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Vacuum polarization of scalar fields near Reissner-Nordstrm black holes and the resonance
behavior in field-mass dependence
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We study vacuum polarization of quantized massive scalar fi¢lds equilibrium at the black-hole tem-
perature in a Reissner-Nordsindbackground. By means of the Euclidean space Green’s function we analyti-
cally derive the renormalized expression®),, at the event horizon with the arear#? . It is confirmed that
the polarization amplitudé$?),, is free from any divergence due to the infinite redshift effect. Our main
purpose is to clarify the dependence(@f?),; on the field massn in relation to the excitation mechanism. It
is shown for small-mass fields wittnr, <1 how the excitation of ¢?),; caused by a finite black-hole
temperature is suppressedrasncreases, and it is verified for very massive fields with, >1 that({¢$?),
decreases in proportion to~ 2 with an amplitude equal to the DeWitt-Schwinger approximation. In particular,
we find a resonance behavior with a peak amplitudenat =0.38 in the field-mass dependence of vacuum
polarization around nearly extrentlw-temperaturgblack holes. The difference between Scwarzschild and
nearly extreme black holes is discussed in terms of the mass spectrum of quantum fields dominant near the
event horizon.

PACS numbd(s): 04.62:+v, 04.70.Dy

I. INTRODUCTION Samuel [2] to the Reissner-Nordstno background, for
which the analytic continuation of the metric into Euclidean
The quantum behavior of matter fields in black holespace is given by

spacetime has been extensively studied in order to under-
stand the various physical effects. In particular, the existence ~ ds*=f(r)d7*+f~1(r)dr?+r?d¢*+r?sir*ode?, (3)
of a state of quantum fields in equilibrium at a finite tem- ) .
perature near the event horizon has attracted much attentioffneref=(r—r.)(r—r_)/r%, and using mas# and charge
because it clearly represents the thermodynamic properties & Parameters of the black hole, we have
stationary black holes. The problem of vacuum polarization ———
for this Hartle-Hawking statgl] may be described in terms r=M=yM*-Q%
of the Euclidean space Green'’s functiGg(x,x"), which is
periodic with respect to the Euclidean time=it. If one
considers a quantized scalar fiebd the vacuum polarization

4

For massless scalar fields the analytical approximation de-
noted by( %)+ reduces to

{$?(x)) can be calculated by using the equality , K2 (r+r.)(r2+r2)
= 5
(62(x))=Re{ lim Ge(x,x")}, (L) O e 1) ©

Therefore, in nearly extreme Reissner-Nordstrspacetime
in which the renormalized expression is derived through thesuch thatxr . =(r, —r_)/(2r,)<1, the vacuum polariza-
method of point splitting. tion of massless fields is strongly suppressddhis is also

It is well known that the black-hole temperaturelefined  justified by the result of Froloy3] estimated at the event
as the inverse of the period @g(x,x") is proportional to  horizonr=r_.)

the surface gravitk on the event horizon as follows: Such an excitation of vacuum polarization induced by fi-
nite black-hole temperature is an important aspect of quan-
T=k/27. (2)  tum matter fields in black-hole backgrounds, and it may re-

main valid for massive scalar fields too. Then, field mass
(Throughout this paper we use units such ttc=7%  will just play the role of suppressing the amplitude(ef?)
=kg=1.) If the origin of the vacuum polarizatiofyp?(x)) is  in comparison with massless fields. In this paper, however,
claimed to be purely induced by the finite black-hole tem-we would like to emphasize another remarkable effect due to
perature, the amplitude should decrease toward zero in theeld mass, which we call mass-induced excitation as a re-
extreme black-hole limik—0. In fact, we can see this be- maining part of(#?) in the low-temperature limiff—O0.
havior of {¢?) by applying the analytical approximation of Note that massive fields can have a characteristic correlation
the renormalized value obtained by Anderson, Hiscock, andcale corresponding to the Compton wavelengti. 1Our
purpose is to show that nearly extrerflew-temperaturg
black holes can enhance the excitation of quantum fields
*Email address: atomi@allegro.phys.nagoya-u.ac.jp with the Compton wavelengthrivof order of the black-hole
TEmail address: hiroko@allegro.phys.nagoya-u.ac.jp radius(i.e., mr, ~1). This mass-induced excitation may be
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expected as a result of wave modes in resonance with the e =
potential barrier surrounding a black hole, for which the tail (p2(r))=1lim — > chcognke)An(r) |, 9
part of (¢?) in the large-mass limitnr,>1 is generated e—0( 47 n=0

with the amplitude decreasing in proportion tanf/[4,5]

according to the DeWitt-Schwinger approximation devel-wherecy,=1/2 andc,=1 for n=1. The separation of two

oped by Christensef6]. points in Gg(x,x’) is chosen to be only in time as=7
In this paper our investigation is focused on the Reissner= 7', and the radial pa\,(r) for each quantum numberis

Nordstran background as the simplest example which al-given by the sum of radial modes,(r) andqy(r),

lows us to consider the low-temperature lirrit, <1 keep- .

ing an arbitrary value ofmr, . (The black-hole temperature 1

and the field mass are measured in units of the inverse of a An(f)zg [(ZI +D)Pa(r)an(r) — ﬁ] (10

fixed black-hole radiusr,. In the Schwarzschild back-

ground with«r , =1/2 we cannot discuss the field-mass de-\yhere| is the angular-momentum quantum number, and the

2
pendence Ot()¢h> in suc;hr? low- Itempe_rature “Ir_n't' and any gy hiraction term tAf is necessary for removing the diver-
resonance behavior of the polarization amplituds?) at gence in the sum ovedr The radial modey,, satisfies the
mr, ~1 will become obscure by virtue of a contamination of ?quatlon

the temperature-induced excitation in the mass range o
mr_<1 [7].) Then, following the analysis given by Ander- 2 2 2 2.2
son and his collaboratof®,5], we compute the vacuum po- d*gn i d(rf) dan _{n K + I(d+2)+m7 Uni
larization of massive scalar fields, for which we have the dr2 r?f dr dr

analytical approximation of the form

<¢2>ap:<¢2>T+<¢2>m2- (6) o )
and it is chosen to be regular at=c and divergent at
Here the additional contribution from field mass becomes =r . The same equation is satisfied py;, which is cho-
sen to be well behaved at=r . and divergent at =oo.
m? |1 | (me)J The WKB approximation for the modes may be used to
y—In 1L

f2 fr2

=0, (11

<¢2>m2:16’7T2 (1) calculate the mode sun{&0), by assuming the forms

with Euler's constanty. Unfortunately, this field-mass term pm:;eXP(J’ (W/f)dr), (12)
contains a logarithmic divergence at the event horizon (2r2w)1?

=r, . Therefore, in Sec. Il we develop the technique of ana-

lytical calculation to cancel such a divergent term, by payingand

the price that ¢?) is evaluated only near the event horizon.

It is checked in Sec. Ill that the renormalized valug( ¢f) 1

at the event horizon becomes identical, up to the leading qn|=2—1,zeXF<—f (W/f)df), (13
terms of order of Th’r2 , with the result derived by DeWitt- (2r°w)
Schwinger expansion in the large-mass limit. In Sec. IV
using the small-mass approximatiomr, <1, we show the
tendency of temperature-induced excitation to be suppressed

with increase of field mass. We find in Sec. V the mass- W2=n2x2+
induced enhancement of the polarization amplittd@é), by

giving explicitly the dependence on field mass in the low-

temperature limitcr , <1. The final section summarizes the To renormaliz(¢?) in the limit e—0 of point splitting, we
results representing a remarkable difference of field-mass deubtract the countertermg$®) s generated from the
pendence of the polarization amplitude for scalar fields inDeWitt-Schwinger expansion df?),

equilibrium at various black-hole temperatures.

'where the zeroth-order solution is chosen to be

2

f
+m2r2]—

|+1
2 r2

(14)

5 1 m? m?| |
Il. CORRECTION TO THE WKB APPROXIMATION (¢ >DS_87720' =il L+ 2y+in| —
Let us start from a brief introduction of the method to 1 a b
compute the renormalized value df$?) in Reissner- b~ R, (15)
Nordstran background(3), which has been developed by 9672 o
Anderson and his collaboratofg,5]. Using Eq.(1) for a
massive scalar fiel¢p obeying the equation where o is equal to one-half the square of the distance be-
tween the two points andx’, and c®=V?¢. Then, for the
(O-m?) ¢p(x)=0, (8) renormalized value defined by
the unrenormalized expression is given by (6)ren=(*)—(¢*)ps. (16)
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we can arrive at the analytical approximatid®), if the
second-order WKB approximation fo¥ is used in the mode
sums forn=1 [2,5].

Though Eq.(6) can clearly show a spatial distribution of
the vacuum polarization, the validity is rather restrictive. For

example, in the asymptotically flat region—c it fails to

give the expected dependence on field mass. It is instructi

for later discussions to calculate precisé?), ., of thermal
fields in equilibrium at a temperatufE in flat background
(corresponding td= 1), following the method of the Euclid-
ean space Green'’s functi@bg(x,x"). DenotingT by /2,
we obtain the exact solutions fqr,,, and g, in flat back-
ground as follows,

1
Poi= g+ A VP 72), 7

and

(18)

1
iner,zKH%(fm),

and the mode sum ovéiin A, results in
Ap=— Vm?+n?k2.

If we use the Plana sum formula for a functig(k)

(19

o1 - [
g(J)—zg(kHJk g(x)dx—HL

=k e’ ™ -1

X[g(k+ix)—g(k—ix)], (20)

the unrenormalized value is written by the integral form

($?)=lim [ S J':dn cognke)Vm?+n?x?

e—0 4772

2dn

+ J' \/Kznz— m?
m/KeZﬂ'n_ 1

} . (21)

The first term in the right-hand side of E@1) is completely

PHYSICAL REVIEW D 61 124010

Nk ( 1 2)/
—+|———m 2Nk,
f 12r2

as a result of the mode sum oveusing the zeroth-order
solution (14) for W. It is clear that the sum of such an ex-

Pg=— (24)

VBansion form ofA, overn=1 misses the exponential behav-

e 2™« of ($?),., in the asymptotically flat region.

Now let us turn our attention to vacuum polarization at
the event horizorf =0, which is the main concern in this
paper. Fortunately, we can claim that the above-mentioned
deviation of Eq.(6) from the precise estimation becomes
irrelevant, if we consider the limif —0. This is because
owing to the redshift factof in W the expansion(24) re-
mains valid even for a large mass=«, by keeping the
conditionm\/f/k<1. Then, concerning vacuum polarization
of massive fields at the event horizon, we can use(B&qto
show the dependence (&2),., on m. Of course, one may
point out another crucial problem, that E@) contains a
logarithmic divergence at=r . . However, this singular be-
havior is due to the sum o4, over the limited range of
=1. Because the expansion fori@4) also breaks down for
n=0, the contribution ofA, to {¢?),., is omitted in the
calculation of Eq(6). We would like to clarify an important
role of then=0 mode to give a regular value at the event
horizon for the renormalized vacuum polarizatio®?) e,
(and also for the renormalized stress-energy te(iBQy) en) -

To this end we propose the procedure to treat more pre-
cisely the mode sum ovéiin A, at the event horizon, which
is applicable to the lowen modes. Note that near the event
horizon the exact solution fay,,, should have the expansion
form

A =2"2In zzo a5tz ”’220 B2, (25)
s= s=

with some coefficientsrg and B5. The rescaled radial coor-
dinate z is defined byz=(r—r,)/r, <1. This expansion
form is not useful to calculatd, at the event horizon, be-
cause the sums ovérshould be done without expanding in
powers ofz for requiring the convergence. Then, the impor-
tant points to be mentioned here are the existence of the
logarithmic termz"?Inz and the power-law behavia "?

canceled by the subtraction of the DeWitt-Schwinger counyominant forn=1 in the limit z—0 (except for then=0

terterms(15), in which we haver= — €2/2, while the second
term gives the renormalized valugp?)., in flat back-
ground, which for massless fields reduces to
(%) ren=T7112, (22)

and becomes equal to E@) estimated in the asymptotically
flat region. However, in the large-mass limmit>«, we ob-
tain

($%)ren=mA(T/2m) 3%~ ™1, (23
because the second integral ovein Eq. (21) should run
from the large lower limitm/«>1 to infinity. This leads to a
crucial difference from the approximated fo(@), for which
A, is expressed in inverse powersrmot such that

mode in which the logarithmic term becomes dominaRor
the modesp,, regular at the event horizon the dominant
power-law behavior is given bg"?, and the WKB forms
(13) and(12) for g, andp,, remain exact up to these domi-
nant power-law terms. Hence, the value A&yf for n=1 is
exactly given by the WKB calculation in the limzt—0, and
we will obtain a precise value df$?),., at the event horizon
by taking account of the additional correctigg to Eq. (6).

To resolve the problem of logarithmic divergence, how-
ever, it is important to note that the WKB form fqy, fails
to give the logarithmic behavior, which should play the role
of canceling the logarithmic term contained in the DeWitt-
Schwinger renormalization counterterniBecause the lead-
ing logarithmic behavior irA,, would bez" In z, the value of
{$?)ren Can become regular at the event horizon only by
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considering a more precise treatment of the0 mode be-
yond the WKB level, while the same analysis for the 1
mode is also necessary to obtain a regular vaIL(ér@)‘ren J)

PHYSICAL REVIEW D 61 124010

2Kl
3

1
—)=v(v+1)+2kr+—82,

(n2—1)<y1—2+ St
(33

Hence, our key approach is to study the modified Bessel

forms for the modes instead of the WKB forms as follows:

Y 1/2
Pni= - In(X)1 (26)
rew
and
1/2
X
Qn|=<2—) Kn(X), (27)
rw
where we have
r
X:j (w/f)dr, (28
M+

for which it is easy to check the validity of the Wronskian
condition

1

r2f’

ddy, dpni
pnld_:_qnld_:: (29
The ordinary WKB forms are given if we assumpg andqy,
to be proportional td 1, and Ky,,, respectively. Now, the
functionw introduced in place ofV should satisfy the equa-

tion
2 1( ) 1) n’«? 1(1+1)+m’r?2 1 d’w
—{1+ === = - ——
f2 X2 4 f2 fr2 2w dr?
31 [dw\?
4 2ldr
1 d(rw) df 20
2r2fw  dr dr’ (30
If wis rewritten into
w=fY%y/r (31

the solution of Eq(30) allows the expansion form

y=B (32)

1+, yszs) .
s=1

From the well-known behavior of the modified Bessel func-

tion K,(x) near y=0, it is easy to see tha, has the
expected logarithmic behavior near the event horizon.
By substituting Eq(32) into Eq. (30) with the expansion

wherev(v+1)=I(I+1)+m?r2 . From the expansion up to
the next power of the relation betweeg; andy, turns out
to be

2kr

—5— (N*=4)y,=—v(v+ Dy, =11+ 1)+ U(kr, 0y,

(34

whereU is a slightly complicated quadratic function gf
which depends on andkr ;. only. An important point of the
expansion form32) is that we can requirg, to remain finite
in the limit | —o, for which from Egs.(33) and (34) the
asymptotic values oB andy, reduce to

B2=1(1+1)+m?r? + %+n2 e +0(17?),
(35
and
y1=—1+0(17?). (36)

This dependence of; on | allows us to calculate the mode
sum overl in A, by neglecting the terms with the higher
powers ofzin Eq. (32), and in the following Eq(35) will be
verified in terms of the cancellation of the logarithmic diver-
gence in<¢2>ren-

We also remark that the amplitude @), at the event
horizon should not be interpreted as a quantity determined
only by local geometry. The relatiort83) and(34) allow us
to give a conjecture that the recurrence relation is truncated
within a finite sequence, and for tlmth mode the finite set
consisting ofB, y4, ...,y,_1 IS completely determined for
any value ofl. However, the coefficieny, remains un-
known, unless the higher infinite sequence of the recurrence
relation is consistently solved for satisfying the boundary
conditiony— (m?r? +n?x%r%)¥2 at z— as an eigenvalue
problem. In particular, fon=0 we cannot giveB for lower
values ofl without a further analysis of Eq11). This is the
problem to be solved in the subsequent sections, and in this
section we use Eq35) for n=0 to derive the logarithmic
term inA,.

By taking the limitz— 0, we can give the mode sum over
| for n=0 written by the form

“l21+1
AOZE [ 2
KI

I=0 T

Ko(B\22z/kr )l o(By22Z/ kT )

1
- r+\/2;<r+z]'

Then, we apply the Plana sum formu20) to Eq. (37), in

(37

in powers ofz, we obtain the recurrence relation between thewhich the modified Bessel functions are allowed to reduce to

coefficientsB andy,. For example, the lowest relation leads
to

Ko(BV22Z/ kr,)=—vy—In(Byz/2kr ),

(39
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and
lo(BvV2zZ/kr 1 )=1, (39
except for the integral defined by
o (2141
Jdl 5 Ko(B\22Z/ kr )l o(B\22Z/ k1 )
0 Kl
: (40)
ro2kr,z|

To calculate the integra#l0), let us recall thaB is a function
of | satisfying

2BdB/dI=21+1+0(l?) (41)

in the largel limit and replace the integral of the modified

Bessel functions ovel by that overB to use the integral
formula

JZBKO(Bv)I0(Bv)dB=BZ{K0(Bv)IO(Bv)

for any variablev. Then, the same approximations with Egs.

PHYSICAL REVIEW D 61 124010

giving the asymptotic valu¢35) of B for the n=0 mode
with very largel, which is determined through the local
analysis near=r , . Though in general we cannot obtain the
renormalized value itself without derivin® for lower |
modes, the large-mass limit can be an exceptional case for
which the local analysis remains useful, and we calculate
(¢?)y up to the order o2 in the next section as a simple
application of the procedure presented here.

lll. THE LARGE-MASS LIMIT

To calculate the integral @ in S, overl under the large-
mass limitmr,_>1, it is convenient to give the expansion
form of B in inverse powers ofv(v+1), by keeping the
quantity,uzmzri/v(wr 1) to be of order of unity[For the
first integral present ir5, we cannot assumkl +1) to be
much smaller thammr, , while for the second integral the
approximation u=1—1(1+1)(mr,)~? may be allowed.

The expansion oB? should be done up to the terms of order
of 1/v(v+1) for obtaining them 2 terms of( ¢?),,. Then,
the recurrence relation subsequent to Eg8) and (34) be-
comes necessary, for which the leading terms turn out to be
2
3
yom - 2 5(1=p)+0(m™2).

5 @7

(38) and(39) is applicable to the remaining integral given by The key point of Eq(47) is the absence of; in the leading-

dB
21 +1—25—> Ko(B22z/ kr 4 )l o(BN22Z/kr ),

J'w dl
0 Kri

dl
(43)
and we arrive at the final result féy in the limit z—0 such
that
Ap= S0 + m” + 1I 2 44
O_Kl’i < |7 2nZKr+ ' (44)
where

BS

2 1 *
SOZ BO—E InBO—?— OC“ di

dB
21+1-2B—|InB

_f%{(zn + 1) B(il)+(2il — 1) B(—il)},
0e™—

(45)
if we denoteB(l1=0) by B,. Hence, by addingA,/87 to

<¢2)ap, the logarithmic divergence at the event horizon

order relation, from which Eqg33) and (34) for n=0 can
give

—lhpt— po(m 48
yl_ M V(V+1)77 (m )1 ( )
and
B2 1 ! 1+2 2 O(m™*
=v(r+1)+o(1+ KHMHm?ﬁ (m=%),
(49
where
1 4 1 37 , 50
B em%i+§ 1&U,M 15H (50

Now it is easy to calculate the integrals in E45) up to
the terms of order ofrir,.) ~2, and we can confirm the can-
cellation of all the terms much larger tham¢,) 2 in the
expression(46) for (%), , giving the result

turns out to be canceled, and we obtain the renormalized

value denoted by¢?), as follows:

K m? So
+ 1-In(m?r2 )+
24m?r 16172{ ) 8mr?

<¢§H:
(46)

It is interesting to note that the absence of the logarithmic
divergence of ¢?) ¢, at the event horizon is assured only by

(P = (16k%r2 —4kr,+1). (51

720m°mr?

Note that the well-knowm™2 term{ ¢?) -2 of the DeWitt-
Schwinger approximation faf$?) can be written by

<¢2>m’2_ (RabcdRade_ RabRab) (52

© 2880m2m?
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for the Reissner-Nordstno background (with vanishing To calculate the integrals ovérin S;, we use integral rep-
Ricci scala), where R,,.q and R,, are the Riemann and resentations for the polygamma function. For example, we
Ricci tensors, respectively. If evaluated at the event horizombtain
r=r, , this DeWitt-Schwinger term is found to be identical
with Eq. (51). Hence, for very massive fields withr, >1 o
in equilibrium at black-hole temperatufe= /27, we can f
claim the validity of the DeWitt-Schwinger approximation
near the event horizon, as was previously shown in numeri- x |et 2t—24¢-1 1( cosh{t/2)
cal calculationg2,5]. Further, ifmr, is fixed, the tail part =J t—— +-—

. - 6t el—1 4
(51) in the rangemr,>1 becomes minimum at the black-
hole temperature corresponding 4o, = 1/8, rather than at
the low-temperature limitr . <1. The m-x coupling can _Cotm/Z)Jrl)], (57)
give a slightly complicated change to the amplitude of
vacuum polarization. In the next section we see a result of
the m-« coupling as the suppression of temperature-induce®y Virtue of the formula

excitation in a small-mass range.
0 e—t e—ts
l//(S)=J dt(—— ) (58
0

t 1-et

2ml

{2iII+ ) p(1+il)+(2il =1)gp(1—il )}
0e 1

0 sinke(t/2)

IV. THE SMALL-MASS LIMIT

Now we consider scalar fields with very small massAnother useful formula is given by
mr, <1, for which the temperature-induced excitation given

by Eq. (5) will dominate. To reveal some correction due to 1 1 o 1 1 1 t .
the small field mass, let us begin with a brief analysis of(s)=Ins— >—— —Z—f — Tt
purely massless fields. It is easy to see that (&d) for the s 12 0 e-1 t 2 12 59
masslessi=0 modes becomes equal to Legendre’s differen- (59
tial equation, if we use the variable defined byx=1 through which we arrive at the result
+(z/kr ;). Then, from the behavior of Legendre functions at
x—1 andx—o, the modesjy andpg should be chosen to o dy(1+1)
be f dl 2e2¢(1+'>T—(2|+1) P(1+1)
0
Qor=Qi(X),  Par=Pi(x). (53 1 ., 1o ( 1 1 1 t )
=|s+y|e” 7——+f dt ——+-—
2 3 t_ t 2 12
The mode sum in Eq10) for n=0 is known to be precisely 0 e-1
zero for anyx [8], and from Eq(46) the vacuum polarization o 1
at the event horizon reduces to X| 5+ ik (60)
t
($2)= (54 Then, it becomes easy to calculate the integral oer the

24m°r ' sum of Egs(57) and(60), and we obtair5,=0.
For the massiven=0 mode we rewrite Eq(11) into the

which should be interpreted to be purely induced by theform
black-hole temperature. For purpose of extending the result

to massive fields, it is useful to check explicitly through the 9 d?gq ddo
procedure given in the previous sections tBaiin Eq. (46) (x _1)F+2xﬁ_{l(l +1)
vanishes.
Recall that the functiorQ,(x) has logarithmic branch +m?r2 (kr o x+1—«r,)?qe=0, (61

point atx=1, and the dominant behavior near the point is
which can clarify the deviation from Legendre’s differential

1 2 equation. In this section a small-mass field havimg, <1 is
Q|=§|n m) —(1+1)—y, (55  assumed, and the solution perturbed by the field mass is
given by
wherey(s) is the logarithmic derivative of the gamma func- or=Qy(X) +qy(x), (62)
tion (i.e., a polygamma functionand we havey(1)=—vy
for Euler's constanty. By comparing the logarithmic behav- \herel’ —1=§=0(m??). Because the terms proportional
can determine the coefficieBias follows: rence formula valid foQ,, (and also forP|,) such that
B=exp{4(1+1)}. (56) (I"'+D)Qp 1 —(2I"+1)xQ+1'Q; _1=0, (63
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and the perturbed paq; is expanded in terms of Legendre Using these equations, one may calculate the polarization

functions as follows:

qlzgl (€PQy 1 +cVQyr ). (64)

The coefficientsc, and c_, together with the eigenvalué
are determined by solving the recurrence relation

Cﬁ'){(|'+k)(|’+k+ -1(I+1)—m f+v|(9lk
=m2r2+121 (U|(£)+kc(k|4)r]+vl/+kc(l) ), (65

wherec{’=1, and

2i(2i+1)—1
o= (L) gy
'+1
i
v§—1>:2xr+(1—xr+)m, (66)
(i+1)(i+2)

@ =22
U KT 21 3) (21 +5)

(2= 22 __ii=D
! T (2i-3)(2i-1)°

Then, the first-order perturbation is found to be

m2kr>

q= 2|+1[(1 Kl )(Qi41— Q1)

T (|+1)(|+2)Q|+z_|(|—1)Q|z)}
2 (21+3)2 (21—1)2
(67)
and
m?r2 211+1)—1
0= (1- KT 4 )2+ K2r2 B D@ )| (68)

for which the coefficienB is estimated to be

o dp(1+1) [ kr,(1—kr,)
B=e¥l 1’[“5 a ™ (W
Kzri
e D@+3) ] ©9

amplitude( ¢2),, at the event horizon. However, fbr=0 the
value of B becomes divergent as a result of the existence of
the undefined functio®_, in Eq. (67). This will mean a
dominant contribution of thé=0 mode in the small-mass
limit.

To estimate more precise§=B,, for | =0, the subscript
| in the Legendre functions should be replaced hytaking
account of the approximate relatid@s_=P,_,/6 for &
<1. Then, the termrnzriQ,;_1 which appears iy should
be interpreted to be of order of unity, contradictory to the
perturbation scheme. This problem is resolved if we add an-
other independent solution for EG1) written by

po=d8°)Pa+k21 (AP s+ d QP sy (70

to qo as follows,

QOZKZI (c2Qsk+¢%Qs-1) +Po (71)

where we require that 1c®)+d{”’=g<1 for d{) of order
of unity. Of course, the coefficients”) should satisfy the
same recurrence relation wity”), and we obtain fok=1

df,=0((mr)2), df)=o(mr ), (72
in addition to the ratiod®/d(®;=0(m?r%). Then, the
asymptotic behavior of the=0 modeqggatx>1 is approxi-
mately given by

1 S T(k+(12
;E (k+(1/2))

5~ 1c©
¢ \/—F(k+1)( g

L +d) (20,
(73)

Goo=

which should be consistent with the boundary condition

1
oo™ 5 €XP(— T3 X) (74)

at a distant region far from the event horizon.

To check the consistency, let us derive the approximate
recurrence relation which is valid up to the leading order of
m?r2 and reduces to

c%_ x d) R 2k—1
- +
(10)2k d(z(l)()_2 (2k+1)(4k—1)(4k—3)"’
(75
and
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5@ 14O 2k but we solve Eq(61) under the assumptiomr . <1 with the
_1_(20';_2 (02)k+1 =m?k%r? ) help of the technique of asymptotic matching.
o ey tdyl g (2k+2)(4k+ 1)(4k_1() ) At large values of Eq. (61) reduces to the form
76
Noting the relations between the lowest coefficients such thaazqOI 2 dqg v(r+1) 2m2;<ri ) 0
- +m°kri | qe =0,

_ dx? X dx X2
6 1) =2m?kr3 (1—«r.) (77) @3
and ) ) _
in which we cannot neglect the terms depending«on to
6 1O +dP=m?x?r4 /2, (78)  require the exponential decreaseggf. For the approximate

. differential equation we obtain the solution
we arrive at the result

)

(mkr2x
%ozz .

)2k o
2 Xl TP (k=TT

(mxr? x)2=2 Qo =W_mr, us 122 2MKT 3 X)X, (84)
(79

where W, , denotes the Whittaker function with the
which can satisfy the boundary conditionsit= —mxr? . asymptotic behavior

Unfortunately, we cannot determine to the order of

m?r2 , unless the recurrence relation is studied to the higher
order. Hence, we only keep the leading correction of order of
mr, in thel=0 mode,

W, p(u)=u?exp(—u/2) (85

asu—oo. This asymptotic solution can remain valid in the

5 range
Ooo=Qo—Mkr<, (80)

which means thaBy=e~ ¥(1+mkr ). For thel=1 modes
0o We must also consider the perturbation with the terms
written by the Legendre functiori® (x). However, it is sure

that no perturbation of order ahr, does not appear fdr
=1, and we obtain

1<x<<1/kr ., (86)

where we obtain the approximate behavior

(—2v—1)

2 v —
So=—In(1+mkr2)=—m«r2, (81) Goi=F(mr, =) (2MAr0)" X7
if we omit the higher-order corrections. Now the vacuum I'2zv+1) 2
polarization given by Eq(46) for small-mass fields becomes + m(meHX) X“T. (87

approximately
Note that if x<1/kr,, EqQ. (61) becomes approximately

« equal to Legendre’s differential equation, giving the solution

247r

(p*)u= (1-3mr,), (82

Goi=CP,(X)+DQ,(X). (89)
which clearly shows that the temperature-induced excitation
is suppressed by field mass. Asbecomes larger, the am- The coefficientsC andD should be determined by matching
plitude may monotonously decrease in the whole mass rangeith the approximate solutio(87), and it is easy to see that
extending tomr, >1 where the DeWitt-Schwinger approxi- the ratioC/D is of order of (mKri)z”“. Hence, we can
mation { )y~ (mr,) 2 is valid. This simple dependence neglect the ternP, in qq , and the asymptotic behavior at
on mis supported through numerical calculations for severak— 1 turns out to be
values ofmr, in Schwarzschild backgroundcf . = 1/2) [7].
In the next section, however, we point out a different depen-
dence on field mass, which is a resonant behavidrddh

remarkable in the low-temperature cage, <1. ' (89)

1 [x—1
qo|:—D[§ln(T) +y+ lﬂ(V—Fl)

V. MASS-INDUCED EXCITATION from which we obtain

Let us turn attention to quantum fields at the event hori-
zon of nearly extreme black holes to show an interesting B=e/("*1), (90
feature of the mass-induced excitation of vacuum polariza-
tion. Then, we do not limit the range of the parametar, , for calculatingS, (and{¢?),) through Eq.(45).
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A useful expression o5, to understand the field-mass which is one of the integrands i&,, we obtain

dependence is derived if we use the integral formula

V24 v+

1
lﬂ(V‘i‘ 1)=Eln

N Jw 2tdt
0 (e2™+1)[t2+ 2+ v+ (1/4)]

91

In fact, for F(1)=(—i){(2il + 1)InB(il)+(2il — 1)In B(~il)}

Inf v(v+1)+

1
= V(V+1)+Z

which is equal to zero ak—«. We therefore arrive at the

result
1 tG(t) H(t)
SO:E(g_ _>|n g_ 2 f 27Tt+1 eZ')TI_l]dt'
(95
where
G(t)=2In( o
= dl 12+ (1/2)—t?—¢
_8J g egee 0
and
t
H(t)=t In{(t2_§)2+t2}+arctar( g—tz) . (97

Under the low-temperature approximatiem , <1 we ne-
glect the termx/24x?r , in Eq. (46), and the polarization
amplitude at the event horizon is finally given by

mr2 { 1
8w2ri<¢2>H: > In< o2 ) —§(1+In 0)

l
0

Now it is easy to check the value ¢%2),, in the large-
mass limitmr_>1, and we obtain

tG(t) H(t)
eZﬁt+1 e27'rt_

1] dt. (998

1
- _ a2y(v+1)
7 1] e

=

foc 8tdt 12+ (1/2)—t>—¢
0 e2™+1 (12—t2—{)2+12’

F()=I In{(I2—§)2+I2}+arctar(

(92

where/=m?r2 +(1/4), and the value of arctar)(runs from
0 to 7 in the range B=u<o. Further, the integral given by

dB
f dl 2I+1—ZBW InB (93
is rewritten into the form
1 ! 2fx—tdt In| t2 1 L 94
Y(v+ )_§+ OeZwt+1nt+V(V+ )+Z, (94)
I
87212 ()= — (99
i 90m2r2’

for which we can reconfirm that it is equal to the DeWitt-
Schwinger approximatiofwith «r . —0). We can also con-
sider the small-mass limimr, <1 under the condition
m/x>1, and the approximate expression(g®),, becomes

(=~

; +y+ In(mr+)] (100

which can remain positive by virtue of the existence of the
logarithmic term— mzriln(mu).

We evaluate numerically the integrals in the expression of
(¢?)y, and the field-mass dependence is shown in Fig. 1.
Note that the maximum excitation ¢?),, occurs atmr
=0.38, and the peak amplitude denoted(l?)max is esti-
mated to be &2r2(¢$?)ma=0.0424. We can clearly see a

8n?r2 < ¢ >y

0.5 1 1.5 z T

FIG. 1. The field-mass dependence of vacuum polarization
(¢2)H at the nearly extreme Reissner-Nordstrdorizonr=r_ .
The amplitude has a resonance peaknat =0.38 and a tail part
decreasing in proportion tm~?2 for very massive fields.
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resonance behavior of the polarization amplitude for massive There should be a critical temperatlrg= /27 of black
fields with the Compton wavelengthri/of order ofr, and  holes in the range € «r , <1/2, below which a resonance
also the tail part given by Eq99) in the mass range of peak of(¢?)y is observed in the field-mass dependeritfe.
mr,>1. k> k., the polarization amplitude monotonously decreases
with increase ofm.) Though the value ok. remains uncer-
VI. SUMMARY tain within the analysis presented here, it is sure that domi-
) o , nant fields as quantum perturbations near the Schwarzschild
~ We have studied vacuum polarization of quantized scalapqizon should be massless, while nearly extreme holes will
fields in the Relssner-Nordst’m background by means of haye a4 quantum atmosphere dominated by fields with a reso-
the Euclidean space Green’s function. In particular, the,5nce mass. The peak amplitude given by2 (%) max

renormalized _expressio(rt;bz)H at the event horizom=r.. _q 9424 at the nearly extreme Reissner-Nordstiwrizon
has been derived by revealing the contribution of the0 i 5t so much smaller than the massless part given by

mode, which can cancel the logarithmic d|vgrgence. 8m2r2 ¢?)r=1/6 at the Schwarzschild horizon with the
We have found the dependence(@f),; on field massn: 2

. . I same area #r< . (If compared under the same black-hole
(1) The tail part observed in the large-mass limir, > 1 massM, the former becomes slightly larger than the latter
becomes equal to the DeWitt-Schwinger approximati@n. aluatéd by &2M2( )= 1/24) %or?lside?in a black hole
For small-mass fields a suppression of temperature-inducegdvvolvin tov)\;ard the ﬁert;tem érature stategwith a fixed ra-
excitation due to the coupling betweemand « occurs ac- . 9 P . )

diusr,, we conclude that the mass of dominant fields

cording to (¢%)y=(#?)(1—3mr,), where the massless ; o . _
part with the amplitude proportional to the black-hole tem_generatlng vacuum pol_arlz_atlon shifts _frommr+<1 .to .
mr,.=0.38 as the contribution of mass-induced excitation

_ g 2.2/ 42\ _
peratureT = «/2m 's given by 8”.r+.<¢ )T Kr+/3'. We can becomes important, without changing the polarization ampli-
expect that mass-induced excitation becomes important f%de so much. Quantum back-reaction due to massive fields

_masstlye Ilel_ds dwlthlnr+=_1. Unfortutnat(felmt 1S d'ff'l.cu“ to [9] will become very important for nearly extreméw-
investigate in detail various aspects of tex coupling in o 0erareblack holes.

the case that botimr, and«r ;. are of order of unity(3) Our
main result therefore has been to show a resonance behavior
of mass-induced excitation of vacuum polarization around
nearly extreme Reissner-Nordstroblack holes withkr

<1: If the Compton wavelength iy of a massive field is of The authors wish to thank Y. Nambu for helpful discus-
order of the black-hole radius, , the amplitude of vacuum sions. This work was supported in part by the Grant in-aid
polarization has a peak at the resonance mass given bgr Scientific ResearctC) of the Ministry of Education, Sci-
mr,=0.38. ence, Sports and Culture of Jap@in.1064025Y.
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