽ2

~2p!2b̃
, ~2.11!

whereṼ25b̃2V2 /a82 is the area of the torus after rescalin
The excitation above the extremality of the black D3-bra
corresponds to a thermal state of the corresponding S
theory. Considering the limit~2.3!, from Eq. ~2.7! we have
the energyE, temperatureT, and entropy of the largeN non-
commutative SYM theory in the strong coupling limit:

E5
3p3Ṽ3R8u0

4

~2p!7ĝ2
,

T5
u0

p
,

S5
4p4Ṽ3R8u0

3

~2p!7ĝ2
, ~2.12!

where Ṽ35b̃2V3 /a82. Obviously these thermodynami
quantities satisfy the first law of thermodynamics,dE
5TdS. The free energyF of the gauge theory, defined a
F5E2TS, can be expressed in terms of the temperature

F52
p2

8
Ṽ3N3

2T4. ~2.13!

Of course, the free energy is also the same as that of ordi
SYM theory @24,27#. This result is quite interesting, whic
leads Maldacena and Russo@12# to argue that at any given
scale the total number of degrees of freedom of the nonc
mutative SYM theory coincides with the ordinary case in t
largeN limit. No doubt it would be of much interest to fur
ther investigate this result and try to see if this is modified
any corrections. Motivated by this observation, we are n
going to compute the higher-derivative term corrections
the free energy of the noncommutative SYM theory.

III. a83R4 CORRECTIONS TO THE FREE ENERGY

The black configuration~2.1! is an exact solution of type
IIB supergravity, which is a low-energy approximation
superstring, keeping only the leading contribution of ma
less states in thea8 expansion. The nonleading contribution
from massive string states appear as corrections to this
energy action in the form of higher-derivative curvatu
terms. In type IIB supergravity the lowest correction can
symbolically written asa83Rmnrs

4 , whereRmnrs represents
the Riemann tensor of spacetime. The tree-level contribu

,

2-3
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RONG-GEN CAI AND NOBUYOSHI OHTA PHYSICAL REVIEW D61 124012
of the four-graviton amplitude to the effective action is@28#

SR4
tree

5
z~3!

3326316pG10
E d10xA2ga83e22fR4 ~3.1!

in the string frame. Exploiting the field redefinition ambig
ity @29# and noting that for the D3-branes withoutB fields,
the extremal background AdS53S5 is a conformally flat
spacetime, the corrections can be written in the Eins
frame as@27,30#

I R4
tree

52
g

16pG10
E d10xAge23f/2FChmnkCpmnqCh

rspC rsk
q

1
1

2
ChkmnCpqmnCh

rspC rsk
q G , ~3.2!

where g5z(3)a83/8 and Cpqmn denotes the Weyl tensor
Such corrections to the free energy of the ordinary SY
theory on the three-torusT3, on the three-sphereS3, and
even on a hyperbolic spaceH3 have been calculated i
@27,31–35#. In particular, for the large three-torusT3 case
the free energy correction is@27#

dFR4
tree

52
p2

8
N3

2Ṽ3T4
15

8
z~3!l23/2. ~3.3!

Thus the free energy including the correction is

F15F1dFR4
tree

52
p2

8
N3

2Ṽ3T4F11
15

8
z~3!l23/2G ,

~3.4!

so that the leading correction is positive. If one writes t
total free energy as

F total52 f ~l!
p2

6
N3

2Ṽ3T4, ~3.5!

for the large ’t Hooft couplingl, one has

f ~l!5
3

4
1

45

32
z~3!l23/21•••. ~3.6!

It is expected that the interpolation functionf smoothly ap-
proaches 1 in the weak coupling limit (l→0) @27#.

In fact in type IIB supergravity the one-loop and nonpe
turbative D-instanton contributions are also of the formR4

and of the same order (a83). If one writes

r5r11 ir25c(0)1 ie2f, ~3.7!

where c(0) is the Ramond-Ramond~RR! pseudoscalar, the
effective action of theR4 part can be expressed as@28,30#

SR4
IIB

5
1

3327316pG10
E d10xA2ga83e2f/2f 4~r,r̄ !R4,

~3.8!

where f 4 is given by the nonholomorphic Eisenstein serie
12401
in

e

-

:

f 4~r,r̄ !5 (
(m,n)Þ(0,0)

r2
3/2

um1rnu3
. ~3.9!

For the small string coupling which is required for the vali
ity of the supergravity description, the functionf 4 can be
expanded as@30#

e2f/2f 4'2z~3!e22f1
2p2

3

1~4p!3/2e2f/2 (
M.0

ZMM1/2~e22pM (e2f1 ic(0))

1e22pM (e2f2 ic(0))!@11O~ef/M !#, ~3.10!

where M runs over integers. Here the first term gives t
tree-level contribution, the second term gives the one-lo
contribution, and the remaining denotes the contribution
the nonperturbative D-instantons. The coefficientZM is de-
fined as

ZM[ (
muM

1

m2
, ~3.11!

wheremuM denotes that the sum is taken over the divisors
M. Considering the contributions from the one-loop term a
from D-instantons, 2z(3)l23/2 in Eq. ~3.6! is replaced by
@27#

2z~3!l23/2→2z~3!l23/21
1

24N3
2
l1/21

1

N3
3/2

3h~e24p2/gYM
2

!@11O~gYM
2 !#, ~3.12!

whereh represents an infinite series of instanton correctio
In particular, the one-loop contribution to the entropy corre
tion @dS52d(dF)/dT# is

dSone5
5p2

256
l1/2Ṽ3T3. ~3.13!

In the effective low-energy action of type IIB supergra
ity, except for theR4 terms, in the same order (a83) there
exist other terms, for instance, an eight-derivative fo
dilaton term @36#, supersymmtric terms accompanyingR4

terms, and so on~see@27,37# and references therein!. For the
ordinary SYM theory, however, those terms will not ma
contributions since the dilaton is a constant and the five-fo
field strength is the same as that in the extremal backgrou
For the noncommutative SYM theory, namely, the black D
branes with nonvanishingB field, from Eq.~2.5! we see that
the dilaton is no longer a constant and hence its deriva
terms and other possible terms involving the derivatives
dilaton and curvature tensors are expected to make a co
bution to the free energy correction. Also other terms u
known so far might have potential contributions in this ord
Unfortunately, until now there has not been a complete
pression of the effective low-energy action to the ord
2-4
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(a83), to the best of our knowledge. This makes it difficult
evaluate the free energy correction of noncommutative S
theory via the supergravity description and to compare w
the ordinary SYM case.4

To resolve this difficulty, we will adopt the following
approach to attain insight into the (a83) correction to the
free energy of the noncommutative SYM theory, rather th
the usual way to evaluate the free energy correction by s
stituting the unperturbed solution~2.4! into those terms of
order (a83), all of which are not known exactly. As is we
known, theT duality is a perturbative symmetry of full strin
theories valid loop by loop. This symmetry holds in the lo
energy supergravities as well. The low-energy effective
tion remains unchanged under theT-duality transformation.
Therefore, if one can transform the solution~2.4! with a
varying dilaton to a solution with a constant dilaton, one m
get the free energy correction of the former via the latt
Indeed it has been found that such aT-duality transformation
exists.

Following @38#, defining

m5
Ṽ2

~2p!2a8
~B̃231 iAG22G33!, ~3.14!

the relevantT-duality transformation is given by the SL(2,Z)
transformation

m→m̂5
am1b

cm1d
, ~3.15!

wheread2bc51. Applying this transformation to the solu
tion ~2.4! yields

ds25a8R2Fu2~2 f̃ dx̃0
21dx̃1

21dx̂2
21dx̂3

2!1
du2

u2 f̃
1dV5

2G ,

~3.16!

e2f5
~2p!4g̃2b̃4

Ṽ2
2

, B̂235
a8

b̃
, ~3.17!

for c521 andd5Ṽ2 /(2p)2b̃ when the latter is an integer
Note from Eq.~2.11! thatd5N1 /N3 must be a rational num
ber. If this is not an integer, after some steps of Mor
equivalence transformation as in@38#, one can reach a solu
tion like Eq. ~3.16!. The solution~3.16! is asymptotically of
the structure AdS53S5, completely the same as that descr
ing the ordinary SYM theory at finite temperature. Actua
the solution~3.16! describes a twisted ordinary SYM theo
due to the presence of a constant NSB field. The ordinary

4In the earlier version of this paper, we calculated the free ene
correction from the term~3.2! and found that it is always less tha
the ordinary case. We thank Troels Harmark and Niels Obers
raising a question on the validity of that calculation to compare w
the ordinary case.
12401
h

n
b-

-

y
r.

-

SYM theory resides on a dual torus with areaV̂2

5(2p)4b̃2/Ṽ2 and its Yang-Mills coupling constant is

ĝYM
2 5

~2p!3g̃b̃ 2

Ṽ2

5gYM
2 ~2p!2b̃

Ṽ2

. ~3.18!

This ordinary SYM theory is equivalent to the noncommu
tive SYM theory described by the solution~2.4! in the sense
of the Morita equivalence@38#. Note further that the numbe
of D3-branes in Eq.~3.16! is Ṽ2N3 /(2p)2b̃5N1 according
to Eq. ~2.11!, rather thanN3 in Eq. ~2.4!. It is quite interest-
ing to note that the area, the Yang-Mills coupling consta
and the rank of the gauge group of the ordinary SYM the
in Eq. ~3.16! are different from those of the noncommutativ
SYM theory in Eq.~2.4!, but that the ’t Hooft coupling con-
stants for both theories are the same:

l̂52ĝYM
2 N3

Ṽ2

~2p!2b̃
5l. ~3.19!

Considering that the spatial volume of the world volume
Eq. ~3.16! is

V̂35
~2p!4b̃2

Ṽ2
2

Ṽ3 , ~3.20!

we conclude that the thermodynamics of the solutions~3.16!
is the same as the one of the solutions~2.4!, that is, the
thermodynamics of the noncommutative SYM theory b
cause the Hawking temperature is unchanged andN1

2V̂3

5N3
2Ṽ3. Indeed, the Morita equivalence transformation w

not change the thermodynamics of gauge field theory@38#.
Thus we expect that thea83R4 correction in Eq.~3.16! gives
us the free energy correction of the noncommutative SY
theory in order (a83). As just mentioned above, the adva
tage to consider the solution~3.16!, rather than Eq.~2.4! is
that one does not have to worry about the contributions fr
the derivative terms of dilatons and possible other ter
since the dilaton and the NSB field are constants here.

Now it is easy to get the free energy correction of no
commutative SYM theory from the (a83) terms in the effec-
tive low-energy action according to the above considerati
It is obtained from Eqs.~3.5!, ~3.6!, and ~3.12!, with the
replacements ofgYM

2 by ĝYM
2 , Ṽ3 by V̂3, and N3 by N1

5Ṽ2N3 /(2p)2b̃, respectively. Considering the invariance
the ’t Hooft coupling constant, we get the correction functi
~3.6! of the noncommutative SYM theory by replacing

2z~3!l23/2→2z~3!l23/21
~2p!4b̃2

Ṽ2
2

1

24N3
2
l1/2

1S ~2p!2b̃

Ṽ2
D 3/2

1

N3
3/2

h~e2Ṽ2 /gYM
2 b̃!

3F11OS ~2p!2b̃

Ṽ2

gYM
2 D G . ~3.21!
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Comparing this with the ordinary case~3.12!, we see that the
first term is unchanged, but the remaining two terms
suppressed because (2p)2b̃/Ṽ2!1. Recall that the first term
comes from the tree-level contribution, the second term fr
the one-loop contribution, and the third is the nonpertur
tive D-instanton contribution. This indicates that in th
strong ’t Hooft coupling the largeN noncommutative and
ordinary SYM theories are equivalent because the first t
corresponds to the planar diagrams and the second ter
the nonplanar diagrams. This result is also consistent w
the argument, which is made in the weak ’t Hooft coupli
limit, that planar diagrams depend on the noncommutativ
parameter only through the external momenta and nonpl
diagrams are generally more convergent than their com
tative counterparts@19#. The previous and the present se
tions provide evidence of the equivalence between the la
N noncommutative and ordinary SYM theory. It would b
interesting to accumulate further evidence for this equi
lence. In the next section we will do it by studying the the
modynamics of a probe brane in the background~2.4!.

IV. THERMODYNAMICS OF A PROBE BRANE

We know that the solution~2.1! describesN3 D3-branes
coinciding with each other. The configuration represents
noncommutative SYM theory with gauge group U(N3) in
the Higgs branch, in which the vacuum expectation val
~VEVs! of scalar fields are zero. Therefore the thermod
namics given in Sec. II is the one for noncommutative SY
theory in the Higgs branch. We now want to discuss
thermodynamics of the noncommutative SYM theory in t
Coulomb branch, in which the VEVs of some scalar fields
not vanish. Corresponding to the Coulomb branch should
a multicenter configuration of D3-brane solutions. One of
simplest cases is thatN parallel coinciding D3-branes ar
separated along a single transverse direction by a dist
from a single D3-brane. The gauge symmetry is then bro
from U(N11) to U(N)3U(1) and the distance can be r
garded as a mass scale in the gauge field. However
stable, multicenter, nonextremal configurations of D-bra
have been known.5 As an approximation, one may consid
the probe method. That is, we put an unexcited probe br
in the background of other nonextremal D-branes and reg
this as an approximate multicenter solution. Such a met
has been used recently to study the thermodynamics of S
theory in the Higgs phase@41–44#.

Considering that the noncommutative and ordinary SY
theories have the same thermodynamics at a given sca
the Higgs branch, it would be interesting to compare th
also in the Coulomb branch. To this aim, in this section,
investigate the thermodynamics of a probe in the nonex
mal D3-brane background. According to the interpretation
the D-brane action, the supergravity interaction potential
tween the probe and the near-extremal D3-branes~as the
source! can be interpreted as the contribution of mass

5It is possible to have nonextremal configurations for continuou
distributed D-branes. For D3-branes, see@39,40#, for example.
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states to the free energy of gauge fields in the largeN and
strong ’t Hooft coupling limit@41#. When a NSB field is
present, the dynamics of a probe D3-brane is governed
the following action:

S52T3E d4xe2fA2det~Ĝ2B̂(1)!

2T3E Ĉ2T3E B̂(2)∧B̂(1), ~4.1!

where T351/(2p)3a82 is the tension of the D3-brane. I
fact this is a bound state probe consisting of D3-branes
D-strings. Explicit evidence for this is the tension of th
probe,T3A11tan2u. We will see more evidence below.

Substituting the solution~2.1! into the probe action~4.1!,
one has

S52
T3V3

g cosuE dtH21@Af 211H02H#, ~4.2!

where we have subtracted a constant potential at spatia
finity and

H0511
R84

r 4
. ~4.3!

In the extremal background wheref 51, one can see from
Eq. ~4.2! that the static interaction potential between t
probe and the source vanishes. Note that the source
nonthreshold bound state consisting of D3-branes
D-strings, and the static potential will no longer vanish u
less the probe is also the same bound state. In the none
mal background, of course, the static potential exists alwa
In the decoupling limit~2.3!, we arrive at

Fp5
Ṽ3N3u4

2p2 FA12
u0

4

u4
211

u0
4

2u4G , ~4.4!

which agrees with the result in@41# and@42# for a D3-brane
probe in the near-extremal D3-brane background withouB
field.6 When the probe is on the horizon of the source,
free energy of the probe is

Fpuu5u0
52

Ṽ3N3u0
4

4p2
52

p2Ṽ3N3T4

4
. ~4.5!

Comparing with the free energy of the source~2.13!, we find
that

y

6There is a small difference between the probe free energie
@41# and @42#, which arises as follows. In the decoupling limi
although H0'1/a82R4u4, and H'1/a82R4u4, the differenceH0

2H does not vanish, but gives a finite valueu0
4/2u4. This is just the

additional term appearing in@42#. The additional term is importan
in the interpretation of the probe free energy.
2-6
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Fpuu5u0
5

dF

dN3
. ~4.6!

The number of D3-branes in the probe is 1, so we m
rewrite the above equation as

Fpuu5u0
'F~N311!2F~N3!, ~4.7!

for a largeN3. This implies that, from the point of view o
thermodynamics, the nonextremal D-branes reside on the
rizon because the probe branes on the horizon can be vie
as a part of source branes.

In the low-temperature or long-distance limit, expandi
the free energy~4.4! and usingu05pT, we get7

Fp52
p2Ṽ3N3T4

4 (
n51

~2n21!!!

2n~n11!!
S pT

u D 4n

. ~4.8!

This is consistent with the expectation that, in the weak c
pling and low-temperature limit, the contributions of one a
two loops are exponentially suppressed@41,42#. The leading
term is a three-loop contribution.

In the high-temperature or short-distance limit, we have
use the isotropic coordinates defined in Eq.~5.3! below.8

Defining the mass scaleM5(A2r2u0), we obtain

Fp52
p2Ṽ3N3T4

4

1

~11M /pT!4
. ~4.9!

Expanding Eq.~4.9! for the smallM /pT yields

Fp52
1

4
p2Ṽ3N3T4F124S M

pTD110S M

pTD 2

220S M

pTD 3

1•••G . ~4.10!

Let us compare this with the free energy in the weak c
pling limit. The one-loop free energy of theN54 SYM
theory in the weak coupling has the following hig
temperature expansion@41#:

FM~T@M !52
1

3
p2N3Ṽ3T4F123S M

pTD 2

14S M

pTD 3

1•••G . ~4.11!

7Note that there is a difference by a factor ofR2 in the rescaling of
r and r 0 from the definitions in@41# and @42#.

8Note that there is a difference by a factor ofA2 in the definition
of the coordinater between this paper and@41,42#. If we use the
definition in @41,42#, the metric will not be asymptotically flat a
r→`.
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It is very similar to that for the strong coupling limit~4.10!
except that the term (M /pT) is absent in the weak coupling
In particular, in the massless approximation, keeping o
the leading terms in Eqs.~4.10! and~4.11!, one may see tha
there is also the well-known difference by a factor of 3
which occurs in comparing the supergravity calculation a
weak coupling calculation of the entropy for theN54 SYM
theory in the Higgs branch@24,27#.

The main result of this section is that the static interact
potential between a D3-brane probe with NSB fields in the
background of D3-branes withB fields is the same as that o
a D3-brane probe in the corresponding background with
B fields. From the point of view of field theory, the stat
potential comes from planar diagrams@45#, which is clearer
from the viewpoint of open strings extended between
probe branes and source branes. This further renders
dence that the largeN noncommutative and ordinary SYM
theories are also equivalent in the strong coupling limit.

V. STRESS-ENERGY TENSOR OF THE
NONCOMMUTATIVE SYM THEORY

In Sec. II we have seen that the entropy of the nonco
mutative SYM theory is the same as that of the SYM theo
at a given temperature scale or energy scale. However, f
the Einstein frame metric of Eq.~2.4! we see that, whenu
→`, the area of the torusx2 , x3 contracts, while the radius
of theS5 expands. The contraction of area of the torus is j
compensated for by the expansion of the volume of theS5.
This seems to imply that there is a redistribution of the d
grees of freedom@12#. To compare the distribution of ther
mal states between the noncommutative SYM and ordin
SYM theories, it is enough to calculate the stress-energy
sor of the noncommutative SYM theory on the supergrav
side.

For this purpose, we adopt the method developed by M
ers @25# by generalizing the ADM mass density formula
p-branes @46#. The stress-energy tensor for thep-brane
world-volume can be expressed as

Tab5
1

16pg2G10
E

r→`
dV82pr 82pni

3@hab~] ihc
c1] ihj

j2] jhi
j !2] ihab#, ~5.1!

where ni is a radial unit in the transverse subspace, wh
hmn5gmn2hmn is the deviation of the~Einstein frame! met-
ric from that for flat space. The labelsa,b50,1, . . . ,p run
over the world-volume directions, whilei , j 51,2, . . . ,92p
denote the transverse directions. In addition, it should
remembered that the calculations in Eq.~5.1! must be done
using asymptotically Cartesian coordinates.

Rewriting the Einstein metric~2.6! in isotropic coordi-
nates, one has

dsE
25h21/4H21/2@2 f dx0

21dx1
21h~dx2

21dx3
2!#

1h21/4H1/2r 2r22@dr21r2dV5
2#, ~5.2!

where
2-7
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r 25r2S 11
r 0

4

4r4D , r25
1

2
~r 21Ar 42r 0

4!. ~5.3!

Substituting Eq.~5.2! into Eq. ~5.1! and settingp53 yields

Tab5
p3

16pg2G10

diag@5r 0
414R̃4,2r 0

424R̃4,2r 0
4

24R̃4 cos2u,2r 0
424R̃4 cos2u#, ~5.4!

whereR̃45AR881r 0
8/42r 0

4/2. The stress-energy tensor~5.4!
includes the contribution from the extremal backgroun
which must be subtracted from it in order to acquire t
required quantity. The contribution of the extremal bac
ground can be obtained directly from Eq.~5.4! by setting
r 050:

~Tab!ext5
p3

16pg2G10

diag@4R84,24R84,24R84 cos2u,

24R84 cos2u#. ~5.5!

Subtracting Eq.~5.5! from Eq. ~5.4! and taking the near
extremal limit R̃4'R842r 0

4/2, we finally get the stress
energy tensor for the noncommutative SYM theory in t
largeN and strong coupling limit,

~nT!ab5
p3r 0

4

16pg2G10

diag@3, 1, 2 cos2u21, 2 cos2u21#,

~5.6!

and its trace

nT52
4p3r 0

4

16pg2G10

sin2u. ~5.7!

For u50, Eq. ~5.6! reduces to the result for the ordina
SYM theory, which is of the form of an ideal gas in 311
dimensions. In that case, its trace is zero. This is in acc
dance with the fact that the ordinary SYM theory is confo
mally invariant in four dimensions. On the other hand,
uÞ0, Eq. ~5.6! gives the stress-energy tensor for the no
commutative SYM theory. In this case, the tensor is not i
tropic and its trace does not vanish. It reflects the fact that
noncommutative SYM theory is not conformal even in fo
dimensions due to the noncommutativity of space. In ad
tion, we confirm that theT00 component of the stress-energ
tensor~5.6! in the decoupling limit indeed gives the energ
density of the noncommutative SYM theory given
Eq. ~2.12!.
12401
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VI. CONCLUSIONS

To summarize, we have investigated some aspects of t
modynamics for the noncommutative SYM theory in t
largeN and strong ’t Hooft coupling limit on the supergrav
ity side, and compared them with the ordinary case.
though the entropy and other thermodynamic quantities
black D3-branes with NSB fields are the same as those wit
out B fields, the stress-energy tensor of thermal excitation
different. For the ordinary SYM theory the stress-energy t
sor is of the form of an ideal gas in four dimensions. It
isotropic and its trace is zero. On the other hand, for
noncommutative SYM theory, the tensor is not isotropic a
its trace does not vanish, which confirms that the nonco
mutative SYM theory is not conformally invariant even
four dimensions due to the noncommutative nature of spa
Note that in the solution~2.1! the NSB field has components
only in thex2 , x3 directions. This means that the coordinat
x2 andx3 are noncommutative, whilex0 andx1 are the or-
dinary commutative coordinates. One may consider m
general D3-brane solutions with bothB01 and B23 compo-
nents. We do not expect that the stress-energy tensor wi
isotropic in that case either. The result is indeed so, and
have confirmed this by a very similar calculation to that
Sec. V.

We have considered the higher-derivative term corr
tions in the order (a83) to the free energy of the noncommu
tative SYM theory in Sec. III. Because there has not bee
complete expression of the low-energy effective action
type IIB supergravity to order (a83), to make sense of the
calculation and to compare the case of the ordinary c
which has been investigated in@27#, we transformed the
near-extremal D3-brane solution with varying dilatons to
solution ~3.16! with a constant dilaton by aT-duality trans-
formation. Those two solutions are equivalent in the sens
the Morita equivalence. Using the latter solution, we ha
found that the tree-level contribution is the same as the
dinary case, but the one-loop and the nonperturba
D-instanton contributions are suppressed, compared to
ordinary case. Note that the tree-level part corresponds to
planar diagrams, and the one-loop part to the nonplanar
grams in the field theory. This provides evidence that
largeN noncommutative and ordinary SYM theories are a
equivalent in the strong ’t Hooft coupling limit.

We have also studied the thermodynamics of a bou
state probe consisting of D3-branes and D-strings in
background produced by the black D3-branes withB fields
and compared it with that of a D3-brane probe in the ba
ground produced by the black D3-branes withoutB fields. In
accordance with the interpretation of the D-brane action,
free energy of a static probe can be regarded as the co
bution of massive states to the free energy of noncomm
tive SYM theory in the Higgs phase and the distance
tween the probe and the source can be explained as a
scale in the gauge theory. From the thermodynamics of
probe we have found that the free energies for the ordin
and noncommutative cases agree. In fact the dynamic in
2-8
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action potential between the probe and the source also ag
with the ordinary case. Because the interaction poten
comes from the planar diagrams from the point of view
field theory, the agreement further suggests that the largN
noncommutative and ordinary SYM theories are equival
not only in the weak coupling limit@19#, but also in the
strong coupling limit.
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