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Vacuum polarization of scalar fields near Reissner-Nordstro¨m black holes and the resonance
behavior in field-mass dependence

Akira Tomimatsu* and Hiroko Koyama†

Department of Physics, Nagoya University, Nagoya 464-8602, Japan
~Received 27 December 1999; published 18 May 2000!

We study vacuum polarization of quantized massive scalar fieldsf in equilibrium at the black-hole tem-
perature in a Reissner-Nordstro¨m background. By means of the Euclidean space Green’s function we analyti-
cally derive the renormalized expression^f2&H at the event horizon with the area 4pr 1

2 . It is confirmed that
the polarization amplitudêf2&H is free from any divergence due to the infinite redshift effect. Our main
purpose is to clarify the dependence of^f2&H on the field massm in relation to the excitation mechanism. It
is shown for small-mass fields withmr1!1 how the excitation of̂ f2&H caused by a finite black-hole
temperature is suppressed asm increases, and it is verified for very massive fields withmr1@1 that ^f2&H

decreases in proportion tom22 with an amplitude equal to the DeWitt-Schwinger approximation. In particular,
we find a resonance behavior with a peak amplitude atmr1.0.38 in the field-mass dependence of vacuum
polarization around nearly extreme~low-temperature! black holes. The difference between Scwarzschild and
nearly extreme black holes is discussed in terms of the mass spectrum of quantum fields dominant near the
event horizon.

PACS number~s!: 04.62.1v, 04.70.Dy
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I. INTRODUCTION

The quantum behavior of matter fields in black ho
spacetime has been extensively studied in order to un
stand the various physical effects. In particular, the existe
of a state of quantum fields in equilibrium at a finite tem
perature near the event horizon has attracted much atten
because it clearly represents the thermodynamic propertie
stationary black holes. The problem of vacuum polarizat
for this Hartle-Hawking state@1# may be described in term
of the Euclidean space Green’s functionGE(x,x8), which is
periodic with respect to the Euclidean timet5 i t . If one
considers a quantized scalar fieldf, the vacuum polarization
^f2(x)& can be calculated by using the equality

^f2~x!&5Re$ lim
x8→x

GE~x,x8!%, ~1!

in which the renormalized expression is derived through
method of point splitting.

It is well known that the black-hole temperatureT defined
as the inverse of the period ofGE(x,x8) is proportional to
the surface gravityk on the event horizon as follows:

T5k/2p. ~2!

~Throughout this paper we use units such thatG5c5\
5kB51.! If the origin of the vacuum polarization̂f2(x)& is
claimed to be purely induced by the finite black-hole te
perature, the amplitude should decrease toward zero in
extreme black-hole limitk→0. In fact, we can see this be
havior of ^f2& by applying the analytical approximation o
the renormalized value obtained by Anderson, Hiscock,
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Samuel @2# to the Reissner-Nordstro¨m background, for
which the analytic continuation of the metric into Euclide
space is given by

ds25 f ~r !dt21 f 21~r !dr21r 2du21r 2 sin2udw2, ~3!

wheref 5(r 2r 1)(r 2r 2)/r 2, and using massM and charge
Q parameters of the black hole, we have

r 65M6AM22Q2. ~4!

For massless scalar fields the analytical approximation
noted by^f2&T reduces to

^f2~r !&T5
k2

48p2

~r 1r 1!~r 21r 1
2 !

r 2~r 2r 2!
. ~5!

Therefore, in nearly extreme Reissner-Nordstro¨m spacetime
such thatkr 15(r 12r 2)/(2r 1)!1, the vacuum polariza-
tion of massless fields is strongly suppressed.~This is also
justified by the result of Frolov@3# estimated at the even
horizon r 5r 1 .)

Such an excitation of vacuum polarization induced by
nite black-hole temperature is an important aspect of qu
tum matter fields in black-hole backgrounds, and it may
main valid for massive scalar fields too. Then, field massm
will just play the role of suppressing the amplitude of^f2&
in comparison with massless fields. In this paper, howev
we would like to emphasize another remarkable effect du
field mass, which we call mass-induced excitation as a
maining part of^f2& in the low-temperature limitT→0.
Note that massive fields can have a characteristic correla
scale corresponding to the Compton wavelength 1/m. Our
purpose is to show that nearly extreme~low-temperature!
black holes can enhance the excitation of quantum fie
with the Compton wavelength 1/m of order of the black-hole
radius~i.e., mr1;1). This mass-induced excitation may b
©2000 The American Physical Society10-1
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expected as a result of wave modes in resonance with
potential barrier surrounding a black hole, for which the t
part of ^f2& in the large-mass limitmr1@1 is generated
with the amplitude decreasing in proportion to 1/m2 @4,5#
according to the DeWitt-Schwinger approximation dev
oped by Christensen@6#.

In this paper our investigation is focused on the Reissn
Nordström background as the simplest example which
lows us to consider the low-temperature limitkr 1!1 keep-
ing an arbitrary value ofmr1 . ~The black-hole temperatur
and the field mass are measured in units of the inverse
fixed black-hole radiusr 1 . In the Schwarzschild back
ground withkr 151/2 we cannot discuss the field-mass d
pendence of̂ f2& in such a low-temperature limit, and an
resonance behavior of the polarization amplitude^f2& at
mr1;1 will become obscure by virtue of a contamination
the temperature-induced excitation in the mass range
mr1!1 @7#.! Then, following the analysis given by Ande
son and his collaborators@2,5#, we compute the vacuum po
larization of massive scalar fields, for which we have t
analytical approximation of the form

^f2&ap5^f2&T1^f2&m2. ~6!

Here the additional contribution from field mass become

^f2&m25
m2

16p2 H 122g2 lnS m2f

4k2D J , ~7!

with Euler’s constantg. Unfortunately, this field-mass term
contains a logarithmic divergence at the event horizonr
5r 1 . Therefore, in Sec. II we develop the technique of a
lytical calculation to cancel such a divergent term, by pay
the price that̂ f2& is evaluated only near the event horizo
It is checked in Sec. III that the renormalized value of^f2&
at the event horizon becomes identical, up to the lead
terms of order of 1/m2r 1

2 , with the result derived by DeWitt-
Schwinger expansion in the large-mass limit. In Sec.
using the small-mass approximationmr1!1, we show the
tendency of temperature-induced excitation to be suppre
with increase of field mass. We find in Sec. V the ma
induced enhancement of the polarization amplitude^f2&, by
giving explicitly the dependence on field mass in the lo
temperature limitkr 1!1. The final section summarizes th
results representing a remarkable difference of field-mass
pendence of the polarization amplitude for scalar fields
equilibrium at various black-hole temperatures.

II. CORRECTION TO THE WKB APPROXIMATION

Let us start from a brief introduction of the method
compute the renormalized value of̂f2& in Reissner-
Nordström background~3!, which has been developed b
Anderson and his collaborators@2,5#. Using Eq. ~1! for a
massive scalar fieldf obeying the equation

~h2m2!f~x!50, ~8!

the unrenormalized expression is given by
12401
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^f2~r !&5 lim
e→0

H k

4p2 (
n50

`

cn cos~nke!An~r !J , ~9!

wherec051/2 andcn51 for n>1. The separation of two
points in GE(x,x8) is chosen to be only in time ase[t
2t8, and the radial partAn(r ) for each quantum numbern is
given by the sum of radial modespnl(r ) andqnl(r ),

An~r !5(
l 50

` H ~2l 11!pnl~r !qnl~r !2
1

rAf
J , ~10!

wherel is the angular-momentum quantum number, and
subtraction term 1/rAf is necessary for removing the dive
gence in the sum overl. The radial modeqnl satisfies the
equation

d2qnl

dr2
1

1

r 2f

d~r 2f !

dr

dqnl

dr
2H n2k2

f 2
1

l ~ l 11!1m2r 2

f r 2 J qnl

50, ~11!

and it is chosen to be regular atr 5` and divergent atr
5r 1 . The same equation is satisfied bypnl , which is cho-
sen to be well behaved atr 5r 1 and divergent atr 5`.

The WKB approximation for the modes may be used
calculate the mode sums~10!, by assuming the forms

pnl5
1

~2r 2W!1/2
expS E ~W/ f !dr D , ~12!

and

qnl5
1

~2r 2W!1/2
expS 2E ~W/ f !dr D , ~13!

where the zeroth-order solution is chosen to be

W2.n2k21H S l 1
1

2D 2

1m2r 2J f

r 2
. ~14!

To renormalizê f2& in the limit e→0 of point splitting, we
subtract the countertermŝf2&DS generated from the
DeWitt-Schwinger expansion of^f2&,

^f2&DS5
1

8p2s
1

m2

16p2 H 2112g1 lnS m2usu
2 D J

1
1

96p2
Rab

sasb

s
, ~15!

wheres is equal to one-half the square of the distance
tween the two pointsx andx8, andsa[¹as. Then, for the
renormalized value defined by

^f2& ren5^f2&2^f2&DS , ~16!
0-2
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we can arrive at the analytical approximation~6!, if the
second-order WKB approximation forW is used in the mode
sums forn>1 @2,5#.

Though Eq.~6! can clearly show a spatial distribution o
the vacuum polarization, the validity is rather restrictive. F
example, in the asymptotically flat regionr→` it fails to
give the expected dependence on field mass. It is instruc
for later discussions to calculate precisely^f2& ren of thermal
fields in equilibrium at a temperatureT in flat background
~corresponding tof 51), following the method of the Euclid
ean space Green’s functionGE(x,x8). DenotingT by k/2p,
we obtain the exact solutions forpnl and gnl in flat back-
ground as follows,

pnl5
1

r 1/2
I l 1

1
2
~rAm21n2k2!, ~17!

and

qnl5
1

r 1/2
Kl 1

1
2
~rAm21n2k2!, ~18!

and the mode sum overl in An results in

An52Am21n2k2. ~19!

If we use the Plana sum formula for a functiong(k)

(
j 5k

`

g~ j !5
1

2
g~k!1E

k

`

g~x!dx1 i E
0

` dx

e2px21

3@g~k1 ix !2g~k2 ix !#, ~20!

the unrenormalized value is written by the integral form

^f2&5 lim
e→0

H k

4p2 F2E
0

`

dn cos~nke!Am21n2k2

1E
m/k

` 2dn

e2pn21
Ak2n22m2G J . ~21!

The first term in the right-hand side of Eq.~21! is completely
canceled by the subtraction of the DeWitt-Schwinger co
terterms~15!, in which we haves52e2/2, while the second
term gives the renormalized valuêf2& ren in flat back-
ground, which for massless fields reduces to

^f2& ren5T2/12, ~22!

and becomes equal to Eq.~6! estimated in the asymptoticall
flat region. However, in the large-mass limitm@k, we ob-
tain

^f2& ren5m1/2~T/2p!3/2e2m/T, ~23!

because the second integral overn in Eq. ~21! should run
from the large lower limitm/k@1 to infinity. This leads to a
crucial difference from the approximated form~6!, for which
An is expressed in inverse powers ofnk such that
12401
r

ve

-

An.2
nk

f
1S 1

12r 2
2m2D Y 2nk, ~24!

as a result of the mode sum overl using the zeroth-orde
solution ~14! for W. It is clear that the sum of such an ex
pansion form ofAn overn>1 misses the exponential beha
ior e22pm/k of ^f2& ren in the asymptotically flat region.

Now let us turn our attention to vacuum polarization
the event horizonf 50, which is the main concern in thi
paper. Fortunately, we can claim that the above-mentio
deviation of Eq.~6! from the precise estimation become
irrelevant, if we consider the limitf→0. This is because
owing to the redshift factorf in W the expansion~24! re-
mains valid even for a large massm>k, by keeping the
conditionmAf /k!1. Then, concerning vacuum polarizatio
of massive fields at the event horizon, we can use Eq.~6! to
show the dependence of^f2& ren on m. Of course, one may
point out another crucial problem, that Eq.~6! contains a
logarithmic divergence atr 5r 1 . However, this singular be
havior is due to the sum ofAn over the limited range ofn
>1. Because the expansion form~24! also breaks down for
n50, the contribution ofA0 to ^f2& ren is omitted in the
calculation of Eq.~6!. We would like to clarify an important
role of then50 mode to give a regular value at the eve
horizon for the renormalized vacuum polarization^f2& ren
~and also for the renormalized stress-energy tensor^Tab& ren).

To this end we propose the procedure to treat more p
cisely the mode sum overl in An at the event horizon, which
is applicable to the lowern modes. Note that near the eve
horizon the exact solution forqnl should have the expansio
form

qnl5zn/2 ln z(
s50

`

asz
s1z2n/2(

s50

`

bsz
s, ~25!

with some coefficientsas andbs . The rescaled radial coor
dinate z is defined byz[(r 2r 1)/r 1!1. This expansion
form is not useful to calculateAn at the event horizon, be
cause the sums overl should be done without expanding i
powers ofz for requiring the convergence. Then, the impo
tant points to be mentioned here are the existence of
logarithmic termzn/2 ln z and the power-law behaviorz2n/2

dominant forn>1 in the limit z→0 ~except for then50
mode in which the logarithmic term becomes dominant!. For
the modespnl regular at the event horizon the domina
power-law behavior is given byzn/2, and the WKB forms
~13! and~12! for qnl andpnl remain exact up to these dom
nant power-law terms. Hence, the value ofAn for n>1 is
exactly given by the WKB calculation in the limitz→0, and
we will obtain a precise value of^f2& ren at the event horizon
by taking account of the additional correctionA0 to Eq. ~6!.

To resolve the problem of logarithmic divergence, ho
ever, it is important to note that the WKB form forqnl fails
to give the logarithmic behavior, which should play the ro
of canceling the logarithmic term contained in the DeWi
Schwinger renormalization counterterms.~Because the lead
ing logarithmic behavior inAn would bezn ln z, the value of
^f2& ren can become regular at the event horizon only
0-3
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considering a more precise treatment of then50 mode be-
yond the WKB level, while the same analysis for then51
mode is also necessary to obtain a regular value of^Ta

b& ren .)
Hence, our key approach is to study the modified Bes
forms for the modes instead of the WKB forms as follow

pnl5S x

r 2w
D 1/2

I n~x!, ~26!

and

qnl5S x

r 2w
D 1/2

Kn~x!, ~27!

where we have

x5E
r 1

r

~w/ f !dr, ~28!

for which it is easy to check the validity of the Wronskia
condition

pnl

dqnl

dr
2qnl

dpnl

dr
52

1

r 2f
. ~29!

The ordinary WKB forms are given if we assumepnl andqnl
to be proportional toI 1/2 and K1/2, respectively. Now, the
functionw introduced in place ofW should satisfy the equa
tion

w2

f 2 H 11
1

x2 S n22
1

4D J 5
n2k2

f 2
1

l ~ l 11!1m2r 2

f r 2
1

1

2w

d2w

dr2

2
3

4

1

w2 S dw

dr D 2

1
1

2r 2f w

d~r 2w!

dr

d f

dr
. ~30!

If w is rewritten into

w[ f 1/2y/r 1 , ~31!

the solution of Eq.~30! allows the expansion form

y5BS 11(
s51

`

ysz
sD . ~32!

From the well-known behavior of the modified Bessel fun
tion Kn(x) near x50, it is easy to see thatqnl has the
expected logarithmic behavior near the event horizon.

By substituting Eq.~32! into Eq. ~30! with the expansion
in powers ofz, we obtain the recurrence relation between
coefficientsB andys . For example, the lowest relation lead
to
12401
el
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2kr 1

3
~n221!S y1221

1

2kr 1
D5n~n11!12kr 12B2,

~33!

wheren(n11)5 l ( l 11)1m2r 1
2 . From the expansion up to

the next power ofz the relation betweeny1 andy2 turns out
to be

2kr 1

5
~n224!y252n~n11!y12 l ~ l 11!1U~kr 1 ,n,y1!,

~34!

whereU is a slightly complicated quadratic function ofy1
which depends onn andkr 1 only. An important point of the
expansion form~32! is that we can requireys to remain finite
in the limit l→`, for which from Eqs.~33! and ~34! the
asymptotic values ofB andy1 reduce to

B25 l ~ l 11!1m2r 1
2 1

1

3
1n2S 2kr 12

1

3D1O~ l 22!,

~35!

and

y15211O~ l 22!. ~36!

This dependence ofys on l allows us to calculate the mod
sum overl in An by neglecting the terms with the highe
powers ofz in Eq. ~32!, and in the following Eq.~35! will be
verified in terms of the cancellation of the logarithmic dive
gence in^f2& ren .

We also remark that the amplitude of^f2& ren at the event
horizon should not be interpreted as a quantity determi
only by local geometry. The relations~33! and~34! allow us
to give a conjecture that the recurrence relation is trunca
within a finite sequence, and for thenth mode the finite set
consisting ofB, y1 , . . . ,yn21 is completely determined fo
any value of l. However, the coefficientyn remains un-
known, unless the higher infinite sequence of the recurre
relation is consistently solved for satisfying the bounda
conditiony→(m2r 1

2 1n2k2r 1
2 )1/2 at z→` as an eigenvalue

problem. In particular, forn50 we cannot giveB for lower
values ofl without a further analysis of Eq.~11!. This is the
problem to be solved in the subsequent sections, and in
section we use Eq.~35! for n50 to derive the logarithmic
term in A0.

By taking the limitz→0, we can give the mode sum ove
l for n50 written by the form

A05(
l 50

` H 2l 11

kr 1
2

K0~BA2z/kr 1!I 0~BA2z/kr 1!

2
1

r 1A2kr 1z
J . ~37!

Then, we apply the Plana sum formula~20! to Eq. ~37!, in
which the modified Bessel functions are allowed to reduce

K0~BA2z/kr 1!.2g2 ln~BAz/2kr 1!, ~38!
0-4
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and

I 0~BA2z/kr 1!.1, ~39!

except for the integral defined by

E
0

`

dlH 2l 11

kr 1
2

K0~BA2z/kr 1!I 0~BA2z/kr 1!

2
1

r 1A2kr 1z
J . ~40!

To calculate the integral~40!, let us recall thatB is a function
of l satisfying

2BdB/dl52l 111O~ l 22! ~41!

in the largel limit and replace the integral of the modifie
Bessel functions overl by that overB to use the integra
formula

E 2BK0~Bv !I 0~Bv !dB5B2$K0~Bv !I 0~Bv !

1K1~Bv !I 1~Bv !% ~42!

for any variablev. Then, the same approximations with Eq
~38! and~39! is applicable to the remaining integral given b

E
0

` dl

kr 1
2 S 2l 1122B

dB

dl DK0~BA2z/kr 1!I 0~BA2z/kr 1!,

~43!

and we arrive at the final result forA0 in the limit z→0 such
that

A05
S0

kr 1
2

1
m2

k H g1
1

2
lnS z

2kr 1
D J , ~44!

where

S05S B0
22

1

2D ln B02
B0

2

2
2E

0

`

dlS 2l 1122B
dB

dl D ln B

2E
0

` idl

e2p l21
$~2i l 11!ln B~ i l !1~2i l 21!ln B~2 i l !%,

~45!

if we denoteB( l 50) by B0. Hence, by addingkA0/8p2 to
^f2&ap , the logarithmic divergence at the event horiz
turns out to be canceled, and we obtain the renormali
value denoted bŷf2&H as follows:

^f2&H5
k

24p2r 1

1
m2

16p2
$12 ln~m2r 1

2 !%1
S0

8p2r 1
2

.

~46!

It is interesting to note that the absence of the logarithm
divergence of̂ f2& ren at the event horizon is assured only b
12401
.

d

c

giving the asymptotic value~35! of B for the n50 mode
with very large l, which is determined through the loca
analysis nearr 5r 1 . Though in general we cannot obtain th
renormalized value itself without derivingB for lower l
modes, the large-mass limit can be an exceptional case
which the local analysis remains useful, and we calcul
^f2&H up to the order ofm22 in the next section as a simpl
application of the procedure presented here.

III. THE LARGE-MASS LIMIT

To calculate the integral ofB in S0 over l under the large-
mass limitmr1@1, it is convenient to give the expansio
form of B in inverse powers ofn(n11), by keeping the
quantitym[m2r 1

2 /n(n11) to be of order of unity.@For the
first integral present inS0 we cannot assumel ( l 11) to be
much smaller thanmr1 , while for the second integral the
approximation m.12 l ( l 11)(mr1)22 may be allowed.#
The expansion ofB2 should be done up to the terms of ord
of 1/n(n11) for obtaining them22 terms of^f2&H . Then,
the recurrence relation subsequent to Eqs.~33! and ~34! be-
comes necessary, for which the leading terms turn out to

y252
y1

2

2
1

3

2
~12m!1O~m22!. ~47!

The key point of Eq.~47! is the absence ofy3 in the leading-
order relation, from which Eqs.~33! and ~34! for n50 can
give

y15211m1
kr 1

n~n11!
h10~m24!, ~48!

and

B25n~n11!1
1

3
~112kr 1m!1

2k2r 1
2

3n~n11!
h1O~m24!,

~49!

where

h52
1

60k2r 1
2

1S 4

5
2

1

15kr 1
Dm2

37

15
m2. ~50!

Now it is easy to calculate the integrals in Eq.~45! up to
the terms of order of (mr1)22, and we can confirm the can
cellation of all the terms much larger than (mr1)22 in the
expression~46! for ^f2&H , giving the result

^f2&H5
1

720p2m2r 1
4 ~16k2r 1

2 24kr 111!. ~51!

Note that the well-knownm22 term ^f2&m22 of the DeWitt-
Schwinger approximation for̂f2& can be written by

^f2&m225
1

2880p2m2
~RabcdR

abcd2RabR
ab! ~52!
0-5
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for the Reissner-Nordstro¨m background ~with vanishing
Ricci scalar!, where Rabcd and Rab are the Riemann and
Ricci tensors, respectively. If evaluated at the event hori
r 5r 1 , this DeWitt-Schwinger term is found to be identic
with Eq. ~51!. Hence, for very massive fields withmr1@1
in equilibrium at black-hole temperatureT5k/2p, we can
claim the validity of the DeWitt-Schwinger approximatio
near the event horizon, as was previously shown in num
cal calculations@2,5#. Further, if mr1 is fixed, the tail part
~51! in the rangemr1@1 becomes minimum at the black
hole temperature corresponding tokr 151/8, rather than at
the low-temperature limitkr 1!1. The m-k coupling can
give a slightly complicated change to the amplitude
vacuum polarization. In the next section we see a resul
the m-k coupling as the suppression of temperature-indu
excitation in a small-mass range.

IV. THE SMALL-MASS LIMIT

Now we consider scalar fields with very small ma
mr1!1, for which the temperature-induced excitation giv
by Eq. ~5! will dominate. To reveal some correction due
the small field mass, let us begin with a brief analysis
purely massless fields. It is easy to see that Eq.~11! for the
masslessn50 modes becomes equal to Legendre’s differ
tial equation, if we use the variablex defined by x51
1(z/kr 1). Then, from the behavior of Legendre functions
x→1 andx→`, the modesq0l andp0l should be chosen to
be

q0l5Ql~x!, p0l5Pl~x!. ~53!

The mode sum in Eq.~10! for n50 is known to be precisely
zero for anyx @8#, and from Eq.~46! the vacuum polarization
at the event horizon reduces to

^f2&H5
k

24p2r 1

, ~54!

which should be interpreted to be purely induced by
black-hole temperature. For purpose of extending the re
to massive fields, it is useful to check explicitly through t
procedure given in the previous sections thatS0 in Eq. ~46!
vanishes.

Recall that the functionQl(x) has logarithmic branch
point atx51, and the dominant behavior near the point i

Ql.
1

2
lnS 2

x21D2c~11 l !2g, ~55!

wherec(s) is the logarithmic derivative of the gamma fun
tion ~i.e., a polygamma function!, and we havec(1)52g
for Euler’s constantg. By comparing the logarithmic behav
ior of Ql with Eq. ~38! for the modified Bessel function, w
can determine the coefficientB as follows:

B5exp$c~11 l !%. ~56!
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To calculate the integrals overl in S0, we use integral rep-
resentations for the polygamma function. For example,
obtain

2E
0

` idl

e2p l21
$~2i l 11!c~11 i l !1~2i l 21!c~12 i l !%

5E
0

`

dtH e2t

6t
2

2t221t21

et21
1

1

4 S cosh~ t/2!

sinh3~ t/2!

2coth~ t/2!11D J , ~57!

by virtue of the formula

c~s!5E
0

`

dtS e2t

t
2

e2ts

12e2tD . ~58!

Another useful formula is given by

c~s!5 ln s2
1

2s
2

1

12s2
2E

0

`

dtS 1

et21
2

1

t
1

1

2
2

t

12D e2ts,

~59!

through which we arrive at the result

E
0

`

dlH 2e2c(11 l )
dc~11 l !

dl
2~2l 11!J c~11 l !

5S 1

2
1g De22g2

1

3
1E

0

`

dtS 1

et21
2

1

t
1

1

2
2

t

12D
3S 2

t2
1

1

t D . ~60!

Then, it becomes easy to calculate the integral overt for the
sum of Eqs.~57! and ~60!, and we obtainS050.

For the massiven50 mode we rewrite Eq.~11! into the
form

~x221!
d2q0l

dx2
12x

dq0l

dx
2$ l ~ l 11!

1m2r 1
2 ~kr 1x112kr 1!2%q0l50, ~61!

which can clarify the deviation from Legendre’s differenti
equation. In this section a small-mass field havingmr1!1 is
assumed, and the solution perturbed by the field mas
given by

q0l5Ql 8~x!1ql~x!, ~62!

where l 82 l[d5O(m2r 1
2 ). Because the terms proportion

to m2r 1
2 in Eq. ~61! are dependent onx, we use the recur-

rence formula valid forQl 8 ~and also forPl 8) such that

~ l 811!Ql 8112~2l 811!xQl 81 l 8Ql 82150, ~63!
0-6
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and the perturbed partql is expanded in terms of Legendr
functions as follows:

ql5 (
k51

`

~ck
( l )Ql 81k1c2k

( l ) Ql 82k!. ~64!

The coefficientsck and c2k together with the eigenvalued
are determined by solving the recurrence relation

ck
( l )$~ l 81k!~ l 81k11!2 l ~ l 11!2m2r 1

2 v l 81k
(0) %

5m2r 1
2 (

j 51

2

~v l 81k
( j ) ck1 j

( l ) 1v l 81k
(2 j ) ck2 j

( l ) !, ~65!

wherec0
( l )51, and

v i
(0)5~12kr 1!21k2r 1

2 2i ~2i 11!21

~2i 21!~2i 13!
,

v i
(1)52kr 1~12kr 1!

i 11

2i 13
,

v i
(21)52kr 1~12kr 1!

i

2i 21
, ~66!

v i
(2)5k2r 1

2 ~ i 11!~ i 12!

~2i 13!~2i 15!
,

v i
(22)5k2r 1

2 i ~ i 21!

~2i 23!~2i 21!
.

Then, the first-order perturbation is found to be

ql5
m2kr 1

3

2l 11 H ~12kr 1!~Ql 112Ql 21!

1
kr 1

2 S ~ l 11!~ l 12!Ql 12

~2l 13!2
2

l ~ l 21!Ql 22

~2l 21!2 D J ,

~67!

and

d5
m2r 1

2

2l 11 H ~12kr 1!21k2r 1
2 2l ~ l 11!21

~2l 21!~2l 13!J , ~68!

for which the coefficientB is estimated to be

B5ec( l 11)H 11d
dc~ l 11!

dl
1m2r 1

2 S kr 1~12kr 1!

l ~ l 11!

1
k2r 1

2

~2l 21!~2l 13!
D J . ~69!
12401
Using these equations, one may calculate the polariza
amplitude^f2&H at the event horizon. However, forl 50 the
value ofB becomes divergent as a result of the existence
the undefined functionQ2k in Eq. ~67!. This will mean a
dominant contribution of thel 50 mode in the small-mas
limit.

To estimate more preciselyB5B0 for l 50, the subscript
l in the Legendre functions should be replaced byl 8, taking
account of the approximate relationQd2k.Pk21 /d for d
!1. Then, the termm2r 1

2 Qd21 which appears inq0 should
be interpreted to be of order of unity, contradictory to t
perturbation scheme. This problem is resolved if we add
other independent solution for Eq.~61! written by

p05d0
(0)Pd1 (

k51

`

~dk
(0)Pd1k1d2k

(0)Pd2k! ~70!

to q0 as follows,

q05 (
k51

`

~ck
(0)Qd1k1c2k

(0)Qd2k!1p0 , ~71!

where we require thatd21c21
(0)1d0

(0)[«!1 for d0
(0) of order

of unity. Of course, the coefficientsdk
(0) should satisfy the

same recurrence relation withck
(0) , and we obtain fork>1

d2k21
(0) 5O„~mr1!2k

…, d2k
(0)5O„~mr1!2k

…, ~72!

in addition to the ratiod2k
(0)/dk21

(0) 5O(m2r 1
2 ). Then, the

asymptotic behavior of thel 50 modeq00 at x@1 is approxi-
mately given by

q00.
1

x
1 (

k50

`
G„k1~1/2!…

ApG~k11!
~d21c2k21

(0) 1dk
(0)!~2x!k,

~73!

which should be consistent with the boundary condition

q00.
1

x
exp~2mkr 1

2 x! ~74!

at a distant region far from the event horizon.
To check the consistency, let us derive the approxim

recurrence relation which is valid up to the leading order
m2r 1

2 and reduces to

c2122k
(0)

c122k
(0)

5
d2k

(0)

d2k22
(0)

5m2k2r 1
4 2k21

~2k11!~4k21!~4k23!
,

~75!

and
0-7
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d21c22k22
(0) 1d2k11

(0)

d21c22k
(0) 1d2k21

(0)
5m2k2r 1

4 2k

~2k12!~4k11!~4k21!
.

~76!

Noting the relations between the lowest coefficients such

d21c21
(0)52m2kr 1

3 ~12kr 1! ~77!

and

d21c22
(0)1d1

(0)5m2k2r 1
4 /2, ~78!

we arrive at the result

q00. (
k51

`
~mkr 1

2 x!2k

x~2k!!
1«(

k51

`
~mkr 1

2 x!2k22

~2k21!!
, ~79!

which can satisfy the boundary condition if«52mkr 1
2 .

Unfortunately, we cannot determine« to the order of
m2r 1

2 , unless the recurrence relation is studied to the hig
order. Hence, we only keep the leading correction of orde
mr1 in the l 50 mode,

q00.Q02mkr 1
2 , ~80!

which means thatB05e2g(11mkr 1). For thel>1 modes
q0l we must also consider the perturbation with the ter
written by the Legendre functionsPk(x). However, it is sure
that no perturbation of order ofmr1 does not appear forl
>1, and we obtain

S0.2 ln~11mkr 1
2 !.2mkr 1

2 , ~81!

if we omit the higher-order corrections. Now the vacuu
polarization given by Eq.~46! for small-mass fields become
approximately

^f2&H.
k

24p2r 1

~123mr1!, ~82!

which clearly shows that the temperature-induced excita
is suppressed by field mass. Asm becomes larger, the am
plitude may monotonously decrease in the whole mass ra
extending tomr1@1 where the DeWitt-Schwinger approx
mation ^f2&H;(mr1)22 is valid. This simple dependenc
on m is supported through numerical calculations for seve
values ofmr1 in Schwarzschild background (kr 151/2) @7#.
In the next section, however, we point out a different dep
dence on field mass, which is a resonant behavior of^f2&H
remarkable in the low-temperature casekr 1!1.

V. MASS-INDUCED EXCITATION

Let us turn attention to quantum fields at the event ho
zon of nearly extreme black holes to show an interest
feature of the mass-induced excitation of vacuum polar
tion. Then, we do not limit the range of the parametermr1 ,
12401
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but we solve Eq.~61! under the assumptionkr 1!1 with the
help of the technique of asymptotic matching.

At large values ofx Eq. ~61! reduces to the form

d2q0l

dx2
1

2

x

dq0l

dx
2S n~n11!

x2
1

2m2kr 1
3

x
1m2k2r 1

4 D q0l50,

~83!

in which we cannot neglect the terms depending onkr 1 to
require the exponential decrease ofq0l . For the approximate
differential equation we obtain the solution

q0l5W2mr1 ,n11/2~2mkr 1
2 x!/x, ~84!

where Wa,b denotes the Whittaker function with th
asymptotic behavior

Wa,b~u!.ua exp~2u/2! ~85!

as u→`. This asymptotic solution can remain valid in th
range

1!x!1/kr 1 , ~86!

where we obtain the approximate behavior

q0l.
G~22n21!

G~mr12n!
~2mkr 1

2 x!n11x21

1
G~2n11!

G~mr11n11!
~2mkr 1

2 x!2nx21. ~87!

Note that if x!1/kr 1 , Eq. ~61! becomes approximately
equal to Legendre’s differential equation, giving the soluti

q0l5CPn~x!1DQn~x!. ~88!

The coefficientsC andD should be determined by matchin
with the approximate solution~87!, and it is easy to see tha
the ratio C/D is of order of (mkr 1

2 )2n11. Hence, we can
neglect the termPn in q0l , and the asymptotic behavior a
x→1 turns out to be

q0l.2DH 1

2
lnS x21

2 D1g1c~n11!J , ~89!

from which we obtain

B5ec(n11), ~90!

for calculatingS0 ~and ^f2&H) through Eq.~45!.
0-8
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A useful expression ofS0 to understand the field-mas
dependence is derived if we use the integral formula

c~n11!5
1

2
lnS n21n1

1

4D
1E

0

` 2tdt

~e2pt11!@ t21n21n1~1/4!#
. ~91!

In fact, for F( l )[(2 i )$(2i l 11)lnB(il )1(2il21)lnB(2il )%
12401
which is one of the integrands inS0, we obtain

F~ l !5 l ln$~ l 22z!21 l 2%1arctanS l

z2 l 2D
2E

0

` 8tdt

e2pt11

l 21~1/2!2t22z

~ l 22t22z!21 l 2
, ~92!

wherez5m2r 1
2 1(1/4), and the value of arctan(u) runs from

0 to p in the range 0<u<`. Further, the integral given by

E dlS 2l 1122B
dB

dl D ln B ~93!

is rewritten into the form
1

2 H n~n11!1
1

4J H lnFn~n11!1
1

4G21J 2e2c(n11)H c~n11!2
1

2J 12E
0

` tdt

e2pt11
lnF t21n~n11!1

1

4G , ~94!
tt-

he

of
. 1.

a

tion
which is equal to zero asl→`. We therefore arrive at the
result

S05
1

2 S z2
1

2D ln z2
z

2
1E

0

`H tG~ t !

e2pt11
1

H~ t !

e2pt21
J dt,

~95!

where

G~ t !52 ln~ t21z!2
1

t21z

28E
0

` dl

e2p l21

l 21~1/2!2t22z

~ l 22t22z!21 l 2
, ~96!

and

H~ t !5t ln$~ t22z!21t2%1arctanS t

z2t2D . ~97!

Under the low-temperature approximationkr 1!1 we ne-
glect the termk/24p2r 1 in Eq. ~46!, and the polarization
amplitude at the event horizon is finally given by

8p2r 1
2 ^f2&H5

m2r 1
2

2
lnS z

m2r 1
2 D 2

1

8
~11 ln z!

1E
0

`H tG~ t !

e2pt11
1

H~ t !

e2pt21
J dt. ~98!

Now it is easy to check the value of^f2&H in the large-
mass limitmr1@1, and we obtain
8p2r 1
2 ^f2&H.

1

90m2r 1
2

, ~99!

for which we can reconfirm that it is equal to the DeWi
Schwinger approximation~with kr 1→0). We can also con-
sider the small-mass limitmr1!1 under the condition
m/k@1, and the approximate expression of^f2&H becomes

8p2r 1
2 ^f2&H.2m2r 1

2 H 1

2
1g1 ln~mr1!J , ~100!

which can remain positive by virtue of the existence of t
logarithmic term2m2r 1

2 ln(mr1).
We evaluate numerically the integrals in the expression

^f2&H , and the field-mass dependence is shown in Fig
Note that the maximum excitation of^f2&H occurs atmr1

.0.38, and the peak amplitude denoted by^f2&max is esti-
mated to be 8p2r 1

2 ^f2&max.0.0424. We can clearly see

FIG. 1. The field-mass dependence of vacuum polariza
^f2&H at the nearly extreme Reissner-Nordstro¨m horizon r 5r 1 .
The amplitude has a resonance peak atmr1.0.38 and a tail part
decreasing in proportion tom22 for very massive fields.
0-9
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resonance behavior of the polarization amplitude for mas
fields with the Compton wavelength 1/m of order ofr 1 and
also the tail part given by Eq.~99! in the mass range o
mr1@1.

VI. SUMMARY

We have studied vacuum polarization of quantized sc
fields in the Reissner-Nordstro¨m background by means o
the Euclidean space Green’s function. In particular,
renormalized expression̂f2&H at the event horizonr 5r 1

has been derived by revealing the contribution of then50
mode, which can cancel the logarithmic divergence.

We have found the dependence of^f2&H on field massm:
~1! The tail part observed in the large-mass limitmr1@1
becomes equal to the DeWitt-Schwinger approximation.~2!
For small-mass fields a suppression of temperature-indu
excitation due to the coupling betweenm and k occurs ac-
cording to ^f2&H5^f2&T(123mr1), where the massles
part with the amplitude proportional to the black-hole te
peratureT5k/2p is given by 8p2r 1

2 ^f2&T5kr 1/3. We can
expect that mass-induced excitation becomes important
massive fields withmr1.1. Unfortunately, it is difficult to
investigate in detail various aspects of them-k coupling in
the case that bothmr1 andkr 1 are of order of unity.~3! Our
main result therefore has been to show a resonance beh
of mass-induced excitation of vacuum polarization arou
nearly extreme Reissner-Nordstro¨m black holes withkr 1

!1: If the Compton wavelength 1/m of a massive field is of
order of the black-hole radiusr 1 , the amplitude of vacuum
polarization has a peak at the resonance mass given
mr1.0.38.
ev
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There should be a critical temperatureTc5kc/2p of black
holes in the range 0,kr 1,1/2, below which a resonanc
peak of^f2&H is observed in the field-mass dependence.~If
k.kc , the polarization amplitude monotonously decrea
with increase ofm.! Though the value ofkc remains uncer-
tain within the analysis presented here, it is sure that do
nant fields as quantum perturbations near the Schwarzsc
horizon should be massless, while nearly extreme holes
have a quantum atmosphere dominated by fields with a r
nance mass. The peak amplitude given by 8p2r 1

2 ^f2&max

.0.0424 at the nearly extreme Reissner-Nordstro¨m horizon
is not so much smaller than the massless part given
8p2r 1

2 ^f2&T51/6 at the Schwarzschild horizon with th
same area 4pr 1

2 . ~If compared under the same black-ho
massM, the former becomes slightly larger than the lat
evaluated by 8p2M2^f2&T51/24.! Considering a black hole
evolving toward the zero-temperature state with a fixed
dius r 1 , we conclude that the massm of dominant fields
generating vacuum polarization shifts frommr1!1 to
mr1.0.38 as the contribution of mass-induced excitati
becomes important, without changing the polarization am
tude so much. Quantum back-reaction due to massive fi
@9# will become very important for nearly extreme~low-
temperature! black holes.
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